
Distributed
 Computing

Throw Your Smartphone
Semester Thesis

Anton Beitler

abeitler@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Barbara Keller, Jara Uitto

Prof. Dr. Roger Wattenhofer

October 20, 2012

Abstract

The Android app developed in this work enables the user to take aerial pho-
tographs by throwing the smartphone in the air. This involved overcoming
inherent limitations of the underlying system, such as camera lag and sensor
saturation. A motion detection algorithm is proposed which reliably detects the
stages of a vertical throw and copes with the system’s limitation. Experiments
show that the proposed method is capable of increasing peak prediction accuracy
by more than 80%.

i

Contents

Abstract i

1 Introduction 1

2 Materials and Methods 2

2.1 Set-up . 2

2.1.1 Motion Sensing with Smart Phones 2

2.2 Physical Model of a Vertical Throw 3

3 ThrowMeApp 7

3.1 The Android Hardware API . 8

3.1.1 Camera API . 9

3.1.2 Sensors API . 10

3.2 Data Handling (Model) . 11

3.3 Motion Detection and Prediction (Controller) 13

3.3.1 The Throw Detection Algorithm 14

3.3.2 Peak Prediction . 16

3.3.3 Orientation Detection . 18

3.4 User Interface (View) . 18

4 Experiments and Results 20

4.1 Quantifying Camera Delay . 21

4.2 A Typical Throw . 22

4.3 Peak Prediction Accuracy . 23

4.4 Rotation Stability . 25

4.5 Camera Pictures . 25

ii

Contents iii

5 Discussion and Conclusion 29

5.1 Discussion of Results . 29

5.1.1 Accuracy of Motion Detection 29

5.1.2 Timing and Delays . 29

5.1.3 Resulting Picture Quality 30

5.2 Conclusion and Outlook . 30

Bibliography 31

A Complete UML Diagram of ThrowApp A-1

B Full Statistics of Camera Delay B-1

C Motion Study of a Medium Height Throw C-1

Chapter 1

Introduction

There are more than one billion of them. Smartphones - mostly running the
Android operating system, mostly used by male users between 25-34 and mostly
for communication and gaming1. First to introduce an accelerometer into the
phone hardware was Nokia followed by many others. Where first they were used
in cars for collision detection in order to release the air bags, now accelerome-
ters and other motion sensing infrastructure are an integral part of the phone’s
interface.

The project Throw Your Smartphone brings this to a new level which sparks
people’s creativity on what can be done with a smart phone. ThrowMeApp is the
name of the application which is designed and built in this project. Its purpose is
to attract smartphone users for an interaction with the physics of nature and to
engage them in creative photography. The application allows users to take aerial
photographs with their smartphones by throwing it in the air. This happens in
an orientation sensitive way, meaning that the user can specify a direction to
which the picture is taken. Technically, ThrowMeApp comprises a number of
challenges as it uses the hardware outside the normal scope of operation which
brings both the hardware and the user to their limits.

Similar systems exist for example in a shape of a sphere equipped with multiple
cameras which construct a spherical panorama picture [1]. Another suggested
approach was to throw an actual video camera to get a continuous stream of
pictures [2]. Applications where a smart phone is thrown in the air also exist in
the form of games2 which give high scores for high or long throws.

This report documents the design and development process of ThrowMeApp.
It starts with an introduction to the sensing hardware used in the project and
the necessary theory to use it. Then, the implementation of the application is
described followed by a number of experiments that were conducted with it. The
results and their consequences are discussed last.

1http://www.go-gulf.com/blog/smartphone, (accessed 04.10.2012)
2http://itunes.apple.com/us/app/hangtime!/id354893714?mt=8,

https://play.google.com/store/apps/details?id=com.bytemods.throw_phone&hl=en

1

http://www.go-gulf.com/blog/smartphone
http://itunes.apple.com/us/app/hangtime!/id354893714?mt=8
https://play.google.com/store/apps/details?id=com.bytemods.throw_phone&hl=en

Chapter 2

Materials and Methods

2.1 Set-up

ThrowMeApp is an interactive application. Users engage with its functionalities
physically and not just virtually. Smartphones provide a variety of interfaces to
make this possible. How they work and what needs to be considered when using
them is discussed in this chapter.

2.1.1 Motion Sensing with Smart Phones

Smartphones mostly implement motion and orientation aware applications in
order to provide an additional interface to the system. This is done with the
use of accelerometer and gyroscope sensors which are embedded into the phones
hardware as Micro-electromechanical systems (MEMS). MEMS are micro scale
systems consisting of mechanical and electrical components fabricated in pro-
cesses that are common in the semiconductor manufacturing industry. As these
processes became more advanced and less expensive, the MEMS technology expe-
rienced a break through in sensing applications for electronic consumer products
such as smart phones.

Accelerometer

The basic structure of an accelerometer is a spring-mass system, where the elon-
gation of the spring , i.e. the displacement of the mass, is proportional to the ap-
plied acceleration. However, a multitude of implementations differ in the method
of sensing the displacement. A common approach in MEMS accelerometers em-
ploys the concept of differential capacitance [3]. An inertial suspended mass is
attached to fixed anchors by thin stripes of silicon acting as a spring. Addition-
ally there are electrodes (force fingers) attached to the mass which are positioned
between a set of fixed plates (sense fingers) forming capacities between a force

2

2. Materials and Methods 3

BEAM

FIXED
PLATE

UNIT CELL

A
C

C
EL

ER
A

TI
O

N

ANCHOR

PLATE
CAPACITANCES

(a) Conceptual structure

FOLDED TETHER

(b) ADXL 150 struc-
ture

BEAM

SENSE
FINGERS

AXIS OF
ACCELERATION

FORCE
FINGERS

TETHER

ANCHOR

BEAM

SENSE
FINGERS

AXIS OF
ACCELERATION

FORCE
FINGERS

TETHER

ANCHOR

(c) ADXL 150 under a micro-
scope

Figure 2.1: MEMS structure of a capacitive accelerometer [4]

finger and each of the sense fingers (Figure 2.1). The difference between these ca-
pacities is proportional to the displacement of the mass and therefore a measure
of the applied acceleration.

In order to obtain an acceleration vector in three dimensions, three sensors are
oriented perpendicular to each other. This defines a coordinate system where
each sensor measures the projection of the total acceleration on the corresponding
coordinate axis.

The acceleration that is measured by such a sensor is expressed in inertial coordi-
nates and is commonly called proper acceleration [5]. This is the acceleration that
an object feels acting upon itself rather than the acceleration which an observer
in an external reference frame might see (coordinate acceleration). For example
the phone laying still on the ground has proper acceleration of −9.81 m/s2 be-
cause the spring inside the sensor is elongated by the gravitational force acting
on the mass. However, its coordinate acceleration is 0 m/s2 because the phone
does not change its velocity with respect to the earth when laying still on the
ground.

This concept can be used to detect the orientation of the phone’s screen relative
to the ground, which allows for automatically switching between the landscape
and portrait screen modes.

2.2 Physical Model of a Vertical Throw

In this section a mathematical model for the translative motion of the vertical
throw in the gravitational field of the Earth is derived. This allows to analytically
describe the motion which the phone performs during the throw. Additionally,
analytic expressions for characteristic quantities of the throw are derived for later
use in the application.

In this model the phone is approximated by a mass point m with a position z(t)

2. Materials and Methods 4

m

mg

v0

z

Figure 2.2: Mass point model during free-fall

at time t. As only vertical throws are modeled, z(t) can also be called height
or altitude. The curve which the coordinate z(t) describes over time is called
trajectory.

The throw motion performed by a human hand can be split in two phases: Firstly,
the acceleration phase which starts at time t = 0 and ends at t− t0 and secondly,
the free-fall phase which starts at time t = t0. The motion motion equations for
each of the two phases are derived in the following paragraphs.

Acceleration Phase (0 < t < t0)

At the beginning of the acceleration phase the phone is assumed to lie motionless
in the hand. Hence, its initial velocity ż(0) is zero. For convenience the initial
position of the phone z(0) is assumed to be in the origin of the coordinate system.
During the acceleration phase the phone experiences an acceleration a(t) caused
by the motion of the hand. The Newton equation with the conditions given above
state the following initial value problem for the displacement of the phone.

m · z̈(t) = m · a(t) 0 ≤ t < t0 (2.1)

ż(0) = z(0) = 0 (2.2)

Of particular interest in the acceleration phase is the velocity v0 = ż(t0) which
the phone has at the end of the phase. This value is important because it
essentially determines the maximum height of the phone during the free-fall
phase. It can be obtained by integrating the applied acceleration over the length
of the acceleration phase:

(2.1), (2.2) =⇒ ż(t0) =

∫ t0

0
a(t) dt = v0 (2.3)

Free-fall Phase (t > t0)

The model during free-fall is depicted in Figure 2.2. The only force exerted
on the phone during free-fall is the gravitational force resulting in a constant

2. Materials and Methods 5

acceleration −mg (solid arrow). Additionally, the mass has an initial velocity v0
(dashed arrow) caused by the throw motion during the acceleration phase. The
Newton equation in this case gives rise to the initial value problem

m · z̈(t) = −mg t ≥ t0 (2.4)

ż(t0) = v0

z(t0) = z0

with the solution

ż(t′) = −gt′ + v0 t′ = t− t0 ≥ 0 (2.5)

z(t′) = −g
2
t′
2

+ v0t
′ + z0 t′ = t− t0 ≥ 0 (2.6)

where t′ = t− t0 denotes the time since the take-off happened. Equations (2.5)
and (2.6) fully characterize the translative motion of the phone in free-fall. For
example the time tp where the phone reaches the peak point of its trajectory is
given by the condition ż(tp) = 0 and yields

ż(tp) = 0 = −gtp + v0

⇔ tp =
v0
g
. (2.7)

Hence, the peak height is given by

z(tp)− z0 = −g
2
t2p + v0tp

2.7
= −g

2

v20
g2

+ v0
v0
g

=
v20
2g
. (2.8)

Figure 2.3 summarizes the values derived in this section on exemplary medium
throw accelerations. In the graph the acceleration (blue) as well as the phone
height (green) are plotted over time. The shaded area under the acceleration
curve represents the throw velocity which the phone has at time t0.

2. Materials and Methods 6

t0 tP

z(
t p) -

 z
0

Acceleration Phase Free-Fall Phase

Figure 2.3: Coordinate acceleration and displacement during throw motion and
free-fall

Chapter 3

ThrowMeApp

The goal of the Android application ThrowMeApp is to enable users to take
aerial photographs by simply throwing the smart phone in the air. Also, the
user should be able to determine the direction at which the photo is supposed
to be taken.

The realization of this task involves the implementation of a motion aware sys-
tem employing the motion sensors provided on a typical smart phone. In par-
ticular the accelerometer senses the translative dynamic component whereas the
gyroscope provides information about the rotation of the phone. The app has
to process these sensor measurements in real-time and invoke a photo capture
event whenever suitable. This is when the desired orientation is reached and the
phone is as close to the highest point of its motion as possible. Therefore, the
core tasks of the application are data acquisition, data processing and feedback
on a graphical interface.

These three core tasks manifest themselves in the structure of the program which
is based on the Model-View-Controller (MVC) design pattern. In the MVC
approach the model component represents the state of the application. The
view component displays the information to the user. The controller component
takes the users input from the view component and updates the model.

In the case of the ThrowMeApp application, the model is responsible for data ac-
quisition and storage. The controller implements the motion detection algorithm
and the view handles the graphical user interface. The communication between
the components happens via a cascade of listeners which allows for an event
driven application flow. Hence, a reevaluation of the model by the controller is
timed by the sampling rate of the sensor. The structure of the application is
depicted in Figure 3.1 where the MVC pattern is visualized in different colors.
The arrows represent function calls which are responsible for the information
flow from one block to another. There, the cascade of listeners is clearly visible.

The following sections further elaborate on the three software components men-
tioned above as well as their interaction with each other and the Android API.
Furthermore, a number of limitations that have been encountered during the

7

3. ThrowMeApp 8

User Interface
(View)

ch.ethz.disco.throwapp.*

android.hardware.*

Android Sensors API

Data Handling
(Model)

ch.ethz.disco.throwapp.data.*

IData3DHandler

Motion Detection And Prediction
(Controller)

ch.ethz.disco.throwapp.motion.*

IMotionHandler

registerDataListener()

registerListener() onSensorChanged(Event)

signalNewData(time)

android.view.*

Android View API

TextView

getDatum(time)

onMotionEvent(Event)

registerMotionListener()

Button etc.

Figure 3.1: Structure of ThrowMeApp

design process as well as their implications on the resulting application are de-
scribed.

3.1 The Android Hardware API

Before going into specifics of the implementation of the ThrowMeApp a short
preliminary introduction to the Android Hardware API is given in this section. It
serves to understand the underlying concepts of the hardware abstraction layer
implemented in the Android operating system. These concepts together with
their inherent limitations propagate throughout the whole application and have
an impact on design choices being made. This applies specifically for the Camera
API and Sensors API which are particularly relevant for ThrowMeApp.

3. ThrowMeApp 9

ThrowApp Camera

...

takePicture(Callback)

ShutterCallbackPictureCallback

onShutter()

open()

onPictureTaken(data)

release()

Δt

Figure 3.2: A typical API call sequence for taking a photograph. 4t denotes the
camera delay.

3.1.1 Camera API

The camera is a shared resource. Therefore, it is necessary to acquire the camera
semaphore when the application is running in the foreground and release it when
the application is put into the background. How this is done is depicted in Figure
Figure 3.2. The acquisition and release of the semaphore is done by calling the
open and release functions which are provided in each Camera class. Once
the ownership of the camera is established photo capture events can be invoked
by calling takePicture. This function takes a number of callback objects as
parameters. The callback objects have to implement interfaces which are defined
in the Android API.

The API provides two callback interfaces: ShutterCallback and PictureCallback.
The PictureCallback interface includes the method onPictureTaken which is
invoked when the picture data is available. The method onShutter is provided
by the ShutterCallback interface and is called when the photo is being taken.

In order to configure the behavior of the camera, a wide rage of parameters can
be set, for example the picture format and size as well as focus and flash modes.
Despite the seemingly flexible design the Camera API provided in the latest
version, there are two limitations with great influence on this work.

3. ThrowMeApp 10

Camera Limitation 1: Camera Auto Settings

Firstly, the Camera API fails to provide control over the essential and typical
photography settings such as ISO and exposure. The only way to influence these
values is provided indirectly through a variety of scene modes. However, the use
case of the ThrowMeApp is not covered sufficiently by any of the modes. Yet,
simply choosing a short enough exposure time and an appropriate ISO value
would already greatly diminish the effect of motion blur. Unfortunately, the
API does not provide the means to set these parameters.

Camera Limitation 2: Camera Delay

Secondly, the API only vaguely specifies the point of time when the onShutter

function call happens which is crucial for a time critical application such as
ThrowMeApp. Literally it states: “[The method is] called as near as possible
to the moment when a photo is captured from the sensor. [...] This may be
some time after the photo was triggered, but some time before the actual data
is available”[6]. The time between the takePicture method invocation and the
onShutter callback represents the delay between a photograph being issued and
actually being captured. This delay has to be taken into account to ensure that
the picture is taken at the right moment during the flight.

3.1.2 Sensors API

Additionally to the camera ThrowMeApp makes use of sensors. Android provides
access to the typical sensors found in a smart phone, such as the magnetic field
sensor, the gyroscope and the accelerometer. Additionally a number of software
sensors are available, for example the linear acceleration and the rotation vector.
Such sensors are implemented in software and calculate each sample using a
combination of hardware sensor measurements. To read the measurements the
API provides a listener interface defining the onSensorChanged method which
is called every time a new sample from the specified sensors is available.

The motion detection algorithm of ThrowMeApp uses the accelerometer to track
the translative motion of the phone. The orientation is read from the rotation
vector which is a software sensor calculating the orientation of the phone from
accelerometer and gyroscope data.

Accelerometer

The accelerometer measures proper acceleration (as described in Section 2.1.1)
along the three axes of an inertial Cartesian coordinate system depicted in Figure
3.3(a).

3. ThrowMeApp 11

(a) Sensor coordinates (b) World coordinates

Figure 3.3: Sensors API coordinate systems

The speed at which the values are polled from the sensor can be specified by the
user.

Rotation Vector

The values of a rotation vector represent the absolute orientation of the phone
in world coordinates. The function getRotationMatrixFromVector which is
provided in the Android API converts these values into a three dimensional
rotation matrix Q. This matrix maps a vector from the sensors coordinate
system into the world’s coordinate system. Figure 3.3(b) shows how the world’s
coordinate system is defined in the API.

Sensor Limitation: Saturation

The configuration possibilities for the sensors are very restricted, introducing a
major limitation to the application. For example most accelerometers used in
smart phones offer configurable dynamic ranges from ±2g (meaning twice the
gravitational acceleration into each direction of each axis) up to ±8g or higher.
However, in most cases the vendor’s firmware limits the dynamic range to ±2g
to achieve the highest sensitivity possible. Consequently, the sensor quickly
saturates during typical throw motions where acceleration magnitudes above 2g
are applied. In a similar manner the gyroscope is limited by a smaller dynamic
range than possible.

3.2 Data Handling (Model)

The package *.throwapp.data.* contains the data handling block of the appli-
cation. A detailed schematic representation is given in Figure 3.4. The three

3. ThrowMeApp 12

Data Handling
(Model)

ch.ethz.disco.throwapp.data.*

IData3DHandler

SensorData3DHandlerSensorEventListener

AccelerometerListener

RotaionVectorListener

registerDataListener()

registerListener() onSensorChanged(Event)

signalNewData(Timestamp)

RotVecLog

AccDataHandler

RotVecDataHandler

AccLog
put

put put

put
get

get

getDatum()

Android Sensors API

Figure 3.4: Detailed structure of the model block of ThrowMeApp

main tasks performed in this block are data acquisition, storage and provision.
In reference to this figure these tasks are discussed in the following.

Data Acquisition: For each of the sensors a corresponding SensorEventListener
is implemented. For every new sensor measurement the Android OS calls
the onSensorChanged method which is implemented in the listeners. The
datum is then relayed to the appropriate SensorData3DHandler for further
handling.

Data Storage: The data store is handled by the SensorData3DHandler which
accepts data from the listeners and stores them in data base. The data
structure used for storage is sorted list indexed with the time stamp of the
associated measurement.

Data Provision: The IData3DHandler provides two ways to access the stored
data. One possibility is to register an instance of a DataListener which
implements the function signalNewData. This function is called whenever
a new datum is put into the data store. The other possibility is to access
a single datum or a whole range by specifying the time or time range,
respectively.

The data store is the core of the data handling block as it contains all the
information about the motion of the phone. Therefore, the data handling block

3. ThrowMeApp 13

corresponds to the model in the MVC pattern. Generally, the model does not
contain functions for data handling. However, in this application simple data
relay functions are integrated. The advantage of this realization of the data
handling block is its generic public interface. For instance it is easily possible
to implement the interface using an ASCCII file of test measurements as a data
source. For test driven software development this is a key feature.

3.3 Motion Detection and Prediction (Controller)

IData3DHandler

Motion Detection And Prediction
(Controller)

ch.ethz.disco.throwapp.motion.*

IMotionHandler

registerDataListener()
signalNewData(time)

DataListener

MotionDetector

getDatum(time)

registerMotionListener()

onMotionEvent(Event)

Figure 3.5: Detailed structure of the controller block of ThrowApp

The package *.throwapp.motion.* contains the controller block of the program.
It implements the detection and decision logic which triggers motion events in
real time based on the input. The data is provided by the IData3DHandler

callback interface. Every time a new datum is signaled a reevaluation of the
whole data history is performed based on a throw detection algorithm. To allow
for backlog due to time consuming calculations the incoming data is buffered in
a First-In-First-Out (FIFO) channel.

The MotionDetector defines four characteristic motion events that occur once
for each throw:

Launch The launch marks the beginning of a throw motion. It is the point in
time when the phone significantly increases its speed while still in the hand
of the user.

Takeoff The takeoff is the moment when the phone leaves the hand and transi-
tions into a free-fall movement.

Peak The peak is the highest point of the phone’s trajectory. At that point the
velocity of the device in z-direction is zero.

Touchdown At the point of touchdown the phone ends its free-fall. It is the

3. ThrowMeApp 14

first time since the takeoff that the phone experiences accelerations beyond
the Earth’s gravitation.

The fifth event does not necessarily occur on each throw but may occur multiple
times per throw:

Oriented The phone is considered oriented when its orientation is aligned with
the specified direction at which the picture is supposed to be taken.

The algorithms used here have been developed with the help of numerous em-
pirical experiments and extensive sensor data analysis. The following sections
give an insight into how the throw detection, peak prediction and orientation
detection algorithms work.

3.3.1 The Throw Detection Algorithm

The throw detection algorithm (TDA) is responsible for detecting the launch,
takeoff and touchdown events of a throw. The algorithm operates under the
following premises.

1. Each throw motion has to be purely vertical such that the z-axis of the
phone’s and Earth’s coordinate systems are aligned. Any other movement
would cause a significant increase in the complexity of the algorithm be-
cause the orientation of the phone would need to be considered for the
conversion between proper acceleration and coordinate acceleration. By
restricting the throw motion to be purely vertical the algorithm is less
complex and more accurate.

2. When the algorithm is started, the phone has to have no velocity and its
display needs to be pointing towards the sky. This is the initial state that
the algorithm uses as a reference.

3. The magnitude of the gravitational acceleration is g = 9.81m
s2

. This is the
value used for the conversion between proper acceleration and coordinate
acceleration.

In order to detect the motion events the TDA checks the accelerometer samples
for certain conditions. The most recent sample as well as a history of samples are
used in different stages of the algorithm. Figure 3.6 summarizes its functionalities
in a flow chart.

The following methods are used to detect the corresponding events:

3. ThrowMeApp 15

j++;
Read j-th acceleration

sample s[j]

|s[j]| >
nonZeroThreshold

NO

YES

k++;
Read k-th acceleration

sample s[k]

v0 = ∫j
k

s[t] dt

v0 >
minTakeoffSpeed

NO

LAUNCH
at time j detected

k = j

TAKEOFF
at time k detected

YES

sign(s[k]) != sign(s[k-1])

YES

NO

j=0

m++;
Read m-th acceleration

sample s[m]

sign(s[m]) != sign(s[m-1])

YES

NO

m = k

TOUCHDOWN
at time m detected

Figure 3.6: Throw Detection Algorithm Flowchart

Launch The launch is characterized by a significant increase in the velocity.
This corresponds to non-zero accelerations that needs to be detected. How-
ever, due to the presence of sensor noise it is not sufficient to look for non-
zero acceleration values. Therefore, a nonZeroThreshold is introduced.
This threshold defines the upper bound for which an acceleration measure-
ment is considered to be zero. Hence, the launch is detected when the mag-
nitude of an incoming acceleration sample exceeds the nonZeroThreshold.

Takeoff At takeoff the force applied by the hand rapidly vanished and the ac-
celeration therefore drops from high positive values to −1g. This can be
detected by checking for a change of the sign of two consecutive samples.
However, a changed sign may also be caused by short sudden movements
during the throw motion. To disregard such movements a second param-
eter is introduced: the minTakeoffSpeed. It defines the minimum speed
which is necessary for proper throw. If the integral over all acceleration
samples between the launch and the sign change position is greater than
the threshold the takeoff is considered valid.

Touchdown The touchdown is the inverse of a takeoff. Here, the acceleration
changes from −1g to some high value. In this case it is sufficient to check
for the sign change of two consecutive samples as significant disturbances
during free-fall are highly unlikely.

3. ThrowMeApp 16

3.3.2 Peak Prediction

Due to the inherent camera delay discussed in Section 3.1.1 it is not practical
to detect the time when the peak is reached in real-time. Instead, a prediction
should be calculated and the delay subtracted from the prediction. Equation 2.7
provides a way of calculating the time of reaching the peak as a function of the
initial throw velocity v0 and the gravitational acceleration g. In ThrowMeApp
this calculation is done as soon as v0 is known. This is the case when the takeoff
event is detected by the TDA. However, the value v0 which is calculated in the
takeoff detection loop of the TDA underestimates the actual initial velocity of
the phone ṽ0 due to sensor saturation as discussed earlier. Surely, it is not
possible to recover ṽ0 completely because the accelerometer fails to sense the
actual acceleration applied to the device. The countermeasure to the estimation
error of the initial velocity due to sensor saturation used in ThrowMeApp is
described in the following.

Compensation of Sensor Saturation

The implemented approach to diminish the estimation error is to calculate a cor-
rection factor k = ṽ0/v0 which is the ratio between the actual and the estimated
initial velocity. ṽ0 can be derived from the hang time th which is the time the
phone spend in free-fall. If we assume that the phone is caught at the same
position as where it has been released into free-fall, it is possible to derive ṽ0
from Equation 2.6, yielding

z(th) = z0 = −g
2
t2h + ṽ0th + z0

⇔ ṽ0 =
1

2
gth.

However, in most cases the phone takes off at a higher altitude than where it is
caught due to the nature of the throw motion. This difference 4z is considered
in

z(th) = z0 −4z = −g
2
t2h + ṽ0th + z0

⇔ ṽ0 =
1

2
gth −

4z
th
. (3.1)

Using Equation 3.1 the correction factor k can be expressed in terms of the hang
time th and the estimated initial velocity v0 as follows

k =
g · th
2v0

− 4z
th · v0

. (3.2)

3. ThrowMeApp 17

The calculation of k can only be done after the throw is completed and the
touchdown is detected, i.e. th is available. Hence, it can be considered for the
following throws.

In ThrowMeApp the correction factor value is stored in the shared preferences
database which persists between executions of applications. For each throw the
value is read from the preferences and multiplied to ṽ0 to obtain a better initial
velocity estimate needed to calculate an accurate peak time prediction. After a
throw is performed, a new correction factor is calculated, low-pass filtered and
stored back into the preferences database. Figure 3.7 shows a block diagram of
the method by which the correction factor corrFactor is computed using a newly
calculated newCorrFactor. Basically it is an IIR low-pass filter implemented in
Direct Form 1 with coefficients b0 = 0.6 and−a1 = 0.4. The preceding saturation
block stabilizes the output by limiting the input to values between 1 and 5.

CorrFactor
1

Unit Delay
z

1

Saturation

0.4

0.6
newCorrFactor

1

Figure 3.7: Correction Factor update function as a block diagram

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

Low pass behavior of filter

Iterations

C
or

re
ct

io
n

F
ac

to
r

Sequence of computed k values
Sequence of stored k values

Figure 3.8: Step response of the IIR filter showing its low-pass characteristic

The purpose of the low-pass characteristic is to avoid large changes of k between
two successive throw iterations. For example an erroneous value could arise when
the phone is not caught but let drop on the ground after free-fall. This would
spoil the peak calculation for the next throw if the value of the correction factor
would be adopted. By averaging between several successive values the effect of
one erroneous instance is reduced. This is illustrated in Figure 3.8 showing the
step function of the filter. The step simulates a rapid transition of calculated k
values between the first two throws followed by a constant value of 1 (thin line).
The bold line shows the progression of the actual value used in each throw,

3. ThrowMeApp 18

which adopts the step only after four iterations. Hence, the correction factor k
represents the characteristics of the five preceding throws.

Once k is determined by the described method, the time at which the peak is
reached, is best approximated by

tp =
k · v0
g

.

3.3.3 Orientation Detection

Next, the orientation detection mechanism is explained. It is the method re-
sponsible for detecting the desired direction at which the picture is to be taken.

The direction to which the camera points is specified by the vector (0, 0,−1) in
the phone’s inertial coordinates (Figure 3.3(a)). To identify how the camera is
oriented in the world’s coordinate system, this vector has to be multiplied with
the rotation matrix Q as discussed in Section 3.1. Therefore, the negated third
column of the rotation matrix −(q3, q6, q9) has to be compared to a specified
direction vector in world coordinates. In ThrowMeApp the vector −(q3, q6, q9)
is compared to (0, 0,−1) which is a vector pointing towards the ground.

However, it is not feasible to check the two vectors for equality because a prefect
match is rarely achieved. Therefore, a tolerance orientationTol is introduced.
This value specifies the maximum Euclidean distance between the two vectors
for which they are considered equal.

3.4 User Interface (View)

The user enters the ThrowMeApp application through the MainActivity which
displays basic usage instructions. From there the user can adjust settings in
the SettingsActivity or initiate the ThrowActivity. Depending on whether
a photograph has been taken by the ThrowActivity, the user is displayed the
picture in the ResultView or given an error message in the FailureActivity,
respectively. Figure 3.9 shows the typical GUI path in solid arrows and the
exceptional GUI path in dashed arrows. Each stage on a path extends the
android.app.Activity class and implements view components provided by the
Android View API, such as TextViews, Buttons or Surfaces. The following
paragraphs give a more detailed description of each of the five activities.

SettingsActivity The SettingsActivity provides means to adjust applica-
tion specific preferences. Two GUI control parameters can be set here:

1. Prompt Throw Details: Activate to show diagnostic statistics
about the throw that has been performed. This includes throw veloc-
ity, predicted peak time, predicted peak height, hang time, etc.

3. ThrowMeApp 19

User Interface
(View)

ch.ethz.disco.throwapp.*

MotionEventListener

IM
ot

io
nH

an
dl

er

MainActivity

ThrowActivity

ResultActivity

Android View API

Initalize

registerMotionListener()

onMotionEvent(Event)

SettingsActivity

To
uc

h

onSuccess

Touch

FailureActivity

onFailure

Touch

TextView Button etc.

Option
Menu

Figure 3.9: Detailed structure of the view block of ThrowApp

2. Detect Peak: Activate to enable an audible feedback at the predicted
peak point.

MainActivity This is the landing activity which is shown to the user when
ThrowMeApp is started. Short usage information is displayed here. By
touching the screen the application proceeds to the ThrowActivity.

ThrowActivity This activity shows the preview of the camera in full screen.
Additionally, it implements the MotionEventListener interface from the
.throwapp.motion. package and registers itself as a listener to the
MotionHandler. Thus, detected motion events are signaled to this ac-
tivity which performs the appropriate actions. For example a beep sound
is played at the predicted peak time and the camera is triggered when
correct orientation is detected. An incoming touchdown event causes the
application to proceed to the ResultActivty in case pictures have been
taken. If no pictures were taken the FailureActivity is executed instead.

ResultActivity The ResultActivity displays the resulting photograph.

FailureActivity Here an error message is displayed and the user can proceed
to the MainActivity to try again.

Chapter 4

Experiments and Results

ThrowMeApp has been tested on two different devices:

1. Samsung Galaxy S III (GT-I9300)

• Android Version: 4.0.4

• Accelerometer/Gyroscope: STMicroelectronics LSM330DLC

2. Samsung (Google) Nexus S

• Android Version: 4.0.4

• Accelerometer: STMicroelectronics KR3DM

• Gyroscope: STMicroelectronics K3G

Mostly, ThrowMeApp behaves equally well on both phones since they run the
same version of Android. However, different behavior may occur due to differ-
ences in hardware (especially Sensors, Camera, CPU) and their driver imple-
mentations. Most noticeable are the performance gaps between the two device
in graphical interface transitions and camera delays. The experiments described
in this chapter have been performed on both phones. The results are generally
platform independent. However, some relevant differences in the outcomes are
pointed out where applicable.

A number of experiments have been conducted in order to assess the functionality
and feasibility of the implementation of ThrowMeApp. First, the camera delay,
as discussed qualitatively in Section 3.1.1, is put into numbers. Then, sensor data
of a typical throw is shown and the accuracy of the peak detection mechanism
is examined. This is followed by a presentation of the rotation dynamics during
a typical throw and two special cases of stable and unstable rotations. Finally,
a set of resulting pictures are presented.

20

4. Experiments and Results 21

4.1 Quantifying Camera Delay

The camera delay is an inherent limitation of the system. As ThrowMeApp
relies on a fast response to a takePicture command, it is worth estimating the
duration and behavior of the delay under different conditions. For that purpose
the diagnostic Android application CameraDelayTester was developed. This
App triggers the camera every three seconds in an infinite loop. It measures
the delay between the event being triggered and the onShutter callback being
executed and displays the result. When the App is exited a log is stored to
the file system containing two values for each measurement. One represents the
delay as described above in milliseconds and the other is the delay minus the
exposure of the corresponding photo. The latter is called normalized delay.

As the first step of the camera delay identification experiment, the execution
profile of the takePicture method called in the CameraDelayTester App is
examined. Figures 4.1(a) and 4.1(b) show common execution profiles of the
Galaxy S 3 and the Nexus S, respectively.

(a) Galaxy S 3

(b) Nexus S

Figure 4.1: The execution profile during a takePicture method call

The Galaxy execution trace indicates an approximately 174 ms long execution pe-
riod of the method MessageQueue.nativePollOnce between the time measure-
ments performed by System.currentTimeMillis. The Camera.native_takePicture
call, however, is neglectable with an execution time of approx. 446 µs. For
the Nexus S the execution of the MessageQueue.nativePollOnce method takes
approximately 191 ms. The Camera.native_takePicture method executes in

4. Experiments and Results 22

approximately 90.5 ms.

The second step is to monitor the camera delay behavior over a number of succes-
sive executions under different conditions. Experiments with high sample sizes
have been performed on both phones and under good and poor light conditions.
Good light conditions simulate the normal mode of operation with typically
short shutter speeds whereas poor light conditions entail long shutter speeds.
The camera delay and the normalized delay have been recorded. A complete
set of histogram plots of the data is provided in Appendix B. In Table 4.1 the
statistics of the gathered measurements is summarized.

Galaxy S 3 Nexus S
good light poor light good light poor light

Mean exposure µe 1/165 s 1/17 s 1/136 s 1/13 s
Sample size n 565 769 525 308
Mean delay µd 102.1 ms 158.8 ms 233.4 ms 356.6ms
Std. deviation σd 9.8 ms 17.9 ms 28.9 ms 33.4 ms

Table 4.1: Summary of camera delay statistics

4.2 A Typical Throw

Now, that the camera delay is measured it is practicable to examine the speeds
present in a typical throw. This is where the Android application Sensations

comes into play. The App displays live measurements from a number of relevant
sensors and stores their values to the file system in the form a comma separated
values (csv) file.

In this section the acceleration during a typical medium height throw is consid-
ered. Appendix C includes a full motion study for this particular throw. Figure
4.2 shows the resulting acceleration measurements from two sensors. The mea-
surements in the graph are already transformed into coordinate acceleration by
a subtraction of g = 9.81 m/s2.

As the range of the internal sensor is limited to ±2g the saturation starting at
second 1 can be clearly observed. The external sensor with a greater dynamic
range measures accelerations up to 3.5g. The shaded area under the curve rep-
resents the initial velocity v0. In this throw the actual initial velocity derived
from unsaturated measurements is ṽ0 = 3.7 m/s. However, the area under the
saturated internal accelerometer measurements curve is v0 = 1.45 m/s. This
yields a correction factor

k =
3.7 m/s

1.45 m/s
≈ 2.55.

4. Experiments and Results 23

Figure 4.2: Acceleration during medium height throw. Internal sensor saturates.

The predicted peak time tp and height z(tp) for this example, without the use of
the correction factor, are calculated by Equation 2.7 and yield

tp =
v0
g

=
1.45m

s

9.81m
s2
≈ 147.8 ms

z(tp) =
v20
2g

=
1.452m

2

s2

2 · 9.81m
s2
≈ 10.7 cm.

The Accuracy of peak prediction is further analyzed in the following section.

4.3 Peak Prediction Accuracy

The accuracy prediction of the peak time and height depends heavily on the
correct value of the initial takeoff speed v0. Especially, for the height any er-
ror influences the result quadratically. Therefore, a correction factor has been
introduced as described in Section 3.3.2.

To evaluate the effect of the correction factor on the estimation error of the
peak height prediction, a sequence of experiments have been conducted. Each

4. Experiments and Results 24

experiment consisted of a medium height vertical throw which was recorded on
video. After each throw the predicted peak height provided by ThrowMeApp
was compared to the actual peak height which could be measured with the help
of the video sequence. However, due to motion blur in the video recording the
takeoff position can only be measured with low precision. The effect of motion
blur is shown in Figure 4.3.

Figure 4.3: Motion blur in the video recording

Figure 4.4 shows the results from an experiment with ten consecutive throws of
roughly the same height. The graph on the left indicates the predicted height,
video-measured height with 5 cm precision tolerance and the error where no
correction factor was used. The graph on the right shows the same with the
correction factor being used.

0 2 4 6 8 10
-100

-80

-60

-40

-20

0

20

40

60

80

100

Height Prediction Error without correction Factor

Measurement

H
ei

gh
t [

cm
]

0 2 4 6 8 10
-100

-80

-60

-40

-20

0

20

40

60

80

100

Height Prediction Error with correction Factor

Measurement

H
ei

gh
t [

cm
]

Height Prediction
Height Measurement and Precision
Error

Figure 4.4: Effect of correction Factor on height prediction Error

4. Experiments and Results 25

The average error without correction in place is E = 64 cm. The use of the
proposed correction method reduces the average error by about 83% to Ec =
11 cm.

4.4 Rotation Stability

In addition to the position of phone its orientation needed to be considered as
well when taking the photo. This includes the use of the gyroscope to track the
phone’s rotation. However, during the course of this work it turned out that it is
not possible to trigger a photo by analyzing gyroscope data in real-time. Rather
the times of reached desired orientation has to be known prior to triggering the
photo event to account for the camera delay. A simple experiment serves the
purpose to analyze whether this is a feasible approach.

In order to predict the rotation of the device one has to assume that during
free-fall no net momentum is applied to the mass, thus the angular momentum
L is constant. This implies that the magnitude and direction of the total angular
velocity ω remains constant throughout the free-fall because L = Iω holds and
the moment of inertia does not change.

In order to investigate the stability of the rotation axis raw gyroscopic data as
well as the rotation matrix for two exemplary throws have been acquired. Figures
4.5 and 4.6 show the results of attempted pure y-axis and x-axis throw rotations,
respectively. The top-left graphs show the raw angular velocities measured by
the g. The top-right graphs show the direction of the third column of the rotation
matrix which is the direction of the camera evolving of the course of the throw.
The bottom two graphs show the direction of the rotation axis in phone and
world coordinates over time.

For this experiment it can be observed that the rotation axis in world coordinates
of the y-axis rotation depicted in Figure 4.5 remains fairly constant. However,
the rotation axis in world coordinates of the x-axis rotation clearly changes its
direction.

4.5 Camera Pictures

The pictures taken by ThrowMeApp suffer from motion blur. A sample photo-
graph shown in Figure 4.7 exhibits this distortion even at bright light conditions.

4. Experiments and Results 26

-1-0.500.51
-1

-0.5

0

0.5

1
Rotation axis in time (Phone's coordinates)

y
 (t)

 z (
t)

-1-0.500.51
-1

-0.5

0

0.5

1
Rotation axis in time (Earth's coordinates)

y
 (t)

 z (
t)

1.4 1.6 1.8 2
-2

0

2

4

6

8

10

12
GYROSCOPE

time [s]

R
at

e
of

 r
ot

at
io

n
[r

ad
/s

]

x
y
z

-1 -0.5 0 0.5 1

-1
0

1
-1

-0.5

0

0.5

1

y
 (t)

x
 (t)

Third column of rot. Matrix

 z (
t)

Figure 4.5: Constant rotation axis in y-direction

4. Experiments and Results 27

-1 0 1-1 0 1
-1

-0.5

0

0.5

1

y
 (t)

Rotation axis in time (Phone's coordinates)

x
 (t)

 z (
t)

-1 -0.5 0 0.5 1 -101
-1

-0.5

0

0.5

1

y
 (t)

Rotation axis in time (Earth's coordinates)

x
 (t)

 z (
t)

1.4 1.6 1.8 2
-6

-4

-2

0

2

4

6

8

10
GYROSCOPE

time [s]

R
at

e
of

 r
ot

at
io

n
[r

ad
/s

]

x
y
z

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

x
 (t)

Third column of rot. Matrix

y
 (t)

 z (
t)

Figure 4.6: Variable rotation axis in x-direction

4. Experiments and Results 28

Figure 4.7: Motion blur even at good light conditions

Chapter 5

Discussion and Conclusion

So far the theoretical background has been derived and the functionality of
ThrowMeApp has been described and tested. The following discussion sum-
marizes the findings of this work and puts them into perspective for future ap-
plications.

5.1 Discussion of Results

5.1.1 Accuracy of Motion Detection

A method for real-time motion detection of a throw motion in the presence of
saturated sensor measurements has been proposed in this work. The accuracy of
the motion detection and the prediction of the peak height have been evaluated.
An error reduction of 83 % was achieved by using the proposed sensor saturation
countermeasure for the peak height prediction. The peak height was estimated
with an accuracy of 11 cm for a sequence of similar throws. This value is sufficient
to produce acceptable results for the standard use case of the ThrowMeApp
application. However, the user will have to perform several throws in a row in
order to experience better peak detection precision.

A rotation prediction mechanism could not be reliably implemented using the
orientation sensing provided in the Android API. The results in Section 4.4 show
that the measured rotation axis of a rotation in free-fall does not guarantee to
remain in constant direction during free-fall. This inhibits the extrapolation of
the rotation dynamics. The poor orientation sensing can have numerous reasons
one of which is certainly the insufficient orientation sensing facilities provided by
the Android API.

5.1.2 Timing and Delays

The camera delay was already identified as a major source of trouble in an
early stage of the project. An analysis of its scale revealed dependencies with

29

5. Discussion and Conclusion 30

the phone’s hardware and the driver’s implementations making it impossible to
compensate the lag with a constant time value.

In addition, the camera lag prohibits reasonable orientation awareness in the
ThrowMeApp. Even with a high-end phone and best light conditions a delay of
100 ms has to be taken into account. For a phone rotating at moderate 10 rad/s
this already means a nearly 60◦ angular displacement between an orientation is
detected and the picture is taken.

5.1.3 Resulting Picture Quality

In ThrowMeApp great effort was made to increase the picture quality and reduce
motion blur. This includes and is unfortunately limited to setting a certain scene
mode and tweaking the exposure compensation. Besides these two functions the
API does not provide any means to set parameters like the ISO value or the
shutter speed which are essential for keeping motion blur at minimum even with
the risk of underexposed pictures.

With some practice the photo quality can be increased, for example by trying
to throw the phone with as little rotation as possible. Also, the app should be
used outside during bright sun light. This allows the auto settings of the phone
to adjust for hight shutter speeds which reduces motion blur.

5.2 Conclusion and Outlook

The goal of this work was to create an application which enables users to take
aerial photos with their smart phone by throwing it in the air. In essence,
ThrowMeApp delivers this functionality. With ThrowMeApp even multiple
aerial pictures can be taken with one touch and one throw. With a little practice
and sunshine the quality can be enhanced satisfying results can be produced.

The major limitations of this work were the Android API and the lack of control
over low level hardware operations. If one chooses to go beyond what is offered in
the Android SDK it is possible to solve at least two remaining problems. Firstly,
the dynamic range of the sensors can be set by hardware register manipulation
on the firmware level. Secondly, additional camera settings such as ISO settings
are provided in the JNI (Java Native Interface) portion of the Android operating
system. Getting access to these functions via the SDK or outside of it will provide
means to reduce motion blur in the pictures.

Bibliography

[1] Pfeil, J., Hildebrand, K., Gremzow, C., Bickel, B., Alexa, M.: Throwable
panoramic ball camera. In: SIGGRAPH Asia 2011 Emerging Technologies.
SA ’11, New York, NY, USA, ACM (2011) 4:1–4:1

[2] Kuwa, T., Watanabe, Y., Komuro, T., Ishikawa, M.: Wide range image
sensing using a thrown-up camera. In: Multimedia and Expo (ICME), 2010
IEEE International Conference on. (july 2010) 878 –883

[3] Maluf, N., Williams, K.: Introduction to Microelectromechanical Systems
Engineering. Microelectromechanical Systems Series. Artech House (2004)

[4] Samuels, H.: Single- and dual-axis micromachined accelerometers (1996)

[5] Sethuramalingam, T., Vimalajuliet, A.: Design of mems based capacitive
accelerometer. In: Mechanical and Electrical Technology (ICMET), 2010
2nd International Conference on. (sept. 2010) 565 –568

[6] Google: Android API reference - Camera.ShutterCallback. https:

//developer.android.com/reference/android/hardware/Camera.

ShutterCallback.html (09 2012)

31

https://developer.android.com/reference/android/hardware/Camera.ShutterCallback.html
https://developer.android.com/reference/android/hardware/Camera.ShutterCallback.html
https://developer.android.com/reference/android/hardware/Camera.ShutterCallback.html

Appendix A

Complete UML Diagram of
ThrowApp

A-1

Complete UML Diagram of ThrowApp A-2

U
se

r I
nt

er
fa

ce
(V

ie
w

)
ch

.e
th

z.
di

sc
o.

th
ro

w
ap

p.
*

M
ot

io
nE

ve
nt

Li
st

en
er

Ha
rd

w
ar

e
Ab

st
ra

ct
io

n
La

ye
r

an
dr

oi
d.

ha
rd

w
ar

e.
*

An
dr

oi
d

Ha
rd

w
ar

e
AP

I

Ca
m

er
a

Ac
ce

le
ro

m
et

er
Ro

ta
tio

nV
ec

to
r

Da
ta

 H
an

dl
in

g
(M

od
el

)
ch

.e
th

z.
di

sc
o.

th
ro

w
ap

p.
da

ta
.*

ID
at

a3
DH

an
dl

er

Se
ns

or
Da

ta
3D

Ha
nd

le
r

Se
ns

or
Ev

en
tL

ist
en

er

M
ot

io
n

De
te

ct
io

n
An

d
Pr

ed
ic

tio
n

(C
on

tr
ol

le
r)

ch
.e

th
z.

di
sc

o.
th

ro
w

ap
p.

m
ot

io
n.

*

IM
ot

io
nH

an
dl

er

Ac
ce

le
ro

m
et

er
Li

st
en

er

Ro
ta

io
nV

ec
to

rL
ist

en
er

M
ai

nA
ct

iv
ity

Th
ro

w
Ac

tiv
ity

Re
su

ltA
ct

iv
ity

re
gi

st
er

Da
ta

Li
st

en
er

()

re
gi

st
er

Li
st

en
er

()
on

Se
ns

or
Ch

an
ge

d(
Ev

en
t)

sig
na

lN
ew

Da
ta

(t
im

e)

Ro
tV

ec
Lo

g

Da
ta

Li
st

en
er M

ot
io

nD
et

ec
to

r

an
dr

oi
d.

vi
ew

.*

An
dr

oi
d

Vi
ew

 A
PI

Bu
tt

on
Li

st
Vi

ew
Su

rf
ac

eV
ie

wIn
ita

liz
e

Ac
cD

at
aH

an
dl

er

Ro
tV

ec
Da

ta
Ha

nd
le

r

Ac
cL

og
pu

t

pu
t

pu
t

pu
t

ge
t

ge
t

ge
tD

at
um

(t
im

e)

registerMotionListener()

onMotionEvent(Event)

Se
tt

in
gs

Ac
tiv

ity

Touch

on
Su

cc
es

s

To
uc

h

Fa
ilu

re
Ac

tiv
ity

on
Fa

ilu
re

To
uc

h

Te
xt

Vi
ew

Bu
tt

on
et

c.

O
pt

io
n

M
en

u

Figure A.1: CompleteUML diagram of ThrowApp

Appendix B

Full Statistics of Camera Delay

B-1

Full Statistics of Camera Delay B-2

50
10

0
15

0
20

0
25

0
01020304050

C
am

er
a

D
el

ay
, G

al
ax

y
S

 II
I,

go
od

 li
gh

t (
n

=
 5

65
,

 =
 1

02
.1

 m
s,

 =

 9
.8

 m
s)

C
am

er
a

D
el

ay
 [m

s]

Occurrences

50
10

0
15

0
20

0
25

0
01020304050

C
am

er
a

D
el

ay
, G

al
ax

y
S

 II
I,

po
or

 li
gh

t (
n

=
 7

69
,

 =
 1

58
.8

 m
s,

 =

 1
7.

9
m

s)

C
am

er
a

D
el

ay
 [m

s]

Occurrences

D
at

as
et

 G
al

ax
y

S
 II

I,
go

od
 li

gh
t

N
or

m
al

 d
is

tr
ib

ut
io

n
fit

D
at

as
et

 G
al

ax
y

S
 II

I,
po

or
 li

gh
t

N
or

m
al

 d
is

tr
ib

ut
io

n
fit

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
01020304050

C
am

er
a

D
el

ay
, N

ex
us

 S
, g

oo
d

lig
ht

 (
n

=
 5

25
,

 =
 2

33
.4

 m
s,

 =

 2
8.

9
m

s)

C
am

er
a

D
el

ay
 [m

s]

Occurrences

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
01020304050

C
am

er
a

D
el

ay
, N

ex
us

 S
, p

oo
r

lig
ht

 (
n

=
 3

08
,

 =
 3

56
.6

 m
s,

 =

 3
3.

4
m

s)

C
am

er
a

D
el

ay
 [m

s]

Occurrences

D
at

as
et

 N
ex

us
 S

, g
oo

d
lig

ht
N

or
m

al
 d

is
tr

ib
ut

io
n

fit

D
at

as
et

 N
ex

us
 S

, p
oo

r
lig

ht
N

or
m

al
 d

is
tr

ib
ut

io
n

fit

Figure B.1: Camera Delay

Full Statistics of Camera Delay B-3

50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0
01020304050

C
am

er
a

D
el

ay
, G

al
ax

y
S

 II
I,

go
od

 li
gh

t (
n

=
 5

65
,

 =
 8

9.
4

m
s,

 =

 7
.6

 m
s)

(C
am

er
a

D
el

ay
 -

 E
xp

os
ur

e)
 [m

s]

Occurrences

50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0
01020304050

C
am

er
a

D
el

ay
, G

al
ax

y
S

 II
I,

po
or

 li
gh

t (
n

=
 7

69
,

 =
 9

9.
8

m
s,

 =

 1
7.

9
m

s)

(C
am

er
a

D
el

ay
 -

 E
xp

os
ur

e)
 [m

s]

Occurrences

D
at

as
et

 G
al

ax
y

S
 II

I,
go

od
 li

gh
t

N
or

m
al

 d
is

tr
ib

ut
io

n
fit

D
at

as
et

 G
al

ax
y

S
 II

I,
po

or
 li

gh
t

N
or

m
al

 d
is

tr
ib

ut
io

n
fit

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
01020304050

C
am

er
a

D
el

ay
, N

ex
us

 S
, g

oo
d

lig
ht

 (
n

=
 5

24
,

 =
 2

24
.5

 m
s,

 =

 2
7.

5
m

s)

(C
am

er
a

D
el

ay
 -

 E
xp

os
ur

e)
 [m

s]

Occurrences

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
01020304050

C
am

er
a

D
el

ay
, N

ex
us

 S
, p

oo
r

lig
ht

 (
n

=
 3

08
,

 =
 2

79
.6

 m
s,

 =

 3
3.

4
m

s)

(C
am

er
a

D
el

ay
 -

 E
xp

os
ur

e)
 [m

s]

Occurrences

D
at

as
et

 N
ex

us
 S

, g
oo

d
lig

ht
N

or
m

al
 d

is
tr

ib
ut

io
n

fit

D
at

as
et

 N
ex

us
 S

, p
oo

r
lig

ht
N

or
m

al
 d

is
tr

ib
ut

io
n

fit

Figure B.2: Camera Delay without Exposure

Appendix C

Motion Study of a Medium
Height Throw

0 0.5 1 1.5 2 2.5
-20

-10

0

10

20

30

40
Accelerometer

time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Internal Accelerometer Measurements
External Accelerometer Measurements

Start

Figure C.1: 1. Start

C-1

Motion Study of a Medium Height Throw C-2

0 0.5 1 1.5 2 2.5
-20

-10

0

10

20

30

40
Accelerometer

time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Internal Accelerometer Measurements
External Accelerometer Measurements

LAUNCH

Lowest Point

Figure C.2: 2. Lowest Point. The lowest point is reached when the area under
the acceleration between LAUNCH and the time of lowest point is zero. This
corresponds to velocity being zero.

0 0.5 1 1.5 2 2.5
-20

-10

0

10

20

30

40
Accelerometer

time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Internal Accelerometer Measurements
External Accelerometer Measurements

TAKEOFF

Saturation

Figure C.3: 3. Takeoff Event. The takeoff event is triggered by a change in the
sign of the acceleration and a high enough initial velocity. The saturation in the
internal accelerometer causes the plateau at 10m

s2
.

Motion Study of a Medium Height Throw C-3

0 0.5 1 1.5 2 2.5
-20

-10

0

10

20

30

40
Accelerometer

time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Internal Accelerometer Measurements
External Accelerometer Measurements

PEAK

Figure C.4: 4. Peak event. The peak event occurs when the integral over the
acceleration from the time of launch until the time where the peak occurs is zero.

0 0.5 1 1.5 2 2.5
-20

-10

0

10

20

30

40
Accelerometer

time [s]

A
cc

el
er

at
io

n
[m

/s
2]

Internal Accelerometer Measurements
External Accelerometer Measurements

TOUCHDOWN

Figure C.5: 5. Touchdown Event. The touchdown event is triggered by a change
in the sign of the acceleration.

	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Set-up
	2.1.1 Motion Sensing with Smart Phones

	2.2 Physical Model of a Vertical Throw

	3 ThrowMeApp
	3.1 The Android Hardware API
	3.1.1 Camera API
	3.1.2 Sensors API

	3.2 Data Handling (Model)
	3.3 Motion Detection and Prediction (Controller)
	3.3.1 The Throw Detection Algorithm
	3.3.2 Peak Prediction
	3.3.3 Orientation Detection

	3.4 User Interface (View)

	4 Experiments and Results
	4.1 Quantifying Camera Delay
	4.2 A Typical Throw
	4.3 Peak Prediction Accuracy
	4.4 Rotation Stability
	4.5 Camera Pictures

	5 Discussion and Conclusion
	5.1 Discussion of Results
	5.1.1 Accuracy of Motion Detection
	5.1.2 Timing and Delays
	5.1.3 Resulting Picture Quality

	5.2 Conclusion and Outlook

	Bibliography
	A Complete UML Diagram of ThrowApp
	B Full Statistics of Camera Delay
	C Motion Study of a Medium Height Throw

