
Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis
at the Department of Information Technology

and Electrical Engineering

Designing a benchmark for many-core
architectures

AS 2012

Pierre Ferry

Advisors: Devendra Rai
Lars Schor

Professor: Prof. Dr. Lothar Thiele

Zurich
10th February 2013

Abstract

Recent progress in computing capabilities is no more driven by the increase
of processor frequency, but rather by an increase in the number of cores. In
this context, it is necessary to distribute tasks on a given multi/many- core
system in a way that the combined computing power of the entire system
can be most efficiently harvested.

Benchmarks are an efficient tool to clearly understand the computing and
communication capabilities offered by the multi/many core system. Once a
clear understanding of various available resources has been developed, it is
possible to develop algorithms that will map given tasks to the multi/many-
core system such that various metrics such as latencies are minimized. This
thesis proposes a comparative study of existing parallel applications and
adapts one of them, a deduplication algorithm, for a many-core architecture
using the Distributed Application Layer (DAL) framework. The benchmarks
were evaluated on a PC as well as the Intel SCC cluster, and detailed results
are presented in this thesis.

— II —

Acknowledgements

I would like to express my sincere gratitude to Prof. Dr. Lothar Thiele
for granting me the opportunity to write this semester thesis in his research
group.
I would also like to thank my advisors Devendra Rai and Lars Schor for their
support and availability throughout this thesis.

— III —

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Outline . 4

2 The KPN and DAL 5
2.1 The Kahn Process Network, KPN 5
2.2 The Distributed Application Layer, DAL 6

3 Benchmark Development 8
3.1 Finding the benchmark . 8
3.2 The Deduplication application 11

4 Benchmark 15
4.1 Measurement libraries . 15

4.1.1 Performance Measurement on a PC-Cluster 15
4.1.2 Performance Measurement on the Intel SCC 17

4.2 Benchmark Results . 19
4.2.1 PC Cluster . 19
4.2.2 Intel SCC . 23

5 Conclusion and Outlook 27
5.1 Conclusion . 27
5.2 Outlook . 27

A Acronyms 29

B Presentation Slides 30

— IV —

List of Figures

3.1 Dedup, Process network of the deduplication application. . . 12

4.1 Communication output of each process as a function of the
input file size. 20

4.2 Number of hardware cycles spent in computation for each pro-
cess as a function of the input file size. 21

4.3 Average spent hardware cycles per byte. 22
4.4 SCC Layout. 23
4.5 Average computation time by process as function of input size. 24
4.6 Average computation time by process as function of input size. 25
4.7 Average computation time for compression with duplicated

input. 26

— 1 —

1
Introduction

1.1 Motivation

The goal of this project was to design and to implement a benchmark for
many-core architectures. Developing a benchmark for a many-core system
is much more complex than developing a corresponding benchmark for a
single-core architecture. Usually, for a single core system one can have a
rather accurate idea of a processor’s overall performance with its memory
and computational performance. Performance depends on a great variety of
parameters such as clock frequency, instruction set, cache size. Once these
parameters are known, it is rather easy to assert how well this processor will
perform a specific task.

However, a many core system is usually more complex than a single-core
system. A multi/many core system may have complex cache and memory
hierarchy. First of all, the core hierarchy may not be homogeneous, with only
some cores sharing a given cache, while others may map to entirely different
memory regions. It is also possible that a given multi/many-core system may
have cores of different types: for instance, some cores may be x86-based cores,
while others may be graphics processors. Such heterogeneous cores, together
with complex memory hierarchies may generate very diverse memory access
patterns that makes it difficult to evaluate the memory performance. A given
application may therefore perform differently depending on how it is mapped
onto the architecture. In view of such challenges, it becomes clear that

— 2 —

1.2. CONTRIBUTIONS

mapping a significantly large application onto a multi/many-core system is a
complex problem. Common approaches used to solve such mapping problems
rely on design-space exploration (DSE), wherein abstract properties (such as
maximum computing power of a core, available bandwidth to its neighbours)
of the given system are used to construct a suitable model of the given
system. Suitable algorithms are developed, which use such abstract models in
order to arrive at an optimal solution to, for instance, map various processes
in the application such as the communication latencies between processes
are minimized. The more cores are available and the more complex the
application is , the more difficult it is to evaluate the performance of an
application on a predefined architecture.
A benchmark gives a reliable way to compare different architectures and
application mappings.

1.2 Contributions

In this thesis, a set of existing parallel benchmarks was studied to find an
application fitted for a high performance system benchmark. These bench-
marks were compared regarding a few parameters:

• Parallelizability

• Possibility to scale computation and communication load to match
more or less performant systems

• Complexity

• Realistic as a nowadays task for high performance systems

After a careful examination two benchmark applications were developed:

• Secure Hash Algorithm (SHA) signature application : relatively simple
application that computes secure signature of files. It is used to au-
thenticate file transfers for instance.

• Deduplication application: detects and removes redundancy in a file
and compresses it. This application will be the one described in this
report as it is the one of significant importance.

Instrumentation to measure the performance of the system was integrated
to the application. The resulting benchmark was run on a PC cluster and
ported on an Intel Single-chip Cloud Computer (SCC) (see 4.2.2).

— 3 —

CHAPTER 1. INTRODUCTION

1.3 Outline

In the first chapter, a computation model, Kahn process networks, is
presented as well as the Distributed Application Layer.
In the second chapter, the steps leading to the benchmark development are
described. First a comparative study of existing parallel benchmarks is sum-
marized. Then the Deduplication application principle is described as well
as its implementation.
The third chapter presents the solution used to measure the performance of
the application as well as the results of the benchmark on a PC cluster and
on an Intel SCC chip
The last chapter stands as a conclusion and an Outlook to this thesis.

— 4 —

2
The KPN and DAL

2.1 The Kahn Process Network, KPN

A Kahn Process Network (KPN) is a model of computation that was pro-
posed in 1974 by Gilles Kahn (see [1]) . In this model, a KPN is an oriented
graph where nodes are sequential processes and edges are communication
channels (unbounded First In First Out buffers). Processes can either write
or read from these channels. They must also have the following properties:

• Writing to a channel is non-blocking : every write is successful and the
process does not stop.

• Reading from a channel is blocking : the process stalls until data is
available in the channel.

• Monotonicity: with a prefix of any input sequence, the process pro-
duces a prefix of the corresponding output sequence.

These properties, alongside with the structure of the network guarantee the
determinism of the application. The monotonicity also allows processes to
run asynchronously or in any given order since a process does not need to
have access to its full input sequence to produce the beginning of the output
sequence.
It is important to note that processes can not test the state of the channels
(the availability of data) because it would make the execution of the process
timing dependent.

— 5 —

CHAPTER 2. THE KPN AND DAL

In the case of our application, the restriction on the read primitive was
removed in order to ensure the maximum usage of resources (minimum pos-
sible process stalling). Thus, non-blocking read have been allowed. This
change removes the guarantee of determinacy of the process network. How-
ever, in the particular case of our application, the behavior of the application
remains correct even without this restriction (see 3.1).

2.2 The Distributed Application Layer, DAL

The Distributed Application Layer (DAL) is a framework developed by the
Computer Engineering and Networks Laboratory (TIK) at ETH. It allows to
map KPN-like process networks (see 2.1) dynamically onto many-tile plat-
forms. Thus, mapping can be changed at execution time in order to adapt
to the current application scenario.

The DAL framework makes it possible to use the same application on
different multiprocessor architectures because the application is designed
without any knowledge of the architecture on which it will be executed.
The application mapping is described separately from the application itself.

In this framework, an application is designed as a network of processes.
Every process has the same three methods: init, fire and finish. The init
method is executed by every process at the start of the application. This
procedure may be used, for example, to initialize a data-structure needed for
the application.

The fire method is called repeatedly, until the application stops executing.
It is the fire method which executes the functionality of each process. Thus,
all necessary computations and communications are carried out within the
fire method itself.

The last one, finish, is called when the application stops, and may be used to
perform necessary housekeeping activities, such as freeing malloc’dmemory,
write results to a filesystem, or to collect relevant performance statistics of
the process.

It is possible for a process to have access to persistent memory, in order
to share certain variables, or to retain the results of computation between
successive fire cycles. Such persistence of information is made possible by
the use of so-called Local_State of the process.

— 6 —

2.2. THE DISTRIBUTED APPLICATION LAYER, DAL

The DAL Framework is composed of two layers: A bare-bones framework,
which creates a master process and a set of slave processes. The master
processes dispatches instructions to the required slave process, such as:

1. Load a certain functionality for execution.

2. Create a FIFO of a given size, and attach it to either the input or an
output port of a process.

3. Instantiate an inter-processor communication module, and attach it to
a given FIFO.

4. Start, Stop, Pause or Resume the execution of a given process.

In order to keep the memory footprint of the framework as low as possible,
the functionality to be loaded by a slave process is compiled a so-called shared
library, or process-independent code (PIC). At run-time, a slave may receive
an instruction to load the functionality associated with Reorder process of
the Deduplication application. The slave simply looks up a library consisting
of a collection of shared-objects, and loads a suitable object. In what follows,
the functionality will be simply referred to as a process, not to be confused
with the master or the slave processes. Wherever necessary, the distinction
will be made clear with the context.

All slave processes continuously listen for instructions from the master pro-
cess. A process network description file, written in XML, is created by the
designer of the application which describes how various processes in the ap-
plication are connected, alongwith the necessary size of associated FIFOs
for communication. Thus, the master process derives necessary application
setup instructions from this process network description file.

Upon reception of these instructions, the slave processes establish the cor-
responding channels and load the process specified by the master process.

When the process network has been established, the master will start ex-
ecution of the application, by sending the appropriate instruction(s) to each
of the slave processes. Subsequently, the processes of the application run
asynchronously to each other. The communication layer is established using
the Message Passing Interface (MPI) [2]. Since message passing interface is
the most commonly used communication solution used in high-performance
computing applications, versions of it have been optimized for use on various
multi/many- core systems. Such commonality of communication interfaces
allows the application to be portable across several multiprocessor architec-
tures.

This allows us to develop our application as a KPN-like process network and
run it on both on a PC cluster and an Intel SCC.

— 7 —

3
Benchmark Development

3.1 Finding the benchmark

An ideal benchmark for our purpose must be based on a realistic applic-
ation, and must offer computational and communication loads which are
commonly expected of high-performance applications today. Another inter-
esting characteristic that we look for in a benchmark is that it should show
a deterministic relationship between the size of its input, to communica-
tion and computational work done by it. Ideally, we look for a polynomial
relationship between the input size and output loads (communication, com-
putation).

A benchmark possessing these characteristics can be tuned to test a range
of multiprocessing systems (mobile platforms, Intel SCC, or the supercom-
puting cluster). For instance, each core in the Intel SCC chip is a relatively
simple P54C core, running at 800MHz, with 16K of instruction and data
cache, and therefore, the computing capabilities offered by each core of the
SCC are significantly different from those offered by a core in modern cluster
systems, which may be running latest Intel/AMD cores, clocked at 3GHz or
higher.

The first step was therefore to find an application that could make a
suitable benchmark for this thesis. An important point is that, in the DAL
framework, processes do not share any memory and so the target application
must be parallelizable with explicit communication between processes. There

— 8 —

3.1. FINDING THE BENCHMARK

are a lot of existing benchmarks for parallel computing but most of them
rely on shared memory (i.e., thread level parallelization). Aside from being
suitable for a distributed architecture, the benchmark indeed needs to be
reasonably complex in order to be able to exploit a many core system but
also to be feasible in the amount of time available for this thesis.

Some of the compared benchmarks or set of benchmarks that were studied
are described in the following table:

Benchmark Source

Language

Parallelism Complexity Stresses Remarks

NASbench Fortran,

Java,

OpenMP,

MPI

Parallelized,

(thread-

level,OpenMP)

Quite complex Varies according to

selected benchmark

Based on computa-

tional fluid mechanics

algorithms, source not

comment enough

H264 C Complex parallel-

ism, implement-

ation dependent

parallelization

strategy

Quite complex Computation and

Memory

Signal Processing Al-

gorithms. Source not

commented enough.

Parmibench C Master/slave based

strategy

Simple to Me-

dium

Computation and

Memory

Search, Hash, Optimiz-

ation algorithms

PARSEC C Thread-based

parallelization

(POSIX threads)

Varies Varies according to

selected benchmark

Computation, Re-

cognition, Encod-

ing/Decoding, Data

mining algorithms

Table 3.1: Comparison of various benchmark candidates

The NASA benchmarks are a set of benchmarks developed by the NASA to
evaluate parallel systems [3]. Most of these benchmarks are computational
fluid mechanics applications that would theoretically fit our expectations.
These benchmarks stress the system in different ways (computation, I/O,
memory) . However the source code of these benchmarks is often only avail-
able in Fortran or Java and the parallelism is introduced using the OpenMP
library, which makes such benchmarks applicable to only shared memory
systems. The sources are not well-commented, and there exists very little
documentation which makes it very difficult to adapt these set of benchmarks
for our purposes.

The H264 encoder/decoder was a strong candidate benchmark application
for this thesis. H264 is an advanced standard for video compression, and is in

— 9 —

CHAPTER 3. BENCHMARK DEVELOPMENT

wide use today, see [4]. For example, this standard is used to compress videos
for the blue-ray disc format. Real-world applications, and non-trivial compu-
tational requirements make the H264 an interesting benchmark. Further, a
distributed implementation allows evaluating video compression speeds and
related metrics on a variety of multicore and unicore platforms.

However a few problems make it difficult to use this benchmark for the
current thesis. First, the method to parallelize the application is not entirely
clear, many different approaches exist [5][6][7]. Parallelism can be introduced
at different levels of the computation. Frame processing or macro-block
processing are two steps that can be parallelized (but not both at the same
time). Each choice having its benefits and drawbacks. These techniques
are also not indefinitely scalable, the number of worker being limited by
the complex dependency between the encoding of different frames/blocks.
Moreover both the encoder and the decoder are very complex and adapting
one of them in the course of the thesis was not really feasible.

Parmibench is a set of parallel benchmarks developed by [8] . Most of these
benchmarks are in fact quite simple algorithms which are commonly used.
The code source is fully available. However the parallelization technique used
is not very interesting for our benchmarks: it is mainly done by a master
process that segments data and distributes it to workers that are all alike.

PARSEC [9] is the last set of benchmarks that will be described here. It
was developed at Princeton University’s Computer Science Department. The
entire source code of all benchmarks in the suite is available. The benchmarks
proposed in this suite are of very varying complexity. The simplest one
computes the price of financial options according to the Blackscholes formula
[10], and is commonly used in financial applications. This application is
interesting because the speed of computations can have a major impact on
the financial markets. However the blackscholes algorithm is too simple to be
used as a benchmark. Another interesting benchmark in the PARSEC suite
is called Ferret and is used to find images based on content similarity. Ferret
has applications in comparing, for instance, a database of fingerprints to a
sample, or image-search (such as Google’s image-search) where the search
engine tries to find images similar to the one specified as an input. Ferret
is reasonably complex, and could be very well adapted to our framework.
However it needs to be interfaced with a specific database that would be
difficult to integrate in our application and would hurt its portability.

The benchmark that was finally chosen for this thesis is part of PARSEC.
It is a deduplication algorithm. This program processes a stream of data and
tries to detect redundancy in the data stream. If any redundancy is detected,

— 10 —

3.2. THE DEDUPLICATION APPLICATION

deduplication attempts to remove it, without loosing any information, and
then attempts to compress this data. Thus, deduplication is useful for use
in data centers, allowing storage space to be freed by avoiding to storage of
redundant information [11].
This application is very interesting because it can be easily split into different
steps, and can be also very easily parallelized. It can also be used on working
set of arbitrary size so that it is possible to scale the input to match the kind
of system that has to be benchmarked.

3.2 The Deduplication application

The Deduplication application is used to remove redundancy in an input
stream. The application fragments input data and recognizes identical seg-
ments in it. Non duplicated parts are compressed into the output whereas
simple references are written for the duplicated parts.

The application consists of six different processes. Fig 3.1 shows the net-
work for a two pipelines architecture. The data is split by the application in
chunks. Processes then only communicate these chunks that are processed
step by step as they go through the application.

The C structure of a chunk is the following :

This structure contains information about the chunk: its number to be able
to reorder the chunks at the end of processing, whether the chunk is duplic-
ated or not (this variable is set only after the dedup step), the SHA signature

— 11 —

CHAPTER 3. BENCHMARK DEVELOPMENT

of the chunk and the pointer to the data of the chunk. These chunks are
sent through three separate channels: one that sends the chunk meta data,
e.g the previous structure, the second one sends the size of the data and the
last one sends the actual data. It is necessary to use a separate channel to
communicate the size of the data since the MPI receiver needs to know how
many bytes it has to read.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

8 7

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Fragment

Fragment_refine

1

2

3

4

5

6

Fragment_refine

Dedup

1

2

3

8 7

4

5

6

Dedup

Compress

1

2

3

4

5

6

Compress

Reorder_W

12

34

MHash

100001

102323

Tag

Channel ID

Chunk data

Data size

Chunk metadata

100102

100203

100304

100405

100506

1

2 3 5

6

987

4

200304

200405

200506

700304

700405

700506

300304

300405

300506

300607

800304

800405

800506

800607400104

400002

400304

400405

400506

900304

900405

900506

Rankx

Figure 3.1: Dedup, Process network of the deduplication application.

The first two processes are Fragment and Fragment_refine. The role of
these processes is to :

• Read data

• Split it in chunks

• Annotate them to keep track of their order

To split data, these processes try to find specific breakpoints using rabin
fingerprints [12].

— 12 —

3.2. THE DEDUPLICATION APPLICATION

A data window is considered as a polynomial over the two elements finite
field: if m0,m1...mn−1 is the data, we consider the polynomial m0+m1x

1+
...+mn−1x

n−1. The fingerprint is then the remainder of the division of this
polynomial by a random irreducible polynomial. A data point is considered
as a splitpoint if the k-lowest bits of the fingerprint equal zero.
It can be proven that, since the division is done by an irreducible polynomial,
the fingerprints are pseudo random and therefore the probability of this point
to be a split point is 2−k. The advantage of this method over another hash
function is that it doesn’t need to do the full computation for every window
but can use the result of the previous data window.
This process is done in two steps to avoid to bottleneck the application.
The goal of the first process is indeed to read the input file and to begin to
split the data in chunks. The reading and splitting cannot be parallelized
if there is only one data source. Hence it makes a coarse fragmentation of
the data by making big jumps in data and only trying to find a breakpoint
rather far from the previous one. The coarse chunks resulting from this first
fragmentation are then labelled and dispatched alternatively to the different
Fragment_refine processes.

In fragment_refine data is further fragmented and every breakpoint is
found. The size of chunks can be very diverse, as well a few hundred bytes
as more than ten kilobytes. Chunks are then sent to the Dedup processes
where the actual deduplication will be done.

The role of the Dedup process is to check whether an incoming chunk has
been encountered before. To do so, it computes the SHA signature of the
chunk and checks whether it has an entry in its hashtable. If not, the sig-
nature is added to the table and the chunk is sent to the next process. The
main issue with this system is that it can’t really be parallelized since all
the Dedup processes must have knowledge of all the already seen chunks.
This is usually not an issue with shared memory systems where a common
hashtable can be used. To address this issue, a system similar to cache has
been established. Each Dedup process has a local hashtable to keep track of
the chunks it has personally encountered and a common hashtable hosted
by another process Mhash. In case of cache miss, if a chunk has not been
seen before by Dedup, it makes a request to Mhash. The latter then answers
whether it has already been seen or not and adds it to its table if it has not.
This means that Mhash can once again be a bottleneck for the application,
because it has to handle all the application branches. However the amount
of computation it has to do is minimal, only a hash query, and it does not
need to communicate big amounts of data, only the metadata of chunks
which is only a 104 Bytes load compared to the potential tens of kilobytes
of a chunk. It should therefore be able to handle a good number of branches

— 13 —

CHAPTER 3. BENCHMARK DEVELOPMENT

before actually slowing down the application.
The metadata of the chunk is annotated depending on whether it is a du-
plicate or not. The chunk can then be sent to the next process, Compress.

The role of compress is simply to compress the incoming chunk in order to
spare a maximum of space. The compression method that was chosen here
is a simple zip compression. A chunk is however compressed only if it is not
a duplicate. The compressed (or not compressed if not necessary) data is
then sent to the last process, Reorder_W.

The last process reorders the chunks that do not necessarily come in order
because of the different branches of the application. When a chunk is read by
the process, the process checks whether it is the next to be written depending
on what is its sequence and what was the previous chunk written. If it is
not the next chunk, it is put in a search tree. If it is the next chunk, it is
written in the output file and the process checks if the next one is also in
the search tree. Once all the chunks available are written, the process tries
to read a new chunk again.
This process writes the compressed data in the output file if the chunk is not
duplicated and only writes its SHA signature if the chunk is duplicated.

It can be noted that with this architecture it is possible to obtain in
the output file a SHA signature before the original has been written. Two
identical chunks can indeed be processed out of order and in that case the last
will be treated as an original whereas the first will be considered a duplicate.
For the first one only a signature will be written and the next occurrence
will be compressed. This possibility is not incorrect but must be taken into
account by the corresponding decoder.

A few key parameters are of note for the configuration of the application:

• MAXBUF : size of input buffer loaded at a time by Fragment. This
variable is defined in dedupdef.h.

• ANCHOR_JUMP : minimum size of the coarse chunk defined by Fragment.
This variable is defined in dedupdef.h

• rabinmask : defines the value that the lower bits of the rabin finger-
prints have to take to define a breakpoint. This variable is defined in
rabin.h

— 14 —

4
Benchmark

4.1 Measurement libraries

Once a benchmark is adopted for use in the DAL framework, the essential
step of introducing appropriate instrumentation in order to extract various
performance parameters must be completed. The instrumentation must be
carefully done in order to collect accurate information about various met-
rics of interest (computation times, communication size) as each process
executes.

The instrumentation step was carried out both in the PC-cluster environ-
ment, as well as on the Intel SCC. Such an arrangement allows us to cross-
compare the results from both environments, and derive conclusions about
capabilities of both setups.

4.1.1 Performance Measurement on a PC-Cluster

Timing

For the case of a PC-cluster, Performance API, (PAPI) library ([13]) was
used. This library utilizes hardware-counters in the processor to keep an
accurate track of a range of events as well as time. PAPI’s application pro-
gramming interface allows a user to select the events of interest. Once a se-
lection of interesting events to monitor has been made, the library provides
functions to access values recorded in hardware counters (such as number

— 15 —

CHAPTER 4. BENCHMARK

of L1 cache misses, between two known points in the software code). The
counters used for the PC-cluster were the following:

• TotalCycles : Number of machine cycles elapsed between two points
of the process.

• Instructions completed : Number of instruction completed by the pro-
cess.

• Hardware Interrupts : Number of times the process has been interrup-
ted by the Operating System (OS).

• L1 Data Cache Misses : Number of cache misses of the first level cache.

• Real Time : Time elapsed between two points of the process.

The process’ source code is annotated with calls to initialize the PAPI lib-
rary, and then to execute the event-measurements between two points in the
process’ source code. The starting point of measurement is delineated with a
call to Initialize_Performance_Library(. . .).The end point of measure-
ment is denoted with a call to Finalize_Performance_Library(. . .). The
actual definitions of initialize_ and finalize_ follow.

The following method is used to start counters :

— 16 —

4.1. MEASUREMENT LIBRARIES

The following method is used to stop counters and record results:

When measuring process’ computation times, calls to Initialize_Performance_Library
and Finalize_Performance_Library were carefully placed so as to exclude
any time spent for communication. Since a process can have any number of
such so-called compute-segments, the total over all such compute segments
is calculated.

Communication load

To measure the communication load of each process, the amount of sent
bytes can simply be recorded at each write primitive and printed.

Memory

To measure the memory usage of each process, the standard getrusage func-
tion has been used. This function maintains a data-structure to keep track
of a few statistics about a process and in particular the one that interests
us: the maximum amount of memory used by the process, see [14]. Accord-
ing to the documentation, the data-structure member long int ru_maxrss
indicates the maximum resident size of the process, in kilobytes.

4.1.2 Performance Measurement on the Intel SCC

The application was run on Intel SCC (see 4.2.2) in order to obtain reliable
timing informations. Indeed this chips allows to run the application on
baremetal, meaning that there is no OS running on the chip at the same
time. In these conditions, the application is the only program running on

— 17 —

CHAPTER 4. BENCHMARK

the chip. There are no interferences with other programs that could cause
interruptions. There is also no other application using the cache memory
that could modify the behavior of the application. Processes also run on
separate tiles on the chip (see 4.2.2), so that we can be assured that there
are no cache interference between different processes of the application (If
two processes run on the same tile, they both use some common cache).
Simple recordings of the clock cycles of the chip give precise and reliable
timing information about the execution of the application.

— 18 —

4.2. BENCHMARK RESULTS

4.2 Benchmark Results

4.2.1 PC Cluster

The first set of numbers that have been measured have been on a PC
cluster. It is not possible to get reliable timing on a PC cluster. First the
communication is quite slow compared to communication between processors
on a single chip. Also these PC are running many different threads at the
same time and so depending on how busy the PC is during execution, the
benchmark might give different results. But other metrics are still valid.
Therefore only communication load, memory usage and number of hardware
cycles spent by the process have been measured.

Communication load as well as machine cycles should evolve in a rather
linear fashion as functions of the input file size. Experiments have been
conducted with different input file size up to 1MB. Bigger input files are of
course possible. However the speed of the PC cluster communications was
such that a 10 MB input would take a long time to complete.

One can observe in fig 4.1 that the amount of data communicated by
every process evolves linearly with the input file size. This is what one
would expect since every process has to go through data in a linear fashion
and that the number of chunks is linear with the size of the input file. It is
also possible to see that the amount of communication is much lower for the
Mhash process simply because it only forwards the chunks meta data that is
about a hundred bytes big.

The difference between two similar process (for instance between Dedup1
and Dedup2) is due to the granularity of the load repartition. As explained
before, the first process makes big chunks (that can be as big as our architec-
ture allows it) and distributes it to the second layer of processes. The default
settings of the original benchmark was of 2MB. For the purpose of this study,
it was greatly reduced (to about 30 kB) to be able to distribute data across
both the application branches. It still gives significative difference between
the branch that was served first and the other one (it can also be an almost
zero difference if they have been served the same number of times).

— 19 —

CHAPTER 4. BENCHMARK

Figure 4.1: Communication output of each process as a function of the input
file size.

— 20 —

4.2. BENCHMARK RESULTS

Figure 4.2: Number of hardware cycles spent in computation for each process
as a function of the input file size.

Figure 4.2 shows that the number of hardware cycles varies as a function
of input file size in a very similar fashion to the communication load. It is

— 21 —

CHAPTER 4. BENCHMARK

relatively natural because the amount of cycle spent by chunk is constant in
average. These measurements are based on single runs.

Figure 4.3: Average spent hardware cycles per byte.

Figure 4.3 shows the number of cycles the application needs in average to
compute one byte of data. This graph shows that the compression stage is
by far the one that takes the most computation. Then comes in second the
fine fragmentation. Third is the deduplication (because of the SHA signature
calculation). Last are the non-parallelized processes. These confirms that
further parallelization should be possible. It is also possible to further reduce
the computation time per byte for Fragment by making bigger chunks at the
first stage. There are also solutions to parallelize Mhash if it becomes really
necessary.

— 22 —

4.2. BENCHMARK RESULTS

4.2.2 Intel SCC

In order to obtain measurements on timings that are reliable, the applic-
ation was ported onto a Intel SCC. The Intel SCC is a many-core processor
containing a total of 48 cores organized in a 6x4 on-die mesh of tiles with
two cores per tile[15]. Each tile has a small shared memory area with the
rest of the chip called Message Passing Buffer (MPB) that is used to improve
performance of communication between cores. Routers as shown on 4.4 form
a 2D-mesh communication network that guarantee communication between
tiles. Four memory controllers (MC), available in each quadrant of the SCC
allow each core to access an external large memory. For the experiments,
the Intel SCC was operated with the following parameters:

1. Core Clock Frequency :800MHz

2. Router Frequency :1600MHz

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

46

47

46

47

46

47

Tile
Core ID
N/W Router

Figure 4.4: SCC Layout.

There is no Operating System (OS) loaded onto the SCC, the only process
running on the chip when the application is running is the process of the
application. Therefore we can obtain accurate timing measurements. The
computation time measurements were repeated between 5 to 10 times each

— 23 —

CHAPTER 4. BENCHMARK

on two different inputs. Figures 4.5 and 4.6 show the average value of compu-
tation time. The span of results is very small which shows that the amount
of time required to execute a specific task is very stable. The first input is a
sequence of random inputs so it does not contain any duplicate. The second
input however contains a lot of duplicates.

Figure 4.5: Average computation time by process as function of input size.

— 24 —

4.2. BENCHMARK RESULTS

Figure 4.6: Average computation time by process as function of input size.

We can see on fig 4.5 and fig 4.6 that once again timing evolve in a very
linear fashion with the input size. What changes significantly however is the
ratio of time usage spent for each process. The compression stage is even
more prominent than before and the Mhash and Reorder stages take almost
negligible time to complete. The fragmentation process performance can be
improved by increasing the coarse chunk size but its performances will alway
be limited by the time it needs to load data from memory.

— 25 —

CHAPTER 4. BENCHMARK

Figure 4.7: Average computation time for compression with duplicated in-
put.

When using a duplicated input, the results are very similar to those of the
random input. The only process that behaves differently is the compression
process as shown in fig 4.7. Computation time does not increase linearly.
Its increase depends on the amount of new data that is discovered since for
duplicated data the compression stage is skipped. It can also decrease for
one branch depending on what branch of the application discovers the data
first.

— 26 —

5
Conclusion and Outlook

5.1 Conclusion

This semester thesis proposed a comparative study of existing parallel
benchmarks, the development of a deduplication application for many-core
architectures in the context of the DOL framework as well as the result of a
few benchmarking runs of the application on a PC cluster and an Intel SCC.

This study has shown that the deduplication application is a viable choice
for benchmarking a many-core architecture because it can be strongly par-
allelized in a non homogenous fashion (6 different types of process) and can
support very big input load. The benchmarking runs are also a proof that
this application can be used to benchmark very diverse architectures, from
a PC cluster to a Single-chip Cloud Computer.

5.2 Outlook

There are several possibilities to improve and extend the current imple-
mentation. First of all the question of the scalability of the application to a
very big number of cores (more than 20-30) still needs to be fully addressed.
A few improvement could be added to ensure the possibility to work with
more processes. If the Mhash process were to saturate, it could be split in a
few other Mhash that would process chunks depending on a few bits of their
SHA signature. The Reorder and Fragment to saturate, the size of coarse

— 27 —

CHAPTER 5. CONCLUSION AND OUTLOOK

chunks could be increased. It would also be possible to process separate
input files at the same time using the same core application and Reorder
them separately.

Moreover other metrics could be monitored by the application and a com-
parative study of its performance depending on mapping onto the Intel SCC
would provide additional insight on the subject.

— 28 —

A
List of Acronyms

API Application Programming Interface
DOL Distributed Operation Layer
FIFO First-In First-Out
Intel SCC Intel Single-chip Cloud Computer
I/O Input/Output
KPN Kahn Process Network
MPB Message Passsing Buffer
MPI Message Passing Interface
NASA National Aeronautics and Space Administration
OS Operating System
PAPI Performance Application Programming Interface
PC Personal Computer
SHA Secure Hash Algorithm
XML Extensible Markup Language

— 29 —

B
Presentation Slides

— 30 —

Introduction
Benchmark

Benchmark results

Designing Benchmarks
for High Performance Systems

Pierre Ferry

Advisors: Devendra Rai, Lars Schor

Computer Engineering Group TEC
Prof. L.Thiele

Semester Thesis

February 6th, 2013

1 / 33

Introduction
Benchmark

Benchmark results

Problem description
Contribution

Introduction

1 Introduction
Problem description
Contribution

2 Benchmark

3 Benchmark results

2 / 33

Introduction
Benchmark

Benchmark results

Problem description
Contribution

Problem description

How to compare the performance of multi/many core systems ?

Very different architectures

Many performance parameters exist

3 / 33

Introduction
Benchmark

Benchmark results

Problem description
Contribution

Contribution

Comparative study of existing parallel benchmarks suited for
high performance processing

Splitting of each application into multiple tasks

Porting to Distributed Application Layer (DAL)

For SCC: Baremetal Specific Design of Communication Layer

Benchmarks on PC cluster and Intel SCC

4 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Benchmark

1 Introduction

2 Benchmark
Benchmark selection
SHA application
Deduplication application
Performance measurements

3 Benchmark results

5 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Benchmark selection criteria

Criteria

Parallelizability

Possibility to scale computation and communication loads
accordingly to needs

Realistic application

Non trivial amount of communication/computation

6 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Candidate benchmarks

Benchmark Parallelism Complexity Remark

NASbench Thread paral-
lelism

Quite complex Computational
fluid mechanics

H264 Many different
strategies

Very complex Video encoding/
decoding

ParmiBench Master/Slave
strategies

Relatively simple Various applica-
tions

PARSEC Diverse strate-
gies

Simple to very
complex

Various applica-
tions

7 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Secure Hash Algorithm (SHA) application

Secure Hash Algorithm (SHA)
application:

computes the SHA
signatures of input files

simple master/slave
strategy

Read input

and

distribute jobs

Compute SHA

Signature and

write result

Compute SHA

Signature and

write result

8 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication motivation

Deduplication is becoming mainstream in data storage :

Ever increasing data storage needs

Back-up deduplication

Inline deduplication

Deduplication is an excellent benchmark because :

It is a data driven algorithm

Load scales very well with the input size

It does non trivial communication/computation

It is realistic

9 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

Input:

aabcaabdoabcaabdoabc

10 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

aabcaabdoabc/aabdoabc

11 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

aabcaabdoabc/aabdoabc

aabc/aabdoabc/

/aabdoabc/

12 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

aabcaabdoabc/aabdoabc

aabc/aabdoabc/ aabc/aabdoabc/

/aabdoabc/

Has someone already seen aabdoabc?

13 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Chunk i Chunk i+1 Chunk i+2 Chunk i+3 Chunk i+4 Chunk i+5

SHA1(i) SHA1(i+1) SHA1(i+2) SHA1(i+3) SHA1(i+4) SHA1(i+5)

=
Matching Signature duplicated chunks

14 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

aabcaabdoabc/aabdoabc

aabc/aabdoabc/ aabc/aabdoabc/

/aabdoabc/

Has someone already seen aabdoabc?

zip(aabc)/zip(aabdoabc)/

15 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

aabcaabdoabc/aabdoabc

aabc/aabdoabc/ aabc/aabdoabc/

/aabdoabc/
/sign(aabdoabc)/

Has someone already seen aabdoabc?

zip(aabc)/zip(aabdoabc)/

16 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

aabcaabdoabc/aabdoabc

aabc/aabdoabc/ aabc/aabdoabc/

/aabdoabc/
/sign(aabdoabc)/

Has someone already seen aabdoabc?

zip(aabc)/zip(aabdoabc)/

/sign(aabdoabc)/

17 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Deduplication method

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

aabcaabdoabc/aabdoabc

aabc/aabdoabc/ aabc/aabdoabc/

/aabdoabc/
/sign(aabdoabc)/

Has someone already seen aabdoabc?

zip(aabc)/zip(aabdoabc)/

/sign(aabdoabc)/

zip(aabc)/zip(aabdoabc)/

sign(aabdoabc)/

18 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Measured metrics

This work has focused on:

Timings

Hardware cycles

Communication load
Process A

19 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

Intel SCC presentation

Intel SCC characteristics

48 cores on chip

2 cores per tile at
800 MHz

Baremetal: no OS

Accurate timing :
1 process per tile

SCC Layout

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

46

47

20 / 33

Introduction
Benchmark

Benchmark results

Benchmark selection
SHA application
Deduplication application
Performance measurements

PAPI library

The PAPI library allows us to access hardware counters easily.

Developed by the Innovative Computing Laboratory from the
University of Tennessee.

Portable, only the lower layers of the API are hardware
dependent

Allows to benchmark a non-homogeneous architecture

21 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Outline of Topics

1 Introduction

2 Benchmark

3 Benchmark results
Communication benchmark results
Computation time results

22 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Communication load (1/5)

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

23 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Communication load (2/5)

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

24 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Communication load (3/5)

The communication load of every process increases linearly with
the input file size:

C
o
m
m
u
n
ic
a
tio
n
lo
a
d
(i
n
kB
)

0
0

Compression (2 processes)

0 200 400 600 800 1000 1200

300

250

200

150

100

50

0

Input file size (in kB)

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

25 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Communication load (4/5)

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

Coarse

Fragmentation

Fine

Fragmentation

Fine

Fragmentation Deduplication

Deduplication Compression

Compression

Chunks

Reordering

Main

Hashtable

26 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Communication load (5/5)

The Mhash process communicates much smaller amounts of
data:

Main Hashtable

Input file size (in kB)

0 200 400 600 800 1000 12000
0

5

10

15

20

25

30

C
o
m
m
u
n
ic
a
ti
o
n
lo
a
d
(i
n
k
B
)

27 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Compression computation time

Compression

Compression

aaaabbbbbcccccaaaaa

bbbbbbbdadaduaaaaaa

abhsioapjdubcgtqiepap

ldkqifbrihhrozmppqibc

?

28 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Compression results (1/2)

PC cluster: Machine cycles

To
ta
ln
u
m
b
e
r
o
f
m
a
ch
in
e
cy
cl
e
s
(x
1
0
^6
)

0

200 400 600 800 1000 12000
0

20

40

60

80

100

Compression (2 processes)

Input file size (in kB)

Intel SCC: Timing

0

0

100 500 700 900 1100300

Compression (2 processes)

Input file size (in kB)

0.2

0.4

0.6

0.8

1.0

1.2

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

in
 s

)

29 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Compression results (2/2)

For duplicated data segments, compression is skipped, hence the
computation time does not increase linearly:

100 200 300 400 500 600 700 800 900 1000 1100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Compression (2 processes)

Input file size (in kB)

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

in
 s

)

30 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Comparison between computation time of processes

Average number of machine cycles required per byte

Compression

ReorderDeduplication

Fine fragment

Fragment

0.1

1

10

100

1000

M
a
c
h
in

e
 c

y
c
le

s
 r

e
q
u
ir

e
d
 p

e
r

b
y
te

Intel SCC

PC cluster

Main Hash

31 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Conclusion

Comparative study: deduplication

Porting to DAL and Intel SCC

Linear scaling of load with input size

Future development: improve scalability for very high number
of cores

32 / 33

Introduction
Benchmark

Benchmark results

Communication benchmark results
Computation time results

Communication latencies on SCC

1000
2000

3000

1

2

3

4

0.5

1

1.5

2

x 10
4

Payload Size (Bytes)

Communication Latencies (Low Traffic)

Hops

L
a
te

n
c
y
 (

c
lo

c
k
 C

y
c
le

s
)

1000

2000

3000

1

2

3

4

1

1.5

2

x 10
4

Payload Size (Bytes)

Communication Latencies (High Traffic)

Hops

L
a
te

n
c
y
 (

C
lo

c
k
 C

y
c
le

s
)

33 / 33

APPENDIX B. PRESENTATION SLIDES

— 40 —

Bibliography

[1] G. Kahn, “The semantics of a simple language for parallel
programming,” 1974.

[2] E. L. W. Gropp and A. Skjellum,
Using MPI: Portable Parallel Programming with the Message Passing Interface,
1999.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber et al., “The nas
parallel benchmarks summary and preliminary results,” in
Supercomputing, 1991. Supercomputing’91. Proceedings of the 1991
ACM/IEEE Conference on. IEEE, 1991, pp. 158–165.

[4] “Information technology – Coding of audio-visual objects – Part 10:
Advanced Video Coding,” 2012.

[5] A. Rodriguez, A. Gonzalez, and M. Malumbres, “Hierarchical
parallelization of an h. 264/avc video encoder,” in Parallel Computing
in Electrical Engineering, 2006. PAR ELEC 2006. International
Symposium on. IEEE, 2006, pp. 363–368.

[6] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K. Keutzer,
“Efficient parallelization of h. 264 decoding with macro block level
scheduling,” in Multimedia and Expo, 2007 IEEE International
Conference on. IEEE, 2007, pp. 1874–1877.

[7] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko,
J. Hoogerbrugge, M. Alvarez, and A. Ramirez, “Parallel h. 264
decoding on an embedded multicore processor,” High Performance
Embedded Architectures and Compilers, pp. 404–418, 2009.

[8] S. Iqbal, Y. Liang, and H. Grahn, “Parmibench-an open-source
benchmark for embedded multiprocessor systems,” Computer
Architecture Letters, vol. 9, no. 2, pp. 45–48, 2010.

[9] C. Bienia, S. Kumar, J. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings

— 41 —

BIBLIOGRAPHY

of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 2008, pp. 72–81.

[10] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” The journal of political economy, pp. 637–654, 1973.

[11] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies, vol. 18, 2008.

[12] M. O. Rabin, Fingerprinting by Random Polynomials. Center for
Research in Computing Technology, Harvard University, 1981.

[13] M. S. Mucci P. and S. N., “Performance Tuning Using Hardware
Counter Data,” 2001.

[14] GNU, “Ressource Usage,” http://www.gnu.org/software/libc/manual/
html_node/Resource-Usage.html, [Online].

[15] T. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl et al., “The 48-core scc
processor: the programmer’s view,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Computer
Society, 2010, pp. 1–11.

— 42 —

http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html
http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html

	Introduction
	Motivation
	Contributions
	Outline

	The KPN and DAL
	The Kahn Process Network, KPN
	The Distributed Application Layer, DAL

	Benchmark Development
	Finding the benchmark
	The Deduplication application

	Benchmark
	Measurement libraries
	Performance Measurement on a PC-Cluster
	Performance Measurement on the Intel SCC

	Benchmark Results
	PC Cluster
	Intel SCC

	Conclusion and Outlook
	Conclusion
	Outlook

	Acronyms
	Presentation Slides

