
Institut für
Technische Informatik und
Kommunikationsnetze

Best Practices to Securely Operate
Hardware Security Modules in a High

Availability Setup

Benedikt Köppel

Semester Project
October 2012 until January 2013

Advisors: Dr. Stephan Neuhaus and Michael Zeier
Supervisor: Prof. Dr. Bernhard Plattner

Acknowledgements

I would like to express my gratitude to my supervisors Dr. Stephan Neuhaus
and Michael Zeier, as well as SafeNet and my employer for providing the Hardware
Security Modules and answering our support questions.

Abstract

The latest generation of SafeNet Hardware Security Modules have specific features
for high availability and fault tolerance built in. These HSMs are certified by the
FIPS PUB 140-2 standard. In this term project, we evaluated the high availability
implementation of the SafeNet HSMs. We have conducted interviews with users,
support staff and risk officers to determine requirements for such a high availability
setup, and ran functional, performance and security tests on the HSM cluster. We
identified functional, performance and security problems which directly arise from
the client implementation of the high availability features. Based on our findings
from the tests and interviews, we provide a best practices guide for the setup and
maintenance of such security modules in a high availability cluster.

Contents

1 Introduction 13

2 Related Work 15
2.1 FIPS PUB 140-2 . 15
2.2 Operating Policy . 16
2.3 Audit and Backup Procedures for Hardware Security Modules 16

3 Methodology 17
3.1 HSM Introduction . 17
3.2 HSM Setup . 18

3.2.1 Base Setup . 18
3.2.2 Stand-Alone Hardware Security Module 19
3.2.3 High Availability Cluster . 20

3.3 Interviews . 21
3.4 Software Testing . 22

3.4.1 Key Distribution . 22
3.4.2 Failure Detection . 22
3.4.3 Failover . 23
3.4.4 Recovery . 23
3.4.5 Changing Object Attributes . 23
3.4.6 Creating Objects in a Split Brain Situation 24
3.4.7 Deleting Objects in a Split Brain Situation 25
3.4.8 Performance Scalability (Multiple Threads) 25
3.4.9 Performance Scalability (Multiple Processes) 26
3.4.10 Performance Scalability (High Availability Overhead) 26
3.4.11 Performance Impact of a Slow HSM 26
3.4.12 Different Red Cloning iKeys in a HA Group 27
3.4.13 Different Black Partition iKeys in a HA Group 27

3.5 Threat Model . 28

4 Results 29
4.1 Requirements Gathered from the Interviews 29
4.2 HSM Functionality . 30

4.2.1 High Availability . 30
4.2.2 Key Exchange . 30
4.2.3 Load Balancing . 31
4.2.4 Failure Detection . 31
4.2.5 Recovery . 31

4.3 Testing Results . 31
4.3.1 Successful Functional Tests . 31
4.3.2 Unsuccessful Functional Tests 32
4.3.3 Performance Tests . 33

5

6 CONTENTS

4.3.4 Security Tests . 34
4.4 Other Insights . 36

4.4.1 vtl Slot Information Discrepancy 36
4.4.2 Clearing Partitions . 36

5 Discussion 39
5.1 High Availability Implementation . 39

5.1.1 Functionality . 39
5.1.2 Performance . 40
5.1.3 Security . 42
5.1.4 Possible Improvements . 42

5.2 Operating Policy . 43
5.2.1 Setup Guidelines . 43
5.2.2 Application Recommendations 45
5.2.3 Requirements and Tradeoffs . 45

6 Conclusion 49

References 51

List of Figures

4.1 Performance Scalability (High Availability HSM) 38
4.2 Performance Scalability (Stand-alone HSM) 38

7

List of Tables

3.1 HSM Network and Partition Settings 18

4.1 Performance Scalability (Number of Accessing Threads) 33
4.2 Performance Scalability (Number of Accessing Threads and Processes) 34
4.3 Performance Scalability (HA Overhead) 34
4.4 Performance Scalability (HA Overhead, Multiple Threads) 35
4.5 Performance Impact of a Slow HSM 35

5.1 Example HSM Journal . 46
5.2 High Availability Log Messages . 46

9

Listings

3.1 Base Setup of a HSM . 19
3.2 Setup Instructions for One HSM . 19
3.3 Setup Instructions for Multiple HSMs with High Availability 20

4.1 High Availability Recovery Attempts in the Logfile 32
4.2 Manually Synchronizing a Cluster after Changing Object Attributes 32
4.3 vtl Slot Information Discrepancy . 36
4.4 Clearing a High Availability Partition 36

11

Chapter 1

Introduction

Hardware Security Modules (HSM) are specialized cryptographic processors. They
provide cryptographic functions and software to manage cryptographic keys. A
HSM offers these functions as crypto co-processor to a host system. The mod-
ule is built in such a way that attempts to tamper with it will destroy all stored
cryptographic material [1].
In situations that require the use of highly sensitive or exposed cryptographic

keys, such Hardware Security Modules are used to generate and store keys, enable
ciphering and authentication and digitally sign documents in a secure fashion.
Such cryptographic modules are certified according to the FIPS PUB 140-2 se-

curity standard [2]. In addition to FIPS PUB 140-2, the operator of a HSM is
ultimately responsible for the security and has to acknowledge the residual risk.
The security of such HSM modules in a stand-alone usage case was studied be-
fore ([3]). Procedures and best practice ceremonies to securely operate Hardware
Security Modules was described in [1].
At the moment, the author’s employer is replacing their Hardware Security Mod-

ules by a new generation. The new modules will allow users to operate multiple
HSMs in a clustered setup for high availability. In this project, the high availability
features of the new generation of Hardware Security Modules were evaluated and
tested for security, operability and performance. The test plans we use are described
in Chapter 3. We gathered the requirements from business users, support staff and
the risk officer. The requirements and testing results are documented in Chapter 4.
In Chapter 5, we discuss the testing results and suggest an operating policy to cater
to the high availability functionality.
For this work, we have used the SafeNet Luna SA 5 Hardware Security Modules.

SafeNet has provided us with answers to our support queries, but not influenced this
work. The author’s employer has provided us with the Hardware Security Modules.
I was not paid or employed to work on this project or write this report.

13

14 1 Introduction

Chapter 2

Related Work

2.1 FIPS PUB 140-2
Security Requirements for Cryptographic Modules (FIPS PUB 140-2) [2] is a se-
curity standard published by the National Institute of Standards and Technology
(NIST). The publication specifies security elements of Hardware Security Modules.
There are four levels of security with increasing security requirements. HSMs which
are used by the US Federal agencies and departments have to fulfil the elements
defined in the FIPS PUB 140-2 security standard. The Hardware Security Modules
used by the author’s employer are certified by FIPS PUB 140-2. The modules are
validated by the Cryptographic Module Validation Program (CMVP)1.
The validation requires a security policy which documents various components of

the cryptographic module. For the SafeNet Luna SA 5 HSMs, this documentation
can be found at [4]. The precise commands and instructions how to use these
features are described in SafeNet’s technical guide [5]. For the high availability
features that we use in this project, the following parts of the policy are especially
relevant:

Partition Capabilities: The security officer can allow or disallow certain capa-
bilities for each logical storage (partition) within the HSM. The following
capabilities are relevant for our purpose:

• Allow/disallow high availability

• Allow/disallow private and secret key cloning

• Allow/disallow network replication

Identification and Authentication: The authentication tokens for the SafeNet
Luna HSM are stored on USB tokens, so called iKeys. Different colors are
used to identify the capabilities of the tokens. The red iKey is used to store
the tokens used for backup and cloning of cryptographic keys. The red iKey is
thus also responsible for the cloning features used in the network replication
and high availability setup:

«Red (Domain) iKey – for the storage of the cloning domain
data, used to control the ability to clone from a cryptographic mod-
ule to a backup token» (Level 3 Non-Proprietary Security Policy
For Luna®PCI-e Cryptographic Module [4], 2011, p. 16)

1http://www.nist.gov/cmvp

15

http://www.nist.gov/cmvp

16 2 Related Work

In FIPS PUB 140-2, there are no specifications for Hardware Security Modules
operated in a high availability cluster. In our work, we want to see whether the
standardization of a stand-alone HSM is sufficient to guarantee the security of HSMs
in a high availability setup, or whether there should be any additional specifications
for highly available HSM clusters.

2.2 Operating Policy
FIPS PUB 140-2 and the corresponding security policy issued by the vendor it-
self can not guarantee any security, if the administrators of the Hardware Secu-
rity Module are not trustworthy. The author’s employer has written an additional
guide which extends the official publications and describes verifiable ceremonies as
explained in [6]. This operating policy guide consists of the following sections:

• Use cases of the HSM

• Key owners and their responsibilities

• Setup instructions for new HSMs

• Storage, transport and decommissioning of a HSM

• Business continuity plan and backup strategies

• Maintenance tasks

As part of this work, the operating policy was extended by the section «High Avail-
ability HSM Instructions».

2.3 Audit and Backup Procedures for Hardware
Security Modules

OpenHSM [3] is an open source implementation of a Hardware Security Module,
aimed at the use in universities. In Audit and Backup Procedures for Hardware
Security Modules [1], the authors described algorithms implemented in OpenHSM.
In particular, the backup schemes are described in great detail in Chapter 5.2 and
following. These procedures could also be used in a high availability setup, where
keys need to be exchanged between HSMs regularly. However, the authors of [1]
assume that the backup can be manually inspected by an auditor group before the
backup is restored. This is required to make sure that the backup file is in fact from
a legitimate HSM and not a cryptographic container created elsewhere.

Chapter 3

Methodology

3.1 HSM Introduction
The SafeNet Luna SA 5 HSM uses a few technical concepts that we would like to
explain before going into the actual HSM setup and test cases. These concepts are
also documented in the SafeNet Luna SA Help System [5].

Hardware Security Module Card: The actual Hardware Security Module is a
PCIe card, consisting of a cryptographic processor and secured memory for
the key storage.

Hardware Security Module Appliance: The PCIe crypto-card is built into a
server and then shielded with additional tamper detection. The server appli-
ance can be managed using a VT100 serial connection or through SSH. We
use the VT100 serial terminal to manage the HSM in our work.

iKeys: The HSM user and operators are identified using physical key tokens.
SafeNet calls those tokens iKeys. Each token allows the user to carry out spe-
cific operations. iKeys are labelled with colors and allow the following tasks:
Access to the content of a partition (Partition Owner, black iKey), config-
ure, start and restore backups and network replication (Cloning Domain Key
Owner, red iKey) and general HSM administration (Security Officer, blue
iKey). The tokens are also used to encrypt objects for backup and during
replication.

Partition: The secure HSM storage is divided into logical sections, so called parti-
tions. Each partition can hold a certain number of keys. Before a partition can
be accessed, the partition has to be activated. If auto-activation is enabled,
the partition becomes activated automatically after a reboot of the HSM. To
access the partition, its black iKey and password have to be used.

Client Library: The libCryptoki2.so library offers a PKCS#11 interface to the
client application. The library presents the HSM as a PKCS#11 slot, takes
care of setting up the NTLS link, and translates PKCS#11 calls from the ap-
plication to the HSM. The client library is configured using the Chrystoki.conf
configuration file.

Network Trust Link: The Network Trust Link (called NTLS by SafeNet), is an
encrypted tunnel between the client server and the Hardware Security Mod-
ule appliance. The NTLS link is encrypted using X509 certificates. In the
initial setup of the HSM, we have to generate certificates for the HSM and
the client, exchange the certificates and configure the libCryptoki2.so library

17

18 3 Methodology

to use those in the NTLS connection. When a client application loads the
libCryptoki2.so library and specifies a particular PKCS#11 slot, the library
initiates the NTLS connection to the HSM.

To manage the HSM and conduct our tests, we use the PKCS#11 command line
tools provided by SafeNet:

vtl: The Virtual Token Library is used to manage the PKCS#11 client configura-
tion. It configures the high availability group and displays the HA status.

cmu: The Certificate Management Utility provides functions to generate, import
and export asymmetric key pairs and certificates on the HSM. We use it to
generate objects and test the synchronization.

multitoken2: Multitoken is the demo and test tool to perform basic cryptographic
functions on the HSM. The tool measures the number of operations performed
per second. We use multitoken2 to measure the performance of the HA
cluster. Using the -nslots parameter, we can configure how many threads
access a PKCS#11 slot. -nslots 1x12,2x12 starts 12 threads accessing slot 1,
and 12 threads accessing slot 2 in parallel.

ckdemo: This interactive demo tool is also provided by SafeNet. The tool allows
us to create, list, modify and delete objects on the HA cluster.

3.2 HSM Setup
For the setup, we assume the settings in Table 3.1. testhsm is used in the setup with
just one HSM, hsmone, hsmtwo and hsmthree are used for the high availability
setup.

network partition
hostname address gateway name password seriala
testhsm 192.168.1.20 192.168.1.1 myPart myPwd 65005000
hsmone 10.0.1.21 10.0.1.1 haPart haPwd 65005001
hsmtwo 10.0.1.22 10.0.1.1 haPart haPwd 65005002
hsmthree 10.0.1.23 10.0.1.1 haPart haPwd 65005003
a The partition serial numbers are automatically generated by the HSM.

Table 3.1: HSM Network and Partition Settings

The following setup instructions are covered in the documentation provided by
SafeNet [5] and are partly outlined in [7]. In the listings, we use host:˜ to identify
commands which have to be executed on the application server, and testhsm:>
respectively hsmone:>, hsmtwo:> and hsmthree:> for commands which are run
on the HSMs.

3.2.1 Base Setup
For the basic setup of the HSMs, we follow the instructions from the technical
documentation [5]. The steps are covered in Listing 3.1 and have to be executed in
the VT100 emulator directly on the module. These instructions are exemplary for
testhsm. To set up the other HSMs, the parameters have to be changed accordingly
to Table 3.1.
First, the HSM is reset to its factory default (Line 1). Then, the time and network

settings are configured (Line 3 to 9). For the initialization of the HSM (Line 10),

3.2 HSM Setup 19

the Pin Entry Device (PED) is required. In this step, the cryptographic tokens for
the security officer and the cloning domain are generated. The HSM wide policies
are set to allow cloning (Line 13), allow network replication (Line 14) and remote
authentication (Line 15). Then, the Network Trust Link connection (NTLS) is set
up (Line 17 to 19). The application and HSM will communicate through this NTLS
SSL connection. The fingerprint of the server certificate (Line 20) will be used later
to identify the server during the client setup.

1 testhsm:> hsm factoryReset
2 testhsm:> sysconf timezone set Europe/Zurich
3 testhsm:> sysconf time <HH:MM> <YYYYMMDD>
4 testhsm:> status time
5 testhsm:> net interface -device eth0 -ip 192.168.1.20 -netmask /

255.255.0.0 -gateway 192.168.1.1
6 testhsm:> net hostname testhsm
7 testhsm:> net domain dummy.example.com
8 testhsm:> network show
9 testhsm:> status interface

10 testhsm:> hsm init -label testhsm
11 testhsm:> hsm login
12 testhsm:> hsm showPolicies -configonly
13 testhsm:> hsm changePolicy -policy 7 -value 1
14 testhsm:> hsm changePolicy -policy 16 -value 1
15 testhsm:> hsm changePolicy -policy 20 -value 1
16 testhsm:> hsm showPolicies -configonly
17 testhsm:> sysconf regenCert
18 testhsm:> ntls bind eth0
19 testhsm:> ntls show
20 testhsm:> sysconf fingerprint ntls

Listing 3.1: Base Setup of a HSM

3.2.2 Stand-Alone Hardware Security Module
Once the HSM is initialized (Listing 3.1), we configure one HSM to be used stand-
alone. First we create a new partition to store the cryptographic objects (Line 2).
Take a note of the challenge string and change it to myPwd in the next step. Once
the password of the partition was changed, we can allow the activation (Line 5) and
auto activation (Line 6) policies, and then activate the partition (Line 7). Auto acti-
vation ensures that the partition will become active after the reboot of the HSM au-
tomatically. Before we can use the NTLS connection, the certificate of the HSM has
to be downloaded to the client machine and imported to the trusted HSM certificates
(Line 8 and Line 10). Make sure that the fingerprint from Line 20 of Listing 3.1
matches with the fingerprint of the downloaded certificate (Line 9). Next, a certifi-
cate for the client is created (Line 11), uploaded to the HSM (Line 12) and then
registered in the HSM (Line 14). On Line 15, the HSM storage myPart is assigned
to the new client. Finally, the setup is verified on Line 16.

1 testhsm:> hsm login
2 testhsm:> partition create -partition myPart
3 testhsm:> partition changePw -partition myPart -oldpw /

eyK4-dbX5-QNC8-M9nB -newpw myPwd
4 testhsm:> partition showPolicies -partition myPart -configonly
5 testhsm:> partition changePolicy -partition myPart -policy 22 -value 1
6 testhsm:> partition changePolicy -partition myPart -policy 23 -value 1
7 testhsm:> partition activate -partition myPart -password myPwd
8 host:˜ scp admin@192.168.1.20:server.pem ./cert/server/
9 host:˜ openssl x509 -noout -fingerprint -in ./cert/server/server.pem

10 host:˜ vtl addServer -n testhsm -c ./cert/server/server.pem
11 host:˜ vtl createCert -n 192.168.1.10
12 host:˜ scp ./cert/client/192.168.1.10.pem admin@192.168.1.20:

20 3 Methodology

13 host:˜ ssh admin@192.168.1.20
14 testhsm:> client register -client 192.168.1.10 -hostname 192.168.1.10
15 testhsm:> client assignPartition -client 192.168.1.10 -partition myPart
16 host:˜ vtl verify

Listing 3.2: Setup Instructions for One HSM

3.2.3 High Availability Cluster
Before multiple HSMs can be set up as high availability cluster, we have to do
the base setup as described in Listing 3.1, by replacing the parameters with those
given in Table 3.1. Because the individual HSMs in the high availability setup will
have to exchange keys, they must be set up using the same red domain iKey (on
Line 10 of Listing 3.1). During the setup, the administrator is asked to reuse an
existing iKey as opposed to overwrite it.
For the high availability setup itself, we follow the instructions in Listing 3.3. For

our tests we have used three identical SafeNet Luna SA 5 HSMs.
On the host system, a client certificate is generated (Line 2) and then uploaded

to all HSMs (Line 3 to 5). Then the host certificate of each HSM is downloaded and
installed (Line 6 to 14). On each HSM, the partition is created, activated and the
client is registered to it (Line 19 to 28). It is important to take a note of the partition
serial numbers, as they will be used later when the HA group is configured. The
private (Line 22) and secret key cloning (Line 23) as well as the high availability
recovery policies (Line 24) have to be enabled. When the partitions are created,
each partition has to have the same red cloning domain iKey and the same partition
password.
Now we can register the partitions of each HSM into one high availability group.

First, a new HA Group is created (Line 62) with just the partition of the first
HSM (the partition with the serial number 65005001). The newGroup command
will auto-generate a group serial number, for example 74007601. This group serial
number will be used in the following steps to add the other partitions to the group
(Line 63 and 64). With the show command, the HA Group slot number should be
printed out (Line 69). The HA group can now be accessed through the PKCS#11
library at the given slot number.

1 # Host
2 host:˜ vtl createCert -n 192.168.1.10
3 host:˜ scp ./cert/client/192.168.1.10.pem admin@10.0.1.21:
4 host:˜ scp ./cert/client/192.168.1.10.pem admin@10.0.1.22:
5 host:˜ scp ./cert/client/192.168.1.10.pem admin@10.0.1.23:
6 host:˜ scp admin@10.0.1.21:server.pem ./cert/server/10.0.1.21.pem
7 host:˜ scp admin@10.0.1.22:server.pem ./cert/server/10.0.1.22.pem
8 host:˜ scp admin@10.0.1.23:server.pem ./cert/server/10.0.1.23.pem
9 host:˜ openssl x509 -noout -fingerprint -in ./cert/server/10.0.1.21.pem

10 host:˜ openssl x509 -noout -fingerprint -in ./cert/server/10.0.1.22.pem
11 host:˜ openssl x509 -noout -fingerprint -in ./cert/server/10.0.1.23.pem
12 host:˜ vtl addServer -n hsmone -c ./cert/server/10.0.1.21.pem
13 host:˜ vtl addServer -n hsmtwo -c ./cert/server/10.0.1.22.pem
14 host:˜ vtl addServer -n hsmthree -c ./cert/server/10.0.1.23.pem
15
16 # HSM one
17 host:˜ ssh admin@10.0.1.21
18 hsmone:> hsm login
19 hsmone:> partition create -partition haPart
20 hsmone:> partition changePw -partition myPart -oldpw /

eyK4-dbX5-QNC8-M9nB -newpw haPwd
21 hsmone:> partition showPolicies -partition haPart
22 hsmone:> partition changePolicy -partition haPart -policy 0 -value 1
23 hsmone:> partition changePolicy -partition haPart -policy 4 -value 1

3.3 Interviews 21

24 hsmone:> partition changePolicy -partition haPart -policy 21 -value 1
25 hsmone:> partition changePolicy -partition haPart -policy 22 -value 1
26 hsmone:> partition changePolicy -partition haPart -policy 23 -value 1
27 hsmone:> partition activate -partition haPart -password myPwd
28 hsmone:> client register -client 192.168.1.10 -hostname 192.168.1.10
29 hsmone:> client assignPartition -client 192.168.1.10 -partition haPart
30
31 # HSM two
32 host:˜ ssh admin@10.0.1.22
33 hsmtwo:> hsm login
34 hsmtwo:> partition create -partition haPart
35 hsmtwo:> partition changePw -partition myPart -oldpw /

eyK4-dbX5-QNC8-M9nB -newpw haPwd
36 hsmtwo:> partition showPolicies -partition haPart
37 hsmtwo:> partition changePolicy -partition haPart -policy 0 -value 1
38 hsmtwo:> partition changePolicy -partition haPart -policy 4 -value 1
39 hsmtwo:> partition changePolicy -partition haPart -policy 21 -value 1
40 hsmtwo:> partition changePolicy -partition haPart -policy 22 -value 1
41 hsmtwo:> partition changePolicy -partition haPart -policy 23 -value 1
42 hsmtwo:> partition activate -partition haPart -password myPwd
43 hsmtwo:> client register -client 192.168.1.10 -hostname 192.168.1.10
44 hsmtwo:> client assignPartition -client 192.168.1.10 -partition haPart
45
46 # HSM three
47 host:˜ ssh admin@10.0.1.23
48 hsmthree:> hsm login
49 hsmthree:> partition create -partition haPart
50 hsmthree:> partition changePw -partition myPart -oldpw /

eyK4-dbX5-QNC8-M9nB -newpw haPwd
51 hsmthree:> partition showPolicies -partition haPart
52 hsmthree:> partition changePolicy -partition haPart -policy 0 -value 1
53 hsmthree:> partition changePolicy -partition haPart -policy 4 -value 1
54 hsmthree:> partition changePolicy -partition haPart -policy 21 -value 1
55 hsmthree:> partition changePolicy -partition haPart -policy 22 -value 1
56 hsmthree:> partition changePolicy -partition haPart -policy 23 -value 1
57 hsmthree:> partition activate -partition haPart -password myPwd
58 hsmthree:> client register -client 192.168.1.10 -hostname 192.168.1.10
59 hsmthree:> client assignPartition -client 192.168.1.10 -partition haPart
60
61 # Host
62 host:˜ vtl haAdmin -newGroup -serialNum 65005001 -label haGroup /

-password haPwd
63 host:˜ vtl haAdmin -addMember -group 74007601 -serialNum 65005002 /

-password haPwd
64 host:˜ vtl haAdmin -addMember -group 74007601 -serialNum 65005003 /

-password haPwd
65 host:˜ vtl verify
66 host:˜ vtl haAdmin -HAOnly -enable
67 host:˜ vtl haAdmin -HALog -enable
68 host:˜ vtl haAdmin -autoRecovery -interval 60 -retry -1
69 host:˜ vtl haAdmin -show -syncStatus

Listing 3.3: Setup Instructions for Multiple HSMs with High Availability

3.3 Interviews
While the above steps were given by the SafeNet documentation, the whole key cer-
emonies and failover procedures for the high availability setup were discussed with
the appropriate teams in the company. Three profiles were included in the inter-
views: The Crypto User, the Support Analyst and the Risk Officer. The interviews
were conducted in an unstructured, non-directive manner. During the interviews,

22 3 Methodology

the following topics were covered: Setup, maintenance and decommissioning of a
HSM; key generation, import and export; and performance requirements.

• The Crypto User, typically member of an application management team, uses
the functionality of the HSM in his applications. They are required to use a
HSM because their applications uses sensitive key material, for example an
E-Banking web server.

• The Support Analyst provides support to the Crypto User in the usage and
maintenance of their HSMs.

• The Risk Officer is responsible for the security of the cryptographic material
stored in the HSM. His task is to set the guidelines and requirements from a
risk perspective.

3.4 Software Testing
To understand the failover and recovery mechanisms, the key exchanges and per-
formance of the high availability cluster, we have designed the following tests.

3.4.1 Key Distribution
Test Goal: Is a new key automatically distributed to all HSMs?

Test Steps:

1. Using the cmu command, create a new object on the HSM cluster:
cmu gen -modulusBits=2048 -publicExp=65537 -sign=T -verify=T
-slot=1 -password=haPwd.

2. Connect to hsmone directly and display the newly created object with
partition showContents -partition haPart -password haPwd.

3. Repeat step 2 on hsmtwo (partition haPart) and hsmthree (partition
haPart).

Expected Result: The object should immediately exist on all three HSMs.

3.4.2 Failure Detection
Test Goal: Can the client detect if a HSM has failed?

Test Steps:

1. Run vtl haAdmin -show -syncStatus and make sure the cluster is fully
operational and synchronized.

2. Remove one HSM from the HA cluster by plugging the network cable
out or disabling the NTLS service (service stop ntls).

3. Run vtl haAdmin -show -syncStatus again.

Expected Result: The vtl command should inform about the failure of one HSM.

3.4 Software Testing 23

3.4.3 Failover
Test Goal: Can a running application continue, when one HSM fails during the

operation?

Test Steps:

1. Using the multitoken2 tool, start a batch of key signing operations on
the HSM cluster: multitoken2 -mode rsasigver -key 2048 -nslots 1x12
-password haPwd -f -v.

2. Remove one HSM from the HA cluster by plugging the network cable
out.

Expected Result: The signing operation automatically continues on the remain-
ing HSMs.

3.4.4 Recovery
Test Goal: If an object is generated while one HSM is offline, will the HSMs be

synchronized automatically on recovery?

Test Steps:

1. Remove one HSM from the cluster by plugging the network cable out or
disabling the NTLS service (service stop ntls).

2. Using the cmu command, create a new cryptographic object on the
cluster: cmu gen -modulusBits=2048 -publicExp=65537 -sign=T -
verify=T -slot=1.

3. Run vtl haAdmin -show -syncStatus.
4. Reconnect the HSM (service start ntls).
5. Run vtl haAdmin -show -syncStatus again.
6. Connect to hsmone directly and display the newly created object with

partition showContents -partition haPart -password haPwd.
7. Repeat Step 6 on hsmtwo (partition haPart) and hsmthree (partition

haPart).

Expected Result: Before the removed HSM is added back to the cluster, vtl
haAdmin -show -syncStatus should display that the cluster is out of sync
(Step 3). After the recovery, the synchronization should happen automatically.
vtl haAdmin -show -syncStatus should again show that the cluster is fully
operational and in sync (Step 5). The created object should exist on all three
HSMs and have the same properties (Steps 6 and 7).

3.4.5 Changing Object Attributes
Test Goal: If object attributes are changed while one of the HSMs is offline, will

the updated attributes be synchronized correctly?

Test Steps:

1. Run vtl haAdmin -show -syncStatus and make sure the cluster is fully
operational and synchronized.

2. Create a new object on the whole cluster: cmu gen -modulusBits=2048
-publicExp=65537 -sign=T -verify=T -slot=1 -label=first.

24 3 Methodology

3. Remove the first HSM from the cluster by plugging the network cable
out or stopping NTLS with service stop ntls.

4. Change the CKA_LABEL attribute from first to renamed. For this,
we use the interactive ckdemo utility:

• Start the tool: ckdemo
• Select (1) Open Session and connect to slot#1 as normal user[1]
• Select (3) Login and log in as Crypto-Officer[1] using haPwd
• Select (25) Set attribute, list all objects with the -1 option, then

select the first object
• Select (1) Add Attribute, choose attribute CKA_LABEL and set

the label to renamed
• Then select (0) Accept Template. The object is now renamed to

label renamed
• Close ckdemo with (0) Quit demo

5. Re-add the first HSM back to the cluster.
6. Run vtl haAdmin -show -syncStatus again.
7. Run cmu list to show the current objects on the HSMs.
8. On each HSM, list the partition contents using partition showContents

-partition haPart.
9. Run vtl haAdmin -show -syncStatus again.

Expected Result: The key is first renamed only on hsmtwo and hsmthree. When
hsmone is recovered, the cluster is out of sync (Step 6). After connecting a
client to the cluster again (Step 7), the renamed key should exist on all HSMs
with the new label. Step 8 will list the key with the new label on all HSMs,
and Step 9 shows that the cluster is back in-sync.

3.4.6 Creating Objects in a Split Brain Situation
Test Goal: If two clients see different parts of the split cluster and create new

objects, will the cluster be able to sync correctly after the recovery?

Test Steps:

1. Remove the first HSM from the cluster by plugging the network cable
out or stopping NTLS with service stop ntls.

2. In this configuration, create a new object: cmu gen -modulusBits=2048
-publicExp=65537 -sign=T -verify=T -slot=1 -label=one.

3. Re-add the first HSM back to the cluster, then remove the second and
third HSM.

4. Repeat Step 2 on the second part, with -label=two. Now the two parts
of the cluster have different information (“Split Brain”).

5. Using partition showContents -partition haPart, verify that both parts
of the cluster have generated a different key. One HSM should have
objects one, the other HSMs objects two.

6. Re-add the second members back to the cluster.
7. Repeat the command from Step 5 on all HSMs.

Expected Result: When the members are added back to the HA group (Step 6),
vtl -show -syncStatus will notice that the cluster is out of sync. Once the
HSM recovers, the created key will be automatically distributed to all HSMs.
In Step 7, all HSMs will have the same objects (one and two).

3.4 Software Testing 25

3.4.7 Deleting Objects in a Split Brain Situation
Test Goal: If the cluster is split into two parts, will the deletion of objects be

synchronized correctly?

Test Steps:

1. Using cmu, create two new objects on the whole cluster: cmu gen -
modulusBits=2048 -publicExp=65537 -sign=T -verify=T -slot=1 -
label=allone and . . . -label=alltwo.

2. List the contents of the partitions and take a note of the allone and
alltwo keys: cmu list -slot=1 -password=haPwd.

3. Remove the first HSM from the cluster by plugging the network cable
out or stopping NTLS with service stop ntls.

4. In the first part of the cluster, remove the first key allone from Step 1:
cmu delete -slot=1 -handle=9 -password=haPwd.

5. Re-add the first HSM back to the cluster, then remove the second and
third HSM.

6. In the second part of the cluster, remove the second key alltwo: cmu
delete -slot=1 -handle=10 -password=haPwd.

7. Using partition showContents -partition haPart on each HSM, verify
that both HSMs have deleted a different key. One HSM should have
objects alltwo, the other HSM allone.

8. Re-add the second members back to the cluster.
9. Repeat the command from Step 7 on both HSMs.

Expected Result: The keys deleted in Steps 4 and 6 should be deleted across the
whole cluster once it is synchronized.

3.4.8 Performance Scalability (Multiple Threads)
Test Goal: How does the performance scale with increasing number of accessing

threads?

Test Steps:

1. Using the multitoken2 tool, start multiple parallel batches of key signing
operations on the HSM cluster: multitoken2 -mode rsasigver -key 2048
-password haPwd -t 30 -f -v -nslots 1x1

2. Repeat Step 1 for the following number of threads:
• 1 (-nslots 1x1) to 20 (-nslots 1x20)
• 30 (-nslots 1x30)
• 60 (-nslots 1x60)
• 100 (-nslots 1x100)

3. Start multiple key generations on the HSM cluster using multitoken2
-mode rsakeygen -key 2048 -password haPwd -f -v -nslots . . . for the
-nslots parameters listed in Step 2.

Expected Result: SafeNet writes in its help documentation [5] “To achieve max-
imum performance with Luna SA 5.x, client applications must spawn 50+
threads”. In our setup with three HSMs, we would thus expect that 150
threads utilize the HSMs full performance. Because multitoken2 can only
handle up to 100 threads, we do not expect to see a saturation of the per-
formance in this test. In Section 3.4.9, we will repeat this test with multiple
processes, which should maximize the performance.

26 3 Methodology

3.4.9 Performance Scalability (Multiple Processes)
Test Goal: How does the performance scale with multiple concurrent processes?

Are requests distributed across the cluster to balance the load?

Test Steps:

1. Open two shells. In each shell, start a single-threaded multitoken2 com-
mand: multitoken2 -mode rsasigver -key 2048 -nslots 1x1 -password
haPwd -f -v.

2. Observe the speed of the two multitoken2 processes.
3. Repeat this test with the same number of threads used in Test 3.4.8.

Expected Result: The performance of two processes accessing the HSM cluster
will be similar to the performance we found in Test 3.4.8 with two threads.
The library dispatches the requests to different HSMs in the high availability
group.

3.4.10 Performance Scalability (High Availability Overhead)
Test Goal: How big is the performance penalty in the high availability cluster,

compared to using three individual HSMs?

Test Steps:

1. Disable the -HAOnly setting of the client with vtl haAdmin -HAOnly
-disable.

2. List the available slots with vtl listSlots and take a note of the first
LunaNet Slot and the HA Virtual Card Slot number.

3. In three separate terminals, run multitoken2 commands opening threads
to each HSM individually: multitoken2 -mode rsasigver -key 2048 -
nslots 1x1 -f. Replace the slot number with the other LunaNet Slot
numbers from Step 2.

4. Stop the multitoken2 commands again.
5. Start one multitoken2 command using the HA Virtual Card Slot num-

ber: multitoken2 -mode rsasigver -key 2048 -nslots 4x3 -f.
6. Repeat Steps 3 and 5 with the -mode rsakeygen option to generate RSA

keys.

Expected Result: The number of operations of signatures calculated should be
very similar in both cases, because each operation is dispatched to either HSM,
which can calculate the signature independently (Step 3 and 5). However, the
generation of RSA keys is slower because each key has to be distributed to
the other HSMs (Step 6).

3.4.11 Performance Impact of a Slow HSM
Test Goal: Is a slow HSM limiting the performance of the HA cluster?

Test Steps:

1. Disable the -HAOnly setting of the client with vtl haAdmin -HAOnly
-disable.

2. List the available slots with vtl listSlots and take a note of the first
LunaNet Slot and the HA Virtual Card Slot number.

3.4 Software Testing 27

3. Measure the number of key signings on one HSM using multitoken2:
multitoken2 -mode rsasigver -key 2048 -nslots 1x12 -v -f.

4. Repeat Step 3 on the HA Virtual Card Slot.
5. Start multitoken2 on the first LunaNet Slot and let it run: multitoken2

-mode rsasigver -key 2048 -nslots 1x12 -v -f.
6. Repeat Step 4 while multitoken2 from Step 5 is still running.
7. Repeat all steps using -mode rsakeygen.

Expected Result: The key generation is limited by the slowest HSM, because
the created object has to be distributed across all HSMs. As a result, in the
rsakeygen mode, multitoken2 blocks until each key is distributed. A slow
HSM will be the bottleneck and slow the operation down. The slow module
will have a linear impact on the signing operations.

3.4.12 Different Red Cloning iKeys in a HA Group
Test Goal: Is the red iKey information used to encrypt the objects during the

replication?

Test Steps:

1. On each HSM, create a new partition (Line 19 of Listing 3.3), but do not
reuse the same red iKey. Each partition should have its own red iKey.

2. Create a new HA group using vtl (Line 62 of Listing 3.3) with the par-
titions from Step 1. Note that each partition in the HA group has its
own red domain/cloning iKey now.

3. Try to create a new key object on the HA group using cmu gen -
modulusBits=2048 -publicExp=65537 -sign=T -verify=T -slot=1 -
password=haPwd.

Expected Result: The cmu command will fail, because the partitions do not
share the cloning iKey.

3.4.13 Different Black Partition iKeys in a HA Group
Test Goal: Is the black iKey information used to encrypt the objects during the

replication?

Test Steps:

1. On each HSM, create a new partition (Line 19 of Listing 3.3), but do
not reuse the same black iKey. Each partition should have its own black
iKey.

2. Create a new HA group using vtl (Line 62 of Listing 3.3) with the par-
titions from Step 1. Note that each partition in the HA group has its
own black partition iKey now.

3. Try to create a new key object on the HA group using cmu gen -
modulusBits=2048 -publicExp=65537 -sign=T -verify=T -slot=1 -
password=haPwd.

Expected Result: It is a priori not clear whether the black partition iKey is used
for the replication. The documentation lists that the red domain/cloning iKey
is responsible for the network replication. However, the black partition iKey
controls access to the partition and might thus be required for the replication
as well. In the backup procedures, both red and black iKey are required.

28 3 Methodology

3.5 Threat Model
In our threat model, we assume that we can trust a stand-alone HSM. However, we
suspect security relevant implementation issues in the high availability features of
the HSM and the library. Also, we look at the security implications of a malicious
operator and malfunctioning application.

Chapter 4

Results

4.1 Requirements Gathered from the Interviews
In the interviews with the Crypto User, Support Analyst and Risk Officer, we found
the following requirements:

• Crypto User:

– The setup of the HSMs has to be coordinated and executed by the secu-
rity engineering team or the Support Analyst. The Crypto User should
only be present to provide his black user iKey during the setup.

– When a HSM is joined in the HA group, the new HSM should become
visible through the PKCS#11 interface without the need to restart the
application.

– After a manual import of key material, the HSMs have to distribute
the new keys automatically. There should be no need to enter the key
material manually on multiple HSMs.

– If a HSM fails, the Crypto User should be notified about the failure and
the degraded high availability. The failover to another HSM should be
transparent for the application.

– The partitions of the HSM have to be auto-enabled after recovery. The
Crypto User should not be required to provide his black key to restart a
HSM.

– When a HSM recovers from a failure or is replaced, it should join the
HA group without the intervention of the Crypto User.

• Support Analyst:

– If a HSM fails, the Support Analyst should be notified about the failure
and the degraded high availability. The Support Analyst should also be
informed if there is a synchronization issue between the HSMs.

– There should be a log of the high availability events. Status changes of
each HSM as well as the whole HA group should be logged.

– The setup of the HSMs should follow defined instructions, and all actions
have to be recorded in a journal.

– All partitions in a HA group should have the same partition name and
password.

– The partition and HA group serial numbers have to be logged in a journal.

29

30 4 Results

– Maintenance actions have to be logged in a journal. The Support Analyst
has to be able to record information about the high availability, the other
HSMs in the cluster, as well as any outstanding tasks to be done on the
other HSMs in the cluster.

– The individual HSMs should be distributed amongst multiple data cen-
ters to reduce the impact of a data center failure.

• Risk Officer:

– The HSM high availability solution must work over unencrypted, routed
network between data centers.

– During the replication of objects between the HSMs, the objects have
to be encrypted with a key derived from two token iKeys (2-tokens-
respectively 4-eyes-principle).

– The change of a label and exportable/mutable flags of a key has to be
distributed across the cluster.

– The HSM cluster has to be accessible from two different data centers at
the same time. Also, the HSMs in a cluster have to be spread over to
data centers.

4.2 HSM Functionality
The following descriptions are based on the SafeNet Luna SA Help System [5] and
the findings from our functionality tests.

4.2.1 High Availability
From our functionality tests, we found that the high availability functionality is
implemented solely in the libCryptoki2.so client library. The library bundles the
HSMs of the high availability cluster as an individual PKCS#11 slot, with the
description HA Virtual Card Slot. Applications using this slot will automatically
be routed to one of the physical Hardware Security Modules.
The libCryptoki2.so library handles failure and recovery of a HSM transpar-

ently to the client. Through a configuration file, the administrator can specify the
addresses of the HSMs and configure the recovery behavior of the client.

4.2.2 Key Exchange
Because the complete high availability functionality is implemented in the client,
the library takes care of the key exchanges. Whenever a key is generated on one of
the HSMs, the key has to be transferred to the other HSMs in the cluster.
Based on information from SafeNet, we know that the key replication works in

the following way:

1. The client initiates the key generation operation.

2. The libCryptoki2.so dispatches this request to the first free HSM.

3. The HSM generates a random key.

4. The newly generated key is wrapped using a derivation of the red domain
iKey secret key, and sent back to the client library.

5. The client forwards the wrapped key to the other HSMs in the cluster.

6. Each HSM unwraps the key and imports it into its partition storage.

4.3 Testing Results 31

4.2.3 Load Balancing
Load Balancing is implemented on the client side. Each thread is mapped to exactly
one HSM. A single-threaded application will utilize the first HSM in the HA group
first. If this HSM fails, then the thread is migrated to use the second HSM.

4.2.4 Failure Detection
If one of the HSMs in the cluster fails, this is not noticed until the client library
tries to make the next PKCS#11 call. Once the library detects the failed HSM,
connections to this HSM are moved to a different HSM and operations continue to
run.

4.2.5 Recovery
For the failover and recovery of a HSM, the library will perform the following steps:

1. Detect that a HSM has dropped out

2. Remove the HSM from the list of available HSMs for load balancing

3. Periodically check if the failed HSM is back online

4. Once the HSM is back, detect whether any key has been changed while the
HSM was offline

5. Synchronize keys if necessary

6. Add the HSM back to the list of available HSMs for load balancing

From the tests we saw that the re-synchronization (Step 5) works only, if the
client was running when the HSM failed (Step 1) and kept running during the
outage until the HSM has recovered (Step 4). An example for such a process is the
multitoken2 command, started before the outage and stopped only after the failed
HSM has recovered. In this case, the cluster will be synchronized automatically by
the library loaded by multitoken2.
If there was no client running when the HSM failed, or the client had stopped

while the HSM was offline, then the re-synchronization will not work. In this case,
the cluster remains in an unsynchronized state. To bring the cluster back in sync,
the operator has to run vtl haAdmin -synchronize manually. An example for this
case is Test 3.4.4, where the cmu utility started after we stopped the first HSM
(Step 1). The cluster was not able to synchronize once the HSM recovered later.
Because we had not expected this behavior when we designed our test cases, we

did not include this manual synchronization step in the instructions. However, in
the test cases where the cluster did not synchronize automatically, we repeated the
test with a parallel running multitoken2 command or by running vtl haAdmin
-synchronize manually. We list the outcome of this also in the testing results.

4.3 Testing Results
4.3.1 Successful Functional Tests
The following tests passed as expected:

• Key Distribution (Test 3.4.1)

• Failure Detection (Test 3.4.2)

32 4 Results

• Failover (Test 3.4.3)

• Creating Objects in a Split Brain Situation (Test 3.4.6) (∗)

When new keys are generated, they are automatically distributed to the other
cluster nodes which are online at that time. If a HSM fails, this can be seen in
the client. An example is vtl haAdmin -show which will list any failed HSM.
Applications can continue to run without interruption when a HSM fails.
Once the failed HSM is recovered and the cluster is synchronized, objects gener-

ated during the outage are distributed to the recovered HSM. If the client restarts
during the outage, the cluster cannot be synchronized automatically afterwards.
An operator has to run vtl haAdmin -synchronize manually (see Chapter 4.2.5).
Test 3.4.6 (∗) was only successful when we ran vtl haAdmin -synchronize -group

haGroup before executing Step 7.

4.3.2 Unsuccessful Functional Tests
Recovery (Test 3.4.4)

This test did not complete successfully, the keys in Steps 6 and 7 were out of sync.
This is caused because the cmu command did not run when the HSM failed and
recovered again. As a result, the library was not loaded and could not take care of
the synchronization. In order to bring the cluster back in sync, we had to run vtl
haAdmin -synchronize manually.
We repeated the test with a multitoken2 command running simultaneously. This
client had the PKCS#11 library open the whole time. Once the HSM was recovered,
the library took care of the synchronization. In this case, the log file of the library
shows the recovery attempts:

1 14:32:54 [25148] HA group: 74007601 has dropped member: 65005001
2 14:33:28 [25148] HA group: 74007601 recovery attempt #1 failed for

member: 65005001
3 14:34:29 [25148] HA group: 74007601 recovery attempt #2 succeeded for

member: 65005001

Listing 4.1: High Availability Recovery Attempts in the Logfile

We could not configure at which time the first recovery attempt is made. Every
following attempt is started in 60 second intervals.
The Test Creating Objects in a Split Brain Situation (3.4.6) failed for the same

reason. However, when running a multitoken2 process parallel to the test case, the
multitoken2 was able to synchronize the cluster automatically. Thus, automatic
synchronization upon recovery is possible.

Changing Object Attributes (Test 3.4.5)

Due to the arguments explained in Chapter 4.2.5, starting any client such as cmu
after the first HSM has recovered does not synchronize the cluster. In Test 3.4.5
we tried to manually synchronize the cluster by using vtl haAdmin -synchronize
after the change of the label attribute. However, the command informed us that
the changed object already exists on the target:

1 host:˜ vtl haAdmin -synchronize -group haGroup -password haPwd
2 Info: object already exist on target
3 Info: object already exist on target
4 Info: object already exist on target
5 Info: object already exist on target
6 Synchronization completed.

Listing 4.2: Manually Synchronizing a Cluster after Changing Object Attributes

4.3 Testing Results 33

After the manual synchronization, which seems to have completed successfully,
vtl haAdmin -show -syncStatus still shows that the cluster is out of sync. Even
repeated synchronization attempts are not able to bring the cluster back in sync.
Attribute changes, in our case on the CKA_LABEL attribute, fail to automatically
synchronize to the recovered HSM and can not even be manually synchronized using
vtl haAdmin -synchronize.

Deleting Objects in a Split Brain Situation (Test 3.4.7)

Due to the reasons explained in Section 4.2.5, this test failed as well. Because the
client library was not loaded during the outage, it could not take care of the re-
synchronization and we had to trigger it manually using vtl haAdmin -synchronize.
However, vtl could not determine that the deleted keys had to be removed from all
HSMs. Instead, the command transmitted those keys again to the HSMs on which
they were previously deleted.

4.3.3 Performance Tests
Performance Scalability (Tests 3.4.8, 3.4.9 and 3.4.10)

In the Test Performance Scalability (Multiple Threads) (3.4.8), we tested how many
threads are required to utilize the HSM cluster completely. We have measured the
speeds with 1 to 100 parallel threads. The testing results are listed in Table 4.1 and
shown in Figure 4.1.
When calculating RSA signatures, a multi-threaded application will have a speed

advantage over a single-threaded application. The individual signing requests are
distributed across all HSMs, which increases the total throughput.
However, when generating RSA keys, those keys have to be distributed to all

HSMs. This process is not parallelized. As a result, a multi-threaded client is not
faster than a single-threaded one.

Threads Signaturesa/ Second Key Generationsa/ Second
1 87.315 1.032
3 265.577 0.899
10 468.872 0.865
20 702.077 1.032
60 1287.616 1.065
100 1560.108 N/Ab

a 2048 bit RSA key
b Multitoken could not handle 100 threads for key generation

Table 4.1: Performance Scalability (Number of Accessing
Threads)

With Performance Scalability (Multiple Processes) (Test 3.4.9), we wanted to
find out if a multi-process application has an advantage over a single-process (but
multi-threaded) application. The testing results are listed in Table 4.2 and shown
in Figure 4.1.
The test shows that multiple processes with fewer threads have roughly the same

performance as a single-threaded application with more threads. Three processes
with each 20 threads achieve a performance of 1259 signings per second, while one
process with 60 threads achieves 1288 signings.
In Test Performance Scalability (High Availability Overhead) (3.4.10) we wanted

to determine the performance penalty in the high availability cluster. We have

34 4 Results

Signaturesa/ Second
Threads/Process 1 Processb 2 Processes 3 Processes
1 87.315 168.277 253.897
3 265.577 485.632 637.541
10 468.872 758.383 886.203
20 702.077 991.724 1258.795
30 847.944 1322.468 1572.186
60 1287.616 1619.471 1792.804
100 1560.108 1826.082 2539.625c

a 2048 bit RSA key
b Results from Test 3.4.9
c This data point is an outlier. See Figure 4.1 and Chapter 5.1.2.

Table 4.2: Performance Scalability (Number of Accessing
Threads and Processes)

measured the performance of three individual HSMs and compared it to the perfor-
mance of a HA cluster with three HSMs. The testing results are listed in Table 4.3
and shown in Figure 4.2.
The test shows that there is a significant overhead for the generation of new

keys. The keys have to be distributed to all three HSMs. For signatures, the high
availability setup seems to have a big overhead too. However, we have repeated
this test with more parallel threads. These additional measurements are listed in
Table 4.4. At 24 threads the performance overhead of the high availability setup
becomes smaller than the scaling overhead of the stand-alone HSMs. One process
with 24 threads, accessing the high availability setup, achieves 731 signatures per
second, while three processes with each 8 threads to individual HSMs achieve 720
signatures.

Signaturesa/ Second Key Generationsa/ Second
Three Individual HSMs 765.3 3.262
High Availability HSMb 265.6 1.032
a 2048 bit RSA key
b High Availability cluster with three HSMs

Table 4.3: Performance Scalability (HA Overhead)

Performance Impact of a Slow HSM (Test 3.4.11)

We have measured the impact of a slow HSM. The scenario could be a HSM which
is in single-threaded use by another application, or which is placed in a different
data center with a slow link or high round trip time.
The impact of a slow HSM in the HA cluster is significant when generating

keys. If one HSM is completely used by another process, the key generation on
the cluster completely stalls. In addition to the outlined test steps, we tried to
create just one single key using cmu gen -modulusBits=2048 -publicExp=65537
-sign=T -verify=T, while one HSM was busy. The average time to generate a key
was 268.54s. Calculating signatures is also slower, but does not stop completely.
The testing results are listed in Table 4.5.

4.3.4 Security Tests
To understand how keys are distributed between the HSMs, we ran the following
two tests.

4.3 Testing Results 35

3 stand-alone HSMs HA HSM setupb

Total Threads Pr
oc
es
se
s

T
hr
ea
ds

Si
gn

at
ur
es

a /S
ec
on

d

Pr
oc
es
se
s

T
hr
ea
ds

Si
gn

at
ur
es

a /S
ec
on

d

3 3 1 765.3 1 3 265.577
9 3 3 689.7 1 9 431.964
15 3 5 784.8 1 15 603.655
21 3 7 733.8 1 21 702.062
24 3 8 719.7 1 24 730.997
27 3 9 782.4 1 27 804.557
30 3 10 692.7 1 30 847.944
45 3 15 709.2 1 45 1077.446
60 3 20 749.4 1 60 1287.616
a 2048 bit RSA key
b High Availability cluster with three HSMs

Table 4.4: Performance Scalability (HA Overhead, Multiple
Threads)

HSM Signaturesa/ Second Key Generationsa/ Second
One 222.7 1.730
HA 331.8 0.975
HA one busy 297.3 0b

a 2048 bit RSA key
b The key generation completely stalls, without any error messages.

Table 4.5: Performance Impact of a Slow HSM

Different Red Cloning iKeys in a HA Group (Test 3.4.12)

Two partitions were set up with different red cloning iKeys. Those partitions were
then successfully grouped into a HA group. But when we tried to create a key
on the cluster, the request failed with the following error: Error: The HA group
members do not share the same cloning domain. Synchronization not possible.
(-1073741566)

This test shows that the secret key from the red iKey is used in the key distribu-
tion and cloning algorithms.

Different Black Partition iKeys in a HA Group (Test 3.4.13)

Similar to Test 3.4.12, we also wanted to find out if the information from the
black iKey is used in the key replication. We created two partitions with different
black partition iKeys and added them into one HA group. This group was fully
operational and was able to distribute the keys between the HSMs without any
errors. Thus, the black key is not required for the high availability setup.

36 4 Results

4.4 Other Insights
4.4.1 vtl Slot Information Discrepancy
Using the vtl command, the HA groups are configured and information about the
HSM is displayed. vtl listslots lists all current PKCS#11 slots of the libCryptoki2
library. Direct access to the physical HSMs can be disabled using vtl haAdmin -
HAOnly -enable. As a result, the clients can only communicate with theHA Virtual
Card Slot token, so that the library can ensure that all HSMs stay synchronized.
However even if the -HAOnly flag is enabled, vtl listslots will list the physical

HSMs as slots 1 to 3. Only vtl haAdmin -show displays the correct slot information.
1 host:˜ vtl haAdmin -HAOnly -enable

2 host:˜ vtl listslots
3 Slot # Description Label Serial # Status
4 ======== ==================== ============== ========== =======
5 slot #1 LunaNet Slot haPart 65005001 Present
6 slot #2 LunaNet Slot haPart 65005002 Present
7 slot #3 LunaNet Slot haPart 65005003 Present
8 slot #4 HA Virtual Card Slot haGroup 74007601 Present

9 host:˜ vtl haAdmin -show
10 ====== HA Group and Member Information ================
11
12 HA Group Label: haGroup
13 HA Group Number: 74007601
14 HA Group Slot #: 1
15 Synchronization: enabled
16 Group Members: 65005001, 65005002, 65005003
17 Standby members: <none>
18
19 Slot # Member S/N Member Label Status
20 ====== ========== ============ ======
21 - 65005001 haPart alive
22 - 65005002 haPart alive
23 - 65005003 haPart alive

Listing 4.3: vtl Slot Information Discrepancy

On Line 1, we disable the direct access to the HSM slots. Notice that vtl listslots
(Line 2) still shows the HSMs directly as slots 1 to 3 (Line 5 to 7) and the high
availability group as slot 4. With vtl haAdmin -show (Line 9), we get the correct
slot information on Line 14. Applications will have to use slot 1 to access the high
availability cluster.

4.4.2 Clearing Partitions
To clear a whole partition in a stand-alone setup, the administrator can log in to the
HSM and simply delete all objects on the partition using partition clear -partition
myPart -password myPwd. In the high availability setup, this is not so simple, as
the cleared partition might be restored by a running client.
The following script clears a partition on a HSM cluster:

1 #!/bin/bash
2 SLOT=1
3 PASSWORD=haPwd
4
5 cmu list -slot $SLOT -password $PASSWORD | \
6 sed ’s/handle=\([0-9]*\).*/\1/’ | \
7 sort -n -r | \
8 while read handlenum;
9 do

4.4 Other Insights 37

10 echo "Deleting handle=$handlenum"
11 cmu delete -slot $SLOT \
12 -password $PASSWORD \
13 -handle $handlenum -f
14 done

Listing 4.4: Clearing a High Availability Partition

It is important to start at the highest handle number. Whenever a token is
deleted, the handles are shifted back. When handle 1 is deleted, the token which
was registered at handle 2 before becomes visible at handle 1.

38 4 Results

0 10 20 30 40 50 60 70 80 90 1000

500

1,000

1,500

2,000

2,500

Number of Threads per Process

Si
gn

at
ur
es
/S

ec
on

d
3 Processes
2 Processes
1 Process

Figure 4.1: Performance Scalability (High Availability HSM)
Each process is accessing all 3 HSMs as high availability group.

0 10 20 30 40 50 60 70 80 90 1000

500

1,000

1,500

2,000

2,500

Number of Threads per Process

Si
gn

at
ur
es
/S

ec
on

d

3 Processes per HSM
2 Processes per HSM
1 Process per HSM

Figure 4.2: Performance Scalability (Stand-alone HSM)
Each process is accessing only one stand-alone HSM. This setup is replicated three

times: 3, 6 respectively 9 processes accessing 3 HSMs.

Chapter 5

Discussion

5.1 High Availability Implementation
We already discussed the basic functionality of the HSM high availability solution
in Section 4.2. We established that all high availability features are implemented
in the client library. This design decision causes the following problems.

5.1.1 Functionality
Configuration

The configuration of the HSM has to be repeated on each HSM manually. The
operator has to make sure that the modules have the same configurations and
policies.
As we have seen in the setup instructions (Line 62 to 69 of Listing 3.3), the setup

of the high availability group is done on the client. If a HA group has multiple
clients, then the client configuration needs to be updated manually for each client.
This leads to a significant maintenance overhead. If a HSM is added to the cluster,
the configuration for all clients has to be updated at the same time. Otherwise, a
client might not know about the newly added HSM and thus not transfer new keys
to this HSM. This would immediately result in an unsynchronized cluster.
Also, the client configuration is essential for the security of the cluster. If a

partition is removed from the high availability group, or replaced with another
partition, this might compromise the security of the HSM cluster. The operators
thus have to make sure that the configuration file can only be modified using clearly
defined release procedures.

Recovery

Only the client can detect whether all HSMs are available and if the cluster needs
to be re-synchronized. If no client is running, the failure of a HSM and a potential
subsequent recovery are not detected.
As explained in Chapter 4.2.5, the cluster will remain out of sync once a failed

HSM is restored, if the client application was restarted during the outage.
The reason for this is because the state of the HA cluster is solely stored in

the client. There is no action log or clean/dirty flags on the HSM itself. When
the client is restarted, the whole high availability state is lost. As a result, the
client does not know whether it has to replicate or delete keys on the cluster. The
current implementation of the high availability features could be improved by using
an action log on each HSM. Whenever a HSM recovers, the client could replay

39

40 5 Discussion

the action log from one HSM on the recovered HSM. This would ensure that the
appropriate keys are distributed, while deleted keys are also deleted on the recovered
HSM.
Also, the client only checks the status of the HSMs when it is starting an operation

on the cluster. As a result, the client can not notify the operator when the HSM
actually failed, but only when it tries to make the first request thereafter. The client
or cluster can not send out SNMP traps or any other notifications to a monitoring
application.
As a work around to these problems, one could write a small monitoring client.

This application would simply load the library, log in to the partition and calculate
a signing (with a small key) regularly. The library would be loaded the whole time
and could thus manage the re-synchronization if one of the HSMs fails. Because
it calculates a signature at regular intervals, it would also detect the failure of one
HSM and could send out a notification. The drawback of this approach is that the
monitoring application needs to know the partition password. Otherwise, it would
not be able to synchronize the partitions upon recovery. A monitoring client which
runs without knowing the partition password would still be able to detect the failure
of a HSM though.

Changing Object Attributes

As seen in Test 3.4.5, changing object attributes such as the object label, while one
of the HSMs is offline, brings the cluster into an unsynchronized status, which vtl
can not bring back in-sync. The only way to recover this cluster is to inspect the
objects on all cluster nodes manually, for example by using ckdemo, comparing all
key attributes and then deleting the outdated objects on individual nodes manually.
Once the outdated objects are deleted, vtl haAdmin -synchronize can be used to
copy the up-to-date objects again to all HSMs.
We assume that this happens for two reasons: Firstly, each object has a fingerprint

attribute (CKA_FINGERPRINT_SHA1). Whenever we change one of the other
attributes (such as the label), the fingerprint attribute changes as well. vtl haAdmin
-show -syncStatus seems to query each HSM for the fingerprint attributes of all
its objects and then compares the fingerprints across the cluster. Secondly, each
object also has a CKA_OUID identifier, which stays constant even when we modify
attributes. This seems to be a unique identifier for objects on the HSM. When
vtl haAdmin -synchronize is executed, it will copy all objects which need to be
synchronized to the target HSM. However, the target detects that it already has an
object with the same CKA_OUID and refuses the object instead of updating the
changed attributes.

Deleting Keys

Because the server appliances do not keep a log of operations, especially delete
operations, they can not properly synchronize deleted objects. As a result, when a
HSM re-joins the cluster, deleted keys might be distributed again, instead of being
deleted everywhere.

5.1.2 Performance
Multiple Threads and Processes

In Section 4.3.3, we have seen that a multi-threaded and multi-process application
has a speed advantage over a single-threaded application when calculating signa-
tures. Multi-threading allows the library to dispatch the individual requests to
different HSMs. SafeNet recommends to have more than 50 threads to maximize

5.1 High Availability Implementation 41

the performance on a single HSM. Thus, a client should reach the performance
maximum on a cluster with three modules with around 150 concurrent threads.
Because the multitoken2 test tool can not handle more than 100 threads, we have
used concurrent processes to simulate such a load.
In Table 4.1, we see that there is a significant step in the performance between 3

processes with 60 threads each, and with 100 threads each. In Figure 4.1, we plotted
the speeds of all tests from 1 to 100 threads and can see that the measurement with
3 processes at 100 threads is an outlier. Based on the figure, we see that there is
indeed a performance saturation at around 150 concurrent threads (2 processes with
75 threads, or 3 processes with 50 threads). The measurements for more threads
become unreliable. This might be caused by the individual startup times of the
parallel processes and the fact that the load balancing is solely implemented in the
client library.
For the generation of new keys, multiple threads do not have any impact on the

performance. The library will block until the generated key is distributed to each
HSM, and thus can not parallelize the requests. However, if a second process is
running at the same time, the key generation on the HSM can stall completely, as
we have seen in Performance Impact of a Slow HSM (Test 3.4.11).

High Availability Overhead: Signatures

In our test, we compared the performance of three stand-alone HSMs with the setup
of a high availability cluster consisting of three HSMs. We have seen that 24 parallel
threads will achieve roughly the same performance on three stand-alone HSMs as
on a high availability setup.
For applications which rarely generate any new keys, the operators might decide

to use the three Hardware Security Modules each in a stand-alone setup. Whenever
a new key is generated, the operator would then manually transmit this key (using
the backup and restore functionality) onto the other HSMs. Such applications will
have a performance advantage, if they use less than 24 parallel threads.
Applications using a high availability setup should have at least 24 parallel threads

in order to benefit from the performance of the setup. For applications with less
threads, the operators have to decide if it would make sense to forego the automatic
key replication and increased reliability and use stand-alone HSMs instead.

High Availability Overhead: Key Generation

For the key generation, the high availability overhead becomes significant. The
newly generated key has to be encrypted, transferred to the client, relayed to the
other HSMs, where it can be decrypted and installed again. The library will wait
until the newly generated key is distributed to each HSM before the operation
returns. This has the disadvantage that subsequent key generations will have to
wait before they can proceed. This might especially become problematic if an
application creates many session objects.
If another application is using the whole performance of just one HSM, then the

key generation might completely stall. This could be a problem in a production
setup, where multiple single-threaded applications access the HSM cluster.

Provisioning

There is no mention of a resource provisioning in SafeNet’s documentation [5]. It
is not possible to allocate resources to a specific partition on the appliance or to a
specific client. As a result, one can not guarantee the performance to an application,
if there is more than one application using the cluster.

42 5 Discussion

5.1.3 Security
Partition Cloning

The black iKey is responsible to grant access to the contents of the partition. The
red iKey has the cloning domain secret stored. In the non-HA setup, both the red
and black iKeys are required to create or restore a backup of a partition. In the
HA setup, only the red iKey is used in the network distribution of new objects and
the synchronization of the partitions. Thus, the red iKey alone is enough to clone
a partition in the high availability setup.
Suppose the red iKey owner is a malicious operator. He is the legitimate owner

of the red iKey for a partition in a HA setup. Because of the segregation of duties
principles in his organization, he does not have access to either the black partition
iKey nor the blue Security Officer iKey. Using an empty black and blue iKey, he
sets up a completely new HSM. When he creates the new partition, he re-uses the
red iKey of which he is the legitimate owner. Then, he adds his new partition
into the high availability group in his client and start the synchronization. The
synchronization will work properly because he re-used the red cloning domain iKey.
As a result, he has an identical clone of the source partition, but now also owns the
corresponding black and blue iKeys. This gives him the power to use all secrets on
the partition, as if he was the real owner of the data. It gives him the possibility
to create a backup of a HSM without needing the legitimate black iKey. Thus, it
undermines the security of the backup and restore process.
However, for this attack to work, the red iKey owner has to know the adminis-

trator password of the HSM or the root password for the application server. To
enforce the four-eyes principle, we can split the red iKey using the M-of-N key
sharing scheme [8] and have at least two independent red iKey owners.
In the non-HA setup, it is important to turn the Network Replication partition

policy Off, such that a synchronization command from the client is refused.

Deleting Keys

Deleting keys on a cluster only works properly if all HSMs are online when the key
is deleted. Otherwise, a disconnected HSM will still store the compromised key and
synchronization will bring this key back onto the other HSMs once the failed HSM
recovers. As a result, an application might continue to use a compromised key, even
though the operators have deleted the key previously on the HSM cluster.
As the HSM cluster does not leak any secrets, we do not consider this to be a

security problem of the HSM itself. Rather, it becomes a potential security problem
if a malfunctioning application does not verify whether the keys it uses are still valid.
Additionally, this problem might lead to a denial of service as the HSM partitions

have a limited size. If a large number of previously deleted keys are un-deleted, the
partition size might be reached and subsequent key generations will fail.

5.1.4 Possible Improvements
The above discussed problems could be mitigated by making the following improve-
ments on the high availability solution. The main functionality could still remain in
the client library, but the HSM itself should be aware of the high availability setup.

Client Configuration: Instead of having to configure each client manually, the
configuration could be stored on the HSM cluster. Whenever a new client is
set up, it could (using a minimal bootstrap configuration) retrieve the global
configuration from the HSM setup. This would make it easier to add and
remove a HSM from the cluster, because the operators do not have to update
each client’s configuration manually anymore.

5.2 Operating Policy 43

HSM Configuration: The HSMs should have a way to synchronize their config-
uration. Each HSM in a high availability cluster has to have the same HSM
and partition policies. If one of the modules is configured differently, some
applications might fail on one HSM, but succeed on another. An automatic
synchronization of the HSM configuration would solve this problem.

Key Deletion: The automatic synchronization of keys after an outage could be
facilitated by keeping an action log on each HSM. Whenever a HSM recov-
ers from an outage, the action log from the other HSMs is replayed. This
would ensure that deleted keys are consistently deleted across the cluster. As
an alternative, the two-phase commit protocol could be implemented for the
deletion of keys.

Key Attributes: The replication of changes in the key attributes has to be dis-
tributed across the whole cluster. When a HSM receives an object with an
CKA_OUID which it already stores itself, it has to compare the two CKA_-
FINGERPRINT_SHA1 properties of the objects and update the key at-
tributes if necessary.

Encryption during Replication: When synchronizing HSMs, the key informa-
tion from both black and red iKey should be used. This ensures that a rogue
red iKey owner can not violate the four-eyes principle and clone a HSM him-
self.

As described in Towards Robust Distributed Systems [9], a distributed system
can have at most two of the following three properties: Consistency, Availability and
Tolerance to network Partitions. The above suggestions focus on consistency and
availability and addresses the security relevant issues discussed in Chapter 5.1.3.

5.2 Operating Policy
Based on the requirements gathered from the users and the testing results and
implications, we have designed the following guidelines to configure the HSM in a
high availability cluster. We list recommendations for the application developers
how to maximize the performance of the HSM cluster.

5.2.1 Setup Guidelines
HSM Policies

The following HSM policies have to be enabled in order to use the high availability
features:

• Allow cloning

• Allow network replication

On each partition used in the HA group, the following partition policies need to be
enabled:

• Allow private key cloning

• Allow secret key cloning

• Allow high availability recovery

44 5 Discussion

In addition to the partition policies above, also the activation policies should be
enabled. If those policies remain disabled, a HSM can not automatically re-join a
HA group when the HSM recovers from an outage.

• Allow activation

• Allow auto-activation

In the client, the following settings should be made:

• Using vtl, enable the HAOnly setting in order to disable the direct access
to the HSMs. This is important for two reasons: Firstly, a misconfigured
application might access the HSM directly, if the physical slots are exposed.
This would immediately lead to an unsynchronized cluster. Secondly, if the
physical slots are exposed and a HSM fails, slot numbers will shift while clients
are connected. In our tests, themultitoken2 and the ckdemo could not handle
this situation and crashed.

• Set the recovery interval to 60 seconds and the maximum number of recovery
tries to infinity. The client will detect a recovered HSM as soon as possible,
re-added it to the HA group and start the synchronization. If the recovery
interval is larger, the risk will increase that the application shuts down before
the recovered HSM is detected and re-synchronized. This would lead to an
unsynchronized cluster which requires manual intervention to re-synchronize
again.

Naming, Passwords and iKeys

• All partitions in a HA group must have the same partition password. This is
a technical requirement.

• In order to simplify the administration, all partitions in the HA group should
have the same partition name. Also, the HA group name should be derived
from the partition names.

• Because the clients and HSMs communicate through the NTLS link, the au-
thenticity of the client and server has to be verified by checking the fingerprints
of the SSL certificates.

• As we have discussed in Section 5.1.3, a M-of-N key sharing should be used
for the red domain iKey. The red iKey should be split into at least two parts,
owned by two independent key holders.

Journaling

The operators of the HSM should maintain a journal where all HSM operations
are logged. In addition to the existing logging conventions, the following static
information and actions should be noted:

• Partition names and serial numbers, HA group name and serial number

• IP addresses of the HSMs in the HA cluster

• Fingerprints of all client and server SSL certificates

• Changing the partition policies ∗

• Adding or removing a client to a partition ∗

• Creating a new HA group, adding and removing partitions to it ⊛

5.2 Operating Policy 45

• Enabling or disabling the HAOnly setting ⊛

• Changing the auto recovery interval and number of retries ⊛

• Manually synchronizing a HA group

The actions denoted with an asterisk ∗ have to be executed on each HSM manually.
Actions with a circled asterisk ⊛ have to be done on all clients which use this HA
group. Note in the log whether the action was done on all HSMs/clients or if it has
to be executed on one of the HSMs/clients at a later time. We suggest a journal
format like shown in Table 5.1.

Monitoring

In addition to the existing HSM monitoring, the high availability logging should be
enabled with vtl haAdmin -HALog -enable and the haErrorLog.txt log file should
be monitored for the messages in Table 5.2.
The first message in Table 5.2 indicates that a HSM has failed. The second

and third messages do not require any direct action of the operators. The fourth
message indicates that the client library has restarted while one of the HSMs was
offline. As a result, the library is not able to synchronize the recovered HSM. The
operators have to inspect the objects on each HSM and then perform a manual
synchronization.

5.2.2 Application Recommendations
In order to take advantage of the high availability features, applications should
follow these recommendations:

• Signing operations should be made in multiple parallel threads. This way, the
requests can be distributed across the whole HSM cluster, which yields in a
higher performance. The best performance can be achieved with 150 threads.

• If the application is deleting keys, it has to make sure that the cluster is fully
operational when a key is deleted. Otherwise, the deleted key might reappear
when a recovered HSM is synchronized (see Section 5.1.3). The application
has to keep a list of deleted keys in its own database and cross-check the keys
validity before using it on the HSM cluster.

• At the moment, changing object attributes only works when all HSMs are on-
line. To us, this looks like a bug in the implementation of the high availability
features. We hope that this problem can be solved by SafeNet soon. As long
as the bug exists, applications should not change any key attributes while one
of the HSMs is offline.

• Because each generated key has to be distributed to each HSM, an application
which generates many session objects will suffer from the performance penalty.

5.2.3 Requirements and Tradeoffs
Fulfilled Requirements

In Chapter 4.1, we listed the requirements from the Crypto User, Support Ana-
lyst and Risk Officer. With the policies outlined in Chapter 5.2, we have met all
requirements from the Crypto User. Due to limitations in the high availability im-
plementations, we could not fulfill all requirements of the Support Analyst and the
Risk Officer.

46 5 Discussion

C
lients

H
SM

s

D
ate

A
ction

Client 1

Client 2

. . .

hsmone

hsmtwo

hsmthree

. . .

C
om

plete
N
otes

24.
Jan.

2013
Enable

H
A
O
nly

✓
✓

✓
−

−
−

−
yes

24.
Jan.

2013
R
em

ove
partition

65005001
from

haG
roup

✓
×

✓
−

−
−

−
no

To
be

done
on

C
lient

2
25.

Jan.
2013

Enable
A
uto-R

ecovery
policy

(21)
on

haP
art

−
−

−
✓

✓
✓

✓
yes

25.
Jan.

2013
A
ssign

client
192.168.1.10

to
haP

art
−

−
−

×
✓

✓
✓

no
To

be
done

on
hsm

one
...

...
✓

successfulaction
×

unsuccessfulaction
(needs

to
be

executed
later)

−
action

not
necessary

T
able

5.1:
E
xam

ple
H
SM

Journal

PerlR
egular

Expression
M
essage

T
ype

Exam
ple

M
essage

1.
/
^
.
*
H
A
g
r
o
u
p
:
(
\
d
+
)
h
a
s
d
r
o
p
p
e
d
m
e
m
b
e
r
:
/

(
\
d
+
)
$
/

A
lert

14:32:54
[25148]H

A
group:

74007601
has

dropped
m
em

ber:
65005001

2.
/
^
.
*
H
A
g
r
o
u
p
:
(
\
d
+
)
r
e
c
o
v
e
r
y
a
t
t
e
m
p
t
#
\
d
+
/

f
a
i
l
e
d
f
o
r
m
e
m
b
e
r
:
(
\
d
+
)
$
/

A
lert

14:33:28
[25148]

H
A

group:
74007601

recovery
at-

tem
pt

#
1
failed

for
m
em

ber:
65005001

3.
/
^
.
*
H
A
g
r
o
u
p
:
(
\
d
+
)
r
e
c
o
v
e
r
y
a
t
t
e
m
p
t
#
\
d
+
/

s
u
c
c
e
e
d
e
d
f
o
r
m
e
m
b
e
r
:
(
\
d
+
)
$
/

R
ecovery

14:34:29
[25148]

H
A

group:
74007601

recovery
at-

tem
pt

#
2
succeeded

for
m
em

ber:
65005001

4.
/
^
.
*
H
A
g
r
o
u
p
:
(
\
d
+
)
u
n
a
b
l
e
t
o
r
e
a
c
h
m
e
m
b
e
r
:
/

(
\
d
+
)
M
a
n
u
a
l
R
e
c
o
v
e
r
o
r
A
u
t
o
R
e
c
o
v
e
r
y
w
i
l
l
/

n
o
t
b
e
a
b
l
e
t
o
r
e
c
o
v
e
r
t
h
i
s
m
e
m
b
e
r
$
/

A
lert

14:38:22
[25148]

H
A

group:
74007601

unable
to

reach
m
em

ber:
65005001.

M
anualR

ecover
or

A
uto

R
ecovery

w
illnot

be
able

to
recover

this
m
em

ber

T
able

5.2:
H
igh

Availability
Log

M
essages

5.2 Operating Policy 47

Tradeoffs

We have not met the following two requirements from the Support Analyst and
Risk Officer:

• If a HSM fails, the Support Analyst should be notified about the failure and
the degraded high availability. The Support Analyst should also be informed if
there is a synchronization issue between the HSMs.
Monitoring of the HSMs only works if an application is connected and per-
forming operations on the HSM. Thus, the support staff can not be alerted
as soon as the HSM fails. The client only detects the failure when it tries to
execute the next operation on the cluster.

• The change of a label and exportable/mutable flags of a key has to be dis-
tributed across the cluster.
As explained in Section 5.1.1, changes of the object attributes are not dis-
tributed correctly. This seems to be a bug in the implementation for which
SafeNet hopefully provides a patch.

48 5 Discussion

Chapter 6

Conclusion

While FIPS PUB 140-2 [2] governs general security features of Hardware Security
Modules, specific high availability functionality is not covered by the standard.
Therefore, it is important to have additional procedures and policies in place when
using HSM modules in a production environment.
We have built a HSM high availability setup using three SafeNet Luna SA 5

HSMs. On this cluster, a series of functional, performance and security tests were
conducted. In addition to running the tests, we interviewed users, support staff and
the risk officer to gather requirements for a HA setup.
From the testing results, we see that the basic high availability features of the

cluster are implemented in the client library. This leads to three important con-
clusions. First of all, the recovery procedures can only work as long as a client is
connected to the cluster during the failure, outage and recovery of a HSM. Other-
wise, newly created cryptographic objects can not be distributed across the HSMs,
resulting in an un-synchronized cluster. Secondly, deleted keys can re-appear when
a cluster is synchronized after an outage. This can potentially lead to a security
breach when deleted keys are used later again by a malfunctioning application. The
application has to make sure that it only uses valid keys. Thirdly, the owner of the
cloning domain red iKey can set up a new HSM and join it into the high availability
group without using the black iKey. This violates the four-eyes principles. Splitting
the red iKey using a M-of-N scheme and distributing the individual key parts to
distinguished key owners resolves this issue.
High availability, clustering and distributed systems are topics which are well

studied in research already. Two-phase commits, heartbeat monitoring and quora
are widely used in other clustering solutions and could also be implemented in a
HSM high availability solution. We gave specific suggestions for improving SafeNet’s
current high availability implementation.
All findings from the testing and the interviews were compiled into the Oper-

ating Policy. This document specifies how HSMs in a high availability setup can
be operated in a secure manner. In addition, we gave design recommendations for
applications using those HA features. It is important to have such a policy docu-
mentation in addition to the official FIPS PUB 140-2 certification. Our tests have
shown that the high availability features are not covered well enough by the FIPS
certification itself.
While we have looked at the high availability features in the SafeNet Luna SA

5 HSM, there are other vendors offering HA features in their HSMs as well. Most
likely, they follow completely different approaches for the implementation of their
solution. It would be interesting to see advantages and disadvantages of their im-
plementations and compare them to SafeNet’s high availability solution.

49

50 6 Conclusion

References

[1] T. C. S. de Souza, J. E. Martina, and R. F. Custódio, “Audit and backup
procedures for Hardware Security Modules,” 2008.

[2] National Institute of Standards and Technology, Information Technology Labo-
ratory, “Security Requirements For Cryptographic Modules FIPS PUB 140-2,”
May 2001. http://www.nist.gov/manuscript-publication-search.cfm?
pub_id=902003.

[3] J. E. Martina, T. C. S. de Souza, and R. F. Custodio, “OpenHSM: An Open Key
Life Cycle Protocol for Public Key Infrastructure’s Hardware Security Modules,”
Springer LNCS 4582, Lecture Notes in Computer Science, pp. 220–235, 2007.

[4] SafeNet, Inc., “Level 3 Non-Proprietary Security Policy For Luna®PCI-e Cryp-
tographic Module,” 2011.

[5] SafeNet, Inc., “SafeNet Luna SA Help System.” Technical guides for the Luna
SA HSM, provided by SafeNet to its customers.

[6] C. Ellison, “Ceremony Design and Analysis,” ePrint Archive, vol. Report
2007/399, 2007. http://eprint.iacr.org/.

[7] M. Silverboard, “Luna SA HSM Concepts.” http://geekcredential.
wordpress.com/2012/07/02/luna-sa-hsm-concepts/, accessed on 1. Octo-
ber 2012.

[8] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, pp. 612–613, Nov.
1979.

[9] E. A. Brewer, “Towards robust distributed systems (abstract),” in Proceedings of
the nineteenth annual ACM symposium on Principles of distributed computing,
PODC ’00, (New York, NY, USA), pp. 7–, ACM, 2000.

51

http://www.nist.gov/manuscript-publication-search.cfm?pub_id=902003
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=902003
http://eprint.iacr.org/
http://geekcredential.wordpress.com/2012/07/02/luna-sa-hsm-concepts/
http://geekcredential.wordpress.com/2012/07/02/luna-sa-hsm-concepts/

	Introduction
	Related Work
	FIPS PUB 140-2
	Operating Policy
	Audit and Backup Procedures for Hardware Security Modules

	Methodology
	HSM Introduction
	HSM Setup
	Base Setup
	Stand-Alone Hardware Security Module
	High Availability Cluster

	Interviews
	Software Testing
	Key Distribution
	Failure Detection
	Failover
	Recovery
	Changing Object Attributes
	Creating Objects in a Split Brain Situation
	Deleting Objects in a Split Brain Situation
	Performance Scalability (Multiple Threads)
	Performance Scalability (Multiple Processes)
	Performance Scalability (High Availability Overhead)
	Performance Impact of a Slow HSM
	Different Red Cloning iKeys in a HA Group
	Different Black Partition iKeys in a HA Group

	Threat Model

	Results
	Requirements Gathered from the Interviews
	HSM Functionality
	High Availability
	Key Exchange
	Load Balancing
	Failure Detection
	Recovery

	Testing Results
	Successful Functional Tests
	Unsuccessful Functional Tests
	Performance Tests
	Security Tests

	Other Insights
	vtl Slot Information Discrepancy
	Clearing Partitions

	Discussion
	High Availability Implementation
	Functionality
	Performance
	Security
	Possible Improvements

	Operating Policy
	Setup Guidelines
	Application Recommendations
	Requirements and Tradeoffs

	Conclusion
	References

