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Chapter 1

Introduction

1.1 Abstract

In this semester thesis, a new approach for text-independent speaker verification with so called ab-
stract acoustic elements (AAEs) has been investigated. Basically, AAEs are partitions of the acoustic
space, where each AAE has its own probability distribution describing its set of training features.
The idea is then to assign speech samples to the most likely sequence of AAEs and to describe the
speech of different speakers using these AAEs or rather the (speaker-specific) transition probabilities
between them. The AAEs have been computed using the LBG algorithm.

For speaker verification, we need speaker-specific models on the one hand and a universal back-
ground model (UBM) on the other hand. Baum-Welch and Viterbi training have been used to train
such models based on zero and first order hidden Markov models (HMMs).

Furthermore, the Viterbi and the forward algorithm have then been used to compute the likeli-
hoods of test speech samples for the stochastic models. These likelihoods are required to compute
likelihood ratios, which are the basis of decision-making for speaker verification.

The main result of the experiments is that increasing the number of AAEs is promising with re-
spect to improving the performance, i.e. decreasing the probabilities of false rejection and false
acceptance. Unfortunately, a further increase (more than 32 AAEs) would be computationally very
intensive and more speaker-specific training data would be required.
The approach of increasing the influence of the speaker-specific transition probabilities on the de-
cision step of the speaker verification did not improve the performance. Unfortunately, the results
were even worse.

For a schematic representation of the whole project, please have a look at Figure 1.1.

1.2 Motivation

The use of abstract acoustic elements is motivated by the fact that they are not changed anymore
after their generation. As a consequence, less parameters have to be trained, which means that less
training data for the training of speaker-specific models is required. Since the amount of available
speaker-specific speech samples is often very limited, this may be beneficial.

1
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Figure 1.1: Project overview (top left part: generation of abstract acoustic elements and a universal
background model; top right part: generation of a speaker-specific model; bottom part: actual
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Chapter 2

Generation of Stochastic Models

2.1 Feature Extraction

To train stochastic models, training data in form of feature vectors is required. These feature vectors
are computed by analyzing speech samples.

In this thesis, standard features, namely mel frequency cepstral coefficients (MFCCs), have been used.
As in the laboratory exercises, the number of MFCCs per feature vector has been set to twelve.

For more information on MFCCs, see [1], Section 4.6.5.

In the implementation, the Matlab function mfcc.m from the laboratory exercises has been used for
the feature extraction. The latter evaluates the MFCCs according to the ETSI standard.

2.2 Clustering & Abstract Acoustic Elements

Succeeding the feature extraction, the LBG algorithm (standard clustering algorithm; cf. [1], Sec-
tion 4.7.2.2) has been used to divide the feature space into P partitions. These partitions represent
the so called abstract acoustic elements (AAEs). Figure 2.1 shows an example of the clustering for
2-dimensional synthetic feature vectors.

Since the approach of this thesis is to describe each AAE by a single Gaussian mixture component
(see [1], Appendix A.4.2.2 for more information), each AAE can be described by its mean vector
(mean of its training feature vectors) and its covariance matrix, which describes the correlation
between the components of the feature vectors.

In this thesis, the components of the feature vectors have been assumed to be uncorrelated. With
this assumption, the covariance matrix reduces to a diagonal matrix, which can be stored as a single
vector. The components of such a vector are the variances of each dimension of the feature space.

Since the LBG algorithm directly delivers the mean vectors for all partitions, we just need to compute
the variance vectors in order to get all the data required to describe the AAEs. The variances can
easily be computed using the following maximum likelihood estimator for Gaussian distributions:

σ̃2
i =

1
Kn

Kn

∑
k=1

(xk,i − µ̃n,i)
2,

where Kn is the number of training feature vectors of the n-th AAE and i is the dimension.

Remark:

Note that the LBG algorithm may end up in a local minimum of the mean distortion instead of a
global one.

3
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Figure 2.1: Example for clustering: random 2-dimensional training feature vectors assigned to
partitions, where the green dots represent the mean vector of each partition.

2.3 Structure of the Stochastic Models

The idea of the approach in this thesis is to characterize a specific speaker by the frequency of
occurrence of the AAEs or rather the frequency of the transitions from one AAE to another in his
or her speech. Therefore, we need to assign speech samples to the most likely sequence of AAEs.
A feature vector can be assigned to the most likely AAE by evaluating the Gaussian distribution for
each AAE and finding the one with the highest likelihood. But to find the most likely sequence of
AAEs, we also need to take into account the probabilities of the AAEs following each other. For this
reason, we introduce a characteristic set of transition probabilities for each model.

Let us define the set of all emitting states as A , {A2, . . . , AN−1}, where N = P + 2. These emitting
states represent the AAEs. Additionally, we define an initial state A1 and a final state AN . Each
speech sample of length T (number of feature vectors) can then be described by a sequence of
AAEs. Let us denote this sequence by Q , Q1, . . . , QT, where Q1 and QT are always A1 and AN ,
respectively.

Have a look at Figures 2.2 and 2.3, which should give a rough idea of how the distribution of
the speaker-specific training feature vectors could lead to different transition probabilities although
randomly generated synthetic data has been used for these plots. Note that the partitions or rather
the mean vectors are always those computed with the UBM feature vectors in Figure 2.1.

2.3.1 Universal Background Model and Speaker-Specific Models

For speaker verification, we need speaker-specific models on the one hand, but also a universal
background model (UBM) on the other hand. The reason for that is that we want to test whether the
likelihood of a specific speech sample is significantly higher for a speaker-specific model than for
the UBM, which should represent the average of all possible speakers.
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Figure 2.2: Distribution of synthetic training features for speaker ’s13’

Figure 2.3: Distribution of synthetic training features for speaker ’s14’
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The UBM and the speaker-specific models for this approach basically consist of the same parts,
namely a set of transition probabilities and a Gaussian mixture model (GMM). Speaker-specific is only
the set of transition probabilities, whereas the GMM is the same for all models since it represents
the AAEs.

2.3.2 Transition Probabilities

Let us first have a look the the set of transition probabilities. In this thesis, two different types of
transition probabilities have been investigated:

• unigram transition probabilities

• bigram transition probabilities

Unigram Models

The simplest approach for transition probabilities is a set of unigram transition probabilities. If we
assume unigram transition probabilities, we assume that Qt does not depend on any previous state
in Q, i.e.

P(Qt|Q1, . . . , Qt−1) ≈ P(Qt), where Qi ∈ A∪ {A1, AN}

Figure 2.4 visualizes this characteristic by the fact that every emitting state A2,. . . ,AN−1 is followed
by the non-emitting state AN , wherefrom we return to the also non-emitting initial state A1 with
probability one.

A1 AN

A3

AN−2

AN−1

A2

a1,2

a1,N−1

a1,N−2

a1,3

Figure 2.4: Unigram network (blue: non-emitting state; red: emitting state)

Since the probability of a transition from A1 to AN is equal to one, AN can be neglected, i.e. the
probability of a transition from Ai to A1 is equal to one, where i ∈ {2, . . . , N − 1}.
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With this insight, we get a transition matrix of the following form:

Aunigram =



0 a1,2 a1,3 · · · a1,N−1 0
1 0 0 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 0 0
0 0 0 · · · 0 0


(N × N),

where a1,j is the probability of appearance of state Aj. Note that a1,N is zero to exclude empty
observation sequences.

For more information on unigram models, see [1], Section 13.2.4.1.

Bigram Models

Another approach for transition probabilities is a set of bigram transition probabilities, where we
assume that Qt only depends on previous state Qt−1 in Q, i.e.

P(Qt|Q1, . . . , Qt−1) ≈ P(Qt|Qt−1), where Qi ∈ A∪ {A1, AN}

A general representation of a set of bigram transition probabilities can be seen in Figure 2.5.

A1 AN

A4

A3

A2

Figure 2.5: Bigram network (blue: non-emitting state; red: emitting state)

For bigram transition probabilities, we get a transition matrix of the following form:

Abigram =



0 a1,2 a1,3 · · · a1,N−1 0
0 a2,2 a2,3 · · · a2,N−1 a2,N
...

...
...

. . .
...

...
0 aN−1,2 aN−1,3 · · · aN−1,N−1 aN−1,N

0 0 0 · · · 0 0


(N × N)

where ai,j is the probability of a transition to state Aj when being in state Ai. Note that a1,N is zero
to exclude empty observation sequences.
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For more information on bigram models, see [1], Section 13.2.4.2.

2.3.3 Gaussian Mixture Model

For each AAE Aj, a Gaussian mixture model has been used to describe the distribution of its training
feature vectors. A GMM is of the following form:

bj(x) =
M

∑
k=1

cjk bjk(x) =
M

∑
k=1

cjk N(x,µjk, Σjk) ,

where bj(x) is the observation likelihood of the feature vector x and cjk is the weighting coefficient
of the k-th mixture component.

In this thesis, only GMMs with a single mixture component (M = 1, cj1 = 1) have been used. Note
that this is not really a restriction, since we could just increase the number of AAEs.

For more information on GMMs, cf. [1], Appendix A.4.2.2.

2.4 Training

The transition probabilities of the stochastic models have been trained using Baum-Welch (cf. [1],
Sections 5.4.7 and 5.5.4) or Viterbi (cf. [1], Sections 5.4.8 and 5.5.5) training.

2.4.1 Required Amount of Training Data

For the training of stochastic models, it is important to have enough training data. Otherwise, a
trained model may be a bad representation of the actual characteristics.

As a rule of thumb, at least ten feature vectors for each parameter to train are required assuming
a uniform distribution of the feature vectors. If the distribution is not uniform, even more training
samples are required.

In our case, we get the following expressions for the minimum number of feature vectors Fmin:

Unigram Models

Fmin,UBM = (N − 2) · (D + D)︸ ︷︷ ︸
AAEs

+ N − 2︸ ︷︷ ︸
transition probabilities

Fmin,speaker = N − 2︸ ︷︷ ︸
transition probabilities

Bigram Models

Fmin,UBM = (N − 2) · (D + D)︸ ︷︷ ︸
AAEs

+ (N − 2)2︸ ︷︷ ︸
transition probabilities

Fmin,speaker = (N − 2)2︸ ︷︷ ︸
transition probabilities
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2.5 Implementation

The whole implementation is based on code of the laboratory exercises 10, 19, 20, 21 and 22 of the
speech processing course.

The computation of the probabilities happens in the logarithmic domain.

For more information on the used functions and scripts, please have a look at Appendix B.



Chapter 3

Experiments

3.1 Data Used for Training and Testing

The following three different types of data have been used for training and testing:

• Synthetic data
• Speech samples from exercise 22 of the speech processing course

• TIMIT data base

Synthetic Data

For test purposes, a Matlab script which randomly generates D-dimensional synthetic feature vec-
tors, has been implemented. These feature vectors follow Gaussian distributions around C different
mean vectors for a given number of speakers. In other words, this approach leads to a set of C
(overlapping) clusters of feature vectors for each speaker. A specific speaker is then described by
the distribution of the clusters (mean and variance for each dimension). Note that C has not to be
equal to the number of AAEs used later.

Since the synthetic features have only been used for test purposes an delivered no relevant results,
no results for synthetic data are included in this report.

Speech Samples from Exercise 22

The used speech data from exercise 22 consist of 825 speech samples from 15 different speakers,
where the speech samples are digits repeated five times each.

A possible problem for this set of speech data is that the available amount of training data per
speaker is very limited (around 2500 feature vectors). Also the short length of the speech samples
may be a problem for the testing because a single speech sample only contains around 50 feature
vectors, which are really few feature vectors to express the characteristics of a specific speaker. In
particular, the distribution of the feature vectors heavily depends on the number the speaker is
saying in a specific speech sample as can be seen in Figures 3.1 and 3.2.

For those reasons, the results from experiments with speech data from exercise 22 are not really
meaningful and are therefore not included in this report.

10
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Figure 3.1: First vs. second component of the feature vectors of z03 r4 s13 test.wav
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TIMIT Data Base

The TIMIT data base is a collection of speech samples of 630 speakers (192 female and 438 male
speakers). Unfortunately, the amount of available speech samples per speaker is rather small. There
are only eight speech samples per speaker, which means that if one of them is reserved for testing,
only seven remain for the training (around 3000 feature vectors).

3.2 Evaluation Algorithms

In this thesis, two different evaluation algorithms have been used, namely the Viterbi algorithm
(cf. [1], Sections 5.4.4 and 5.5.2) and the forward algorithm (cf. [1], Sections 5.4.2 and 5.5.1).

The difference between the outputs of the two algorithms is, that the Viterbi algorithm returns

P(X, Q̂|λ)

whereas the forward algorithm returns
P(X|λ) ,

where:
• X = x1, . . . , xT: Sequence of test feature vectors
• Q̂ = Q̂0, . . . , Q̂T+1: Most likely sequence of AAEs
• λ: Model (transition probabilities and GMM)

3.3 Parameters & Settings

• P: Number of AAEs: Has to be a power of two due to the use of the LBG algorithm.
• N Total number of emitting (AAEs) and non-emitting states (N = P + 2)
• D: Dimension of feature vectors (number of mel frequency cepstral coefficients)
• I: Number of training iterations for Viterbi or Baum-Welch training
• cA: Weighting factor to increase the influence of the transition probabilities relative to the

influence of the observation probabilities, i.e. the logarithms of the transition proba-
bilities are multiplied by cA, which is equivalent to the transition probabilities to the
power of cA in the linear domain.
The weighting is only possible for Viterbi evaluation, where the contribution of the
transition probabilities to the likelihood of the observation sequence along the optimal
path is scaled after the the optimal path has been found.

• κ: Factor to scale the variances of the partitions representing the AAEs, i.e. the variances
of the AAEs are multiplied by κ for the evaluation.

• η: Threshold for speaker verification

3.3.1 TIMIT Settings

The software has been designed in such a way that it is very easy to select the desired speakers
of the TIMIT data base. The TIMIT data base has been alphabetically sorted, where the name of
each speaker consists of a code of four letters and an additional letter (‘f’ or ‘m’) in front of them
indicating the gender. The desired speakers can then be selected by logical indexing, i.e. to select a
specific speaker, its logical index needs to be set to one.
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Overview of Settings

Here is an overview of the settings used in the experiments in Section 3.4.1:

• UBM IDs women: Indices ∈ {1, . . . , 192} of alphabetically sorted female speakers selected
for the training of the UBM

• UBM IDs men: Indices ∈ {1, . . . , 438} of alphabetically sorted male speakers selected
for the training of the UBM

• reg. women: Indices ∈ {1, . . . , 192} of alphabetically sorted female speakers selected
for speaker-specific training

• reg. men: Indices ∈ {1, . . . , 438} of alphabetically sorted male speakers selected
for speaker-specific training

• test file ID: Index ∈ {1, . . . , 8} of alphabetically sorted speaker-specific speech sam-
ples selected for testing

3.4 Speaker Verification

Doing speaker verification, it is possible that a speaker is successfully verified although the corre-
sponding likelihood ratio is not the highest one, i.e. there is the possibility that the likelihood ratio
of another registered speaker is much higher.

For this reason, the performance of the speaker verification - which is in a fact a classical decision
problem - will be described by the probability of false rejection and the the probability of false
acceptance in the following.

Probability of False Rejection

The probability of false rejection, is the probability that the likelihood ratio of a specific speaker is
smaller than a given threshold η although it should actually be greater. In other words, it is the
probability that the speaker verification fails although the tested speaker really is the claimed one.

Probability of False Acceptance

The probability of false acceptance, is the probability that the likelihood ratio of a specific speaker
is greater than a given threshold η although it should actually be smaller. In other words, it is the
probability that the speaker verification is successful although the tested speaker is not the claimed
one.
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3.4.1 Experiments with TIMIT Data Base

Experiment 1

For this experiment, the following settings have been chosen:

Figure 3.3: Settings for experiment 1

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

8 12 5 1 1 1:20 1:20 51:100 51:100 1

With these settings, we get the relation between the probabilities of false acceptance and false rejec-
tion shown in Figures 3.4 and 3.5. As we can see, there is no big difference between the evaluation
with the Viterbi algorithm (Figure 3.4) and the evaluation with the forward algorithm (Figure 3.5).
Therefore, only the results for the Viterbi evaluation will be shown in the following.
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Figure 3.4: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.3
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Figure 3.5: Relation between probability of false rejection and probability of false acceptance with
forward evaluation for settings of Figure 3.3

An interesting insight is given by Figure 3.6. It shows that the ratio of the probability of false
rejection and the probability of false acceptance is much higher for bigram than for unigram tran-
sition probabilities for a given threshold η. The plot for the forward evaluation shows the same
characteristics.

Figure 3.6: Ratio of probability of false rejection and probability of false acceptance for Viterbi
evaluation for settings of Figure 3.3



3.4. SPEAKER VERIFICATION 16

Experiment 2

For this experiment, the following settings have been chosen:

Figure 3.7: Settings for experiment 2

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

8 12 1 1 1 1:20 1:20 51:100 51:100 1

Figure 3.8 shows the performance for models trained in only one iteration. Compared to the results
from experiment 1, we can see that the performance for bigram models is much better with multiple
training iterations. For unigram models, it does not really seem to matter. Since other experiments
have shown the same, five training iterations have been used for the rest of the experiments de-
scribed in the report.
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Figure 3.8: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.7
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Experiment 3

For this experiment, the following settings have been chosen:

Figure 3.9: Settings for experiment 3

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

16 12 5 1 1 1:20 1:20 51:100 51:100 1

As we can see from Figure 3.10, the increase of the number of AAEs (doubled with respect to
experiment 1) significantly improved the performance.
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Figure 3.10: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.9
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Experiment 4

For this experiment, the following settings have been chosen:

Figure 3.11: Settings for experiment 4

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

32 12 5 1 1 1:20 1:20 51:100 51:100 1

For 32 AAEs, the results are again much better (compared to experiment 3) even though the amount
of training data is very critical with respect to the number of trained parameters (≈ 1000, cf. Sec-
tion 2.4.1). A further increase would be interesting, but the evaluation would be computationally
very time-consuming.
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Figure 3.12: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.11
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Experiment 5

For this experiment, the following settings have been chosen:

Figure 3.13: Settings for experiment 5

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

8 12 5 12 1 1:20 1:20 51:100 51:100 1

The idea of this experiment was to increase the influence of the transition probabilities to the level of
influence of the observation probabilities in order to strengthen the speaker-specific characteristics.

Unfortunately, the results are even worse (compared to experiment 1 with cA = 1) as we can see in
Figure 3.14, where bigram models seem to be more affected than unigram ones.

Other experiments led to the same results.
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Figure 3.14: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.13
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Experiment 6

For this experiment, the following settings have been chosen:

Figure 3.15: Settings for experiment 6

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

8 12 5 0.5 1 1:20 1:20 51:100 51:100 1

Since experiment 5 delivered even worse results, the influence of the transition probabilities has
been decreased in this experiment. Interestingly, this choice of cA also worsened the performance
for bigram transition probabilities (especially in combination with Viterbi training), but did not
really affect the performance for unigram transition probabilities as can be seen in Figure 3.16.

For smaller values of cA, however, the curves all approach a straight line.
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Figure 3.16: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.15
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Experiment 7

For this experiment, the following settings have been chosen:

Figure 3.17: Settings for experiment 7

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

32 12 5 1 3 1:20 1:20 51:100 51:100 1

In this experiment, the variances of the AAEs have been multiplied by κ = 3, which should com-
pensate the fact that the variances tend to become very small for higher numbers of AAEs.
This choice of κ seems to affect the performance for bigram models only marginally, but it leads to
worse results for unigram models (compared to experiment 4) as we can see in Figure 3.18. The
same effect could also be seen for only eight AAEs.
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Figure 3.18: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.17
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Experiment 8

For this experiment, the following settings have been chosen:

Figure 3.19: Settings for experiment 8

P D I cA κ UBM IDs women UBM IDs men reg. women reg. men test file ID

32 12 5 1 0.5 1:20 1:20 51:100 51:100 1

Finally, the variances of the AAEs have been multiplied by κ = 0.5 to investigate the effect of doing
the opposite of experiment 7.
This time, it seems to be the other way round. The choice of κ = 0.5 seems to affect the performance
for unigram models only marginally, but it leads to worse results for bigram models (compared to
experiment 4) as can be seen in Figure 3.20.
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Figure 3.20: Relation between probability of false rejection and probability of false acceptance with
Viterbi evaluation for settings of Figure 3.19
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3.4.2 Conclusions

• Increasing the number of AAEs is promising with respect to improving the performance,
i.e. decreasing the probabilities of false rejection and false acceptance. Probably, this would
require more training data for more than 32 AAEs.

The latter problem would also be important for security applications, were very small values
for the probabilities of false rejection and false acceptance are required, i.e. the number of
AAEs has to be very large.
• Increasing the influence of the transition probabilities seems not to be a good approach.

• The influence of κ would probably be more interesting for higher numbers of AAEs (e.g. 128).
• For multiple training iterations, cA = 1 and κ = 1 (optimal setting so far), the bigram models

performed better than the unigram ones in the investigated cases. One can even say that the
most complex model (bigram transition probabilities in combination with Baum-Welch train-
ing) led to the best results even though the performance is very similar for all combinations of
model and training types.
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Appendix A

Abbreviations

AAE abstract acoustic element
GMM Gaussian mixture model
HMM hidden Markov model
LR likelihood ratio
MFCC mel frequency cepstral coefficient
UBM universal background model
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Appendix B

Implemented Matlab Functions & Scripts

This chapter should give a little overview on the implemented Matlab functions & scripts. For
detailed information on a specific function, enter doc name of function or have a look at the code.

B.1 Functions

baum welch training.m

baum welch training.m estimates the number of times a model is in state Si for all states S1 to SN

(ns) and the number of transitions from state Si to state Sj for all states S1 to SN (nt) in order to
improve the current transition probabilities of the model (corresponding to a specific speaker or to
a UBM) according to the observation sequence X.

compute LRs.m

compute LRs.m assigns a given speech sample to the most likely one of all registered speakers by
computing the logarithms of the likelihood ratios. The production likelihoods are computed with
two different (but similar) algorithms:

- Viterbi algorithm
- Forward algorithm

estimate trans prob.m

estimate trans prob.m estimates the transition probabilities between all AAEs starting from an
initial transition probability matrix initialized by init trans prob.m.
For the training, viterbi training.m and baum welch training.m are used.

extract MFCCs.m

extract MFCCs.m returns mel frequency cepstral coefficients (MFCCs) of .wav file filename and
additionally stores the latter as a .mat file.

generate features.m

generate features.m generates synthetic feature vectors and stores them as .mat files.

generate model.m

generate model.m computes new transition probabilities for a UBM or a specific speaker. The
transition probabilities of a new speaker will be added to the set of already registered speakers.
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init trans prob.m

init trans prob.m uniformly initializes a matrix A with transition probabilities for P = N − 2
AAEs.

LBG generate partitions.m

LBG generate partitions.m uses the LBG algorithm to partition a D-dimensional (feature) space
into P partitions according to a specific training set.

Note: This extended version of codebookgen.m of the laboratory exercises requires at least Matlab
R2012b because the initialization of the pseudo-random number generator has been adapted to the
newest standard.

log cont backward alg.m

log cont backward alg.m computes the logarithm of the likelihood that the model given by A, µ
and σ produces the observation sequence X. Additionally, it delivers the logarithms of the interme-
diate joint backward likelihoods.

All computations are done in the logarithmic domain.

log cont forward alg.m

log cont forward alg.m computes the logarithm of the likelihood that the model given by A, µ and
σ produces the observation sequence X. Additionally, it delivers the logarithms of the intermediate
joint forward likelihoods.

All computations are done in the logarithmic domain.

log cont viterbi alg.m

log cont viterbi alg.m computes the optimal sequence of AAEs and the logarithm of the likeli-
hood of the given observation sequence along the optimal path (sequence of AAEs).

With this implementation, it is also possible to weight the contribution of the transition probabilities
to the likelihood of the observation sequence along the optimal path before the latter is returned.

All computations are done in the logarithmic domain.

logSum.m

logSum.m computes the sum s = x + y, where x, y and/or s may be very small, so that they can be
represented in the log domain only as logX = log(x), logY = log(y) and logS = log(s), respectively.
Therefore, it is not possible to compute logS = log(exp(logX) + exp(logY)), but it is necessary to
apply the Kingsburg-Rayner formula.

Note: Only the description and the logical operator at the beginning have been updated with respect
to the version used in the laboratory exercises.

melbankm.m

melbankm.m determines matrix for a mel-spaced filterbank.

(unchanged version form laboratory exercises)
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mfcc.m

mfcc.m evaluates the MFCCs according to the ETSI standard.

(unchanged version form laboratory exercises)

vecquant.m

vecquant.m assigns each (feature) vector contained in vecs (as row vectors) to the nearest codebook
vector contained in cbk (as row vectors) by means of the Euclidean distance.

Note: Only the comments and some of the names of the variables have been updated.

verify speaker.m

verify speaker.m tries to verify a speaker by computing the likelihood ratio (or rather the differ-
ence of the logarithms of the likelihoods) of the corresponding speaker-specific model and the UBM
for a given speech sample. A speaker is verified if the logarithm of the likelihood ratio exceeds the
threshold η.

visualization

visualization can be used for two different tasks:

1. Visualization of two specified components of feature vectors (without partitions) (3 input ar-
guments)

2. Visualization of two specified components of feature vectors of a specific speaker or the UBM
assigned to the current partitions (7 or 8 input arguments)

viterbi training.m

viterbi training.m counts the times a model is in each state (ns) and the number of transitions
(nt) in order to improve the current transition probabilities of the model (corresponding to a specific
speaker or a UBM) according to the observation sequence X.

B.2 Scripts

z feature generation.m

z feature generation.m generates and stores synthetic features for a given number of speakers.

z model generation.m

z model generation.m registers a set of new speakers for the selected training, model and data
types.

z speaker estimation.m

z speaker estimation.m estimates the most likely speaker of all registered speakers by computing
the likelihood ratios for all speakers and comparing them to each other.
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z speaker verification.m

z speaker verification.m tries to verify a speaker by computing its likelihood ratio and compar-
ing it to a given threshold.

zz TIMIT auto eval.m

zz TIMIT auto eval.m automatically evaluates speaker verification for the TIMIT data base. All
possible parameters can be set at the beginning.
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Text-Independent Speaker Verification with

HMM-Based Abstract Acoustic Elements

Introduction

The speech of an individual may be described by means of a hidden Markov model (HMM)
as shown in Figure 1. For this purpose, an HMM needs some 50 to 100 states. With each
state a mixture of multivariate Gaussian distributions is associated. The high number of
parameters of such an HMM requires enough speech material for the training, i.e. at least
several hours.

Various methods have been proposed to allow for a sufficiently good training with limited
speech material. Most of these methods start from a speaker-independent model that
results from the training with enough speech data from many speakers. A speaker-specific
model can then be attained through adaptation to a particular speaker which requires
only a few minutes speech of that speaker.

In this work a new approach with so-called abstract acoustic elements (AAE) has to be
investigated. AAEs have been successfully applied to speech recognition for languages
with limited linguistic resources, where speech databases that are large enough for HMM
training are missing (see [1]). It has been shown that AAEs can be trained in a speaker-
and language-independent manner with speech data from many speakers and from diverse
languages. To get the models for the words of the recognition vocabulary, only a few
utterances per word are necessary.
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Figure 1: HMM with N states

AAE-based approach to speaker verification

The approach to AAE-based speaker verification is as follows: First, a set of AAE models
has to be created. For this we need speech data from many speakers, the so-called training
set. Designing a vector quantization from this training set divides the feature space into
partitions. The feature vectors of each partition are then used to train a continuous density
HMM (one state with one mixture).

Then we need models for individual speakers and a so-called universal background model
(UBM). Both types of models have the same architecture: they are basically identical
AAE loops with individually trained unigram and/or bigram probabilities (see [2], chapter
13.2.4). Hence, only these unigram and/or bigram probabilities are speaker specific. In
other words, we need a set of unigram and/or bigram probabilities for each speaker to be
verified and a set of these probabilities for the UBM.

In order to verify a claimed identity from a test utterance, the ratio of the Viterbi proba-
bilities of the corresponding speaker model and the UBM is computed and if it is higher
than some threshold, the claimed identity is accepted.

Proposed procedure

In this project, a variety of methods and models has to be applied and optimized for the
specific speaker verification task. It is recommended to proceed as follows:

1. Read the chapters about HMM fundamentals, vector quantization and feature ex-
traction in the textbook [2] and perform the associated laboratory exercises.

2. Set up the detailed concept of the AAE-based speaker verification, compile a list of
all parameters to be optimized and propose a schedule of the work to realize the
speaker verification. Discuss your proposal with the supervisors.

3. Prepare the speech material for your tests. You will need e.g. disjoint data sets for
the training of UBM and speaker models, for optimizing system parameters and for
test purposes (evaluation of the speaker verification system).
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4. Implement the speaker verification preferably in Matlab and reuse code of the lab-
oratory exercises where possible.

5. Evaluate the speaker verification system.

The work done and the attained results have to be documented in a report (see recommen-
dations [3]) that has to be handed in as PDF document. Furthermore, two presentations
have to be given: the first one will take place some two weeks after the start of the work
and is meant to give a short overview of the task and the initial planning. The second one
at the end of the project is expected to present the task, the work done and the achieved
results in a sufficiently detailed way. The dates of the presentations will be announced
later.
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