
Wireless Yet Reliable
Patient Notification

System: GUI and Back-end

Semester Thesis

Reto Da Forno

February 18, 2013

Supervisor: Marco Zimmerling
Co-Supervisors: Federico Ferrari, Roman Lim, Olga Saukh

Computer Engineering and Networks Laboratory (TIK), ETH Zurich

Abstract

People suffering from muscular dystrophy are often wheelchair-bound and un-
able to move independently. It’s a necessity to enable them to contact their
caretaker during the night. It would be of great use to have a mobile notifica-
tion system which could easily be installed, used for a few weeks and removed,
wherever no patient notification system is available. Such a system will be real-
ized with wireless sensor nodes and a recently developed communication scheme
that provides certain guarantees on wireless communication. In this semester
project, we developed a comfortable user interface (GUI) and back-end for the
system to collect, store and display events as well as notify the patients. The
application runs on any recent personal computer and enables monitoring and
operation of the notification system in real time.

Contents

1 Introduction 3
1.1 Problem and Motivation . 3
1.2 Thesis Contributions . 3
1.3 Thesis Outline . 4

2 Background 5
2.1 Application Scenario . 5
2.2 Wireless sensor networks . 5
2.3 Low-power wireless bus . 6

3 Requirements 7
3.1 Functional Requirements . 7
3.2 Non-functional requirements . 8

4 Design 9
4.1 Assumptions . 9
4.2 Components and Interfaces . 9
4.3 Server . 10
4.4 Graphical user interface . 10
4.5 Data structures . 11
4.6 Database scheme . 12
4.7 Serial Port Communication . 12
4.8 Data Flow . 13
4.9 Extension by additional features 13

5 Implementation 15
5.1 Technologies . 15
5.2 Main application . 15

6 Testing and Results 18
6.1 Methods . 18
6.2 Scenarios and Coverage . 19
6.3 Performance . 19
6.4 Platform and versions . 20

7 Conclusion and Future Work 21

A Adding new features 22

1

B User Guide 23
B.1 Files and folder structure . 23
B.2 How to use the application . 23
B.3 Using the GUI . 26
B.4 Change the basic configuration 27
B.5 Configure SMS support . 28

C Program flow 29
C.1 Python application . 29
C.2 Javascript application . 31

D Debugging 32

Bibliography 33

2

Chapter 1

Introduction

1.1 Problem and Motivation

People suffering from muscular dystrophy often cannot move without help.
Many of them need 24 hour assistance. The Schweizerische Muskelgesellschaft
organizes summer camps for those people (mostly kids and young adults) every
year at different locations. In the past years, the organizers of the summer
camp had used a custom system built out of home-made hardware. However,
this system must be installed first because it’s based on wired connections. The
cabling involves a lot of work and implies very limited mobility and scalability.
The high voltage which was required to drive the system resulted in high power
consumption and occasionally led to unpleasant side effects (e.g. occasional
electric shocks). The current system is far from ideal and even showed to be
insufficient.

Baby monitors have not been considered as an alternative as they violate the
privacy, which is especially problematic when used for adults. Mobile phones
might be an alternative in the present age, but would require more effort from
the patients instead of just pressing a button, not to mention that some of
them may not be able to operate a standard mobile phone. Special devices for
handicapped or elderly people would certainly work, but are often ineffective
and overpriced. Such devices would cause relatively high cost because one device
for each participant will be needed. Furthermore, mobile communication – if
used frequently – causes significant additional expenses.

The camp organizers are looking for a new notification system which is
easy-to-install, easy-to-use, flexible, reliable and affordable at the same time.
Currently, there seems to be no out-of-the-box solution that satisfies all these
requirements.

1.2 Thesis Contributions

The new notification system will be realized on the Tmote Sky platform,
a hardware commonly used in wireless sensor networks. A recently developed
communication scheme proposed by Ferrari et al.[1] allows for multi-hop com-
munication and provides certain guarantees on wireless communication. A sink
node will be connected to a computer and represent the interface between the

3

wireless sensor network and the operator of the system. The contribution of this
semester thesis to the wireless notification system is to provide a comfortable
user interface (GUI) and back-end to collect, store and display events as well
as notify the patients. The program which we developed during this semester
project can be used on any recent general purpose computer which has a USB
port.

1.3 Thesis Outline

We are going to provide some background information in the next chapter
and list the requirements for the program in the third chapter. The section
Design is targeted to serve as a high-level overview. Chapter five is dedicated
to the implementation and six will reveal some details on how the system was
tested. In the last chapter, we discuss the results and give a brief outlook.
Additional information as well as a user guide for the developed application can
be found in the appendix.

4

Chapter 2

Background

2.1 Application Scenario

The Schweizerische Muskelgesellschaft organizes annual summer camps for
children and adults who are suffering from muscular dystrophy. These people
have a very limited ability to move and therefore need assistance throughout
the day. During the summer camps, a notification system is needed to enable
the participants to call for help during the night, e.g. by pressing a button.
Those camps take place at different locations without any pre-installed noti-
fication system as it can be found for instance in a hospital. Sometimes, the
camp facilities architecturally prohibit to have the caretaker’s room in the same
building. The camp organizers are looking for an easy-to-install, easy-to-use,
flexible and highly reliable notification system. Furthermore, it must be low-
cost to be affordable by the non-profit organization. In the typical use case,
between 10 and 20 nodes with 1 to 3 Buttons attached to each of them will
be needed. This means, every patient has its own button but up to 3 patients,
who are physically close to each other, might share the same sensor node. The
spacial extent of the deployment area is usually no more than 100 meters in
diameter. Although wired systems as used in hospitals are very reliable, they
also involve lots of cabling and a time consuming installation. Imposed by the
given constraints, the use of wireless sensor networks (WSN) is a suitable choice.
Of course, a wireless system would also need to be installed, but with a much
lower effort. Despite the lossy nature of wireless channels, communication can
be made highly reliable by using appropriate protocols such as the Low-power
wireless bus (LWB).

2.2 Wireless sensor networks

“Wireless sensor networks consist of spatially distributed sensors, often used
to monitor environmental data.” [2] These sensors are called nodes and are
somehow connected to each other through a wireless link. Nodes are usually
very small, cheap and designed to operate autonomously for years. All mea-
surements collected by the sensor nodes are forwarded to a base station, which
stores all data and – if necessary – uploads the data to the Internet over the
cellular network or a wired connection. The sensor nodes themselves have high

5

Figure 2.1: exemplary layout of a camp site

power constraints and therefore very limited computational power and wireless
transmission range to keep the consumption as low as possible. Special commu-
nication protocols are needed to meet this requirement. Usually, the nodes do
not communicate directly with the base station (sometimes also called gateway
sensor node or sink). Instead, a multi-hop topology is used to forward the mes-
sages to their destination. Wireless sensor networks are an active and potential
research area with numerous applications and will become even more important
in the future.

2.3 Low-power wireless bus

To provide reliable wireless communication and yet conserve battery power,
special protocols are needed. The Low-Power Wireless Bus is a communication
protocol that supports several traffic patterns and “turns a multi-hop low-power
wireless network into an infrastructure similar to a shared bus, where all nodes
are potential receivers of all data.” [1] This is achieved by network floods coor-
dinated by a global schedule. The protocol is more resilient to link changes than
comparable competitors because no topology-dependent state is kept. There-
fore, interference and even node failures affect the performance only marginally.
Each sensor node is assigned to a time frame for sending data. The LWB pro-
tocol gives some guarantees that a message will be delivered within a certain
time span. If a message does not arrive, it can be assumed that the sensor node
has moved away or has stopped operating properly. Further details on how the
Low-Power Wireless Bus works can be found in the corresponding paper pro-
posed by Ferrari et al. [1] In the meantime, the version of LWB described in
the paper has been improved to further increase the probability of a successful
transmission.

6

Chapter 3

Requirements

The goal of this semester project is to develop a lightweight GUI which acts
as an interface between the wireless sensor network and the operator of the
system. A sink node will be connected to a portable personal computer via
USB. The computer takes the role of a base station and collects, stores and
displays all data from the wireless sensor network. In this semester project, the
software components for the base station will be developed. This includes the
implementation of a serial port I/O handler, a lightweight database for event
logging and a user interface, where the whole system is monitored and all events
are displayed to the operator.

The following requirements are related to our part of the project, namely
the GUI and the back-end. Therefore, previously mentioned requirements such
as low cost aren’t listed here. Most requirements were discussed with the people
from the Muskelgesellschaft to build the application as adequately as possible
to their needs.

3.1 Functional Requirements

• The operator of the notification system must be able to assign a location
to each node as well as a patient to each button of a node.

• A list of all sensor nodes within the WSN and the patients which are
assigned to them must be displayed.

• The status of all nodes (active or lost) and all buttons (pressed or not)
attached to them must be displayed.

• The system must automatically detect and mark “lost” nodes. A node
is called “lost” if it doesn’t send “alive” status messages any more, ei-
ther because it stopped working properly or the status message cannot be
transmitted successfully due to interference or an out-of-range situation.

• When a button is pressed by a patient, the red LED on the corresponding
node will turn on and an alarm message shall be sent to the GUI. The
alarm must be announced visually and audibly to the operator (probably
with increasing alarm sound volume).

7

• As soon as the alarm message is received by the application, an acknowl-
edgement will be sent back to the sensor node that triggered the alarm
message and a yellow LED will be turned on.

• When the operator confirms the alarm by pressing the corresponding but-
ton in the GUI, another acknowledgement shall be sent back to the sensor
node. This will enable the green LED on that node, indicating to the
patient that the operator has received the alarm message and a caretaker
is coming.

• An alarm shall only be triggered once until its confirmation and a small
time frame afterwards, even if the patient presses the button several times.

• An SMS shall be sent if an alarm is not confirmed by the operator within
a certain amount of time.

• There should be an option in the GUI to import a CSV file with a list of all
patients and the nodes and buttons to which they are assigned. Whenever
a new list of patients is imported, the old list should be saved in a history
table to be able to trace all events back.

• All important settings should be changeable from the GUI.

• Some basic statistics (such as average response time or number of alarms
in the past hour) should be displayed.

3.2 Non-functional requirements

• The GUI must be easy-to-use, i.e. simple and clear.

• The application will run on a general purpose computer, but must be
platform independent.

• Recent technology that is widely supported and will still be available in
10 years shall be used.

• The sink sensor node will be connected to the computer via USB, i.e. the
application must communicate over the serial port interface.

• An alarm must be clearly visible at any time (no occluding menus or
popups).

• An alarm must be displayed in the GUI within a few seconds after a button
was pressed. It doesn’t need to be real time, but within a reasonably small
time frame (e.g. 10 seconds).

• The transmission between the sink and the GUI must be reliable.

• The task must be completed within 14 weeks.

8

Chapter 4

Design

Each patient gets a button which is attached to a sensor node. Sometimes,
several patients will share the same node and therefore, one node might have
several buttons. Every few seconds, each sensor node sends a status message
to the sink to show that it is still there. The sink node itself is connected to a
personal computer via a serial link (USB). All status messages are forwarded to
the GUI where they can be observed by the system operator. Whenever a node
fails or gets out of range, it will be notices by the system and the nodes status
will be set to ”lost”. If a patient presses a button, an alarm message is sent to the
sink node, transmitted to the computer, stored in the database and forwarded to
the GUI. The whole transmission won’t take longer than a few seconds. When
the alarm message arrives at the GUI, it is indicated visually and audibly. As
soon as the operator has confirmed the alarm, an acknowledgement packet is
sent back through the wireless sensor network to the node which generated the
alarm message. A green LED turns on which tells the patient that the alarm
has been delivered and help is coming.

4.1 Assumptions

The design of the software is based on the reliability of the Low-Power Wire-
less Bus. We assume that a message arrives at the sink node with very high
probability. To simplify the data flow model, we adopt a success rate of 100
percent in both directions, i.e. we don’t have to bother about packet losses
between the sink node and all other nodes within the wireless sensor network.

4.2 Components and Interfaces

Basically, there are three components: an application which handles the se-
rial port I/O, a database and a graphical user interface (see fig. 4.1). The
interface between the sink node and the computer is a USB link and therefore
involves serial port communication. The interface between the database and the
main application will be provided by the chosen database application (see chap-
ter 5). The connection between the main application and the GUI will involve
some thread-to-thread communication which can be accomplished by many dif-
ferent approaches, including message passing or shared memory. From now on,

9

Figure 4.1: system overview

we will refer to this interface as the connection between a server (application
side) and a client (GUI).

4.3 Server

The server is a part of the application and acts as an interface to the GUI. To
make the application smooth and allow multiple simultaneous data exchanges,
this part of the application should run in a separate thread. That’s why the
communication between the main thread and the server needs to be ensured by
two FIFO queues, one to push data to and one to read data from the server. The
client (GUI) can request status updates, whereupon the server pops an element
form the input message queue and send it to the client. If there’s no element in
the queue, the server waits until an element becomes available or the timeout
is reached. If the latter occurs, the last known status is returned to the client.
I.e. the client will receive a status message from the server periodically, which
indicates that the server is still running flawlessly.

4.4 Graphical user interface

The following elements must be displayed in the user interface:

• the status of all connected nodes and attached buttons

• the overall system status

• some statistics (e.g. number of alarms in past hour)

• an option to change the settings as well as to import and edit the list of
patients

10

Figure 4.2: first sketch of the GUI

If the system operator has not previously selected a serial port, a list of con-
nected USB devices will be shown and the right device can be chosen. Initially,
the operator should upload a CSV file containing a list of all patients and the
assigned node and button IDs. Whenever an alarm is delivered to the user
interface, the corresponding node will be highlighted in red. Additionally, an
alarm sound will be played and the border around the node list box will start
to blink. If an alarm is not confirmed within a minute (or a custom timeout
value), an SMS will be sent to up to three specified mobile phone numbers. In
this case, a blinking mobile phone will appear in the GUI. If a node disappears,
i.e. does not send a status message within a specified amount of time, it will be
highlighted in yellow.

4.5 Data structures

All packets received through the serial link will be parsed by the application
and forwarded accordingly depending on their content. A list of all sensor nodes
in the WSN is stored locally. All necessary information including the status and
attached buttons is kept in this data structure. Only if the status of a node
changes, the status of all nodes in the local list will be passed to the server
in the form of a unified status message by adding it to the input FIFO queue.
This functionality prevents the exchange of unnecessary data between the server
and the client (GUI). The data format for elements in the input message FIFO
queue is as follows:

{ [type], [message] }

The following example is a unified status message indicating that node 0, 1 and
2 are OK. The second example shows how an alarm message looks like (button
1 on node 0 was pressed).

{ "S", "0 (1)|1 (1)|2 (1)" }

{ "B", "0-1" }

There is no specific reason for the choice of the format other than readability.

11

table fields (data types)

patients id (integer UNIQUE AUTO), name (string),
room (string), buttonid (string)

patientshistory id (integer UNIQUE AUTO), name (string),
room (string), buttonid (string), timestamp (string)

events id (integer UNIQUE AUTO), buttonid (string),
time (string), confirmed (string)

config key (string UNIQUE), value (string)

Table 4.1: database tables

Framing Seq. No. Payload CRC16 Framing
Byte 0x7e (2 Bytes) (2 Bytes) Byte 0x7e

Table 4.2: packet format for serial port communication

4.6 Database scheme

According to the feature list, we need to log all alarm events into a database
and a list of all patients must be kept, too. Furthermore, a table for the con-
figuration values is needed. As the list of patients might be updated by the
system operator by a CSV file import, the old entries in the table ”patients”
must be copied to an additional history table and marked with a time stamp.
This enables to trace all events back and assign all past alarms to a patient.
Table 4.1 lists all database tables, the included fields and their data types.

Note that the field ”buttonid” holds both, the node and the button ID, i.e.
an alarm from the button 1 on node 0 would result in a value of ”0-1” for
buttonid. In addition to the ID, each alarm event is logged along with two time
stamps: the first one tells when the alarm occurred and the second one when
it was confirmed. For simplicity, we chose the data type string for the time
stamps, but it could as well be stored as an integer or a floating point number.

4.7 Serial Port Communication

Data is exchanged byte by byte over the serial port without a built-in verifi-
cation functionality to check whether the data has been transmitted successfully
or not. Therefore, a checksum calculation is necessary. We decided to use the
cyclic redundancy check (CRC16) [3] to detect transmission errors. It is fast,
easy to implement and provides a sufficiently high error detection rate for small
packets. Sending the CRC checksum along with the message in plain text would
work just fine for our application, but might lead to problems when transfer-
ring arbitrary (binary) data. Inspired by the implementation in TinyOS [4],
we chose a more sophisticated approach with framing and encoding. TinyOS
[5] has adopted some aspects of the Point-to-Point Protocol (PPP) [6], which
is the successor of SLIP [7] and based on HDLC [8]. Today, PPP is a widely
used standard protocol for the link between the internet service provider and its
customers. We decided neither to use PPP nor the implementation of TinyOS,
but instead a modification thereof to prevent unnecessary overhead. Table 4.2
illustrates the packet format.

12

In our application, the payload is an ASCII string, but could as well be
arbitrary data. To ensure that the packet is correctly recognized at the receiver,
all framing bytes (0x7e) between the frame delimiters must be escaped. In our
case, this is done by inserting an additional byte (0x7d) before every occurrence
of a framing byte within the packet. All escape bytes themselves which should
not be regarded as a control byte but rather as a general data byte must also be
escaped. Using this encoding, packets with arbitrary content will be correctly
detected by its frame delimiters.

4.8 Data Flow

The time-space-diagram in fig.4.3 shows an example of a possible data flow
between the components for a very simple setup with one sensor node and one
sink node. We assume the initial system state is S (1,1), i.e. node 1 is working
properly, and there are no pending alarms. The sink node periodically receives
status messages from all sensor nodes within the WSN and forwards them to
the computer. In our example, there’s just one node (with ID 1). The period
is designated as status message interval in the figure. The first received status
message is S (1,0), which indicates that the sink node has not received a status
message from node 1. This new status is forwarded to the GUI. The next status
message is still the same, that’s why there’s no need to forward this message
to the user interface. Whenever the CRC checksum doesn’t match, the packet
is rejected and the application waits for the retransmission. Alarm messages
are treated the same way. An alarm triggered from the same button is only
forwarded to the GUI once, but is retransmitted if it is not confirmed by the
operator within a predefined amount of time (default: 10 seconds). This is
a precaution measure to make sure that the alarm is displayed on the user
interface. As soon as the alarm is confirmed, an acknowledgement is sent back
to the sensor node with ID 1 and a green LED will turn on. Another failure
which might occur is that no status message is received from the sink node
within a specified amount of time (designated by the message timeout in the
figure). In this case, the application generates a status message S (1,0) and
sends it to the GUI to indicate a possible node loss.

4.9 Extension by additional features

The system is designed to enable easy integration of additional features. The
Interfaces allow to exchange arbitrary data, i.e. they do not limit in any way.
It’s only necessary to slightly adjust the components such that they can handle
the new messages. A specific example on how to integrate a new functionality
can be found in the appendix.

13

Figure 4.3: data flow between the components

14

Chapter 5

Implementation

5.1 Technologies

We have implemented the required components with state-of-the-art tech-
nologies. Python was chosen for the serial port I/O and Javascript to build the
user interface in the form of a webpage. Those programming languages are plat-
form independent, widespread, easy-to-use and yet powerful enough to meet the
requirements. We preferred Python to Java because of the native support for
serial port I/O enabled by the plugin PySerial [9]. To keep the communication
between the Python program and the user interface (GUI) simple, we decided
to use a client-server infrastructure. The GUI will be displayed in an arbitrary
web browser by connecting to the local HTTP server. It is basically just an html
page. Furthermore, XMLHttpRequests will be used for communication between
the client and the server to prevent unnecessary reloads of the webpage. “XML-
HttpRequest (XHR) is an API available in web browser scripting languages such
as JavaScript.” [10] It is a widely used tool for AJAX (Asynchronous JavaScript
and XML) applications for browser-server communication to build responsive
and dynamic web applications. As already mentioned, this technique enables
the web application to retrieve new data from the server without reloading the
whole page.

In addition, we decided to used jQuery [11], a widely used library for devel-
oping Javascript applications. The use of selectors and event handlers simplifies
the code and enables separation of structure (HTML elements) and behaviour
(functionality), just as structure and presentation (formatting) are separated by
Cascading Style Sheets (CSS). Furthermore, the programmer doesn’t have to
cope with browser dependent calls because jQuery does all the necessary work.
“jQuery is a lot about making code shorter and therefore easier to read and
maintain.” [11]

As for the database, SQLite [12] seems to be the obvious choice because it
is simple, lightweight and already integrated in Python.

5.2 Main application

The main application written in Python consists of two basic components:

• The worker thread which handles all the serial port I/O.

15

Figure 5.1: components and interfaces

• The HTTP server which enables communication between the Python pro-
gram and the GUI (client).

Only the worker thread has access to the serial port, collects all data and
passes it to the HTTP server. This is achieved by a thread-safe message queue.

The database is opened once at the beginning and kept open until the pro-
gram is shut down. To enable database access for all threads, it must be pro-
tected by some mechanism. The database can be accessed over a globally defined
object and is guarded by a mutex to ensure that only one thread at a time reads
from or writes to the it. Special attention must also be paid to all other global
variables as they might be accesses simultaneously by multiple threads. Before
a thread writes to a global variable, it must acquire a lock to make sure mutual
exclusion is guaranteed in the critical section.

All packets read from the serial port are parsed by the worker thread. After
the checksum has been verified and an acknowledgement has been sent back to
the sink node, the received message must be interpreted. There are two valid
message types with the following formatting:

• Status messages: "S,[node],[status]"

• Alarm messages: "B,[node],[button]"

If the received message is not formatted as expected, it will be ignored.

16

Figure 5.2: the final GUI

17

Chapter 6

Testing and Results

6.1 Methods

We have tested the application with a real device (Tmote Sky) which outputs
status messages for 20 nodes every second, whereof exactly one was marked as
lost (status = 0). Additionally, one alarm message was generated every minute.
With this setup, a sensor network consisting of 20 nodes and one button attached
to each of them was simulated. This first test was mainly to demonstrate the
right functioning of the serial port communication. A second test was carried
out with an emulator, which can be configured using probabilistic values. This
made testing much easier and more flexible. The emulator is basically just a
function which is called instead of reading from the serial port. This function
returns a status message or an error message. Several parameters can be set for
the emulator:

• The number of nodes (default: 10)

• The period: one status message for all nodes is generated in every period
(default: 2 seconds)

• The probability of a button to get pressed within one period

• The probability of a node to become unavailable (status 0) within one
period

• The probability of a node to fail within one period (no status message
received)

The last two points might seem to be the same, but they are not. If a node
becomes unavailable, then the sink node is aware of that and sends a message
with status = 0 to the computer. If in contrary a node fails and the sink node
does not recognize it (e.g. if the node is out of range), then no status message
for that node will be received. Therefore, both cases are necessary and must
be distinguished. The number of buttons per node is chosen randomly between
one and three.

18

malfunction countermeasure

The sink node is disconnected
unexpectedly or stops operat-
ing such that no more data is
received.

If no packet is received within a specified
time, the problem will be forwarded to the
GUI and displayed to the user.

The sink node sends garbage
(not correctly formatted
packets).

Invalid packets (either CRC checksum
wrong or invalid content) will be ignored
and are not counted as received packets.
Again, if the timeout occurs, it will be vis-
ible in the GUI.

Transmission errors occur
(bit flips).

Can be detected with high probability us-
ing CRC.

An arbitrary node in the
wireless sensor network fails
or gets out of range.

A list of all nodes is stored on the server.
If no status message is received for a node
within a certain amount of time, the status
will automatically be set to ”lost”.

The server (Python script)
crashes or message forward-
ing from the server to the
client fails.

The server will be restarted automatically
whenever an exception occurs. Further-
more, the GUI keeps track of all incoming
data from the server. If no data is received
within a certain timespan, a warning will
be displayed to the user.

The Javascript program
crashes.

Will be visible in the GUI either because
the clock stops or because no more packets
are received from the server.

Table 6.1: possible malfunctions

6.2 Scenarios and Coverage

With both tests, a wide range of scenarios has been covered. Because the
sensor network was not yet available at the time we tested the system, a real
world scenario could not be examined. There shouldn’t be any complications
when the fake sink node is replaced by a real system as long as the packet and
message format is observed. Also, the test was accomplished with 20 sensor
nodes or less according to the intended use of the system. Our tests did not
cover scenarios with more than 20 sensor nodes or more than 3 buttons attached
to one node. Table 6.1 lists some malfunctions which could occur and the cor-
responding countermeasures which were taken to minimize the negative impact
on the system.

6.3 Performance

As mentioned earlier, the Python program will run on a general purpose
computer with sufficient computational power. However, there’s no need to
strain it more than what is necessary. To reduce the CPU time, a limiter was
inserted in the worker thread. This limiter implemented with a sleep statement
restricts the maximum number of loop passes per second – and therefore the

19

number of packets which can be read from the serial port – to 50. We have not
observed any performance issues with up to 20 nodes. Everything runs smooth
and the GUI is responsive.

6.4 Platform and versions

The application was tested on a Windows 7 machine with Python 2.7.3,
Pyserial 2.6 and jQuery 1.8.3. The client side (GUI) was tested on several
browsers. It runs flawlessly on Google Chrome 23, Mozilla Firefox 9 and Internet
Explorer 9. It should basically work on any browser which has Javascript turned
on and supports HTML5. Javascript has somewhat limiting functionality when
it comes to reading files. For security reasons, files stored on the local hard
disc can generally not be accessed with Javascript. With the introduction of
HTML5, this limitation had been removed by file readers which enable file
uploads without refreshing the page. Also, playing audio files has been simplified
with HTML5. We decided to use HTML5 because of these two advantages.

20

Chapter 7

Conclusion and Future
Work

We were very pleased with the chosen technologies for the implementation.
Javascript and Python are both very easy to learn, lightweight and yet powerful
in their functionality (see restrictions in appendix D). Other options such as
Java or C would come either with some restrictions or significant programming
overhead. The latter is even platform dependent and would therefore not meet
the requirements. The Syntax of both, Javascript and Python, is clear and
there are not many key words, which further underlines their simplicity. As all
interpreted scripting languages, Javascript and Python are not as fast as lower
level languages. For high performance applications, an interpreted language
would certainly not be the first choice. However, performance had never been
an issue for the given task as the timing constraints and the computational effort
are very modest for a general purpose computer.

We have developed an application which provides a user interface and back-
end for a wireless patient notification system. The application is platform in-
dependent and runs on almost any personal computer. The status of all sensor
nodes in the wireless sensor network is monitored in the user interface in real-
time. Whenever a patient calls a caretaker by pressing the button attached to
a sensor node, an alarm message will be displayed in the GUI shortly after. As
soon as the system operator confirms the alarm, the green LED on the sensor
node will turn on to notify the patient that help is coming.

The system will soon be extended by an audio transmission feature to detect
calls for help acoustically. This will enable patients who are not able to press
a button to call a caretaker. Hopefully, the developed application will soon be
used in a real world scenario and prove to be part of a useful and reliable patient
notification system.

21

Appendix A

Adding new features

New features can easily be embedded into the existing code. As an example,
let’s assume we wanted to integrate a feature which displays the battery status
of each node in the GUI. For simplicity, those packets shall be sent as separate
messages once every minute. The steps that must be taken to integrate the new
code include:

• define a new format for the packet payload, e.g. "P,[node ID],[percentage]"

• add an additional branch in the worker thread to handle these new packets

• pass the packets to the HTTP server by adding them to the input message
queue

• add an additional branch in getNodeStatus() in the Javascript program
(script.js) to handle this type of message

• display the battery status information in the GUI

22

Appendix B

User Guide

B.1 Files and folder structure

The table B.1 lists all important files and folders of the whole application
and shortly describes their purpose.

B.2 How to use the application

• Make sure that Python 2.7 and Pyserial are installed on the computer.

• Connect the sink node and - if SMS notification is desired - a mobile phone
via USB to the computer.

• Run the Python script, either with command line parameters or without.
The syntax is as follows:

main.py [server port number] [serial port number]

The following output will be displayed:

server started - localhost:80

press ctrl+c to stop the server

• Open a web browser and connect to localhost.

• If no serial port has been passed to the server by the command line, the
user will be asked to select the serial port to which the sink node is con-
nected. The page shows all connected devices an refreshes automatically
(see fig. B.1).

• The GUI will appear. It might take several seconds until the whole page
is built up.

23

main.py Python script
patnotify.db Database (will be generated on first

startup)
init.html initialization page, will be displayed on

first start-up to select the serial port
index.html main page, to display the GUI
favicon.ico icon for the main page
logfile.txt log file for python script, generated dynam-

ically
data folder containing all necessary resource

files (Javascript code, style sheet, icons,
alarm sound)

data/jquery-1.8.3.min.js jQuery library
data/script.js Javascript code
data/style.css style sheet for index.php

Table B.1: important files

Figure B.1: initialization page

24

Figure B.2: screenshot of the GUI

25

B.3 Using the GUI

The user interface is divided into four parts: a list with all nodes (which is
visible at all times), a node info box, a system status box and a settings box.
All but the first field can be collapsed and expanded, depending on whether the
user wants to see the field or not (see B.2).

• The node info box: When the operator selects a node by clicking onto it
in the node list box, its status will be displayed in the node status field
on the right. The status field includes information like the current state
(OK or alarm) and how many times that this node has been lost and - if
currently lost - for how long it has been lost.

• The system status box: This field displays information about the whole
system, including date and time, runtime (elapsed time since last page
reload), last message from the server, general system state and some statis-
tics (e.g. how many alarms in the past hour). The main reason for this
box is to display to the user that every component of the system is work-
ing properly. Whenever for whatever reason the server side Python script
or the client side Javascript stops executing or the connection to the sink
node is lost unexpectedly, it will be visible in this field.

• Settings Box: All configuration values which might be of interest can be
changed directly from the GUI in the settings box. Furthermore, a CSV
file containing a list of all patients can be imported. Those files can be
created using an arbitrary spreadsheet application such as Excel.

Figure B.3: spreadsheet application

Lines starting with a number sign (#) are treated as comment and will be
ignored. Opened as a text file, the content looks as follows:

#Name;#Raum;#Node ID;#Button ID

patient1;roomA;0;1

patient2;roomA;0;0

patient3;roomB;1;0

Whenever an alarm occurs, the border around the node list field will start
to blink, the background of the pressed button will turn red and a confirmation
button will appear (see 5.2). If the user confirms the alarm by clicking onto the
homonymous button, a message will be sent back to the node which raised the
alarm and the GUI goes back to normal display state (see B.2).

Note: If an alarm message is received from a button which is not in the list,
an alert popup will be shown. Make sure every button which could possibly be
pressed is in the list.

26

HOST NAME = "localhost"

PORT NUMBER = 80 # default server port number
ACK TIMEOUT = 10 # if no ACK is received within

10s, the message is resent
ALARM ACK TIMEOUT = 10 # if no ACK for an alarm is re-

ceived within 10s, the alarm is re-
sent to the GUI

BAUDRATE = 115200 # baud rate for serial port com-
munication

INIT PAGE = "init.html"

MAIN PAGE = "index.html"

DATABASE = "patnotify.db"

LOGFILE = "logfile.txt"

ALLOWED CHARS = "[^A-Za-z0-9

-]+"

allowed characters for patient
names, room, node and button ID

WAIT TIMEOUT = 8 # wait 8s for new status events be-
fore sending an empty ’alive’ mes-
sage to the client

USE EMULATOR = False # use the emulator instead of
reading from serial port

NODE TIMEOUT = 10 # the sink node must send data at
least every 10 seconds

MAX QUEUE SIZE = 20 # buffer size; keep this value
small, otherwise the GUI will be
flooded with messages when con-
necting to the server

FRAME DELIMITER = 0x7e # framing delimiter, don’t change
this

ESCAPE BYTE = 0x7d # encoding escape byte, don’t
change this

Table B.2: constants in the python script

B.4 Change the basic configuration

Usually, there will be no need to change the basic configuration and default
values in the python script. However, it is allowed to change the global constants
as well as the default values for the global variables in the file main.py. Most
constants and variables should be self-explaining (see table B.2).

Note that the WAIT TIMEOUT should be set to a smaller value than NODE TIMEOUT.
Otherwise, a ”no data received from USB device” message will be sent to the
client to warn the system operator that the sink node might have been acciden-
tally disconnected or might not be working properly any more.

After the constants, there are some global variables. Besides the members of
the class Config(), which holds the basic configuration and the default values,
no other variables should be changed here. Note that the debugging level can
be changed with the global variable debugMode. When enabled, all details are
logged.

27

B.5 Configure SMS support

As already mentioned, there is a support for sending SMS to specified num-
bers for the case when an alarm stays unconfirmed for longer than a certain time
(timeout). To use this functionality, a mobile phone must be connected to a
USB port of the computer and a few settings in the GUI need to be configured:

• set the timeout for sending an SMS (default: 60 seconds)

• specify up to three mobile phone number (either with or without country
code)

• select the correct serial port (refresh the list by clicking the icon next to
the field)

Note that the connected mobile phone must be equipped with a valid SIM card
with enough credit because the SMS will be sent over the cellular network of
your carrier.

28

Appendix C

Program flow

C.1 Python application

Init:

Get command line parameters

Create log file

Open the SQLite database , create all tables and default values if

not already existing

Read the configuration from DB

Start a worker thread (which handles the serial port i/o)

If serial port provided and available , connect to it

Create an HTTP server (multithreaded , new thread for every new

incoming request)

Serial Port I/O (worker thread):

flush input and output buffer of the serial port

create an empty list for all nodes and another list for all

button events

While not stopped

Handle ack:

Check if there are unconfirmed messages in the send list. If

no acknowledgement for a message which was sent to the

sink node has been received within [ACK_TIMEOUT] seconds ,

the message is resent

Check every 10 seconds if an unconfirmed alarm has timed out ,

i.e. no confirmation has been received for an alarm

within [ALARM_ACK_TIMEOUT]. If so, put the alarm message

into the input message queue such that it will be

retransmitted to the client and displayed on the GUI. If

no confirmation for an alarm has been received within [

sendSMSTimeout] seconds , an SMS is sent to one or more

previously specified numbers. Therefore , a mobile phone

needs to be connected to the computer and configured

appropriately.

Check if a new confirmation is available in the ack queue. If

so, forward the confirmation to the sink node.

Read data from serial port or get emulator data

Analyse the received message

If it is a status message:

Check if the node already is in the list , if not , add it,

otherwise update status

Check if there is any node in the list for which no status

msg has been received within the past [statustimeout]

seconds; if so , set its status to zero

29

If the status of one or more nodes has changed , write the

whole list to the input message queue

If it is an alarm message (button pressed):

Check if there ’s already a pending alarm in the alarm event

list , if not , add it , store the event in the database

and append it to the input message queue , otherwise ,

ignore it

Already confirmed alarms will be removed after a hold time

of [alarmBlockTime] seconds.

HTTP server:

respond to GET and POST requests

on getstatus , check if there are any new messages in the input

message queue and send it to the client; if no new status

message has been received within 8 seconds , send the last

known status

Cleanup:

Wait for the worker thread to terminate

Stop the HTTP server

Close the database and log file

30

C.2 Javascript application

The program execution starts with the jQuery function $(document).ready().

// check if browser supports HTML5 -> alert user if not

checkBrowser ()

// load the language setting from the server

getLanguage ()

// initialize the GUI

init()

// load the text corresponding to the selected language

loadLanguage ()

// create the fields/boxes , add titles and event handlers

buildPage ()

// load the current settings from the server

getSettings ()

// load the list of all patients from the server , create all

necessary nodes , add all necessary buttons and insert the

patients names

getPatientList ()

// load node status from server , update status of the nodes and

add missing nodes to the list

getNodeStatus ()

// display the system status field (auto refresh)

updateSystemStatus ()

// refresh the node info box content

updateNodeInfo ()

There is a global list (array) of all nodes which represents the central data
structure for the whole Javascript program. Its structure is as follows:

nodeList

[0] => { ID, status, buttons, statusinfo }

[1] => { ID, status, buttons, statusinfo }

[2] => ..

The element buttons itself is again an array including all buttons attached
to a node:

buttons

[0] => { ID, name, room, status, counter }

[1] => { ID, name, room, status, counter }

[2] => ..

Most of the fields are self-explanatory. The last field of the array nodeList

just holds some additional information about the node status (how many times
a node has been lost and for how long). Similarly, the last field in the array
buttons stores the number of times an alarm has been triggered.

Note that it is currently possible to assign a different room to each patient,
i.e. two patients whose buttons are connected to the same node may be located
in different rooms.

31

Appendix D

Debugging

Debugging was tricky at times. Whereas a C or Java compiler is quite strict
and outputs warnings for every not explicitly stated type cast, scripting lan-
guages mostly don’t bother about such things. This makes simple languages like
Javascript or Python prone to errors. The programmer has to think about all
possible cases. The developer tools integrated in the Internet Explorer showed
to be very helpful for debugging the Javascript code. The documentation for
Python explains all important methods and objects, but often lacks sample code
or further explanations. As an example, the mime type and other properties
have to be set appropriately in the header of the server response to an HTTP
request, otherwise the browser won’t recognize the returned files correctly. An-
other troublesome problem was the alarm sound, which somehow refused to
loop. We were wrong in the assumption that the malfunction was caused by
improper code on the client side. Instead, one single line in the header of the
server response was missing and prevented the alarm sound from being looped.
Such problems are rarely documented and finding a satisfying solution may be
time consuming.

32

Bibliography

[1] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele.
Low-power wireless bus. In Proceedings of the 10th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2012.

[2] Wireless sensor network. http://en.wikipedia.org/wiki/Wireless_

sensor_network. Accessed: 2013-02-15.

[3] Cyclic redundancy check. http://en.wikipedia.org/wiki/Crc16. Ac-
cessed: 2013-02-15.

[4] Tos python implementation. https://github.com/tinyos/tinyos-main/
blob/master/support/sdk/python/tos.py. Accessed: 2013-02-15.

[5] Tiny os: Serial communication. http://www.tinyos.net/teps/doc/

html/tep113.html. Accessed: 2013-02-15.

[6] Point-to-point protocol. http://en.wikipedia.org/wiki/

Point-to-Point_Protocol. Accessed: 2013-02-15.

[7] Serial line internet protocol. http://en.wikipedia.org/wiki/Serial_

Line_Internet_Protocol. Accessed: 2013-02-15.

[8] High-level data link control. http://en.wikipedia.org/wiki/

High-Level_Data_Link_Control. Accessed: 2013-02-15.

[9] pyserial v2.6 documentation. http://pyserial.sourceforge.net. Ac-
cessed: 2013-02-15.

[10] Xmlhttprequest. http://en.wikipedia.org/wiki/XMLHttpRequest. Ac-
cessed: 2013-02-15.

[11] jquery. http://jquery.com. Accessed: 2013-02-15.

[12] Sqlite. http://www.sqlite.org. Accessed: 2013-02-15.

33

http://en.wikipedia.org/wiki/Wireless_sensor_network
http://en.wikipedia.org/wiki/Wireless_sensor_network
http://en.wikipedia.org/wiki/Crc16
https://github.com/tinyos/tinyos-main/blob/master/support/sdk/python/tos.py
https://github.com/tinyos/tinyos-main/blob/master/support/sdk/python/tos.py
http://www.tinyos.net/teps/doc/html/tep113.html
http://www.tinyos.net/teps/doc/html/tep113.html
http://en.wikipedia.org/wiki/Point-to-Point_Protocol
http://en.wikipedia.org/wiki/Point-to-Point_Protocol
http://en.wikipedia.org/wiki/Serial_Line_Internet_Protocol
http://en.wikipedia.org/wiki/Serial_Line_Internet_Protocol
http://en.wikipedia.org/wiki/High-Level_Data_Link_Control
http://en.wikipedia.org/wiki/High-Level_Data_Link_Control
http://pyserial.sourceforge.net
http://en.wikipedia.org/wiki/XMLHttpRequest
http://jquery.com
http://www.sqlite.org

	Introduction
	Problem and Motivation
	Thesis Contributions
	Thesis Outline

	Background
	Application Scenario
	Wireless sensor networks
	Low-power wireless bus

	Requirements
	Functional Requirements
	Non-functional requirements

	Design
	Assumptions
	Components and Interfaces
	Server
	Graphical user interface
	Data structures
	Database scheme
	Serial Port Communication
	Data Flow
	Extension by additional features

	Implementation
	Technologies
	Main application

	Testing and Results
	Methods
	Scenarios and Coverage
	Performance
	Platform and versions

	Conclusion and Future Work
	Adding new features
	User Guide
	Files and folder structure
	How to use the application
	Using the GUI
	Change the basic configuration
	Configure SMS support

	Program flow
	Python application
	Javascript application

	Debugging
	Bibliography

