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Abstract

In the last decade, a lot of new routing algorithms have been proposed and some of them have
been implemented for current computer architectures. In this semester thesis, we evaluated rel-
evant routing algorithms in a real-world environment consisting of multiple virtual machine nodes
for some predefined scenarios and measured their performance. The focus was on scenarios
which are very likely to happen in the environment of flying drones as in the SWARMIX project
(see [19]). We also measured the impact of using virtual machines instead of real hardware.
Our results show that B.A.T.M.A.N.-Advanced outperforms B.A.T.M.A.N. and OLSR.



Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Routing Protocols 7
2.1 AODV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 OLSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 B.A.T.M.A.N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 B.A.T.M.A.N.-Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Testbed 9
3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Linksys AE1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 TP-Link TL-WN822N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Laptops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Test 13
4.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Scenario 1 - Switch to another node . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Scenario 2 - Ferry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.3 Scenario 3 - Self healing ability . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.4 Scenario 4 - Path optimization . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.5 Scenario 5 - Long path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 End-to-end delay/round-trip time . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 Route convergence latency test . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.4 Routing overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.5 Packet loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.6 Path optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Results 19
5.1 Distance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Virtual machine to pc-pc comparison . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Results from the scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 End-to-end delay/round-trip time . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.3 Route convergence latency test . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.4 Routing packets overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.5 Routing data overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.6 Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3



4 CONTENTS

6 Interpretation 29

7 Conclusion and Outlook 31
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Summary 33

A Installation and Configuration 35
A.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B Scripts 37

C Timetable 55

D Originalproblem 57



Chapter 1

Introduction

In existing research, we find many topics in simulating routing algorithms for MANET (Mobile Ad-
Hoc Networks) and evaluating their performance by means of using network simulators like ns-2
([9], [18], [17]). In this semester thesis, we don’t use a network simulator, but we create a testing
environment (called testbed) consisting of multiple virtual machines running on two laptops with
real wireless dongles. We want to use a real-world testbed, since there has a lot of work been
done with simulators and it’s known that an implementation of a routing algorithm, which seems
to perform well in a simulation environment, has nearly never the same performance when used
in a real network ([14]). This semester thesis belongs to the SWARMIX [19] project, so we will
focus on scenarios which are likely to happen in such a heterogeneous multi-agent system.

SWARMIX is a project by the Swiss National Science Foundation for laying the foundations for
the design, implementation, and adaptive control of heterogeneous multi-agent systems working
in cooperation to solve distributed tasks. For this type of system to work, a stable network has to
be built up betweem all the mobile parts consisting of humans, animals and robots. Because all
the nodes are only able to send in a short range, routing algorithms are needed to forward the
packets to the correct destination. This task is not so easy since all involved parts are mobile
and therefore the routing algorithm needs to adapt to the topology changes. An overview of
such a network is depicted in Figure 1.1.

1.1 Motivation

The motivation for this semester thesis is to test a new approach for creating a testbed with
multiple virtual machines. Recent works which built a real-world testbed used separate laptops
or routers on which the routing protocols were running. We present a new approach by using

Figure 1.1: SWARMIX Overview
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6 CHAPTER 1. INTRODUCTION

virtual machines as nodes and also determine the influence of using them instead of real com-
puters. Using this testbed, we then evaluate the best routing protocol for the SWARMIX project.

1.2 The Task

The task consists of:

• Find dynamic routing algorithms and evaluation metrics in the literature

• Getting familiar with network tools and virtual environments like VirtualBox, iptables, arpt-
ables, ebtables, iperf, wireless-tools

• Installing and setting up the wireless dongles on all nodes

• Installing the routing algorithms on all nodes

• Drawing multiple scenarios with various topologies

• Reflect how to measure the metrics found

• Performing the scenarios and collecting results

1.3 Related Work

There has been little investigation in the literature about similar works which consider a real-
world model and the mobility of the nodes. In [7] we find a real-world evaluation of OLSR, BABEL
and B.A.T.M.A.N., but the stations are stationary. The work is still related to ours because they
also evaluated some of the metrics we do and used mostly the same routing algorithms. Another
work is [13]. They present a real-world evaluation of Babel, OLSR and B.A.T.M.A.N. and have
done a stationary evaluation of the metrics. Then we find a lot of routing protocol comparisons
in a simulation environment like ns-2, see [17] and [8] for instance.

1.4 Overview

Chapter 2 introduces the routing protocols and gives a background of how they are working.
This will also be of importance for interpreting the results. Chapter 3 presents our testbed and
will also shortly mention the hardware used. In chapter 4 we will show the tests we made,
which consists of the scenarios and the metrics. The results from the comparison of the routing
protocols is presented in chapter 5. The interpretation can be found in chapter 6 and the final
conclusion in chapter 7.



Chapter 2

Routing Protocols

The routing algorithms which we consider in this semester thesis have to fulfill the following
three criterias:

• Capable of handling mobility

• Implemented for linux (native support)

• Running on Gumstix/OpenEmbedded

First they must be able to handle the mobiltiy since we want to use it in a mobile network. They
also have to be implemented for linux and should run natively on the computer architecture,
because we don’t want to have to install some additional runtime environments. Thirdly the
routing algorithm needs to run on Gumstix/OpenEmbedded. This is the platform which runs on
the drones. We finally come up with the following routing algorithms.

2.1 AODV

AODV (Ad-hoc on-demand distance vector) [20] is a reactive routing protocol. This means that
a route to another node is only requested if needed and is not already known before. When
a node wants to send data to a destination node, it sends out a route request (RREQ). Each
node receiving this message looks if it already has a valid route to the requested destination.
If this is true, the node responds with a route reply (RR) to the initiator, else it sends out the
RREQ again until it reaches a node with a valid route and stores the source of the request
in a table. AODV avoids the counting-to-infinity problem by using sequence numbers on route
updates. The main disadvantages of this kind of approach is the high initial latency when trying
to connect the first time to another node and the time to adapt when a better path appears,
because this requires the origin node to repeat the route request. We’ve chosen this routing
protocol more for comparison reasons. As we will see later, most of the times AODV was not
even able to create a route between a simple network as also determined by other works (see
[7] and [13]).

2.2 OLSR

OLSR (Optimized Link State Routing) [6] is a proactive routing protocol. This type of algorithms
want to achieve that each node in the network has always a complete valid list of all destinations.
The information about changes and existence of nodes is spread by periodically sending out
routing informations through the network. In the case of OLSR, the information is spread by
HELLO and TC (topology control) messages. A node in an OLSR network discovers his 1-hop
and 2-hop neighbours by the continuous sent HELLO messages. These packets contain the
already known 1-hop neighbours as well as the state of the connection to them. From its 1-hop
neighbours, each node elects one or more multipoint relays (MPR), over which it can reach all 2-
hop nodes. The elected MPRs distribute the TC messages, which contain a list of nodes which
elected this node as MPR. This is done to make the flooding more efficient. OLSR is one of the

7



8 CHAPTER 2. ROUTING PROTOCOLS

most often used ad-hoc routing protocols, for instance in the freifunk networks in the German
region [11] and is also designed to work with mobile ad-hoc networks. That’s also the reason
why we’ve chosen to take measurements with this protocol. The main disadvantages although
are the amount of routing data overhead sent out and the slow reaction to topology changes.

2.3 B.A.T.M.A.N.

B.A.T.M.A.N. (Better Approach To Mobile Adhoc Networking) [16] is a routing protocol which
is developed by the freifunk community [11]. The goal is to replace OLSR with B.A.T.M.A.N. in
the future. The main idea behind B.A.T.M.A.N. is to only distribute the knowledge of the best
connections to all nodes to reduce the package overhead. For that, a node with the protocol
running sends out periodical broadcast messages which indicate that the node is alive. This
message is repeated by each node. A node receiving such a message stores in its table in
which direction it has to send the packet. This approach is in literature also called "biologically
inspired", since it’s not belonging to one of the routing protocol classifications (see section 2.5).
Because B.A.T.M.A.N. is a relatively new approach and developed by the freifunk community,
we also want to test it in this semester thesis.

2.4 B.A.T.M.A.N.-Advanced

B.A.T.M.A.N. has a little brother called B.A.T.M.A.N.-Advanced. The difference is that the latter
does all the routing on ISO/OSI layer 2 (data link layer). This means that every layer 3 protocol
(network layer) runs on it. The routing scheme behaves more or less the same as the former
did, but the packets are tunneled through a virtual interface bat0 to the destination node. Since
this is a new approach and looks very interesting, we also selected this routing protocol.

2.5 Others

In literature, we also find other approaches for routing algorithms, like flow-oriented, hybrid,
location aided and hierarchical routing. A hybrid implementation is the Zone Routing Protocol
(ZRP), but the code was quite outdated, the latest version we found was from 2005. For the
other classes, we didn’t find any implementations. Most of them have been implemented for
network simulators, but haven’t found a way into current computer architectures.



Chapter 3

Testbed

To perform the measurements, we create a testbed. Instead of using multiple laptops, we use
Virtual Machines to build multiple nodes. On two laptops, a separate USB dongle is forwarded
to a running instance of VirtualBox, so the communication is indeed happening over the wire-
less dongles. To see the impact of virtualization on the overall performance, we’ve done some
throughput and delay tests (see chapter 5.2). Because we’ve set the MCS (Modulation and Cod-
ing Scheme) to 1, a throughput of maximum 30 Mb/s can be reached (see [1]) in our operating
mode (channel 60, 5.3GHz, 40MHz bandwidth). We limit the operating mode of the dongles
due to the mode switches which can occur during testing. We want to have equal conditions
for all protocols. To create a topology in our testbed, we use iptables, arptables and ebtables
to disable a link between two nodes. We have to use ebtables because batman-adv uses layer
2 routing, and iptables can only block layer 3 packages. Arptables is used for blocking the arp
requests and replies from the blocked nodes. The overall setup is depicted in 3.1. When for
instance node 4 wants to send data to node 3, the data originating on Virtual Machine 4 on the
second laptop sends the data with its attached USB dongle over the wireless channel to node
1, which is running on the first laptop. According to the routing algorithm used, the data is then
forwarded until it reaches the node 3, always over the wireless channel.

The main disadvantage of this testbed is that it only allows to either completely block or un-
block other nodes, and not to reduce the link quality between them. All mentioned protocols
calculate a link quality to determine the best route towards a destination. But because all wire-
less dongles are in a short range, the received quality is very good and therefore the channel is
more stable. Another deviation from the real world model is the data link layer. A node which is
for instance completely blocked by all other nodes will still use the same channel and therefore
interfere the other nodes, which would not happen in the real case (e.g. the node is far away).
The main advantage is that we can economize on hardware since there are multiple nodes run-
ning on one laptop and it’s therefore also highly scalable.
The advantages and disadvantages of using this testbed are outlined in the following compari-
son.

Advantages

• Economize on hardware

• High scalable

• Channel is more stable

• Easy testable in one room

• Higher control

Disadvantages

• Influence of the Virtual Machines

• Testbed cannot completely emulate the
real world

• Limited possibilities to reduce the signal
strength

9



10 CHAPTER 3. TESTBED

Figure 3.1: Testbed

Figure 3.2: Linksys AE1000 USB Dongle

3.1 Hardware

For this semester thesis, we’ve considered two USB dongles. The first is a newer one from TP-
Link, the other is from Linksys. To have enough bandwidth, it is important for the hardware to
support 802.11N mode. The dongles also need linux support. For reasons we’ll mention below,
we finally use the Linksys dongle.

3.1.1 Linksys AE1000

The Linksys dongle AE1000 has linux support from the manufacturer [12]. The drivers work very
good. Also some tests on the throughput show very good results. Between two laptops, we are
able to transmit up to 100 Mb/s. Because 802.11N can switch between different modes and we
want to have equal conditions during the whole time the measurements are running, we set the
MCS to 1, so that the results are more comparable (for MCS settings, see [1] page 347). This
limits the max throughput to 30 Mb/s.

3.1.2 TP-Link TL-WN822N

We’ve also considered another wireless dongle. The TP-Link TL-WN822N also supports
802.11N mode and has support for linux because it can be used with the compat-drivers (see
[3]). With this dongle however, we are not able to get throughputs over 1 Mb/s. Also when plug-
ging the dongle into Virtualbox, the message "The device could not be initialized" appears on
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Figure 3.3: TP-Link TL-WN822N USB Dongle

the screen. Also with VMware the problem doesn’t disappear. We were not able to solve the
problem in the given time and decide to use the Linksys AE1000 USB dongle.

3.1.3 Laptops

For creating the testbed, we use two laptops where we plug in the USB dongles. One of the two
is a Sony Vaio VGN-Z11WN and the other is a Lenovo Thinkpad T400. Both laptops have a Intel
Centrino 2 Duo processor inside (Intel Core2Duo P8600 2.4GHz ) which supports IVT (Intel Vir-
tualization Technology) which is essential for our testbed to run. Both laptops have 4GB of RAM.

3.2 Virtual Machines

As we’ve mentioned above, we use virtual machines running on two laptops as nodes. We use
VirtualBox in the version 4.2.10 with the host operating system Ubuntu 12.10 (quantal quetzal).
For doing some measurements on AODV, we have to switch to Ubuntu 10.04, because AODV
is only running on linux kernels 2.4 and 2.6.

3.3 Control Unit

Over a separate, cable-connected network we send the commands to the virtual machines.
We’ve created a control unit on which we can give commands to all nodes, for instance to
disable a link (block with iptables) or start transmitting data to another node. For that, we use
netcat [4] to listen on a port of the cabled network and redirect the data arriving to the bash
shell. We don’t use ssh command forwarding since the delay added by authentication is too big.
We’ve created commands for the complete initialization of the wireless interface and getting it
up, (de-)blocking of other nodes, starting ping and throughput tests and logging everything. All
the scripts can be found in the Appendix B.
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Chapter 4

Test

To test the routing protocols, we use these scenarios and metrics to evaluate their performance.
Note that each routing algorithm offers many parameters to adapt. We use each of them with
its default settings. We know that you could tune it to be more efficient for any of the scenarios
considered. Each scenario takes 5 minutes to complete. It takes so long to be sure that each
routing algorithm is able to settle in this time.

4.1 Scenarios

In this semester thesis, we want to measure some predefined scenarios which represent a given
topology change of the flying drones in the SWARMIX project. Contrary to some approaches
of other works which used a random walk of the stations, we predetermine by hand how this
scenarios should look like, because the movements of the nodes shall be as realistic as pos-
sible. The drones get controlled by a base station and their pattern of flight is given and not
unpredictable. Finally we come to the following 5 scenarios.

4.1.1 Scenario 1 - Switch to another node

In the first scenario, the ability of the routing algorithm of switching the traffic over another node
is tested. This scenario can be understood as a drone (Node A) flying away from a close node
(Node B) and gets disconntected. A new node (Node C) has to be found and the traffic needs
to be forwarded to it to reach another node in the network (Node Z ).

(a) Situation the node moves (b) Situation after the node has moved

Figure 4.1: Scenario 1 - Switch to another node

13



14 CHAPTER 4. TEST

4.1.2 Scenario 2 - Ferry

In the second scenario the performance of the routing algorithm concerning the ferry model is
tested. It is important that a node can be used as a ferry for transporting data from one node
to another. Because the routing algorithms we test are not delay tolerant, the performance of
setting up a connection between the two nodes is evaluated. Node A constantly tries to send
data to Node Z. When Node B reaches the middle of the two nodes, the connection is set up
and the routing algorithm needs to find the path to the destination.

(a) Situation the node moves (b) Situation after the node has moved

Figure 4.2: Scenario 2 - Ferry

4.1.3 Scenario 3 - Self healing ability

The third scenario differs from scenario 1 that Node A has two valid paths to the destination
Node Z. At the beginning, the routing algorithm will use the shorter path over Node B. When it
flies away, the routing algorithm needs to heal itself and use the longer path over Node C and
Node D.

(a) Situation the node moves (b) Situation after the node has moved

Figure 4.3: Scenario 3 - self healing ability

4.1.4 Scenario 4 - Path optimization

For considering how long it takes for the routing algorithms to use a shorter route, we add the
scenario 4. In the beginning, Node A has only one path to the destination Node Z. But after a
while, another Node B arrives and adds a shorter path.

4.1.5 Scenario 5 - Long path

Because we dont’t have a scenario with a long path yet, we add the fifth. It is nearly the same as
scenario 1, but with more nodes involved. This is also interesting to see how the throughputs,
round-trip times and packet losses behave under such a long path.
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(a) Situation the node moves (b) Situation after the node has moved

Figure 4.4: Scenario 4 - Path optimization

(a) Situation the node moves (b) Situation after the node has moved

Figure 4.5: Scenario 5 - Long path

4.2 Metrics

Many metrics to evaluate routing algorithms are proposed in literature. There’s an RFC (2501)
[10] which suggests metrics to consider which have also been used in a related work [9]. We
find nearly the same metrics in [8]. In [17] even more detailed metrics have been used. Get-
ting the same metrics for a real-world evaluation is very hard. For example energy consumption
comparison is nearly impossible to measure, since most of the routing protocols run as a ker-
nel module. We focus in our work on metrics which are feasible and important to the network
stability. We also want to take metrics specific for the scenarios we consider (see chapter 4.1),
because the flying drones need a fast reaction of the network to topology changes. Finally, we
use the metrics which can be found below.

4.2.1 Throughput

One of the most important metrics seems to be throughput. It’s defined as the average rate
at which packets are successfully delivered to a destination. Although in our case, where the
number of nodes is very small compared to simulation environments, throughput will probable
be more a bottleneck of the wireless dongles than the routing protocols. So only in scenario 4,
where multiple links to the destination are possible, and in scenario 5, where the traffic goes
over multiple hops, this metric should differ most. We make this test after each scenario has
settled, to have some results for comparison, because the throughput goes to 0 when no valid
route exists. We don’t measure during the topology change since this is evaluated by the metric
Route Convergency Test discussed later.
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Measurement The throughput is measured with iperf, always sending from Node A to Node Z
after the topology has changed. We start the utility with the following options:

iperf -c <NODE_Z_IP> -t 60 -l 1400 -i 10 -u -b 100M

We measure 10 seconds intervalls over total 1 minute and set the bandwith to 100 Mb/s, so iperf
transmits as fast as possible. We reduce the packet length to 1400 bytes because B.A.T.M.A.N.-
Advanced cannot use the full 1500 bytes packet load, because of the additional header (see [15]
in the wiki site Fragmentation).

4.2.2 End-to-end delay/round-trip time

End-to-end delay is the delay added by the the network until a packet reaches its destination.
As the metric before, this one will equally probable mostly depend on the hardware than on
the routing protocol itself, because there are not a lot of scenarios which have multiple paths
between the interesting nodes. We measure the round-trip time, so roughly two times the end-
to-end delay, since its easier to measure with available network tools.

Measurement Round-trip time measurement start on node A with the simple ping tool, again
after the scenario has converged to the new state:

ping -i 0.5 -c 60 <NODE_Z_IP>

We send 60 packets to the Node Z in the intervall of 0.5 seconds.

4.2.3 Route convergence latency test

Because our work consists more on evaluating the convergence ability and how fast they adapt
to topology changes, we use this metric found in [7]. It’s mentioned as a self-healing ability of
the routing protocols. It can be seen as the time the protocol needs to adapt to a change in the
topology, until the communication works again.

Measurement Route convergence is measured with the output of the routing algorithms on
all nodes. We then calculate the difference between the initial timestamp when the node moves
and when the new topology is known such that the communication is built up again. For time
synchronization, we use the network time protocol (ntp).

4.2.4 Routing overhead

The routing overhead is defined as the number of packets or bytes added by the routing algo-
rithm to the network. We also measure this metric by using tcpstat and corresponding filters to
count the packets and bytes captured. For B.A.T.M.A.N.-Advanced however, we use the internal
statistic tool of batctl, because the routing is happening on layer 2 and for tcpstat we can only
define layer 3 filters (see [5]).

Measurement We measure the routing packages overhead with tcpstat for B.A.T.M.A.N. and
OLSR with corresponding filter definitions, and for B.A.T.M.A.N.-Advanced with the internal
statistics tool batctl. tcpstat reports statistics about an interface and can be configured to fil-
ter only specific packets. We measure over the whole scenario’ time and use only the statistics
reported on node A.

4.2.5 Packet loss

Packet loss is another important metric for our application. It’s defined as the percentage of
packets lost during a given time interval compared to the total sent packets. Since we want to
stream e.g. audio or video over over the network and use probably UDP, a huge packet loss
would result in useless data arriving at the destination.
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Measurement Packet loss is reported by iperf as a server report after each measurement.
We use this data for our results.

4.2.6 Path optimality

The path optimality is the difference between the number of hops a packet takes to reach its
destination and the number of hops of the shortest path. This metric is not very helpful in our
work, because we only use at maximum 5 nodes. In scenario 4, where a better path is available
later, this could be considered. But the result on how long it took to find the new path is a
better benchmark for that case. Also measuring this metric can be very hard in a real-world
testbed. We could use the standard ping tool, which reports the remaining TTL (time to life)
of the response packet. The problem with this approach is that B.A.T.M.A.N.-Advanced uses a
tunneling based on layer 2, which doesn’t decrease the TTL on each hop.
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Chapter 5

Results

5.1 Distance measurements

To see the performance of the Linksys dongle, we make a distance measurement. In figure 5.1
we see that the link has a good throughput up to 120m. Note that tests have been done outside
on 1.5m over the ground. We realized that the distance increases when the dongles are in the
air.
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Figure 5.1: Distance to throughput plot

During the throughput test, we’ve also logged the RSSI (Received Signal Strength Indication)
and SNR (Signal to Noise Ratio). The results are depicted in figure 5.2. Because the Linksys
AE1000 have two antennas, there are always two lines in these figures.
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Figure 5.2: Distance to RSSI and SNR results

5.2 Virtual machine to pc-pc comparison

In the figure 5.3, we see the influence of the virtual machine compared to a laptop-laptop con-
nection. We see that the throughput of a UDP connection over 10 seconds decreses by ap-
proximately 2 Mb/s. The round-trip time increases much more by roughly 100ms in the mean,
and the variance is also much bigger. Altough there is quite a big influence, we test the routing
algorithms with this testbed, since the conditions are the same for all of them. At the end, they
are still comparable.
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Figure 5.3: Throughput and RTT comparison

5.3 Results from the scenarios

In this section, we present the results from the framework. We extracted all the data from the
log files which have been created by all the tools used, e.g. iperf, ping, tcpstat and of course
the log output of the routing algorithms. Each scenario has been passed 10 times as in [7].
For each run the mean and statistics of the data have been evaluated and is depicted in the
following figures. Please note that we didn’t add the results for AODV in the plots. As already
noticed, AODV failed to maintain or sometimes even establish a connection. So the results for
AODV aren’t very precise. The results in the text are calculated with values when AODV worked.
Please keep in mind that these results are therefore inaccurate and only reported for the sake
of completeness.
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(d) Throughput results from Scenario 4
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Figure 5.4: Throughput results for all scenarios

5.3.1 Throughput

We can see from the plots 5.4, that all routing algorithms have more or less the same throughput
in the range of 9.4 to 9.8 Mb/s for 2 hops (scenario 1) and down to 4.3 to 4.7 Mb/s for 4 hops
(scenario 5). This should be sufficient to stream audio and low-resolution video over the MANET
while the topology is stable. And we have to keep in mind that we set the MCS parameter to
1 and limited the max throughput between two nodes to 30 Mb/s. It’s also noticeable from the
graphs, that B.A.T.M.A.N. is always a little bit faster than the others, but the difference is nearly
negligible, since it’s in maximum 0.3 Mb/s faster than OLSR and B.A.T.M.A.N.-Advanced in the
mean. The variance seems to be equal. When AODV worked, it reached a throughput of 7.49
Mb/s in the mean for scenario 1, 7.83Mb/s for scenario 2 and 4.89Mb/s for scenario 3. For
scenario 4 and 5, throughput measurements with AODV were not possible. We cancelled the
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tests after several attempts.

5.3.2 End-to-end delay/round-trip time
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(a) RTT results from Scenario 1
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(c) RTT results from Scenario 3
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(d) RTT results from Scenario 4
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Figure 5.5: RTT results for all scenarios

We see from figure 5.5a an average RTT of 150 to 200ms in the mean for 2 hops and up to 250
to 400ms delay for 4 hops. When we look at the observation made by the virtual machine to pc-
pc comparison result, we realize that most of the delay comes from the fact that we used virtual
machines. But the results show that B.A.T.M.A.N. is the protocol with the best performance, but
again nearly negligible. For scenario 1-4, the difference among the three is in the mean not
even 50ms. And also the deviation is almost the same. AODV had a mean RTT for scenario 1
of 183.4ms, 182.8ms for scenario 2 and 265.97ms for scenario 3. For the other two scenarios
AODV was not able to establish a connection.
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5.3.3 Route convergence latency test
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(c) Convergence time results from Scenario 3
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(d) Convergence time results from Scenario 4
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Figure 5.6: Convergence time results for all scenarios

Route convergence latency tests are very important for the SWARMIX project, because these
are the tests which concern the mobility of the nodes. Roughly, we can say that B.A.T.M.A.N.
and B.A.T.M.A.N.-Advanced perform best compared to OLSR. For scenario 1, where the com-
munication is switched over to another node, OLSR needs in the mean time twice as long as
B.A.T.M.A.N.-Advanced to find the new route. Only in scenario 4, where the connection stays
up, but a shorter path is added, OLSR beats the others. AODV managed to adapt to the topol-
ogy changes in 2.28s, 1.91s and 2.29s for the first 3 scenarios in the mean. For the other two
scenarios we were not able to extract some results. The reason for these huge differences are
the class of routing algorithm the protcols belong to, the messages interval for the pro-active
protocols and the internal parameters set. As mentioned in chapter 2, OLSR, B.A.T.M.A.N. and
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B.A.T.M.A.N.-Advanced use periodically sent HELLO messages to distribute their existence in
the network. If a route fails, the routing algorithms notice that the packets aren’t any longer re-
ceived directly from the node before. Therefore, they internally compare all links known to the
destination node and chose the link which has the best quality indicator. To avoid fast swapping
of the routes, these indicators only adapt slowly and can be adjusted by some parameters. So
the time when the new route is used depends on these parameters and also the interval of the
messages, since they also influence how fast this quality indicator changes. Very outstanding
is the result from AODV (when it workend). It managed to discover the new route in about 2s.
This is due the fact that AODV is a reactive protocol. Once it recognises that the link failed, it will
send out a new RREQ, which will be answered very fast and the new route can then be used.
The idea behind AODV is very good, but the implementation seems to fail for bigger networks.

5.3.4 Routing packets overhead

Routing overhead is also important, since it’s an indicator for how much traffic a node adds to
the network. We can see that OLSR adds only few packets and B.A.T.M.A.N. most. This is true
for all scenarios, which is also expected. The number of packets sent out is proportional to the
packet interval of the routing protocols. AODV added 1415.25, 1397.75, 1464.33, 1373.0 and
1109.33 packets to the scenarios 1 to 5. This amount is very low, since AODV only looks for a
route when requested in contrary to the pro-active protocols.

5.3.5 Routing data overhead

We’ve seen that B.A.T.M.A.N. adds most packages to the network, and also most data summed
up over the scenario time. Compared to the result before, we notice that B.A.T.M.A.N.-Advanced
actually adds a lot of packages, but they’re quite small, so the amount of added data is not half
the data B.A.T.M.A.N. adds as could be expected. For AODV, the results are 67620, 67002,
69802.7, 65928 and 53454 bytes in the mean.

5.3.6 Packet Loss

After each scenario, we did a packet loss test with all the routing algorithms. It’s astonishing
that the packet losses greatly differ, since we could expect that this is a matter of the chan-
nel. We can see that B.A.T.M.A.N. and OLSR have more or less the same packet loss, while
B.A.T.M.A.N.-Advanced performs far better. While B.A.T.M.A.N.-Advanced looses only up to 5%
of the packages, OLSR and B.A.T.M.A.N. loose in scenario 5 over 5 hops about 25%. AODV
lost, even if it managed to establish a connection, 74% for scenario 1 up to 97% in scenario 3.
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(c) Routing packages overhead from Scenario 3
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(e) Routing packages overhead from Scenario 5

Figure 5.7: Routing packages overhead for all scenarios
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Figure 5.8: Routing data overhead for all scenarios
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Figure 5.9: Packet loss for all scenarios
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Chapter 6

Interpretation

Throughput The results from chapter 5 show that the throughput and round-trip time are for
all routing algorithms in the same range. But it is noticeable that OLSR always performs a little
bit worse than the other two protocols. We could guess that this comes from the added packet
overhead the protocols generate or the higher packet loss. But if we look at these results, we see
that a very low loss doesn’t automatically mean that the throughput is higher or that a higher
packet overhead automatically means that the the packet delivery ratio gets reduced due to
this additional load. But another work [13] showed that throughput primarily decreases with the
amount of packets and data the respective routing algorithm adds to the network. This direct
influence cannot be seen in our results. We can argue that only considering 5 nodes isn’t that
much that there could be a dramatical influence. But for bigger ad hoc networks, it would be
interesting to see if we would also see this impact. Since the round-trip time of OLSR is also
minimal higher in all scenarios compared to the others, we can conclude that OLSR has more
computational cost until it can forward the packages. B.A.T.M.A.N. and B.A.T.M.A.N.-Advanced
seem to be more efficient there. And we should also not neglect that the virtual machines have
a influence on the overall performance.

Round-trip time As already mentioned in the paragraph above, the round-trip time behaves
like the throughput. The routing algorithms which reach a high throughput also perform well in
the sense of small round-trip time. But the numbers are factors higher than expected. This is
due to the fact that the virtual machines add a lot of delay to the network as shown in 5.2.

Route convergence latency test Most interesting for the SWARMIX project are the conver-
gence latency tests, since this are the results which consider the mobility of the nodes. We
see that for scenario 1, B.A.T.M.A.N. and B.A.T.M.A.N.-Advanced find the new route within 12
seconds, while OLSR has about 24 seconds. This most probably comes from the fact that
OLSR uses a HELLO message interval of 2 seconds, while B.A.T.M.A.N. uses a originator in-
terval of 0.5 seconds and B.A.T.M.A.N.-Advanced of 1 second. On the website of B.A.T.M.A.N.-
Advanced, they also propose to decrease this value in a highly mobile network: "[..] it might
prove helpful to decrease the value in a highly mobile environment ([...]) but keep in mind that
this will drastically increase the traffic. Unless you experience problems with your setup, it is
suggested you keep the default value." As already mentioned, we used each routing protocol
with the standard configuration. We can summarize that both B.A.T.M.A.N. implementations re-
act very fast to topology changes when the route is disconnected. OLSR is only faster than the
others when a better route is added to the network (see 4.1.4). When AODV worked, it per-
formed very well and beat the pro-active routing protocols, but unluckily it didn’t work all the
time, especially for bigger network with more than 4 nodes.

Routing packets and data overhead The HELLO messages mentioned before also affect
the routing packets and data overhead. We see that B.A.T.M.A.N. adds most and OLSR least
packages. This is proportional to the HELLO packets inveral sent by the protocols. Here we can
also see one benefit of B.A.T.M.A.N.-Advanced. Because the routing is happening on ISO/OSI
layer 2, the packets added are very small, since they’re missing the 40bytes layer 3 header.
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Packet loss Astonishing is the huge difference of packet loss of B.A.T.M.A.N.-Advanced com-
pared to the others. Our results are similar to those in [7], but contradict a newer paper [13]. In
the latter they reach nearly no losses with all routing algorithms. Also here we should not forget
that the virtual machines affect the measurements.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

From our results, we see that the routing protocols distinctly vary in performance. The results
contradict some recent works in the sense of that they determine that throughput is primarily
decreased by the packets they add to the network. But also support some other work which
also had almost as large packet losses as we have. The impact of using virtual machines for
doing the measurements is also reflected in the results, for instance the huge round-trip time.
But we’ve seen that using virtual machines is indeed a possiblity to compare routing algorithms,
but there should be more investigation in how to make the impact smaller.
The conclusion from our measurements is that B.A.T.M.A.N.-Advanced is the most suitable for
our highly mobile network. The convergence times are very low and the packet loss is nearly
zero percent for all scenarios. This suites best for our mobile network we need in SWARMIX.
Also in metrics throughput and round-trip time, B.A.T.M.A.N.-Advanced performs very good.

7.2 Outlook

With our thesis we showed that using virtual machines as nodes for a testbed is indeed a
possibility, but the impact of the these virtual computers is noticeable. Measurements on how
many virtual machnines can be running on one computer until bigger limitation appear should
be investigated. Also the performance of the protocols with different network loads should be
considered. Other routing algorithms like babel, which can be found many times in literature,
should also be measured.
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Chapter 8

Summary

In this semester thesis, we created a testbed consisting of multiple virtual machines running on
2 laptops to simulate the behaviour of flying drones in an aerial environment. We haven’t found
any relational work similar to ours in terms of using virtual machines as nodes. We used this
testbed to run several scenarios, which can happen while these drones fly around, and used
multiple tools to obtain metrics about the efficiency of the three routing algorithm B.A.T.M.A.N.,
B.A.T.M.A.N.-Advanced and OLSR. We also made some measurements with AODV, but it
showed that it’s not working well. From the results, we conclude that using B.A.T.M.A.N.-
Advanced should be the best solution for our highly mobile network.
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Appendix A

Installation and Configuration

A.1 Installation

We installed all routing protocol with the default configuration expect B.A.T.M.A.N.-Advanced.
We set in the Makefile

CONFIG_BATMAN_ADV_DEBUG=y

to enable the debug option.
The versions used were:

Routing protocol Version
B.A.T.M.A.N. 0.3.2
B.A.T.M.A.N.-Advanced 2012.4.0
OLSR 0.6.4
AODV aodv-uu 0.9.6

A.2 Configuration

The configuration file for the Linksys AE1000 USB dongle looked like the following. We set the
MCS to 1 for the reasons mentioned before and used channel 60 (5.3Ghz) for less interferences
compared to the highly overused 2.4 Ghz band.

#The word of "Default" must not be removed
Default
CountryRegion=5
CountryRegionABand=7
CountryCode=CH
ChannelGeography=1
SSID=swarmix
NetworkType=Adhoc
WirelessMode=5
Channel=60
BeaconPeriod=100
TxPower=100
BGProtection=0
TxPreamble=0
RTSThreshold=2347
FragThreshold=2346
TxBurst=1
PktAggregate=0
WmmCapable=1
AckPolicy=0;0;0;0
AuthMode=OPEN
EncrypType=NONE
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WPAPSK=
DefaultKeyID=1
Key1Type=0
Key1Str=
Key2Type=0
Key2Str=
Key3Type=0
Key3Str=
Key4Type=0
Key4Str=
PSMode=CAM
AutoRoaming=0
RoamThreshold=70
APSDCapable=0
APSDAC=0;0;0;0
HT_RDG=1
HT_EXTCHA=0
HT_OpMode=0
HT_MpduDensity=4
HT_BW=1
HT_BADecline=0
HT_AutoBA=1
HT_AMSDU=0
HT_BAWinSize=64
HT_GI=1
HT_MCS=1
HT_MIMOPSMode=3
HT_DisallowTKIP=1
HT_STBC=0
IEEE80211H=0
TGnWifiTest=0
WirelessEvent=0
CarrierDetect=0
AntDiversity=0
BeaconLostTime=4
PSP_XLINK_MODE=0



Appendix B

Scripts

Here are the scripts which have been used for doing the tests. Each node had a copy of the code
folder from the repository. The nodes were set up to be reachable with ip adresses 192.168.2.x
over the cabled network and have a customized config.sh. Then from the control unit (a com-
puter where we control the nodes), the following commands have been executed.

1. ./setup_pca.sh # This sets up the command forwarding with netcat on all nodes

2. ./pca.sh ’source config.sh’ # Load config on all nodes

3. ./pca.sh ’source functions.sh’ # Load functions on all nodes

4. ./pca.sh ’./initial.sh’ # Initializes all dongles on all nodes

5. ./pca.sh ’./create_nodes_list.sh’ # Creates the nodes_list file with ip and mac

6. ./loop_scenarios.sh # Start doing all tests

37
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Listing B.1: Sample configuration (config.sh)

1 # / b in / bash
2 # Con f igu ra t ion f i l e f o r each node
3
4 export SWARMX_NR=1
5 #SWARMX_ROUTING= ’ s t a t i c ’
6 export SWARMX_ROUTING=batman
7 #SWARMX_ROUTING= ’batman−adv ’
8 #SWARMX_ROUTING= o l s r
9

10 export SWARMX_SCENARIO=1
11
12 # This pa r t a u t o m a t i c a l l y sets the DEVICE and ADAPTER
13
14 SWARMX_ADAPTER="NO"
15 SWARMX_DEVICE=" "
16 i f lsusb | grep −q TL−WN821N
17 then
18 SWARMX_ADAPTER="TPLINK "
19 SWARMX_DEVICE=" wlan3 "
20 f i
21
22 i f lsusb | grep −q AE1000
23 then
24 SWARMX_ADAPTER="LINKSYS"
25 SWARMX_DEVICE=" ra0 "
26 f i
27
28 i f lsusb | grep −q WUSB600N
29 then
30 SWARMX_ADAPTER="LINKSYS"
31 SWARMX_DEVICE=" ra0 "
32 f i
33
34 # Used f o r L inksys under 10.04nano c
35 i f lsusb | grep −q Linksys
36 then
37 SWARMX_ADAPTER="LINKSYS"
38 SWARMX_DEVICE=" ra0 "
39 f i
40
41 export SWARMX_DEVICE
42 export SWARMX_ADAPTER



39

Listing B.2: Block a node (block.sh)

1 # ! / b in / bash
2 # Block a node
3 source f u n c t i o n s . sh
4
5 EXPECTED_ARGS=1
6 E_BADARGS=65
7
8 i f [ $# −ne $EXPECTED_ARGS ]
9 then

10 echo "Usage : ‘ basename $0 ‘ #number_of_swarm_to_block "
11 ex i t $E_BADARGS
12 f i
13
14 NR_OF_SWARM=$1
15
16 get_node_ip $1
17 get_node_mac $1
18
19 i f [ "$NODE_MAC" = " " ]
20 then
21 echo "MAC of swarm $1 not found , doing noth ing "
22 ex i t 0
23 f i
24
25 i f [ "$SWARMX_ROUTING" = " batman−adv " ]
26 then
27 echo " Block ing Swarm $1 wi th IP : $NODE_IP and MAC: $NODE_MAC"
28 sudo ebtables −A INPUT −s $NODE_MAC − j DROP
29 e l i f [ "$SWARMX_ROUTING" = " babeld " ]
30 then
31 sudo i p t a b l e s −A INPUT −m mac −−mac−source $NODE_MAC − i

$SWARMX_DEVICE − j DROP
32 sudo i p 6 t a b l e s −A INPUT −m mac −−mac−source $NODE_MAC − i

$SWARMX_DEVICE − j DROP
33 else
34 echo " Block ing Swarm $1 wi th IP : $NODE_IP and MAC: $NODE_MAC"
35 sudo i p t a b l e s −A INPUT −m mac −−mac−source $NODE_MAC − i

$SWARMX_DEVICE − j DROP
36 sudo arp tab les −A INPUT −s $NODE_IP − j DROP
37 sudo arp tab les −A INPUT −−source−mac $NODE_MAC − j DROP
38 sudo arp −d $NODE_IP
39 f i

Listing B.3: Block all nodes (block_all.sh)

1 # ! / b in / bash
2 # Blocks a l l o ther nodes
3 source f u n c t i o n s . sh
4
5
6
7 fo r i i n { 1 . . 5 } ;
8 do
9 i f [ $ i != $SWARMX_NR ] ;

10 then
11 . / b lock . sh $ i
12 f i
13 done
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Listing B.4: Unblock a node (unblock.sh)

1 # ! / b in / bash
2 source f u n c t i o n s . sh
3
4 # Unblocks a s p e c i f i g node
5
6 EXPECTED_ARGS=1
7 E_BADARGS=65
8
9 i f [ $# −ne $EXPECTED_ARGS ]

10 then
11 echo "Usage : ‘ basename $0 ‘ #number_of_swarm_to_unblock "
12 ex i t $E_BADARGS
13 f i
14
15 NR_OF_SWARM=$1
16
17 get_node_ip $1
18 get_node_mac $1
19
20 i f [ "$NODE_MAC" = " " ]
21 then
22 echo "MAC of swarm $1 not found "
23 ex i t 0
24 f i
25
26 i f [ "$SWARMX_ROUTING" = " batman−adv " ]
27 then
28 IP =192.168.101. $ ( ( $1∗10) )
29 echo " Unblocking Swarm $1 wi th IP : $NODE_IP and MAC: $NODE_MAC"
30 sudo ebtables −D INPUT −s $NODE_MAC − j DROP
31 e l i f [ "$SWARMX_ROUTING" = " babeld " ]
32 then
33 sudo i p t a b l e s −D INPUT −m mac −−mac−source $NODE_MAC − i

$SWARMX_DEVICE − j DROP
34 sudo i p 6 t a b l e s −D INPUT −m mac −−mac−source $NODE_MAC − i

$SWARMX_DEVICE − j DROP
35 else
36 echo " Unblocking Swarm $1 wi th IP : $NODE_IP and MAC: $NODE_MAC"
37 sudo i p t a b l e s −D INPUT −m mac −−mac−source $NODE_MAC − i

$SWARMX_DEVICE − j DROP
38 sudo arp tab les −D INPUT −s $NODE_IP − j DROP
39 sudo arp tab les −D INPUT −−source−mac $NODE_MAC − j DROP
40 f i

Listing B.5: Unblock all nodes (unblock_all.sh)

1 # ! / b in / bash
2
3 # Unblocks a l l nodes
4
5 sudo i p t a b l e s −F
6 sudo i p 6 t a b l e s −F
7 sudo arp tab les −F
8 sudo ebtables −F
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Listing B.6: Generic functions (functions.sh)

1 # ! / usr / b in / bash
2
3 # Generic f u n c t i o n s used by the s c r i p t s
4
5 # Sets NODE_IP to the IP f o r the node given i n $1
6 funct ion get_node_ip ( ) {
7 # Sets NODE_IP to the i p o f the remote node
8 i f [ $SWARMX_ROUTING = ’ batman−adv ’ ] ;
9 then

10 NODE_IP=192.168.101. $ ( ( $1∗10) )
11 else
12 NODE_IP=192.168.100. $ ( ( $1∗10) )
13 f i
14 }
15
16 # Sets NODE_MAC to the mac of the node $1
17 # Needs the nodes_ l i s t f i l e created wi th
18 # c rea te_nodes_ l i s t . sh
19 funct ion get_node_mac ( ) {
20 # Returns the MAC of a given node
21 temp=192.168.100. $ ( ( $1∗10) )
22 NODE_MAC=$ ( cat nodes_ l i s t | grep $temp | cu t −c 16−)
23 }
24
25 # S t a r t s the i p e r f c l i e n t to node 5
26 funct ion s t a r t _ i p e r f _ c l i e n t ( ) {
27 # S t a r t s udp stream to server
28 get_node_ip 5
29 echo " S t a r t i n g speed t e s t " | . / predate . sh >> $SWARMX_LOGFILE &
30 i p e r f −c $NODE_IP − t 60 − l 1400 − i 10 −u −b 100M >>

$SWARMX_LOGFILE &
31 }
32
33 # Stops the i p e r f c l i e n t
34 funct ion s t o p _ i p e r f _ c l i e n t ( ) {
35 # K i l l s a l l i p e r f processes
36 p k i l l i p e r f
37 }
38
39 # S t a r t s the i p e r f server i n udp mode
40 funct ion s t a r t _ i p e r f _ s e r v e r ( ) {
41 # S t a r t s i p e r f i n l i s t e n i n g mode on server s ide
42 # Logging i s done on c l i e n t s ide
43 i p e r f −s −u >> $SWARMX_LOGFILE &
44 }
45
46 # q u i t s the i p e r f server
47 funct ion s top_ ipe r f_se rve r ( ) {
48 # K i l l s a l l i p e r f processes
49 p k i l l i p e r f
50 }
51
52 # S t a r t s t c p s t a t w i th the c o r r e c t f i l t e r
53 funct ion s t a r t _ t c p s t a t ( ) {
54 i f [ $SWARMX_ROUTING = ’ batman ’ ] ;
55 then
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56 sudo t c p s t a t − i ra0 −F −o ’TCPSTAT: Packets : %n , Bytes : %N\ n ’
− f ’ net 192.168.100.0/24 and udp ds t po r t 4305 ’ 10 >>

$SWARMX_LOGFILE &
57 e l i f [ $SWARMX_ROUTING = " batman−adv " ]
58 then
59 # For batman−adv , we use the i n t e g r a t e d s t a t i s t i c s t o o l
60 # sudo b a t c t l td −x 128 ra0 >> $SWARMX_LOGFILE &
61 echo ’ Not s t a r t i n g t c p s t a t fo r batman−adv ’
62 e l i f [ $SWARMX_ROUTING = " o l s r " ]
63 then
64 sudo t c p s t a t − i ra0 −F −o ’TCPSTAT: Packets : %n , Bytes : %N\ n ’

− f ’ net 192.168.100.0/24 and udp ds t po r t 698 ’ 10 >>
$SWARMX_LOGFILE &

65 e l i f [ $SWARMX_ROUTING = " aodv " ]
66 then
67 sudo t c p s t a t − i ra0 −F −o ’TCPSTAT: Packets : %n , Bytes : %N\ n ’

− f ’ udp ds t po r t 654 ’ 10 >> $SWARMX_LOGFILE &
68 e l i f [ $SWARMX_ROUTING = " babeld " ]
69 then
70 sudo t c p s t a t − i ra0 −F −o ’TCPSTAT: Packets : %n , Bytes : %N\ n ’

− f ’ host f f 0 2 : : 1 : 6 ’ 10 >> $SWARMX_LOGFILE &
71 else
72 echo " TCPstat not s t a r t i n g "
73 f i
74 }
75
76 # Stops t c p s t a t
77 funct ion s t o p _ t c p s t a t ( ) {
78 i f [ $SWARMX_ROUTING = ’ batman−adv ’ ] ;
79 then
80 # Wri te s t a t i s t i c s to l o g f i l e
81 sudo b a t c t l s | . / predate . sh >> $SWARMX_LOGFILE &
82 else
83 sudo p k i l l t c p s t a t
84 f i
85 }
86
87 # S t a r t s a ping t e s t to node 5
88 funct ion s t a r t _ p i n g _ t e s t ( ) {
89 # S t a r t s p ing ing node 5 f o r 60sec
90 get_node_ip 5
91 echo " S t a r t i n g ping t e s t " | . / predate . sh >> $SWARMX_LOGFILE &
92 sudo ping − i 0 .5 −c 60 $NODE_IP | . / predate . sh >> $SWARMX_LOGFILE

&
93 }

Listing B.7: Set date before the output (predate.sh)

1 # ! / b in / bash
2
3 # Adds the cu r ren t timestamp before an output
4 # Can be used wi th e . g . :
5 # echo "OK" | . / predate . sh > f i l e . t x t
6
7 while read −r l i n e ; do
8 echo " $ ( date +%s.%N) : $ { l i n e } "
9 done
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Listing B.8: Initialize node (initial.sh)

1 # ! / b in / bash
2
3 # I n i t i a l i z e s the adapter , sets the c o r r e c t IP etc
4 # as s p e c i f i e d i n con f ig . sh
5
6 source con f ig . sh
7
8 IP =192.168.100. $ ( ($SWARMX_NR∗10) )
9

10 echo $SWARMX_ADAPTER " detected . Using device " $SWARMX_DEVICE
11
12 i f [ $SWARMX_ADAPTER = "LINKSYS" ]
13 then
14 i f lsmod | grep r t3572s ta
15 then
16 echo " Unloading module r t3572s ta "
17 sudo rmmod r t3572s ta
18 f i
19 echo " Loading module r t3572s ta "
20 sudo modprobe r t3572s ta
21 echo " Wait ing 3sec "
22 sleep 3
23 echo " Se t t i ng ra0 down"
24 sudo i f c o n f i g ra0 down
25 echo " Wait ing 3sec "
26 sleep 3
27 echo " Se t t i ng IP to : $IP "
28 sudo i f c o n f i g ra0 $IP up
29 e l i f [ $SWARMX_ADAPTER = "TPLINK " ]
30 then
31 echo " Unloading module ath9k_htc "
32 sudo modprobe −r ath9k_htc
33 echo " Wait ing 3sec "
34 sleep 3
35 echo " Loading module ath9k_htc "
36 sudo modprobe ath9k_htc
37 echo " Wait ing 3sec "
38 sleep 3
39 sudo i f c o n f i g $SWARMX_DEVICE down
40 sudo iwcon f ig $SWARMX_DEVICE mode ad−hoc
41 sudo i f c o n f i g $SWARMX_DEVICE $IP up
42 sudo iwcon f ig $SWARMX_DEVICE ess id swarmx
43 sudo iwcon f ig $SWARMX_DEVICE channel $SWARMX_CHANNEL
44 f i
45
46 echo "$SWARMX_DEVICE i n i t i a l i z e d "
47
48 echo " Se t t i ngs system time "
49 sudo ntpdate 0. ch . pool . ntp . org
50 sudo ntpdate 0. ch . pool . ntp . org
51
52 ex i t 0



44 APPENDIX B. SCRIPTS

Listing B.9: Uninitialize node (uninitial.sh)

1 # ! / b in / bash
2
3 #This s c r i p t shutdowns the ra0 i n t e r f a c e and removes the modules from

the kerne l
4
5 i f [ $SWARMX_DEVICE = " ra0 " ]
6 then
7 # shutdown i n t e r f a c e l i n k s y s
8 sudo i f c o n f i g ra0 down
9 sudo rmmod r t3572s ta

10
11 e l i f [ $SWARMX_DEVICE = ’ wlan3 ’ ]
12 then
13 sudo i f c o n f i g wlan3 down
14 sudo modprobe −r ath9k_htc
15 f i

Listing B.10: Create the nodes_list file (create_nodes_list.sh)

1 # / b in / bash
2 # Pings each node i p and creates the nodes_ l i s t f i l e
3
4 fo r i i n { 1 . . 9 } ; do
5 ping −c 1 −W 2 192.168.100.$ ( ( i ∗10) ) > / dev / n u l l &
6 done
7 arp −n | grep 192.168.100. | grep −v incomplete | cu t −c 1−14,33−51 >

nodes_ l i s t
8 sleep 2
9 date

10 cat nodes_ l i s t
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Listing B.11: Setup the nodes to accept commands (setup_pca.sh)

1 # ! / b in / bash
2
3 # S c r i p t s i n i t i a l i z e s the netca t bash forward ing on a l l nodes f o r
4 # f a s t e r command forward ing than ssh
5 # Assumes t h a t nodes are reachable over ip ’ s 192.168.2 . x
6
7 fo r i i n 10 20 30 40 50;
8 do
9 ssh ubuntu@192 . 1 6 8 . 2 . $ i ’cd ~/ Semesterarbei t / code ; mk f i f o pipe ;

nc − l −k 1337 <pipe | / b in / bash &>pipe & ’
10 done

Listing B.12: Push a command to a node (pc.sh)

1 # ! / b in / bash
2
3 # Push a command to the node s p e c i f i e d i n $1
4 # command i s i n $2
5
6 # e . g . to block node 3 from 2:
7 # . / pc . s j 2 ’ . / b lock . sh 3 ’
8
9 # ssh ubuntu@192 . 1 6 8 . 2 . $ ( ( $1∗10) ) ’ cd ~/ Semesterarbei t / code ; ’ $2

10 echo $2 | nc 192.168.2 .$ ( ( $1∗10) ) 1337

Listing B.13: Push a command to all nodes (pca.sh)

1 # ! / b in / bash
2
3 # Push a command to a l l nodes
4
5 fo r i i n 10 20 30 40 50;
6 do
7 echo $1 | nc 192.168.2 . $ i 1337
8 done
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Listing B.14: The scenarios and timings (scenarios.sh)

1 # ! / b in / bash
2
3 # This s c r i p t represents the scenar ios mentioned i n the t h e s i s
4 # S c r i p t s must be run on c o n t r o l u n i t
5
6 source f u n c t i o n s . sh
7
8 SCENARIO=$1
9

10 . / pca . sh ’ source f u n c t i o n s . sh ’
11 . / pca . sh " expor t SWARMX_SCENARIO=$SCENARIO"
12 . / pca . sh ’ mkdir −p . . / r e s u l t s / scenar ios /$SWARMX_SCENARIO’
13 . / pca . sh ’ export SWARMX_LOGFILE = . . / r e s u l t s / scenar ios /$SWARMX_SCENARIO

/$SWARMX_NR−$SWARMX_ROUTING. log ’
14
15 echo " Scenar io $1 "
16 echo " S t a r t i n g Routing on a l l nodes "
17 . / pca . sh ’ . / unb lock_a l l . sh ’
18 . / pca . sh ’ echo "−−−NEW−−−" | . / predate . sh >> $SWARMX_LOGFILE’
19 . / pca . sh ’ . / s t a r t . sh ’
20 # S t a r t i n g i p e r f Server on node 5
21 . / pc . sh 5 ’ s t a r t _ i p e r f _ s e r v e r ’
22
23 # S t a r t i n g byte moni to r ing on a l l nodes
24 . / pca . sh ’ s t a r t _ t c p s t a t ’
25
26 echo " Wait ing 30 Seconds "
27 sleep 30
28
29 i f [ $SCENARIO == 1 ] ;
30 then
31 . / pc . sh 1 ’ . / b lock . sh 3 ’
32 . / pc . sh 1 ’ . / b lock . sh 4 ’
33 . / pc . sh 1 ’ . / b lock . sh 5 ’
34
35 . / pc . sh 2 ’ . / b lock . sh 3 ’
36 . / pc . sh 2 ’ . / b lock . sh 4 ’
37
38 . / pc . sh 3 ’ . / b l o c k _ a l l . sh ’
39
40 . / pc . sh 4 ’ . / b lock . sh 1 ’
41 . / pc . sh 4 ’ . / b lock . sh 2 ’
42 . / pc . sh 4 ’ . / b lock . sh 3 ’
43
44 . / pc . sh 5 ’ . / b lock . sh 1 ’
45 . / pc . sh 5 ’ . / b lock . sh 3 ’
46
47 echo " Wait ing 60sec "
48 sleep 60
49
50 echo " Begin p ing ing node 5 from node 1 "
51 . / pc . sh 1 ’ get_node_ip 5 ’
52 . / pc . sh 1 ’ echo " Begin p ing ing " | . / predate . sh >> $SWARMX_LOGFILE

’
53 . / pc . sh 1 ’ sudo ping − i 0 .1 −c 400 $NODE_IP | . / predate . sh >>

$SWARMX_LOGFILE & ’
54
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55 echo " Wait ing 20sec "
56 sleep 20
57
58
59 echo "Node moving "
60 . / pca . sh ’ echo "Node Moving " | . / predate . sh >> $SWARMX_LOGFILE’
61 . / pc . sh 1 ’ . / unblock . sh 4 ’
62 . / pc . sh 1 ’ . / b lock . sh 2 ’
63
64 . / pc . sh 2 ’ . / b lock . sh 1 ’
65
66 . / pc . sh 4 ’ . / unblock . sh 1 ’
67
68 echo " Wait ing another 60sec to s e t t l e "
69 sleep 60
70
71 echo " Doing speed t e s t "
72 # S t a r t i n g performance measurement
73 . / pc . sh 1 ’ s t a r t _ i p e r f _ c l i e n t ’
74
75 sleep 65
76
77 echo " Doing ping t e s t "
78 . / pc . sh 1 ’ s t a r t _ p i n g _ t e s t ’
79
80 sleep 65
81
82
83 e l i f [ $SCENARIO == 2 ]
84 then
85 . / pc . sh 3 ’ . / b l o c k _ a l l . sh ’
86
87 . / pc . sh 4 ’ . / b l o c k _ a l l . sh ’
88
89 . / pc . sh 1 ’ . / b lock . sh 3 ’
90 . / pc . sh 1 ’ . / b lock . sh 4 ’
91 . / pc . sh 1 ’ . / b lock . sh 5 ’
92
93 . / pc . sh 2 ’ . / b lock . sh 3 ’
94 . / pc . sh 2 ’ . / b lock . sh 4 ’
95 . / pc . sh 2 ’ . / b lock . sh 5 ’
96
97 . / pc . sh 5 ’ . / b lock . sh 1 ’
98 . / pc . sh 5 ’ . / b lock . sh 2 ’
99 . / pc . sh 5 ’ . / b lock . sh 3 ’

100 . / pc . sh 5 ’ . / b lock . sh 4 ’
101
102 echo " Wait ing 60sec "
103 sleep 60
104
105 echo " Begin p ing ing node 5 from node 1 "
106 . / pc . sh 1 ’ get_node_ip 5 ’
107 . / pc . sh 1 ’echo " Begin p ing ing " | . / predate . sh >> $SWARMX_LOGFILE

’
108 . / pc . sh 1 ’ sudo ping − i 0 .1 −c 400 $NODE_IP | . / predate . sh >>

$SWARMX_LOGFILE & ’
109
110 echo " Wait ing 20sec "
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111 sleep 20
112
113 echo "Node moving "
114 . / pca . sh ’echo "Node Moving " | . / predate . sh >> $SWARMX_LOGFILE’
115 . / pc . sh 2 ’ . / unblock . sh 5 ’
116
117 . / pc . sh 5 ’ . / unblock . sh 2 ’
118
119 echo " Wait ing another 60sec to s e t t l e "
120 sleep 60
121
122 echo " Doing speed t e s t "
123 # S t a r t i n g performance measurement
124 . / pc . sh 1 ’ s t a r t _ i p e r f _ c l i e n t ’
125
126 sleep 65
127
128 echo " Doing ping t e s t "
129 . / pc . sh 1 ’ s t a r t _ p i n g _ t e s t ’
130
131 sleep 65
132
133 e l i f [ $SCENARIO == 3 ]
134 then
135 . / pc . sh 1 ’ . / b lock . sh 4 ’
136 . / pc . sh 1 ’ . / b lock . sh 5 ’
137
138 . / pc . sh 2 ’ . / b lock . sh 3 ’
139
140 . / pc . sh 3 ’ . / b lock . sh 2 ’
141 . / pc . sh 3 ’ . / b lock . sh 5 ’
142
143 . / pc . sh 4 ’ . / b lock . sh 1 ’
144
145 . / pc . sh 5 ’ . / b lock . sh 1 ’
146 . / pc . sh 5 ’ . / b lock . sh 3 ’
147
148 echo " Wait ing 60sec "
149 sleep 60
150
151 echo " Begin p ing ing node 5 from node 1 "
152 . / pc . sh 1 ’ get_node_ip 5 ’
153 . / pc . sh 1 ’echo " Begin p ing ing " | . / predate . sh >> $SWARMX_LOGFILE

’
154 . / pc . sh 1 ’ sudo ping − i 0 .1 −c 400 $NODE_IP | . / predate . sh >>

$SWARMX_LOGFILE & ’
155
156 echo " Wait ing 20sec "
157 sleep 20
158
159 echo "Node moving "
160 . / pca . sh ’echo "Node Moving " | . / predate . sh >> $SWARMX_LOGFILE’
161
162 . / pc . sh 1 ’ . / b lock . sh 2 ’
163
164 . / pc . sh 2 ’ . / b lock . sh 1 ’
165 . / pc . sh 2 ’ . / b lock . sh 4 ’
166 . / pc . sh 2 ’ . / b lock . sh 5 ’
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167
168 . / pc . sh 4 ’ . / b lock . sh 2 ’
169
170 . / pc . sh 5 ’ . / b lock . sh 2 ’
171
172 echo " Wait ing another 60sec to s e t t l e "
173 sleep 60
174
175 echo " Doing speed t e s t "
176 # S t a r t i n g performance measurement
177 . / pc . sh 1 ’ s t a r t _ i p e r f _ c l i e n t ’
178
179 sleep 65
180
181 echo " Doing ping t e s t "
182 . / pc . sh 1 ’ s t a r t _ p i n g _ t e s t ’
183
184 sleep 65
185
186 e l i f [ $SCENARIO == 4 ]
187 then
188 . / pc . sh 1 ’ . / b lock . sh 2 ’
189 . / pc . sh 1 ’ . / b lock . sh 4 ’
190 . / pc . sh 1 ’ . / b lock . sh 5 ’
191
192 . / pc . sh 2 ’ . / b lock . sh 1 ’
193 . / pc . sh 2 ’ . / b lock . sh 3 ’
194 . / pc . sh 2 ’ . / b lock . sh 4 ’
195 . / pc . sh 2 ’ . / b lock . sh 5 ’
196
197 . / pc . sh 3 ’ . / b lock . sh 2 ’
198 . / pc . sh 3 ’ . / b lock . sh 5 ’
199
200 . / pc . sh 4 ’ . / b lock . sh 1 ’
201 . / pc . sh 4 ’ . / b lock . sh 2 ’
202
203 . / pc . sh 5 ’ . / b lock . sh 1 ’
204 . / pc . sh 5 ’ . / b lock . sh 2 ’
205 . / pc . sh 5 ’ . / b lock . sh 3 ’
206
207 echo " Wait ing 60sec "
208 sleep 60
209
210 echo " Begin p ing ing node 5 from node 1 "
211 . / pc . sh 1 ’ get_node_ip 5 ’
212 . / pc . sh 1 ’echo " Begin p ing ing " | . / predate . sh >> $SWARMX_LOGFILE

’
213 . / pc . sh 1 ’ sudo ping − i 0 .1 −c 400 $NODE_IP | . / predate . sh >>

$SWARMX_LOGFILE & ’
214
215 echo " Wait ing 20sec "
216 sleep 20
217
218 echo "Node moving "
219 . / pca . sh ’echo "Node Moving " | . / predate . sh >> $SWARMX_LOGFILE’
220
221 . / pc . sh 1 ’ . / unblock . sh 2 ’
222
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223 . / pc . sh 2 ’ . / unblock . sh 1 ’
224 . / pc . sh 2 ’ . / unblock . sh 4 ’
225 . / pc . sh 2 ’ . / unblock . sh 5 ’
226
227 . / pc . sh 4 ’ . / unblock . sh 2 ’
228
229 . / pc . sh 5 ’ . / unblock . sh 2 ’
230
231 echo " Wait ing another 60sec to s e t t l e "
232 sleep 60
233
234 echo " Doing speed t e s t "
235 # S t a r t i n g performance measurement
236 . / pc . sh 1 ’ s t a r t _ i p e r f _ c l i e n t ’
237
238 sleep 65
239
240 echo " Doing ping t e s t "
241 . / pc . sh 1 ’ s t a r t _ p i n g _ t e s t ’
242
243 sleep 65
244
245 e l i f [ $SCENARIO == 5 ]
246 then
247 . / pc . sh 1 ’ . / b lock . sh 2 ’
248 . / pc . sh 1 ’ . / b lock . sh 3 ’
249 . / pc . sh 1 ’ . / b lock . sh 4 ’
250
251 . / pc . sh 2 ’ . / b lock . sh 1 ’
252 . / pc . sh 2 ’ . / b lock . sh 4 ’
253 . / pc . sh 2 ’ . / b lock . sh 5 ’
254
255 . / pc . sh 3 ’ . / b lock . sh 1 ’
256 . / pc . sh 3 ’ . / b lock . sh 5 ’
257
258 . / pc . sh 4 ’ . / b lock . sh 1 ’
259 . / pc . sh 4 ’ . / b lock . sh 2 ’
260
261 . / pc . sh 5 ’ . / b lock . sh 2 ’
262 . / pc . sh 5 ’ . / b lock . sh 3 ’
263
264 echo " Wait ing 60sec "
265 sleep 60
266
267 echo " Begin p ing ing node 5 from node 1 "
268 . / pc . sh 1 ’ get_node_ip 5 ’
269 . / pc . sh 1 ’echo " Begin p ing ing " | . / predate . sh >> $SWARMX_LOGFILE

’
270 . / pc . sh 1 ’ sudo ping − i 0 .1 −c 400 $NODE_IP | . / predate . sh >>

$SWARMX_LOGFILE & ’
271
272 echo " Wait ing 20sec "
273 sleep 20
274
275 echo "Node moving "
276 . / pca . sh ’echo "Node Moving " | . / predate . sh >> $SWARMX_LOGFILE’
277
278 . / pc . sh 1 ’ . / unblock . sh 2 ’
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279 . / pc . sh 1 ’ . / b lock . sh 5 ’
280
281 . / pc . sh 2 ’ . / unblock . sh 1 ’
282
283 . / pc . sh 5 ’ . / b lock . sh 1 ’
284
285 echo " Wait ing another 60sec to s e t t l e "
286 sleep 60
287
288 echo " Doing speed t e s t "
289 # S t a r t i n g performance measurement (60 s )
290 . / pc . sh 1 ’ s t a r t _ i p e r f _ c l i e n t ’
291
292 sleep 65
293
294 echo " Doing ping t e s t "
295 . / pc . sh 1 ’ s t a r t _ p i n g _ t e s t ’
296
297 sleep 65
298
299 else
300 echo " Not implemented "
301 f i
302
303 . / pca . sh ’ s top_ tcps ta t ’
304 . / pc . sh 1 ’ s t o p _ i p e r f _ c l i e n t ’
305 . / pc . sh 5 ’ s top_ ipe r f_se rve r ’
306
307
308 . / pca . sh ’ . / unb lock_a l l . sh ’
309 echo " Stopping Routing "
310 . / pca . sh ’ . / s top . sh ’
311
312 echo " Scenar io $SCENARIO done "

Listing B.15: Loop over the scenarios (loop_scenarios.sh)

1 # ! / b in / bash
2
3 # Loops through a l l scenar ios and does a l l t e s t s
4 # This s c r i p t has to be run on the c o n t r o l u n i t
5
6 # Do 10 i t e r a t i o n s of 5 scenar ios
7 fo r q i n { 1 . . 1 0 }
8 do
9 fo r s i n 1 2 3 4 5

10 do
11 fo r r i n batman batman−adv o l s r
12 do
13 echo " Using $r and doing Scenar io $s "
14 . / pca . sh "SWARMX_ROUTING=$r "
15 sleep 1
16 . / scenar ios . sh $s
17 sleep 1
18 done
19 done
20 echo " F u l l Loop $q "
21 done
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Listing B.16: Start routing algorithm (start.sh)

1 # ! / b in / bash
2
3 # S t a r t s the r o u t i n g a lgor i thms on each the cu r ren t node
4 # con f ig . sh has to be loaded before wi th ’ source con f ig . sh ’
5
6 source f u n c t i o n s . sh
7
8 i f [ $SWARMX_ROUTING = " o l s r " ]
9 then

10 echo " S t a r t i n g OLSRD" | . / predate . sh >> $SWARMX_LOGFILE
11 sudo o l s r d − i $SWARMX_DEVICE −d 2 | grep −−l i n e−buf fe red KERN

| . / predate . sh >> $SWARMX_LOGFILE &
12 e l i f [ $SWARMX_ROUTING = " batman−adv " ]
13 then
14 # We need to setup a br idge else we cannot f i l t e r the packets

on layer2 wi th ebtables
15 echo " S t a r t i n g Batman−Adv " | . / predate . sh >> $SWARMX_LOGFILE
16 sudo modprobe batman−adv
17
18 sudo b r c t l addbr meshx
19 sudo b r c t l a d d i f meshx $SWARMX_DEVICE
20
21 sudo i p l i n k set meshx up
22
23 sudo b a t c t l i f add meshx
24
25 NEW_IP=192.168.101. $ ( ($SWARMX_NR∗10) )
26
27 sudo i f c o n f i g bat0 $NEW_IP up
28 sudo i f c o n f i g bat0 mtu 1472
29
30 sudo b a t c t l l l rou tes
31
32 sudo cat / sys / kerne l / debug / batman_adv / bat0 / log | . / predate . sh

>> $SWARMX_LOGFILE &
33
34 e l i f [ $SWARMX_ROUTING = " batman " ]
35 then
36 echo " S t a r t i n g batman " | . / predate . sh >> $SWARMX_LOGFILE
37 sudo batmand −d 3 $SWARMX_DEVICE 2>&1 | . / predate . sh >>

$SWARMX_LOGFILE &
38
39 e l i f [ $SWARMX_ROUTING = "bmx6" ]
40 then
41 echo " S t a r t i n g bmx6" | . / predate . sh >> $SWARMX_LOGFILE
42 sudo bmx6 dev=ra0
43
44 e l i f [ $SWARMX_ROUTING = " babeld " ]
45 then
46 echo " S t a r t i n g babeld " | . / predate . sh >> $SWARMX_LOGFILE
47 sudo babeld −d 1 $SWARMX_DEVICE | . / predate . sh >>

$SWARMX_LOGFILE &
48
49 e l i f [ $SWARMX_ROUTING = " aodv " ]
50 then
51 echo " S t a r t i n g aodv " | . / predate . sh >> $SWARMX_LOGFILE
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52 sudo aodvd − i $SWARMX_DEVICE | . / predate . sh >>
$SWARMX_LOGFILE &

53 else
54 echo " Routing not found "
55
56 f i

Listing B.17: Stop routing algorithm (stop.sh)

1 # ! / b in / bash
2 source f u n c t i o n s . sh
3
4 # Stops the cu r ren t r o u t i n g p ro toco l
5
6 echo " Stopping $SWARMX_ROUTING" | . / predate . sh >> $SWARMX_LOGFILE
7
8 i f [ $SWARMX_ROUTING = " o l s r " ]
9 then

10 echo " Stopping OLSRD"
11 sudo p k i l l o l s r d
12 e l i f [ $SWARMX_ROUTING = " batman−adv " ]
13 then
14 # We need to setup a br idge else we cannot f i l t e r the packets on

layer2 wi th ebtables
15 echo " Stopping Batman−Adv "
16 sudo p k i l l cat
17 sudo b a t c t l i f de l meshx
18 sudo i p l i n k set meshx down
19 sudo b r c t l d e l i f meshx $SWARMX_DEVICE
20 sudo b r c t l de lb r meshx
21 # sudo i f c o n f i g bat0 mtu 1500
22 sudo modprobe −r batman_adv
23
24 e l i f [ $SWARMX_ROUTING = " batman " ]
25 then
26 echo " Stopping batman "
27 sudo p k i l l batmand
28
29 e l i f [ $SWARMX_ROUTING = "bmx6" ]
30 then
31 echo " Stopping bmx6"
32 sudo p k i l l bmx6
33
34 e l i f [ $SWARMX_ROUTING = " babeld " ]
35 then
36 echo " Stopping babeld "
37 sudo p k i l l babeld
38
39 e l i f [ $SWARMX_ROUTING = " aodv " ]
40 then
41 echo " Stopping aodv "
42 sudo p k i l l aodvd
43 f i
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Appendix C

Timetable

� �RealrWorld�Evaluation�of�Ad�Hoc�Routing�Algorithms�

Task�\Week� 01� 02� 03 04 05 06 07 08 09 10� 11� 12� 13� 14�

Literature�review�on�

different�dynamic�routing�

algorithms�for�wireless�adr

hoc�and�evaluation�

metrics�

� � � � � � � � � � � � � �

Preparing�the�workspace�

by�installing�necessary�

tools�such�as�vmware,�

iptables,�arptables,�iperf,�

wirelessrtools�

� � � � � � � � � � � � � �

Getting�familiar�with�

network�analysis�tools,�

such�as�iperf,�iw/iwconfig,�

iwpriv,�traceroute,�ping�

etc�

� � � � � � � � � � � � � �

Installing�the�Linksys�and�

tplink�wireless�cards�and�

setting�up�adrhoc�

connection�between�two�

laptops�

� � � � � � � � � � � � � �

Setting�up�adrhoc�

connection�between�two�

virtual�machines��

� � � � � � � � � � � � � �

Selecting�and�installing�

dynamic�routing�

algorithms�such�as�AODV,�

OLSR,�BATMAN�etc�

� � � � � � � � � � � � � �

Drawing�multiple�

scenarios�with�various�

topologies�having�wellr

written�scripts�

� � � � � � � � � � � � � �

Performing�the�scenarios�

and�collecting�results�

� � � � � � � � � � � � � �

Writing�the�report� � � � � � � � � � � � � � �

Preparing�a�15�min�

presentation�

� � � � � � � � � � � � � �

�
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Appendix D

Originalproblem

 

 

 

 

Real-World Evaluation of Ad Hoc Routing Algorithms 

Master or semester thesis for a student in department D-ITET/D-INFK 

 

Rescue missions require timely and flexible communications operating even in lack of 
infrastructure networks. In the SWARMIX project, we investigate the interactions of 
heterogeneous agents on a search and rescue mission. A swarm comprises rescue 
professionals, dogs, and UAVs (Unmanned Aerial Vehicles) cooperating to find a victim 
as fast as possible. Communication comprises images, voice recordings, positions, and 
other sensor data sent from each agent back to the ground station via an ad hoc 
network (see Figure 1). 

 

Figure 1. Recei ving data wirelessl y at a ground station.  

As all agents move in unpredictable patterns, nodes that are within transmission range 
may soon move out of range. Dynamic routing algorithms such as AODV (Ad-hoc On 
Demand Vector routing) and OLSR (Optimized Link-State Routing) are designed to 
tackle such challenges. (See Figure 2 for an example of a route changing due to 
disconnections.) 
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Figure  2. Discovering ne w route  upon dis conne ctions . 

The goal of this thesis is to study and measure performance of selected standard ad 
hoc routing algorithms in a testbed comprising multiple (stationary) laptops. To emulate 
disconnections, we use MAC filtering to temporarily block wireless frames exchanged 
between certain pairs of nodes. This enables studying how well a dynamic routing 
algorithm responds under a variety of circumstances, and also estimating the overhead 
imposed by re-routing which can be used to improve routing algorithm approaches. We 
propose different test scenarios and measure delay, number of disconnections, 
achieved throughput, signal quality etc.  

 

Kind of Work :    70% practical, 30% theory 

Requirements :  Linux experience (network configuration, scripting), routing basics 

Contact Persons :  

Mahdi Asadpour, mahdi.asadpour@tik.ee.ethz.ch, ETZ G96, +41 44 63 27539 

Dr. Domenico Giustiniano, domenico.giustiniano@tik.ee.ethz.ch, ETZ G60.1, +41446327461 

Professor : Prof. Dr. Bernhard Plattner 
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