e
ETH P o

. . g
Distributed [#¢g%*
Eidgendssische Technische Hochschule Ziirich B ’:“‘“ \“ ‘l
Swiss Federal Institute of Technology Zurich Computing #% %%

Use News to Make Us Rich!

Semester Thesis

Fabian Brun

brunf@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Zirich

Supervisors:
Philipp Brandes
Prof. Dr. Roger Wattenhofer

April 7, 2013

Acknowledgements

Many thanks to Trendiction for providing us with the data to do the analysis.

Abstract

This thesis adds news articles as a data source to an already existing framework
for algorithmic trading. It implements a simple machine learning algorithm
to perform sentiment analysis on these news articles. This approach of using
the news sentiment to predict the market is then evaluated with two different
strategies. The results show that the chosen algorithm only reaches parity with
the real market performance due to too few learning data. They also indicate
that the basic idea of using the news sentiment could lead to profits when used
in algorithmic trading.

ii

Acknowledgements

Abstract

1 Introduction

1.1
1.2

Motivation

Related Work

2 Background

2.1
2.2

2.3

Trading Framework
Natural Language Processing
2.2.1 Machine Learning
2.2.2 Sentiment Analysis
News Aggregator
2.3.1 API Description

3 Implementation

3.1

3.2

3.3

News Aggregation
3.1.1 APIClient
3.1.2 Filtering
3.1.3 Data Caching
Sentiment Analysis
3.2.1 Categorization
3.2.2 Training
3.2.3 Classification
Strategies
3.3.1 News Indicator
3.32 NewsAgent

iii

Contents

ii

[\

S Ot Ot Ot W W

0w 0w =N

CONTENTS

4 Evaluation

4.1 Data Set
4.2 Strategies
4.2.1 TrendictionNews Strategy
4.2.2 SimpleNews Strategy

5 Conclusion

5.1 Outlook
Bibliography
6 Figures and Tables

A Appendix
A.1 Framework Installation
A2 HowtoUse
A.2.1 News Fetching
A.2.2 Sentiment Analysis
A3 Article Count
A.4 Original Problem o 0oL

v

14
14
15
15
16

19
19

20

CHAPTER 1

Introduction

Algorithmic trading has become an important aspect of the financial market
nowadays. It is widely used by main market actors like investment banks, pension
funds or hedge funds. According to a recent NY Times article [1], profits from
high-speed trading peaked at $4.9 billion in 2009 (accounting for 73% of the
U.S. equity trading volume [2]), which dropped to an estimated $1.25 billion
(and approximately 50% of the U.S. equity trading volume) in 2012.

High-Frequency Trading (HFT) algorithms especially gained media attention
after the May 6, 2010 Flash Crash, when the Dow Jones dropped by over 600
points in 5 minutes (already being down more than 300 points, totaling in almost
1000 points lost). The following investigations showed that due to an attempt
of automatically selling a lot of contracts in a very short period of time, other
HFT algorithms kicked in and accelerated the drop by “[beginning to] quickly
buy and then resell contracts to each other — generating a ’hot-potato’ volume
effect as the same positions were passed rapidly back and forth” [3]. Another
incident happened on August 1, 2012: Knight Capital lost around $440 million
in about 45 minutes when one of their HFT algorithms went crazy.

1.1 Motivation

As shown by the mentioned incidents, the complexity of HF'T algorithms is barely
within our grasp, which is also why there is a tendency to more regulation in that
field. However, algorithmic trading can also be carried out with low-frequency
algorithms, e.g., where trading happens only once a day, thus minimizing the risk
as well as the negative impact in case errors occur. Such algorithms usually work
on mathematical models of the market and use historical stock data to predict
the future. This thesis seeks to use news articles as the source for predicting the
development of the stock market, similar to what human traders already do, but
with an automated and unsupervised algorithm.

1. INTRODUCTION 2

1.2 Related Work

Sentiment analysis in general is a rather new field in research. Early work ap-
plied machine learning techniques at the document level to detect the sentiment
in product reviews [4] and movie reviews [5], and was quite successful in doing
so. And while both of them only classified with one binary label (either “pos-
itive” or “negative”), later approaches tried to extend this. One method was
to add more levels to a single feature [6]: Rather than just labelling reviews as
“positive” / “negative”, give them more quantity (“3 out of 5 stars”). Or, add
more features and predict sentiments for different aspects of an entity [7]. For
instance, a restaurant could be rated in terms of food, ambience, and service.

Applying sentiment analysis to algorithmic trading is not a new idea. Most of
the work has been done by using Twitter as news source. An analysis of almost
10 million tweets from 2008, using neural networks, showed that these tweets
can be used to predict the stock market by a few days [8]. A follow-up paper
in 2011 suggested that even using a much simpler sentiment analysis method on
tweets, reasonable profits can be achieved [9].

While the former research was about the content of individual tweets, another
analysis conducted in 2012 focussed on the volume and interaction patterns of
tweets. Their findings suggest that the number of tweets is correlated to the
trading volume, and to a lesser extent, to the stock price. Additionally, they
propose to not only look at the content, but also the relationship between tweets,
e.g., distinct topics [10].

CHAPTER 2

Background

This chapter describes the basic technologies used in this thesis.

2.1 Trading Framework

The basis for this thesis is the trading framework created by Thomas Biirli in
2012 [11]. It uses different layers of abstraction, the relevant ones for implement-
ing a trading strategy being:

e A Strategy, the high-level container which signals to buy or sell a certain
amount of stocks, built upon

e the Council, which gathers information and creates a descision based on
the information provided by

o different Agents, which provide advice based on some calculations with
the underlying data, using

e an Indicator, which does the heavy computations on the data.

Figure 2.1 shows how the strategy uses these layers. The indicator is the most
important part of any strategy: It takes the stock data and calculates specific
measures with this data. An agent then uses these measures to return the advice
to either buy, sell or do nothing (based on its calculations) and the confidence it
has about that advice. In general, both values are derived from the return value
of the indicator directly.

The framework also features a simulator, which uses said strategy to simulate
its outcome (based on a starting balance). Furthermore, this outcome can be
compared to the actual performance of the overall market (e.g., S&P 500 index).

2. BACKGROUND 4

4 Strategy A
(Council h
Agent #1 Agent #2 Agent #n
_ I~ \ /

4 b— AN o N)

I 1
SMA(i) EMA(i) CMI(i) i News E
I oo 2 1
_ Indicators)
- J
: i
o
Stock Data ———-» News | E i
quotes Container | items |
Data Layer

Figure 2.1: Overview about how a Strategy uses the framework layers.

2.2 Natural Language Processing

One of the biggest challenges for computers today still is the understanding
and interpretation of natural language. A main focus in research nowadays is
on machine learning techniques, preferrably unsupervised. Whereas earlier the
algorithms were based on large sets of hand crafted rules (extracted from known
content), the machine learning approach is capable of adapting to previously
unseen patterns. Also with machine learning, the more input data is used to
train the algorithm, the more accurate it usually gets — something a hand-written
rule set cannot deliver. The exception to this last rule is called overfitting, which
happens if the statistical model does not describe the underlying relationship
but random noise: It memorizes training data instead of learning to generalize
from it. Overfitting normally occurs when the model is rather complex.

There are different fields in natural language processing (NLP) like spell
checking, translating text from one language into another, composing a summary
of given content, or even speech recognition. They often use more basic NLP
techniques like part-of-speech tagging (determing the type of a word in the given
context, e.g., if it is a verb or an adjective) or word stemming.

2. BACKGROUND 5

2.2.1 Machine Learning

Basically, machine learning tries to extract a statistical model out of the initial
training data, also called generalization. With a good model, such an algorithm
can then classify new data based on the trained experience.

For the model to be good, it is necessary that the training data is categorized
somehow, e.g., having a “positive” or “negative” meaning. If the categorization
can be performed from the testing data itself, the algorithm is called unsuper-
vised. An example of this are movie reviews, which have already been categorized
by the reviewer (e.g., “3 of 5 stars”). If the categorization is done by hand (e.g.,
labelling names as “male” or “female”), it is a supervised algorithm. The former
may seem to be more desirable because of the lack for manual categorization
and the easy scalability to big data sets. However, unsupervised categorization
is not always possible, and supervised algorithms may result in more accurate
categories (and therefore better classification afterwards).

2.2.2 Sentiment Analysis

The NLP technique used in this thesis is the sentiment analysis. Its main goal
is to understand the subjective meaning of a document, in the simplest form as
either positive or negative (often, there is also the neutral label).

A way to do such an analysis is to classify a document based on the words
which occur in it. Using a dictionary of “positive” and “negative” words, a simple
strategy could be to assign a label using the amount of positive and negative
words used in the document. However, this has limited significance, since it does
not include the context of these words. In other words, this approach assumes
that the words in an article are statistically independent of each other: The mere
presence (or absence) of one word is unrelated to the presence (or absence) of
other words. The classifier can then simply check for specific features in a new
article.

As an enhancment to the above strategy, Turney (2002) [4] restricts the
input data set to combinations of adjectives and adverbs (using a part-of-speech
tagger) and uses the statistical independance of these words to some reference
words (the “semantic association”, Church and Hanks 1989 [12]) for the labelling
mechanism.

2.3 News Aggregator

Aggregating news can be done in different ways, for instance crawling specific
news sites. In this thesis a commercial news aggregator service, Trendiction®,

Lwww.trendiction.com

2. BACKGROUND 6

will be used to get content from all around the internet. They not only crawl
classic news sites, but also other sources like blogs and social media sites. There
is an application programming interface (API), where previously defined feeds
can be queried for the aggregated content. Defining a new feed starts the content
aggregation and is as simple as specifying keywords to search for. Trendiction
assigns a unique identifier to each feed, later referred to as feed id.

2.3.1 API Description

Except for the item’s title and content, the Trendiction Feed API delivers some
more metadata which are of interest. For example, there are three timestamps
associated with every item: the time it was published, the time it got indexed
by Trendiction, and the time it was updated (if there was an update). The
publishing time is the most important one of them.

Since Trendiction does its own processing of the articles, additional attributes
are exposed, already including a sentiment level (negative, neutral, or positive)
which will be used to compare with our own approach. Other attributes are:

the language of the content,

the item’s type and subtype (e.g., ARTICLE/NEWSSITE),

the fluencylevel (continuous text with real sentences gets a higher value
than simple lists of keywords without punctuation),

the spam and porn level (the latter to signal explicit content).

Trendiction also analyzes the sources of each item in terms of influence and
visibility to other web sites as well as the engagement of users with that source,
and exposes them both as raw and normed values (based on the Gaussian dis-
tribution among all URLs).

CHAPTER 3

Implementation

To implement a news-based strategy, the framework described in Section 2.1
needs to be enhanced in the following ways:

1. Introduction of a news aggregator script as well as a new data store for
this news data.

2. Implementation of some basic machine learning algorithms to perform a
simple sentiment analysis ourselves.

3. A new type of indicator which can handle news data (the current ones only
support stock quotes).

4. Implementation of a custom agent (using the new indicator) and a custom
strategy (using the custom agent).

This chapter gives insight into the implementation of the above items. The
programming language used for that is Python! (version 2.7).

3.1 News Aggregation

A script queries the data source every hour for new content and stores the re-
trieved data locally.

3.1.1 API Client

Trendiction has a Java based API client with graphical user interface (GUI).
Since the trading framework is written in Python, and this thesis only needs
access to two specific API endpoints, an own lightweight API wrapper has been
implemented in the Trendiction.py file.

www.python.org

3. IMPLEMENTATION 8

The first endpoint of interest is getting a list of all defined search feeds. This
is used to automatically retrieve newly defined search feeds without altering the
script’s source code.

The second endpoint is specific to one such feed and retrieves up to 500
content items from the API per request. The starting point can be chosen arbi-
trarily with a timestamp (0 to get the very first items). Every response contains
a next_request field, which contains a full URL to retrieve more data. If no
more data is available, this URL is cached to continue fetching data seamlessly
the next time the fetching script is run.

3.1.2 Filtering

The search feeds are defined as loosely as possible, normally using only the
company name (and possibly its variations) as keyword. The idea is to gather as
much data as possible in the search feed, and then filter afterwards on the local
client. The filtering is mostly based on the attributes delivered by Trendiction
(outlined in Section 2.3.1). The following 5 filters have been implemented:

e a spam filter;

e a language filter, removing non-English items;?

a fluency filter, excluding items which are not considered continous text
by Trendiction;

a media filter, excluding multimedia items (e.g., YouTube videos);

a porn filter, removing explicit content.

Applying this filtering also leads to huge savings in terms of space require-
ments for data storage: About 60% of the aggregated content does not pass the
filtering step.

3.1.3 Data Caching

The data source used only delivers data for the past seven days. An additional
data caching layer has therefore been introduced. This also allows for all other
scripts (and especially the framework) to work offline, in particular without the
network latency costs when querying for data. The relevant code can be found
in the TrendictionCache.py file.

To prevent data from being cached multiple times, a hash is calculated on
every cache item’s content text and the feed id it belongs to. If the hash already

2This can also be configured in the search feed definition, and actually has been done after
a few days of aggregating; nevertheless, the filter stays in place for older entries.

3. IMPLEMENTATION 9

[Classifier J

News
Aggregator
API
pull]II) ! News
Client ltems
Trendiction
API

Figure 3.1: Overview about the lower level components for fetching news items.

exists in the cache, the item is skipped. This means that an item can only show
up multiple times in the cache if it has been associated to multiple search feeds.

The cache is then split into two overlapping components:

1. Storing the raw data as returned by the API. No indexing is performed
on that data. This component is not yet used by the framework and
therefore completely optional. However, it is useful to examine the filtering
as described in Section 3.1.2.

2. Storing the filtered data, with the most important fields (like the pub-
lishing time) extracted for easier indexing of all the data.

For the cache backend, an SQL database is used, supporting various kinds of
dialects (e.g., SQLite? or MySQL*). Figure 3.1 shows the whole process: First,
the data is pulled from the Trendiction servers by the API client. The API client
then filters the data, and the remaining news items are classified with the custom
sentiment classifier described in Section 3.2.3. Finally, the news items are stored
in the cache.

Swww.sqlite.org
4www.mysql.com

3. IMPLEMENTATION 10

3.2 Sentiment Analysis

This thesis uses a unsupervised machine learning algorithm. Before this algo-
rithm can classify new articles, it has to be trained on past data, which in turn
has to be categorized first. This is primarily done by separate scripts, most of
them which do not interact with the rest of the trading framework in any way.
The code is based on the Natural Language Toolkit (NLTK) for Python.’

3.2.1 Categorization

To avoid manual categorization, this thesis assumes that the better a stock per-
formed on a given day, the better the news must have been. And since news
have an influence not only on the date they are published, but also a little bit
earlier (e.g., “insider” information) and even later, the following unsupervised
algorithm is used:

1. For a given feed F, load the stock prices for the training period (see Sec-
tion 4.1 for details).

2. For every day D in that training period:

(a) Calculate the stock performance in the interval TF = timeframe(D) =
[D —1, D, D + 1] using the relative change between the close price on
day X € TF and day X —1, and the maximum as well as the minimum
performance in the training period.

(b) Normalize the performance, mapping negative values to the interval
[—1,0) and positive values to the interval (0, 1] using:

perf(day)/Perfmax if perf(day) > 0

normalize(day) = { perf(day)/Perfmin if perf(day) < 0

(c) Map the performance to the discrete values {—1,0,1} with the fol-
lowing mapper function:

+1 if normalize(day) >= 0.25
label(day) = ¢ —1 if normalize(day) <= —0.25
0 else

The threshold values {—0.25,0.25} are chosen such that the “deci-
sive” labels (-1 and +1) have a slightly higher probability than the
“indecisive” label 0.

Swww.nltk.org

3. IMPLEMENTATION 11

(d) Sum up the mapped values for the days in T'F; this is the category C
for the day D:

C = category(D) = Z label(day)
dayeTF

3. Store the tuple (F, D, C).

This algorithm produces the categories {—3,—2,—1,0,1,2,3}. It does not
categorize single articles, but days: Every article of feed F', published on the
same day D, gets the same category C.

This categorization step can easily be extended to use a more complex algo-
rithm. It is decoupled from the training step, so it can be run independently.

3.2.2 Training

The classifier used in this thesis is based on the NaivesBayesClassifier class from
the NLTK library.%

As a first step before training, the 2000 most common words are extracted
from all the articles in the training set. To collect them only once, the resulting
list of words is cached on disk. Every article, split up into single words, is then
fed to the training algorithm:

1. A feature extractor looks up which of the 2000 most common words are con-
tained in the article, using a binary approach (True if the article contains
word W, False otherwise).

2. The category for the (feed, day) combination is retrieved from the database.

3. Both information is then fed to the NLTK classifier to update its internal
state.

Since the amount of articles to train the classifier can be quite large, the
main training is done feed by feed and day by day. Interrupting the training in
a safe way is possible after processing a feed. The internal state of the classifier
up to that moment is serialized and persisted to disk, so that the training can
be continued afterwards.

Shttp://nltk.googlecode.com/svn/trunk/doc/api/nltk.classify.naivebayes. NaiveBayesClassifier-
class.html

3. IMPLEMENTATION 12

3.2.3 Classification

The trained classifier can now be loaded from disk anytime it is needed. An
article to be classified gets split into words and passed to the feature extractor
(the same as used for training). This feature set is consumed by the classifier’s
classify method, which returns the category it deems most appropriate based
on the training data.

Since the classification does not change unless the classifier changes, the
classification is added to the news item in the data cache. This is done at the
time of fetching news items from the news aggregator (as seen in Figure 3.1),
and there is an update script for items where the classifications have changed.

As aresult, the strategies for the framework only need to query the news data
cache, and don’t have to classify by themselves, saving time on every simulation
run.

3.3 Strategies

This section covers the last two items of the list in the beginning of this chapter.
Two new strategies are added to the framework:

e The TrendictionNews strategy, based on the sentiment value which is
calculated by Trendiction, the news aggregator.

e The SimpleNews strategy, using the sentiment value from the self-trained
classifier.

Both share the same agent implementation and basically the same indicator
implementation, since both strategies work in a very similar way on the cached
news data. They only differ in the data attributes about the news items they
use.

3.3.1 News Indicator

The way the indicator layer works is by the singleton pattern.” It makes sure
that only one instance of a class ever gets created; subsequent instantiations all
return the same instance. With the new indicator type, a strategy now has to
declare in the beginning which one to use.

Like the original StockIndicator, the NewsIndicator recieves the stock
quotes from the strategy. In addition, it is capable of loading articles from
the news data store. Currently two news indicators have been implemented.

Thttp://en.wikipedia.org/wiki/Singleton_pattern

3. IMPLEMENTATION 13

One is available as the trendiction method, gathering the sentiment values as
delivered by the news aggregator. It combines them per day and returns a table
with two columns: The total sentiment and the amount of articles per day.

The second indicator is available as the sentiment method. It has the same
return value as the trendiction indicator, but uses the previously trained clas-
sifier to calculate the sentiment value.

3.3.2 News Agent

To calculate the advice for a day D, the agent combines the sum of sentiments
over the two days {D — 1, D}. It then normalizes that value with the maxi-
mum aggregated sentiment. The confidence value for every vote is simply the
aggregated sentiment normalized with the amount of articles on that day.

aggregated_sentiment(day) = Z sentiment(article)
articlee{day—1,day}
aggregated_sentiment(day)

vote(day) =
(day) max(aggregated_sentiment)

ted_senti t(d
confidence(day) = laggregated_sentiment(day)|

articles(day)

In this formula, sentiment(article) is the getter method to retrieve the senti-
ment from an article’s metadata, and articles(day) the getter method to retrieve
the amount of articles on the specified day.

CHAPTER 4

Evaluation

For the evaluation of the two sentiment-based strategies discussed in Section 3.3,
a total of 12 companies were randomly chosen from the Standard & Poor’s 500
(S&P 500) index:!

Company name Symbol Sector

Apple Inc. AAPL Information Technolgy

C. R. Bard, Inc. BCR Health Care Equipment
BMC Software, Inc. BMC IT Consulting

Bemis Company, Inc ~ BMS Materials (Paper Packaging)
CIGNA, Inc. CI Health Care

CSX Transportation ~ CSX Industrials (Railroads)
Duke Energy Corp. DUK Energy

Invesco Ltd. IVZ Financial Services

Lockheed Martin LMT Aerospace & Defense
NetApp, Inc. NTAP Information Technolgy
Paccar Inc. PCAR Industrials (Heavy Equipment)
Vornado Realty Trust VNO Real Estate Investment

Table 4.1: The companies chosen to test the algorithms on.

4.1 Data Set

The news aggregation period spans 68 days, starting on January 14" 2013 and
ending on March 22" 2013. The Trendiction-based sentiment strategy is evalu-
ated over the whole period, because we only “consume” the sentiment. On the
other hand, with the self-trained classifier and applying a 60/40 split, the train-
ing data covers 43 days (until February 25"") while the testing data covers the
remaining 25 days (from February 26'"). The filtered training data set contains

"http:/ /www.standardandpoors.com/indices/sp-500/en/eu/?indexId=spusa-500-usduf-p-
us-1-

14

4. EVALUATION 15

216’212 items in total. Table A.1 lists the daily amount of articles for every
watched stock.

All in all, a training data period of only 68 days is really short. Machine
learning algorithms usually work best when trained on data from several months
(and not weeks, as in this thesis). This is a major shortcoming for the evaluation
of the implemented strategies.

4.2 Strategies

Figure 4.3 shows two typical plots of the relative stock price change against the
(summed up and normalized) sentiment value as reported by Trendiction. The
main difference between both plots is that the upper one (showing NTAP) has
higher jumps in the stock price from day to day than the lower one (showing
VNO), which makes the sentiment change look smaller (because these values are
only in the range [—1,1]).

4.2.1 TrendictionNews Strategy

The analysis of this strategy spanned the whole period of the data set, since the
sentiment is already calculated when we pull the data from the news aggregator
service. Table 4.2 shows the total returns achieved for all stocks under test
compared to the stock performance for the same period.

With the Trendiction sentiment, the strategy performed worse on most stocks
than the real market did. There are two exceptions: With AAPL and BCR, the

Stock Total Return (%) | Real Performance (%)
AAPL -3.5219 -8.1105
BCR -1.3629 -2.6792
BMC 7.1505 7.6489
BMS 0.0063 13.4476
CI 0.6215 10.9813
CSX 0.1382 17.1053
DUK 0.0660 7.4734
IVZ 0.0000 3.2364
LMT -1.1470 -0.8916
NTAP -4.8449 2.3185
PCAR 0.6356 8.7117
VNO -0.3345 -0.8949
S&P 500 5.8211

Table 4.2: Total return for TrendictionNews strategy over complete data period.

4. EVALUATION 16

-
=3
©

— TrendictionNews — TrendictionNews
rl — S&P 500 ; i : 1.06H — S&P 500

=
=3
=

Total assets
S s e
©o o o o
= o N B
T T T

Total assets
=
o o o
N w B

T T

o
©
o
T
Iy
o
=
T

0.941 1.00

0.02L1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.00Li ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
IR GO R N L SP NP CR C I N & B G N N T NS (I N

o AT P VP gt 0P 0P oV a? o o 0P P © 0P 0P 0P e ¥ o

w© N T R T T RN N RN I N R R TR T R R R RN

Figure 4.1: Weekly asset return for BMC (left) and CI (right).

strategy lost less than the real market. On the other hand, with either BMS, CI,
CSX, NTAP or PCAR the strategy performed far worse. A special case is IVZ,
where the news data indicated a non-positive sentiment on all days and therefore
the strategy never bought any shares.

Figure 4.1 shows two example asset return graphs (against the S&P 500 as
reference). As one can see from the graph for CI, the strategy achieved all of
the slightly positive return in the first three weeks. Afterwards, there were no
more shares left in the portfolio, and there were no more positive sentiment
aggregates, so the strategy did not buy new ones. As a result, the asset return
stayed constant.

4.2.2 SimpleNews Strategy

Based on the custom sentiment from the self-trained classifier, this strategy
performed better overall, as seen in Table 4.3. It could not outperform the real
stocks in all cases except one, but was quite close to the real performance most
of the time. The notable exception here is AAPL, where the strategy achieved
a bigger return than the market. Figure 4.2 shows the weekly asset return for
AAPL.

4. EVALUATION

Stock Total Return (%) | Real Performance (%)
AAPL 5.0339 4.0760
BCR 2.2256 2.2561
BMC 13.8131 13.7811
BMS 4.1186 5.9398
CI 5.0706 6.8154
CSX 4.8342 8.0000
DUK 1.1662 1.7728
IVZ 8.4329 8.8156
LMT 4.5997 4.7457
NTAP -1.3226 -0.6222
PCAR 5.4843 7.8681
VNO -0.7708 -0.5855
S&P 500 4.6403

Table 4.3: Total return for SimpleNews strategy over testing data period.

1.06

— S&P 500 : : : : :
— SimpIeNewswihwwihwré””5

1.041

Total assets
=
o
o

o
©
@

096N

0.04 j j j j j j j
>))) >))) >
oY oY oY oY oY oY oY oY oY
oF »\'l NG N A ’\«01 3'1 X("l Q'L 7«1

\S

@ Wt W W e e e e

Figure 4.2: Weekly asset return for AAPL.

18

4. EVALUATION

Il

Hll rel. quote change

rhw*ﬁndl

B rel. sentiment

(Y

2
1
0
1
2

GZ-20-€10
ZZ-20-e102
TZ-20-€e10Z
0¢-2¢0-£102
6T1-20-€£10Z
GT1-20-€102
r1-20-£10Z
€1-20-€T02
¢1-20-€10¢
T1-20-€10
80-20-£10Z
£0-20-€T02Z
90-2¢0-£10Z
S0-20-€10Z
¥0-20-€10Z
T0-20-£10Z
TE-T0-€10C
0€-T0-£T02
6Z-10-€10Z
8¢-10-e10Z
SZ-T0-€10
¥Z-10-€10Z
€Z-10-€10Z
ZZ-10-€10¢
8T1-T0-£T0Z
LT-TO-ET0Z
9T-10-€10Z
ST-T0-€T10¢
v1-10-£10Z

Hll rel. quote change
Bl rel. sentiment

1.0

05}
0.0

o
—
|

GZ-20-€10¢Z
ZZ-20-€10Z
T¢-¢0-€10¢
0¢-¢0-€10Z
6T1-20-€10Z
ST1-Z0-€10Z
F1-20-€10Z
€1-20-€10Z
Z1-20-e10Z
T1-¢0-€10¢C
80-20-€10Z
£0-20-€10Z
90-Z0-£T0Z
S0-20-€T10¢
#0-20-€10Z
10-20-e10Z
TE-TO-E10¢C
0E-T0-€T10Z
6Z-T0-€10Z
8Z-T0-€10Z
SCTO0ET0¢C
FZ-10-€10Z
€Z-T0-ET0Z
¢C-TO0E10¢C
8T1-10-€10Z
LT-T0-€10Z
91-T10-€10Z
ST-T0-€10¢
FI-T10-€10Z

Figure 4.3: Stock price performance and reported sentiment values for NTAP

(top) and VNO (bottom).

CHAPTER 5

Conclusion

The goal of this thesis was to introduce news articles as a new data source to
the framework, which has been accomplished in a way which allows for further
extensions. The example strategies built upon this new data source performed
not as expected, especially the one based on the pre-calculated sentiment.

The main problem here seems to be the short period of time in which data
has been gathered (only ten weeks). More data would have allowed for a more
thorough model of the relationship between news sentiments and the stock mar-
ket. The simple assumption of “good news equals increasing stock prices” is not
true when looking at general news from all over the internet (not focussing on
specialized data sources).

5.1 Outlook

There is now a foundation for using news to predict the stock market with the
framework, but there is room for more.

All in all it would be interesting to look at the performance of both strategies
with more data at hand (e.g., at least six month of training data). Also, the im-
plemented strategies are both very simple, so one addition could be to implement
a more complex strategy. For example, the custom sentiment analysis could be
enhanced either with other machine learning approaches or by using different
news aggregators (e.g., focus on more relevant articles). One could also combine
different sources to power the strategy.

19

1]

[11]
[12]

[13]

Bibliography

Popper, N.: High-speed trading no longer hurtling forward. New York
Times (October 2012)

Iati, R.: The real story of trading software espionage. Advanced Trading
(June 2009)

SEC, CFTC: Findings regarding the market events of may 6, 2010 (Septem-
ber 2010)

Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied
to unsupervised classification of reviews. In: Proceedings of the Association
for Computational Linguistics. (2002)

Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification
using machine learning techniques. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing. (2005)

Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for senti-
ment categorization with respect to rating scales. In: Proceedings of the
Association for Computational Linguistics. (2005)

Snyder, B., Barzilay, R.: Multiple aspect ranking using the good grief
algorithm. In: Proceedings of the Joint Human Language Technology/North
American Chapter of the ACL Conference. (2007)

Bollen, J., Mao, H., Zeng, X.J.: Twitter mood predicts the stock market.
CoRR abs/1010.3003 (2010)

Lazer, R.C..M.: Sentiment analysis of twitter feeds for the prediction of
stock market movement (2011)

Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating
financial time series with micro-blogging activity (2012)

Biirli, T.: Make us rich! (August 2012)

Church, K.W., Hanks, P.: Word association norms, mutual information,
and lexicography. In: Proceedings of the 27th Annual Conference of the
ACL. (1989)

Wischmann, S.: Make us richer! (March 2013)

20

CHAPTER 6

Figures and Tables

List of Figures

2.1

3.1

4.1
4.2
4.3

Overview about how a Strategy uses the framework layers.. . . .

Overview about the lower level components for fetching news items.

Weekly asset return for BMC (left) and CI (right).
Weekly asset return for AAPL.

Stock price performance and reported sentiment values for NTAP
(top) and VNO (bottom).

List of Tables

4.1
4.2

4.3

Al

The companies chosen to test the algorithms on.

Total return for TrendictionNews strategy over complete data pe-
riod.

Total return for SimpleNews strategy over testing data period.

The article count for each company and day.

21

9

16
17

18

14

15
17

APPENDIX A

Appendix

A.1 Framework Installation

This section explains how to install the framework in a Ubuntu 12.10 system.
Prior to setting up the framework, some system packages have to be installed
first. The following command makes sure all prerequisites are fulfilled:

sudo apt-get install python2.7 python-virtualenv python-pip \
libfreetype6-dev libpngl2-dev

Python can be used in a so called “virtual environment”.! This has the
advantage that you do not clutter up the system’s Python package index as well
as no specific rights are needed to install: Everything is installed locally into
a directory the user can write to. Use the following commands to install the
framework into such a virtualenv, sitting in the moneymaker subdirectory in the
user’s home directory (replace REPOSITORY with the URL to the source code
repository):

mkdir ~/moneymaker && cd ~/moneymaker
virtualenv --no-site-packages env
source env/bin/activate

git clone REPOSITORY src

cd src

pip install distribute -U

pip install numpy

python setup.py develop

www.virtualenv.org

A-1

APPENDIX A-2

A.2 How to Use

The general framework usage is the same as described in [13] (a follow-up thesis
to the original one by Thomas Biirli [11]). However, there are now some other
scripts needed to perform a sentiment analysis. The preferred way to use these
scripts is by the IPython shell. The commands below assume you have set up
the code as described in Section A.1.

An important file is Sentiment.py, especially the variables START_DATE and
STOP_DATE defined at the top of the file. They influence a lot of other places in
the code, e.g. the daterange from which the indicator fetches news data from
the cache, or the training data period for the classifier.

A.2.1 News Fetching

The Trendiction.py file, when run as a python script, pulls all new data from
the Trendiction web servers:

“/env/bin/python ~/src/moneymaker/Trendiction.py

You may want to run that command as a cronjob (e.g., every hour) to continously
pull news data.

When you define new feeds at the Trendiction admin page, they will auto-
matically be picked up by the pull script. If such a new feed should not be pulled,
add the Trendiction feed id to the BLACKLIST list in the TrendictionAPT class.
There is also a list TEST_SET, which contains the feed ids to test the algorithms
on. This list is not automatically updated when a new feed has been defined.

A.2.2 Sentiment Analysis

For the classifier to be trained, the training set must be categorized. This can
be done in an IPython shell like this:

import datetime as dt

from moneymaker import Sentiment

start = dt.date(2013, 04, 01) # chose whatever you like
Sentiment.categorize(start)

These commands runs the categorizer loop over all data between the defined
start date and the STOP_DATE (this can take a while).

To train the classifier, you must first calculate the word frequency distribu-
tion, then you can train it iteratively. In the IPython shell:

APPENDIX A-3

from moneymaker import Trendiction, Sentiment

feeds = Trendiction.TrendictionAPI().get_feeds(test_set=True)
Sentiment.freq_dist(feeds) # stores result on disk
Sentiment.train_continously(feeds) # stores result on disk
classifier = Sentiment.get_classifier()

The train_continously step may take a really long time. It goes through
all the news data from the feeds listed in the TEST_SET variable. Interrupting
this step (e.g. through CTRL+C) will result in the current feed to be processed
to the end, and then stopping the script. When restarting it, make sure to only
pass in the feeds which have not yet been processed.

When the classifier is ready, the news fetching script will automatically clas-
sify new content (see Figure 3.1).

If the classifier gets retrained later, the classifications have to be updated.
There is also a script which does the heavy lifting. Using the IPython shell again:

from moneymaker import scripts, Trendiction

feeds = Trendiction.TrendictionAPI().get_feeds(test_set=True)
scripts.update_classifications(feeds)

A.3 Article Count

Table A.1 lists the amount of news items (per day and feed, after filtering)
contained in the training set.

A-4

APPENDIX

“Aep pue Auedwod yoee I10J JUNOD SOILIR 9T, 1V 9[qe],

4 i ¢l 3% L1 1¢ 81 L1 0g 69 19 €8LE | 80-¢0-€10¢
€l a1 ¥0T €6¢ | S0T | O9TI ¢L | 69T | ¢€1 €L¢ 061 G699 | L0¢0-€10¢
91 0¢ STI ¢Ge 0L 891 €0T | ¥€ | 991 44y (X4 I8GT | 90-¢0-€10¢
9¢ GG 86 ¢Gc | 10T | TLC qq 16 | 991 80€ 0ce L0¢T | S0-¢0-€T0C
Ve €¢ LL 81¢ 79 GIT 9. | T¢T | €61 9.¢ ¢le LT0T | ¥0-¢0-€10¢
€ 1¢ ¢l 19T 6¢ 8F 12 91 69 9¢T 90¢ 788 €0-¢0-€10¢
6 €1 0¢ CLT 81 LG 0G 28 76 8GT 9LT 609 ¢0-¢0-€10¢
61 ve 6. 6G¢ 98 86T 89 0 | €€1 414 ¢0€ 698T | 10-¢0-€10¢
9 LE G 69¢ Gg 961 ¢9 8¢ | LVI ¥ve 16¢ ¥6. T€-TO-€T0C
q IT €. 87¢ €4 V91 89 e | LSGI ¢9¢ 91¢ L9. 0¢€-10-€10¢
g ¢l ¢ll LLC 06 60T 76 G9 | 84T 00¥ €¢¢ LEL 6¢-10-€T10¢
1¢ 6 00T ¥0¢€ 88 101 OTT | 99 | 8LI 18¢ LET 8LL 8¢-10-€10¢
4 g 1¢ 45! 9¢ 69 e (43 2 ¢l €€¢ vy | L& T0-€10¢
q IT S 661 9¢ ¥4 8¢ 8¢ | GEI 43! 261 SOV 9¢-10-€10¢
0T 91 7% ¢61 68 8L 99 0 | 9¢T 4! 10€ 0¥9 G¢-T0-€10¢
Gc 91 06 10€ 8L 89 OTT | ¥¥ | €L1 81¢ 16¢ 129 V¢-10-€10¢
8 0¢ 9¢T 10€ 16 78 IT1€ | 99 | ¥4I €1e 6.8 8¢9 €¢-T0-€10¢
8 q1 4! 0%¢ 8L 18 8¢E | 19 | G0¢ 08¢ €4¢ 16S ¢ 10-€10¢
g 4! 19 (244 88 (2 12 9% | €91 9¢¢ 6¥¢ L19 1¢-T0-€10¢
! 1T 91 LET 87 v 89 9¢ | ¢II €11 8V1T €9¢€ 0¢-10-€10¢
i q1 8¢ 0¢ST 8¢ €€ 6€ 09 78 0ST Sié ¢8¢ 61-10-€10¢
€1 8¢ 8. €8¢ 08 a8 08 0§ | 8c¢e Gcae 143 804 8T-T0-€T0¢
1T €l 8¢ 91¢ 2 ¢8 17 Gy | L91 L1€ [qré L9V | LT-10-€10¢
! 4 31 9¢ 9 ¢l 8 g %4 qq L€ (4] 91-T0-€10¢
! 1 8 4! i 8 9 i) 9¢ 6¢ 8¢S GI-T0-€10¢
! 4 4 0T 4 € ¥ g L 0¢ 0¢ €1g V1I-T0-€10¢
ONA | 4VOd | dVLN | LIN'T | ZAI | M0d | XSO | IO | SN | DING | ¥Dd | 'IdVV

A-5

APPENDIX

‘Kep pue Auedwiod Yova 10 JUNOD AR YT, TV 9[qe],

1T 61 69 6.€ | T¥L | SII 18 Gc | 991 LEC 20€ | ¢g€IT | G¢¢0-€10¢
g GT1 LG 1.2 1€ 9% 9% LG 86 6. ¢E¢ | ST00T | ¥¢-¢0-€10¢
1T €l 1¢ 0S¢ 6€ 17 4% €¢ 96 14! 1¢¢ | 61ccl | €¢-¢0-€10¢
61 €l g1t g9¢ ¢8 78 98 Lo | 9.1 GGG 6¢€ | 09991 | ¢¢¢0-€10¢
¢l q1 9¢l 0¢€ | G¢l | <01 <7 Vv | €6¢ 91¢ 61€ | 0¢cIT | 1¢¢0-€10¢
1T ¢l g} vie | 11T 06 L9 08 | 8¢V 19¢ 19¢ | 066LT | 0¢-¢0-€10¢
€l 4! Lyl 91¢€ LL 10T ¥G | Ll | €LC G1e €1€ | €.89T1 | 61-¢O-€10C
9 L 47 (xé 99 67 i LE | 861 g61 19¢ | P.LVET | 81-¢0-€10¢
1 8 61 0ST 4 87 6¢ 4! €¢I 0¢T 08T 0948 | LT-¢C0-€10¢
4 6 €l 80T 9¢ €9 €€ 8¢ | 61T 8V 881 60c9 | 91-¢0-€10¢
€ 0T 1T 93 1934 61 a4 €1 GOT LVl 091 E€VEE | GT-C0-€T0C
¢l q1 6 GG ¢l L1 1% 79 | 901 66 €L¢ 6,91 | ¥1-¢0-€10¢
v g 91 9¢ 17 3T 0T g Gc 18 99 ¢60¢ | €1-¢0-€T0¢
1 1 q 1¢) 6 g 9 61 6¢ 0. LIVT | ¢1-¢0-€10¢
4 ! € 0¢ 1T 8 € 4 g1 €¢ v 0T¢T | TT-¢0-€10¢
! G 4 €l 4 9 g 0 €l 8 91 8.9 01-¢0-€10¢
0 0 0 a1 € 4 € 4 0¢ g 4! 989 60-¢0-€10¢
ONA | 4VDd | dVIN | LINT | ZAI | 310d | XSO | ID | SNG | OINd | 409 | IdVV

APPENDIX A-6

A.4 Original Problem

m ’ T
Distributed ,/ii".‘
Istribute Fgn®
Eidgendssische Technische Hochschule Ziirich B ﬁ““‘“ s
Swiss Federal Institute of Technology Zurich ComPUtlng (G e

Prof. R. Wattenhofer

Lab/BA/SA/Group:
Use News to Make Us Rich!

Motivation and Informal Description

In the recent past the algorithmic trading has seen enormous growth and is a good place
to make lots of money. It is now responsible for more than 70% of the trades in the US.
A very important subclass are the high frequency trading (HFT) algorithms. These al-
gorithms usually hold stocks or certificates only for a brief time, sometimes only for a
few seconds or even milliseconds and earn money by making thousands of trades a day.
But since these algorithms increase the volatility
of the market, they are becoming the target of
a financial regulations which would destroy that
business model.

Therefore, we want to return to systematic
algorithmic trading to get rich. We already de-
veloped a simple framework and implemented
some basic strategies with it. We want you to
extend this framework. But we want more than
simple algorithms which just use the past stock
data, we want to be smarter. Your job will be
to use the information given by a news crawl-
ing service to react more accurately than other
algorithmic traders and thus, to make us rich.

Requirements

Good programming skills (preferably in Python) and a genuine interest in the financial
markets. The student(s) should be able to work independently on this topic!

Interested? Please contact us for more details!

Contact
e Philipp Brandes: philipp.brandes@tik.ee.ethz.ch, ETZ G64.2

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Background
	2.1 Trading Framework
	2.2 Natural Language Processing
	2.2.1 Machine Learning
	2.2.2 Sentiment Analysis

	2.3 News Aggregator
	2.3.1 API Description

	3 Implementation
	3.1 News Aggregation
	3.1.1 API Client
	3.1.2 Filtering
	3.1.3 Data Caching

	3.2 Sentiment Analysis
	3.2.1 Categorization
	3.2.2 Training
	3.2.3 Classification

	3.3 Strategies
	3.3.1 News Indicator
	3.3.2 News Agent

	4 Evaluation
	4.1 Data Set
	4.2 Strategies
	4.2.1 TrendictionNews Strategy
	4.2.2 SimpleNews Strategy

	5 Conclusion
	5.1 Outlook

	Bibliography
	6 Figures and Tables
	A Appendix
	A.1 Framework Installation
	A.2 How to Use
	A.2.1 News Fetching
	A.2.2 Sentiment Analysis

	A.3 Article Count
	A.4 Original Problem

