
Distributed
    Computing 

Desktop-Client with Smart
Synchronization

Bachelor’s Thesis

Sandro Affentranger

sandroaf@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Samuel Welten, Tobias Langner

Prof. Dr. Roger Wattenhofer

July 1, 2013

mailto:Sandro Affentranger<sandroaf@student.ethz.ch>


Acknowledgements

There are many people who supported me while I have worked on this thesis.
Unfortunately I cannot thank all of them here.

First of all I want to thank my supervisors Samuel Welten and Tobias Langner
for their support. During our weekly meetings they gave me useful feedback and
helped me with their knowledge if I was stuck.

I also want to thank Dr. Roger Wattenhofer for giving me the chance to
make my bachelor’s thesis at the Distributed Computing Group and working on
this unique and interesting project.

Furthermore I also want to thank my roommate. Our usually rather long
discussions during our morning coffee gave me often yet another view on prob-
lems.

And last but not least I want to say thank you to my girlfriend. Her moral
support was very important for me, especially during the more stressful phases.

i



Abstract

Nowadays people use their smartphones for listening to music on their way.
Unfortunately most smartphones do not have enough memory to store a whole
music collection on them. The user has to decide which songs he wants to have
on his phone and which ones not. If he buys new albums or his music taste
changes over time, he has to synchronize his smartphone once again.

This thesis shows how to develop an extension for jukefox, a smart music
player, which enables the music synchronization between the desktop jukefox
version also developed during this thesis and the android application. The ex-
tension allows the user to browse his whole music collection on the smartphone,
mark songs to add or to delete and synchronize them without being connected
to the computer where the music is stored.

In addition a smart synchronization mode was implemented which analyzes
the music listening behavior of the user in order to automate the synchronization
process. It takes into account which songs were listened often and finds similar
songs in the music collection of the user which are not yet on the phone. It regards
also songs which were not listened at all. Afterwards it makes suggestions to the
user who can then either accept or discard them.

Keywords: jukefox, android, desktop jukefox application, music synchroniza-
tion, smart synchronization

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Jukefox 4

2.1 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Music Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Jukefox CLI Player . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Library Import Manager . . . . . . . . . . . . . . . . . . . . . . . 5

3 Implementation 7

3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Establishing a Connection between Server and Client . . . 7

3.1.2 Communication between Server and Client . . . . . . . . 8

3.2 Desktop Jukefox Application . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Graphical User Interface . . . . . . . . . . . . . . . . . . . 10

3.2.2 Server Synchronization Manager . . . . . . . . . . . . . . 12

3.3 Android Jukefox Application . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Synchronization User Interface . . . . . . . . . . . . . . . 13

3.3.2 External Synchronization Manager . . . . . . . . . . . . . 13

3.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Client-side synchronization . . . . . . . . . . . . . . . . . 15

iii



Contents iv

3.4.3 Server-side synchronization . . . . . . . . . . . . . . . . . 17

3.5 Smart Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Smart Synchronization Manager . . . . . . . . . . . . . . 18

3.5.2 How to determine the Amount of Changes . . . . . . . . . 19

4 Future Work 20

4.1 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusion 22

A Appendix 1

A.1 How to set up the Jukefox Server . . . . . . . . . . . . . . . . . . 1

A.2 How to use the new Synchronization Feature . . . . . . . . . . . 1



Chapter 1

Introduction

1.1 Motivation

Today people use their smartphones to listen to their music and no longer MP3
players. After all they just need to carry around one device with themself instead
of two. The downside is that the new smartphones often have insufficent storage
space for the whole music collection. In the future it will get even worse, since
several smartphone manufacteres have announced that their future devices will
no longer have a SD card slot anymore. Even Google1 tries to restrict removable
storage.2

The music industry tries to bypass this issue with the concept of music
streaming. Instead of having music physically stored on the smartphone, you
could just stream it through the internet. Usually for a small monthly fee. The
advantage of this is that music streaming providers like Spotify3 offer millions of
songs and the users are not bound to just their music collection.

But there is one big drawback of this new trend. It requires a good and
fast internet connection to stream songs effectively. But even today there are
some regions where the mobile reception is rather bad or not existent. And even
if you live in a region with a good mobile reception, you have to pay for the
network traffic caused by streaming. Most mobile service providers do not allow
unlimited traffic in their current mobile subscriptions.

A good compromise would be if you could access your whole music collec-
tion and download songs on demand. If this would be done when connected via
WLAN, it can be done without affecting the used traffic of ones mobile subscrip-
tion. Still, with a cordless synchronization like this, the synchronization itself is
a rather tedious work. It should be possible to exploit some common synchro-
nization behavior in order to automate it. Songs that are often skipped could

1https://www.google.com/ [25.06.2013]
2Why Nexus devices have no SD card: http://www.androidcentral.com/why-nexus-devices-

have-no-sd-card [25.06.2013]
3https://www.spotify.com/ [17.6.2013]

1



1. Introduction 2

get deleted from the smartphone, while similar songs to often listened songs get
added to it.

1.2 Related Work

There exist several applications which provide similar functionalities as synchro-
nization via WLAN or creating smart playlists. They are briefly introduced in
this section.

Winamp:4

The android version of Winamp enables the synchronization via USB
or WLAN. The music can be downloaded to the smartphone from the
Winamp Desktop Player as long as the smartphone and the computer
are in the same network.

iTunes Genius:5

With Genius it is possible to create smart playlists in iTunes. Smart
means here that the songs harmonize well together. These playlists can
be synchronized with an iPhone together with all contained songs.

iSyncr:6

iTunes only supports the synchronization with iPhones. For android
users exists therefore iSyncr which enables it nevertheless. The user
can browse his songs and playlists of iTunes on his smartphone and
select them for synchronization. The synchronization works via USB
or WiFi even if the smartphone is not in the same network as the
computer.

Rocket Music Player:7

The Rocket Music Player is a music player from the same team as
iSyncr. It can be combined with iSyncr in order to synchronize music
and playlists directly into the music player.

Although the synchronization of music via WiFi is supported by several android
applications, it exists no application that automates it.

If iTunes Genius gets combined with both the Rocket Music Player and
iSyncr, one could create smart playlists and synchronize them directly into the
music player. This could relieve the synchronization process by enabling the user

4https://play.google.com/store/apps/details?id=com.nullsoft.winamp [19.06.2013]
5http://www.apple.com/itunes/ [24.06.2013]
6http://www.jrtstudio.com/iSyncr-iTunes-for-Android [19.06.2013]
7https://play.google.com/store/apps/details?id=com.jrtstudio.AnotherMusicPlayer

[19.06.2013]



1. Introduction 3

to synchronize well matched songs in one go. However would still be complicated
and require some work of the user.

What we will tackle in this thesis is to enable an easy synchronization directly
into jukefox without a complicated configuration. Furthermore we do not stop
with an easy synchronization but try to facilitate it by helping the user with the
decision which songs he should synchronize.

1.3 Goals

The goals of this thesis are on the one hand to develop a desktop version of jukefox
with a graphical user interface, which should also act as server and provide music.
And on the other hand to extend the android application of jukefox in order to
allow a synchronization with the desktop version.

Once registered, the user should be able to browse his whole music collection
on the smartphone and see which songs are currently on the smartphone and
which are just stored on the jukefox server. He also should be able to download
music from the server which then will be added to the smartphone.

The synchronization should also be possible from the server, where the user
could also manage all registered smartphones. He should be able to add and
delete songs, albums and artists.

Furthermore a smart synchronization should be developed, which takes over
the rather exhausting manually synchronization. It should analyze the listening
behavior of the user and suggest which songs he could delete from his smart-
phone and which songs could be added to it. Since the storage space for the
music on a smartphone is usually very limited and has to be shared with other
things like photos and applications, the user should be able to specify how big
his music collection on the smartphone may maximally be. The smart music
synchronization process should regard this then and take care that this upper
bound will not be exceeded.



Chapter 2

Jukefox

Jukefox, a smart music player, is an ongoing research project at the Swiss Federal
Institute of Technology Zurich1. It was originally developed particularly for
Google’s operating system Android2. In this chapter we introduce jukefox and
give a short overview of Android.

2.1 Android

Android has become really fast very popular as an operating system for mo-
bile devices. In the first quarter of 2013 about 75%3 of all world-wide shipped
smartphones run on Android.

Applications for Android are programmed in most cases in a customized
version of Java4. This eases the programming of a communication protocol
between an Android application and computer program written in Java.

2.2 Music Similarity

These days music collections grow bigger and bigger in such a way that the con-
ventional list-based user interfaces for browsing music reach their limits. Jukefox
offers several smart user interfaces based on a Music Similarity Map to give the
user a new way to interact with his music collection.

Over one million songs are placed in a 32 dimensional euclidean space. Their
coordinates are computed using Probabilistic Latent Semantic Analysis (PLSA)
on social tags and listening behavior of songs on last.fm5. This combines the

1http://www.ethz.ch/ [29.06.2013]
2http://www.android.com/ [25.06.2013]
3http://www.idc.com/getdoc.jsp?containerId=prUS24108913 [25.06.2013]
4http://java.com/ [25.06.2013]
5http://www.lastfm.de/ [30.06.2013]

4



2. Jukefox 5

advantages of objective audio-features and subjective social tags.6

The resulting Music Similarity Map can be used to find similar songs to a
given song. If two songs have a small distance in the 32 dimensional euclidean
space to each other, they are with high probability similar.

2.3 Jukefox CLI Player

Although jukefox was programmed for the Android platform, the core of it is
by now completely platform-independent and written in native Java. Besides
the core of jukefox exist PC-specific classes which can be used to run it on a
computer.

Jukefox is already available for computers, but just as a command line inter-
face (CLI). Of course it is not intended to be utilized by normal PC users but
was rather a proof-of-concept, that the core of jukefox is platform-independent
and can also be run on a computer.

The Jukefox CLI Player has implemented the basic music player commands
like PLAY, STOP, NEXT, etc. and the ability to load and save playlists. Even
the smart playlists functions of jukefox are available. It is needless to say that
due the absence of a graphical user interface (GUI) it misses the smart user
interfaces of jukefox.

2.4 Library Import Manager

Until now jukefox imported every music file it found on a smartphone. Apart
from directories which the user had blacklisted. There were three different sit-
uations where the library import manager scanned all files and searched for
changes:

i) on startup, if the automatic import is activated

ii) after the android media scanner found some changes (also only if the auto-
matic import is activated)

iii) if the user started the import manually by clicking on ’Manual Import’ in
the options menu

All needed information about songs, albums and artists are fetched from the
Jukefox Webserver. The ids are assigned incrementally.

6Social Audio Features for Advanced Music Retrieval Interfaces:
http://www.disco.ethz.ch/publications/mmfat11301-kuhn 221.pdf [30.06.2013]



2. Jukefox 6

Therefore the existing library import and the synchronization cannot be ac-
tivated at the same time. Otherwise conflicts could occur, i.e. they would not
agree on the ids of songs, albums and artists. It could be possible that the library
import manager imports a song which only exists on the smartphone and gives
it a certain id which is already used by the server.

Thus we need to disable the normal library import in the situations that
are mentioned above. This can be done easily by checking in the settings if the
synchronization is activated or not.



Chapter 3

Implementation

This chapter is about the realization of the goals that we have specified in section
1.3. We will introduce the concepts that we have developed and explain how we
designed the system. For that we will need some terms which are defined below.

(Jukefox) Server: Refers to the server part of the desktop jukefox application

Server Database: The database of the desktop jukefox application

Client: An Android smartphone running jukefox

3.1 System Design

The system is designed based on the client-server model1. The desktop jukefox
application acts as server and the Android jukefox application acts as client.
Clients can request music from the server. The overall structure of the system
can be seen in figure 3.1.

Before a client can use the service provided by server it has to register itself
at the server. The user has to confirm the registration at the desktop jukefox
application. Afterwards the server assigns the client an id and an authentication
number. These two numbers are used for authenticate the further communication
between client and server.

3.1.1 Establishing a Connection between Server and Client

If a client tries to connect to the server where it is registered, it searches at first
the local network by broadcasting a message. All running jukefox servers in the
same network respond then with their hostname and their version. The client
can then check if the right server is under the received responses. If the server is
not in the local network, the client uses then the stored jukefox server address
to establish a connection.

1http://en.wikipedia.org/wiki/Client%E2%80%93server model

7



3. Implementation 8

Figure 3.1: Overall structure of the system

If the jukefox server tries to connect to a client, it only searches the local
network for it. Each client which is registered at this server then responds with
its id that it got from the server. When the server receives a response from the
sought-after client, the server can retrieve its address from the response.

3.1.2 Communication between Server and Client

The communication protocol consists of several request and respond messages,
which are represented in the JSON 2 format. For sending files we cannot use
JSON because it is not designed for serializing binary data. So we just send the
binary representation of the file through the socket. Each message is authenti-
cated by the id of the client and its authentication number. We handle a request
only when its authentication is valid.

The communication protocol consists of requests and responses of the follow-
ing message types:

REGISTER:

The request contains the name of the phone and its serial number. If the
synchronization is allowed, the response contains its id and authentication
number which is used for further communication.

2http://www.json.org/



3. Implementation 9

UPDATE SERVER DATABASE:

The request contains current version and timestamp of server database
on the client. If the client did not received the database from the server
yet, the timestamp and the version are 0. The response contains as result
the answer if database is up to date and contains otherwise new version
and timestamp of the database which is sent afterwards. Furthermore the
response also contains a list of songs, which the server assumes are on the
client.

ADD SONG:

Since both client use the same ids for the same songs, the request contains
only the id of the song which should be added.

DELETE SONG:

Like ADD SONG

GET FILE:

The request contains the path of requested file.

SYNCHRONIZE:

The request contains two lists. A list of songs which should be added and
a list of songs which should be deleted.

If not mentioned differently, a response message contains only a boolean value
which indicates if an error occurred or not. And if an error occurred, the response
contains furthermore the error message.

A sample message exchange during the registration is illustrated below. The
registration request from the client is represented in listing 3.1 and the response
from the server in listing 3.2.

Listing 3.1: Registration Request from Client

{
” type ” :”REGISTER REQUEST” ,
” dev i c e Id ” : 0 ,
” au then t i c a t i on ” : 0 ,
”arguments ” :
{

”deviceName ” :”SAMSUNG GT−I9100 ” ,
” deviceSer ia lNumber ”:”000903 b604e29f ”

}
}



3. Implementation 10

Listing 3.2: Registration Response from Server

{
” type ” :”REGISTER RESPONSE” ,
” e r r o r ” : f a l s e ,
” r e s u l t s ” :
{

” dev i c e Id ” : 28 ,
” au then t i c a t i on ”:2141083527

}
}

3.2 Desktop Jukefox Application

The desktop jukefox application should be a fully music player which includes the
features that make jukefox special. Namely the knowledge about music similarity
and the extraordinary user interfaces for browsing a music collection.

In addition to a normal music player the desktop jukefox application is also
a music synchronization server which provides clients access to its whole music
collection.

3.2.1 Graphical User Interface

We have designed the GUI so that users of the Android application find their
way immediately. For that reason the GUI should offer the user the same look
& feel as he is used to from the Android application while we take advantage of
the benefits of a PC. Therefore we have kept the navigation through tabs.

Since the screen of a computer is by far bigger we can display more informa-
tion at the same time. Like most other music players, we display the playback
buttons, information about the currently playing song, the current playlist and
an user interface at the same time.

Structure of the GUI

The GUI is divided into several containers as shown in figure 3.2. They all are
JPanels3, which are arranged with a GridBagLayout4.

All containers beside the content container do not change over time. In the the
content panel we will display the different user interfaces. The user can navigate
through them by clicking on the tabs on the left hand side.

3http://docs.oracle.com/javase/6/docs/api/javax/swing/JPanel.html [26.06.2013]
4http://docs.oracle.com/javase/6/docs/api/java/awt/GridBagLayout.html [26.06.2013]



3. Implementation 11

Figure 3.2: Structure of the GUI

We implemented also a common music user interface which uses three lists
for artists, albums and songs. They use the typical music hierarchy navigation.
This means that the content of song list depends on the selected albums in the
album list whose content depends on the selected artists in the artist list.

For the user interface of the synchronization we have decided to create yet
another visualization of the user’s music collection. The synchronization interface
consists of a JTabbedPane5 with a tab for each client who is registered at the
jukefox server. For each client exists a Music Tree which not only shows the whole
music collection but also indicates which songs are on the client, respectively are
marked for adding.

Music Tree

The component to administrate the songs which are stored on a client is based
on Santosh Kumar’s JTree with CheckBoxes6 and can be seen in figure 3.3.

The checkboxes on the left side of the songs, albums and artists show if they
are on the client, respectively will be after the synchronization. Through these
checkboxes the user can change mark them for adding or deleting.

The click on a checkbox does not start the synchronization. This has to be
done manually by the user.

5http://docs.oracle.com/javase/6/docs/api/javax/swing/JTabbedPane.html [26.06.2013]
6http://www.jroller.com/santhosh/entry/jtree with checkboxes [18.6.2013]



3. Implementation 12

Figure 3.3: Synchronization User Interface with Music Tree

3.2.2 Server Synchronization Manager

The Server Synchronization Manager provides access to the state of the server.
It has stored the data of the user’s whole music collection and holds information
about which songs are stored on which clients.

3.3 Android Jukefox Application

The Android app of jukefox already offers several user interfaces for browsing
the music collection on the phone. But they are only designed for displaying
songs that are on the phone. It would have been possible to extend them so that
they could also indicate if a song is on the phone or not. But we have decided
to make a clear separation between browsing only the songs on the phone and
browsing all songs.

The user can activate the user interface for browsing the music collection the
same as he can start the normal library import. By clicking on ’Manual Import’
in the options menu. If the synchronization is activated, this entry would have
otherwise been useless.



3. Implementation 13

3.3.1 Synchronization User Interface

The user interface for browsing the music collection of the jukefox server is
designed as a hierarchical list. Initially it shows all the artists which are currently
on the server. If the user clicks on a certain artist, the list gets updated and
shows then all albums of this artist. Clicking again on an album shows the songs
of that album.

Each item of the list visualizes the synchronization state of itself. To the left
of the name is a tristate checkbox which shows if the item should be on the client
or not. For a song this is simply yes or no. But for an artist or album this also
can be partially. Rightmost is indicated how many songs have to be added and
deleted during the synchronization to reach the wished state.

The synchronization has to be initiated by clicking on the synchronization
button.

3.3.2 External Synchronization Manager

The External Synchronization Manager provides access to both the database
on the phone and to the database of the server. It is used during the whole
synchronization process.

Server Database

We can retrieve all necessary information about the music which is currently on
the jukefox server from the server database. Therefore we have decided that all
clients have a copy of the server database. This has the following advantages:

+ For browsing the music collection of the jukefox server we can get all artists,
albums and songs by querying the server database.

+ While synchronizing we only have to send files and no information about
songs.

+ For the smart synchronization process we do not have to communicate with
the jukefox server. We have all needed information on the client.

Nevertheless there are also one disadvantage:

- A principle of jukefox is that it works independent of underlaying the database
management system. This means that the jukefox server and the client do not
necessarily use the same database management system.
At the moment we transfer the server database by simply sending the database
file from the jukefox server to the client. This works because they use both



3. Implementation 14

SQLite7. However this violates the principle. Therefore the transfer of the
server database has to be altered by sending INSERT-statements instead of
the database file. Like this we can create on the client a copy of the server
database which uses the client’s database management system.
A plus factor would be, that we can omit unneeded information such as the
playlog of the jukefox server.

Synchronization Tables

The server database besides the database of the client is not enough. For some
functions we would need queries over both databases. Although SQLite supports
an ATTACH-statement8 which makes this possible, this is not the general case.
Especially it is not part of the SQL-92 standard9.

Most functionalities we could implement by querying one database and use
the result to query the second database. But unfortunately this does not hold
for some functions.

For example computing the states of an album or artist would be very diffi-
cult and slow this way. So we have decided to maintain three additional tables
(synchronization tables) which have a corresponding entry for every artist, album
and song in the server database.

With this database scheme computing the states of an artist or album is
much simpler and can be done by querying only one database.

Updating the Server Database

The server database is updated when before the synchronization user interface
is shown. If the server database is outdated, we replace it with the new one.
But this is not enough. Since each artist, album and song has an entry in
the synchronization table, we have to update them as well. Otherwise it could
happen that the user sees a song in the synchronization user interface which is
no longer on the server or new songs would not been displayed.

3.4 Synchronization

The synchronization status of each song is described by two states. On the one
hand by the current status which indicates whether the song is on a phone or

7http://sqlite.org/ [27.06.2013]
8SQLite Syntax: ATTACH-statement of SQLite: http://www.sqlite.org/lang attach.html

[15.6.2013]
9SQL-92 standard: http://www.contrib.andrew.cmu.edu/˜shadow/sql/sql1992.txt

[18.6.2013]



3. Implementation 15

not. And on the other hand by the target status which indicates if whether the
song should be on the phone or not.

If the current status of a song is equal to the target status of it, then we do
not have to change anything. Otherwise we either need to add or delete it to
achieve the desired status.

3.4.1 Consistency

The consistency between the views of the server and the client is not critical.
Therefore we decided to use an optimistic synchronization. With optimistic we
mean that even if we do not get a response from the server we assume that the
synchronization worked correctly (i.e. that server and client agree on the current
states of all songs).

And after updating the server database we check for possible inconsistencies
which may have occurred anyway. If we find one, we try to resolve it. Therefore
we assume that the client is right. For example the server thinks a song is on the
client but it is not, then we send a message to the server that he should delete
it.

For finding inconsistencies we need to know the view of the server. But the
server database is only updated if it is outdated and a change in the synchroniza-
tion tables of the server database does not yield to a new timestamp. Therefore
we added a list of the songs which the server thinks are on the client to every
UPDATE DATABASE response. Then we can use them to find inconsistencies.

3.4.2 Client-side synchronization

The client can initiate two kinds of synchronization. Either the normal synchro-
nization or the smart synchronization (as described in section 3.5). In both ways
the requested changes are determined by looking at the current and target states
of songs and select the song ids where the states differ.

The synchronization is executed in three steps. Adding songs, deleting songs
and removing obsolete data.

Adding Songs

At first the necessary data (about song, album, artist and genre) is fetched from
the server database. Then a add song request is sent to the server and if the
response has no error, we can get the song file. The field data in the server
database gives the path of the song on the server. This is sent with a get file
request to the server which then sends the file. The same can we do for requesting
the covers of the album of the song.



3. Implementation 16

(a) The new synchronization user interface
in the android app

(b) Status information about the synchro-
nizing process

(c) Suggestions of the smart synchronization

Figure 3.4: Application screenshots



3. Implementation 17

After that we have everything we need and can move the files (previously
stored in a temporary directory) to the music collection directory and the cover
directory. Then we have to change the gathered data accordingly to the new
paths of the files, before we add it to the database of the client.

If all went without problems or errors, we can update the current status of
the song, and the current states of the album and the artist of the song.

Deleting Songs

Before deleting the song from the database, we inform the jukefox server about
it. The jukefox server then changes the current status of the song and sends
a response to the client. After that the client can remove the song from the
database and update the current status of it.

Removing Obsolete Database Entries

If all songs of an album or an artist are deleted, they still appear when the
user browse his music collection. To avoid this, we have to remove all obsolete
information from the database.

3.4.3 Server-side synchronization

The synchronization initiated from the server differs only slightly from the syn-
chronization initiated of the client. The jukefox server sends a synchronization
request to the client which contains all changes, i.e. two lists containing the ids
of songs to add and to delete.

If the client receives this request, it updates the target states of the songs
which should be changed accordingly to the request of the server. Then it starts
the normal synchronization.

3.5 Smart Synchronization

Jukefox already provides a playlog, which stores when the user listened which
songs, if they were skipped and much more. During the smart synchronization
we analyze this data and then suggest songs which could be added or deleted.
The user can view the list of suggestions and ignore some of it. If he accepts the
suggestions, the target states of the songs which were not ignored are updated
accordingly to the suggestions. After that we just start the normal synchroniza-
tion.



3. Implementation 18

3.5.1 Smart Synchronization Manager

We only consider the playlog entries which are not older than when the user used
the last time smart synchronization. But because the smart synchronization gets
better if we have more data about the listening behavior of the user, we consider
at least the data of the last two weeks.

If we call the functions for getting songs to add or delete, we can specify the
maximal number (maxNum) of songs we want to get.

Adding Songs

For determine which songs could be added, it is necessary to first gather the
needed data from the playlog of the phone and then use this data for querying
the server database. We use three methods which use different approaches to
find songs which could be added:

i) similar songs to often listened songs

ii) songs which were recently added to the server

iii) some random songs which are currently not on the phone

Of each method we add num = weightmethod ∗maxNum songs to the resulting
list of suggestions.

Simalar songs to often played:

First we determine the most often played songs (songId) and how often
they were played (numPlayed). Then we use numPlayedi∑

i numPlayedi
as a weight to

determine how many similar songs we want to suggest for songIdi.

Recently added songs:

We just the last added songs on the server (sorted with descending times-
tamp) and check that they are not yet on the phone.

Random songs:

We just get some songs of the server which are not on the phone yet.

Since its possible that two or even all three methods suggest the same song. In
order to prevent duplicates, we check if a song already exists in the result before
we add it to it. But since this would make it possible that we have less songs
from the method, we decided to get maxNum songs of each method and add
only as many songs as wanted.



3. Implementation 19

Deleting Songs

For determining which songs should be deleted, it is sufficient to regard only
the playlog of the smartphone. We have decided to concentrate on two different
ways to find songs to delete:

i) often skipped songs

ii) songs which were not listened to

Just like at finding songs for adding, we add num = weightmethod ∗maxNum
songs of each method to the resulting list of suggestions. And we use the same
procedure to prevent duplicates.

3.5.2 How to determine the Amount of Changes

The maximal size of the user’s music collection can be either defined by himself
or otherwise we decided to use 75% of available space where the music is stored.
The remaining space should get filled up with as many songs as possible.

Because the size of a song is not stored in the database and we did not want
to extend it if it is not really necessary, we worked with the assumption that
a average song is about 10MB big. The assumption should be good enough to
working with.

There are two different cases which are considered when we determine the
amount of change:
Free space available: If the maximal music collection size is not yet reached,
songs are only added and not deleted.
No free space: If the maximal music collection size is almost reached, we have
to delete songs in order to get space for adding new songs. Then we change
about 10% of the music collection.

But since the user has to accept the suggestions of the smart synchronization, we
set an upper bound of 15 for the number of songs to add and delete. Otherwise
the dialog would get cramped and the user had no longer a good overview of the
suggestions.



Chapter 4

Future Work

The time for writing this thesis was limited and we had to make several compro-
mises. Apart from some possible improvements there are also several ways how
the new synchronization feature of jukefox could possibly be extended in order
to make it more usable for the users.

4.1 Possible Improvements

Complete the Desktop Jukefox Application: The current version of the
desktop jukefox application is only a prototype which just supports some mini-
malistic music player functionalities. This also depends on the API which is used
for music playback. It does not support features, which were not essential for
the jukefox cli player but are absolutely mandatory for the desktop application,
like volume regulation for example.
Other missing functionalities like generating and managing playlists could be
easily adopted from the android application without greater adaptions. More
jukefox-specific features like the song map or the tag cloud have to be ported
from the android application to pure java code.

Automatic Synchronization: A nice feature would be, if the synchroniza-
tion does not have to be started manually any longer, but starts automatically
as soon as the smartphone established a successful connction via WLAN.

Improve the smart synchronization: The smart synchronization could get
improved by allowing the user to manipulate the weights for the different meth-
ods to suggest songs. Furthermore more methods could be implemented which
exploit different synchronization behavior.
In addition it should be possible to improve the smart synchronization by devel-
oping agents that autonomous alter the weights.

20



4. Future Work 21

4.2 Possible Extensions

Use of Cloud Storage: Most users will not have a server at home on which
they could run the desktop jukefox application. But it is only possible to syn-
chronize when the desktop jukefox application runs. Most users will want to
shutdown their PC before the go out of the house and like this they could not
make use of the possibility to download songs on the way.
For that reason one possible extension would be to allow the user to store his
music collection in the cloud. Therefore it would be necessary to move some func-
tions of the jukefox server to the android application and distinguish between
whether the smartphone is synchronized with a jukefox server or the music is
just stored in the cloud.

Run library import and synchronization together: Another extension
would be to enable both the normal library import and the synchronization at
the same time. This would require that the library import manager would con-
sult the jukefox server if it finds a new song on the phone and if the song would
not yet exist on the server, send the song to it. Like this songs that were on the
phone in the beginning would be also considered.



Chapter 5

Conclusion

The synchronization of music is a challenge for the user. Making the decision of
choosing a subset of his music collection to store on a phone is complicated and
subject to permanent change.

Jukefox already has knowledge about music similarity. So far that knowledge
was used to create smart playlists which match the mood of the listener. Now
we used it to propose songs which could be added or deleted.

To conclude this thesis we can say that the developed music synchronization
is a fair extension for jukefox and the smart synchronization feature shows that
we can facilitate the synchronization process by evaluating the music listening
behavior of the user. The new smart synchronization feature of is the first step
towards the automating of the synchronization.

22



Appendix A

Appendix

A.1 How to set up the Jukefox Server

1. Install the desktop jukefox application on a computer.

2. Add the paths of your music library in the settings and start the library
import.

3. Redirect the ports 8001 and 8002 to this computer.

4. Ensure that the computer has either a static IP for it or make use of
Dynamic DNS.

A.2 How to use the new Synchronization Feature

1. At the first start of the application select ’Synchronization’ as library
method. You can activate the synchronization later in the settings.
WARNING: toggling between classical library import and synchronization
deletes your database on the phone!

2. Before continuing ensure that either you are in the same network as the
server or that you have set the server address in the settings.

3. Click on ’Manual Import’ in the options menu and follow the steps for the
registration. You have to permit the registration at the server.

4. If you click now again on ’Manual Import’ you will see the new synchro-
nization user interface. Click on the checkboxes to the left to add or delete
songs or whole albums and artists. By clicking on ’Synchronize’ you start
the synchronization. If you click on ’Smart Sync’ you will see a dialog with
a list of suggestions based on your listening behavior. You can exclude some
of thesuggestions. When you accept the suggestions, the synchronization
will start.

1


	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Goals

	2 Jukefox
	2.1 Android
	2.2 Music Similarity
	2.3 Jukefox CLI Player
	2.4 Library Import Manager

	3 Implementation
	3.1 System Design
	3.1.1 Establishing a Connection between Server and Client
	3.1.2 Communication between Server and Client

	3.2 Desktop Jukefox Application
	3.2.1 Graphical User Interface
	3.2.2 Server Synchronization Manager

	3.3 Android Jukefox Application
	3.3.1 Synchronization User Interface
	3.3.2 External Synchronization Manager

	3.4 Synchronization
	3.4.1 Consistency
	3.4.2 Client-side synchronization
	3.4.3 Server-side synchronization

	3.5 Smart Synchronization
	3.5.1 Smart Synchronization Manager
	3.5.2 How to determine the Amount of Changes


	4 Future Work
	4.1 Possible Improvements
	4.2 Possible Extensions

	5 Conclusion
	A Appendix
	A.1 How to set up the Jukefox Server
	A.2 How to use the new Synchronization Feature


