
Institut für
Technische Informatik und
Kommunikationsnetze

Felix Wermelinger

Implementation and Evaluation of
Mixed Criticality Scheduling Ap-
proaches

Semester Thesis SA-2013-01
February 2013 to June 2013

Tutor: Prof. Dr. Lothar Thiele
Supervisors: Pengcheng Huang, Georgia Giannopoulou

2

Acknowledgments

I would like to thank Prof. Dr. Lothar Thiele and his research group at the Computer Engineering
and Network Lab of the Swiss Federal Institute of Technology, for the environment that they
created, within which I was able to write this thesis.
My supervisors Pengcheng Huang and Georgia Giannopoulou have been supportive in their
role and have introduced me to scientific methods and ideas, as was needed for my work. Their
constructive feedback has helped greatly in creating this thesis and I would like to thank them
for that.

3

Abstract

This thesis studies the implementation of real-time mixed criticality scheduling algorithms. It
explains which mechanisms a simulation environment has to support in order to allow mixed
criticality scheduling, namely run-time monitoring and dynamically scheduling, preempting and
canceling tasks. The implementation of the “Mixed Criticality Scheduling Framework” is docu-
mented, to show how such a system can be created. The thesis proceeds to test this frame-
work, by implementing two mixed criticality scheduling algorithms, as well as explaining their
underlying functionalities. The first algorithm “Earliest Deadline First with Virtual Deadlines” is
implemented in two alternative ways, each having its own traits. The “Mixed Criticality Resource
Flow” algorithm, having an entirely different idea behind it, is then used to test the framework
and evaluate whether it is suitable for different scheduling approaches. For each of these imple-
mentations there were extensive simulation runs executed. The results support the claims that
were made in the theoretical part.

4

Contents

1 Introduction 13
1.1 Introduction . 13
1.2 Motivation . 13
1.3 Related Work . 14
1.4 Contributions . 14
1.5 Outline . 14

2 Mixed Criticality Scheduling 15
2.1 Problem . 15
2.2 Example . 15
2.3 Formal description . 15
2.4 Scheduling algorithms . 16

2.4.1 Earliest Deadline First with Virtual Deadlines 16
2.4.2 Mixed Criticality Resource Flow . 17

2.5 Summary . 19

3 Mixed Criticality Scheduling Framework 21
3.1 Hierarchical Scheduling Framework . 21
3.2 Scope of the Implementation and Notation . 23
3.3 Extensions . 23

3.3.1 Randomized Task Execution Times . 23
3.3.2 Monitoring . 23
3.3.3 Dynamic scheduling . 24
3.3.4 Congestion control . 24

3.4 Implemented scheduling algorithms . 24
3.4.1 Earliest Deadline First with Virtual Deadlines 24
3.4.2 Mixed Criticality Resource Flowing . 25

3.5 Summary . 26

4 Experimental Evaluation 27
4.1 Overheads . 27
4.2 Measurement method . 27
4.3 Test set-up . 28
4.4 Earliest Deadline First with Virtual Deadlines Experiments 28

4.4.1 Task set . 28
4.4.2 Results . 29

4.5 Mixed Criticality Resource Flow Experiments . 32
4.5.1 Task set . 32
4.5.2 Results . 33

4.6 Summary . 34

5 Conclusion and Future Work 35
5.1 Conclusion . 35
5.2 Outlook . 35

5

6 CONTENTS

A Mixed Criticality Scheduling Framework manual 37
A.1 Setup . 37
A.2 Structure . 38
A.3 Functions . 38
A.4 Creating a scheduler . 39

B Original Project Assignment 41

C Presentation Slides 47

List of Figures

2.1 An example of an EDF-VD schedule with two high critical tasks (tasks 1 and
2) and two low critical tasks (task 3 and 4). The two high critical tasks always
get scheduled first, to guarantee meeting their deadlines and as soon as one of
them overruns the low critical tasks get canceled. As soon as the CPU is idle the
scheduler will schedule all tasks which arrive in the future 17

2.2 An example MCRF scheduling. The resource flows are depicted on the right side.
The left side shows when each task is scheduled. The “server” illustrates the
time that is actually allocated to task 1, even though some of it is then further
distributed to tasks 4 and 5 because task 1’s execution is already guaranteed . . 19

3.1 Design of the HSF-framework (source: [2]) . 21
3.2 Execution order example of a task instance of an EDF simulation using the hier-

archical scheduling framework. 22
3.3 Example of a resource flowing graph using leaky bucket servers. 26

4.1 Scatter plot, where each ’o’ signifies, that for the respective probability/utilization
bound, at least one experiment succeeded, while a ’x’ shows, that at least one
failed . 29

4.2 Average overheads of EDF-VD with 1 queue (left) and 2 queues (right), with uti-
lization 70% . 30

4.3 Average overheads of EDF-VD with 1 queue (left) and 2 queues (right), with prob-
ability of overrunning 20% . 31

4.4 Aggregated graph of the relative overhead (absolute overhead
total run time) and the switching over-

head of the two EDF-VD implementations. 32
4.5 Average relative overhead of MCRF as function of the probability of overrunning

for each critical task. 33
4.6 Average relative overhead of MCRF as function of the Utilization Bound. 33

7

8 LIST OF FIGURES

List of Tables

4.1 Table of Simulation Setup parameters . 28

5.1 Comparison between the three implementations Mixed Criticality Resource Flow
(MCRF), Earliest Deadline First with Virtual Deadlines using 2 queues (EDF-VD2)
and Earliest Deadline First with Virtual Deadlines using 1 queue (EDF-VD1) . . . 35

9

10 LIST OF TABLES

Listings

2.1 Pseudo code of EDF-VD for n criticality Levels 16
2.2 Pseudo code of a MCRF Server . 18
3.1 Example description of a task of criticality level 2 with 10% probability of running

40 ms and 90% of running only 20 ms . 23
A.1 Content of the README file for HSF and MCSF 37

11

12 LISTINGS

Chapter 1

Introduction

1.1 Introduction

This thesis is situated in the research field of real-time mixed criticality scheduling. Mixed critical-
ity scheduling is a rather recent topic, which concerns itself with safety critical systems. Multiple
tasks in such a system are crucial for the safety of the system itself and its surroundings, which
often includes the safety of human beings. Tasks in such a system have varying execution times,
unknown prior to execution. Normally, a system designer for a real-time system with varying ex-
ecution times would before implementing the system, calculate a worst case execution time
(WCET) and create a schedule which can schedule all tasks, such that every task meets its
deadline, even if every task exhibits its WCET.

However, if the real-time system has safety-critical tasks, then it must be certified by one or more
certification authorities (CA). CAs will grade different tasks in the system into criticality levels,
where the highest criticality level is assigned to tasks, which are most important for safety,
whereas lower critical tasks are less safety-critical. These CAs are very pessimistic about the
execution times of tasks and assume higher WCETs than the WCETs that were assumed by
the system designer. Designing a system the same as the mentioned system designer would
design one, but with the assumptions of the CA would lead to a system, which is vastly over-
dimensioned and uses most of its time only a small fraction of its resources.

The idea of mixed criticality scheduling is now to incorporate the criticality levels into the schedul-
ing. We start from the system, which was designed by a system designer with his own assump-
tions. Should it actually happen that a task exceeds the WCET assumed by the system designer,
which means that the original schedule is not admissible, then the scheduler may start a new
schedule by canceling tasks of lower criticality level in order to ensure the safe execution of
safety-critical tasks.

So, as long as the assumptions made by the system designer hold, all tasks will be scheduled
and meet their deadlines. Simultaneously, we can also satisfy the requirements imposed by the
CA, because there is a schedule which can be used in case the system designer assumptions
fail. This schedule is guaranteed to be admissible as long as the assumptions made by the CA
hold.

1.2 Motivation

The motivation to write this thesis was to create a framework which will faithfully enforce real
time execution of tasks, which allows the implementation of mixed criticality schedulers. Then
some algorithms, that only exist in theory so far, can be implemented to test the framework.
This way one can test out the algorithms with real examples on real platforms and take mea-
surements of the performance. Also one can test various implementation methods and compare
their efficiency.

13

14 CHAPTER 1. INTRODUCTION

1.3 Related Work

The paper “Mixed-Criticality Scheduling of Sporadic Task Systems” [1] describes the functional-
ity of the mixed criticality scheduling algorithm “Earliest Deadlines First with Virtual Deadlines”.
An alternate algorithm “Mixed Criticality Resource Flow” is described in a paper of the same
name [3]. These algorithms have been implemented in this thesis. The implementation of this
thesis is based on an extension of the Hierarchical Scheduling Framework [2], which allows the
simulation of real-time schedulers, with a focus on hierarchical scheduling structures.

1.4 Contributions

The main contributions can be summarized as follows:

• Extending the Hierarchical Scheduling Framework [2] to support Mixed Criticality Schedul-
ing.

• Implementing the algorithms “Earliest Deadline First with Virtual Deadlines” and “Mixed
Criticality Resource Flow”.

• Suggesting a performance metric (overhead) and comparing the implemented algorithms
with respect to this metric. Showing that simulations using the implemented algorithms
exhibit the properties the theory suggests.

1.5 Outline

In Chapter 2 the research field of mixed criticality will be explained in detail, with a further in-
vestigation of two mixed criticality scheduling algorithms. In Chapter 3 we will then look into
the implementation of a mixed critical system simulation environment and explain the neces-
sary mechanisms of such a system as well as the implementation of the scheduling algorithms.
Chapter 4 presents a metric of performance and compares different implementations and algo-
rithms based on this metric. In the end, Section 5.1 will summarize the thesis and Section 5.2
will suggest future uses of this thesis.

Chapter 2

Mixed Criticality Scheduling

2.1 Problem

In a simplified case of Mixed Criticality setting, there are only two criticality levels: high criti-
cal and low critical. High critical tasks have to be always guaranteed to meet their deadlines,
whereas low critical tasks should be guaranteed, as long as they do not interfere with the high
critical ones (i.e. low critical tasks do not cause a high critical task to miss its deadline). All
tasks have a worst case execution time (WCET) assigned for the low critical case. This WCET
is equivalent to the one, that a system designer would assume (see Section 1.1). As long as all
tasks never overrun these WCETs, the scheduler has to guarantee the execution of all tasks.
As soon as one of these tasks overruns its assumed WCET, the scheduler will assume that
all high critical tasks run at the WCET proposed by the CA (see Section 1.1). The low critical
tasks can - but do not have to - be discarded. The scheduler has to guarantee the meeting of all
deadlines of high critical tasks in respect to the WCET proposed by the CA.
This problem can be generalized for more than 2 criticality levels. Assuming different levels of
criticality means, that a gradation is made in between these levels. So instead of just classifying
tasks as low critical or critical, we can have a smooth gradation from low critical over medium-
critical up to high critical tasks. With increasing criticality level, tasks have a stronger guarantee,
where the strongest guarantee is unconditional. Each task has a WCET assigned for each
criticality level lower or equal to the one he is assigned to. These WCET increase with increasing
criticality level. A task may never overrun the WCET of its own criticality level.

2.2 Example

A typical example of a mixed criticality system is an airborne software system. For simplicity we
mention only two tasks in this system: The autopilot and the “nearest airport” task, which is a
task to calculate where the nearest airport is. A developer of this system (the system designer),
who wants to sell the system is interested in ensuring its customers all parts of the system at all
times. Because the autopilot is a safety-critical task, a Certification Authority (CA) has to certify
the system. By dynamically allowing the system to suspend the “nearest airport” task should
the assumptions of the developers be violated, it can be assured that the CA requirements
are always fulfilled. This is because security is still ensured if the “nearest airport” task will be
scheduled in most, but not all, cases, since the output of this task only changes in small ways.
At the same time, the developer can assure that all tasks are always scheduled, given his own
realistic assumptions hold.

2.3 Formal description

Formally, a mixed critical system is defined using a task set, where each task is defined by a
4-tuple of parameters: Ji = (Ai, Di, χi, Ci):

• Ai ∈ R
+ is the release time.

15

16 CHAPTER 2. MIXED CRITICALITY SCHEDULING

• Di ∈ R
+ is the deadline. Generally Di ≥ Ai, but we will assume Di = Ai.

• χi ∈ N
+ denotes the criticality of the job, where larger values denote higher criticality.

• Ci : N
+ → R

L specifies the WCET of Ji for each criticality level, where L is the number of
criticality levels.

2.4 Scheduling algorithms

This section describes the algorithms implemented in this thesis. For the exact implementation
refer to section 3.4.

2.4.1 Earliest Deadline First with Virtual Deadlines

Earliest Deadline First with Virtual Deadlines [1] (EDF-VD) implements an EDF-schedule [5] for
each criticality level. The EDF-schedule of level i will schedule all tasks above and including
criticality level i. Tasks of lower criticality level than i will not be scheduled.
Suppose a higher critical task being scheduled due to its normal WCET. In the worst case we
would be notified of its overrunning very shortly before its deadline. At this point there might
not be enough time left to meet its deadline, because overrunning has increased WCET to the
WCET of the next higher criticality level. This means that an overrunning notification must al-
ways appear such that there is enough time to finish the task using its WCET of the uppermost
criticality level.
Thus, we introduce the virtual deadlines. Each task has a virtual deadline for each criticality
level, which will be earlier than the normal deadline. This assures, that even when we get mod-
ified of an overrun just before the virtual deadline, there is enough time left to schedule the task
with its higher criticality WCET before its actual deadline.
At the beginning the scheduler runs the EDF-schedule for the lowest criticality level, which will
run all tasks. As soon as a task overruns, the scheduler switches to the EDF-schedule of one
criticality higher and cancels all tasks of lower criticality levels.
A pseudo-code example of the scheduling algorithm, as executed by a scheduler can be seen
in Listing 2.1. It shows the three main functions that can be called on the scheduler:
NewTask will insert the new task into the deadline-ordered queue and change the currently
running task, if necessary.
TaskFinished will delete a finished task from the queue and update the currently running task.
If the CPU is idle it will also reset the criticality level.
TaskOverrun registers an overrunning task and will cancel this task if it has a too low criticality
level. Otherwise it will delete all tasks of the current criticality level and increase the criticality
level.
In the implementation these functions have to be synchronized properly to allow concurrent calls
to these functions. For simplicity this has been omitted in the pseudo-code.

Listing 2.1: Pseudo code of EDF-VD for n criticality Levels

NewTask (task) {
i f (task . C r i t i c a l i t y L e v e l <cu r ren tLeve l) {
return

}
queue . i n s e r t (task)
i f queue . f i r s t != cur ren t lyRunn ing {
cur ren t lyRunn ing . preempt ()
cur ren t lyRunn ing=queue . f i r s t

}
}

TaskFinished (task) {
queue . de le te (task)
cur ren t lyRunn ing=queue . f i r s t
i f queue . f i r s t == n u l l

2.4 Scheduling algorithms 17

task 1

task 2

task 3

task 4

Figure 2.1: An example of an EDF-VD schedule with two high critical tasks (tasks 1 and 2) and
two low critical tasks (task 3 and 4). The two high critical tasks always get scheduled first, to
guarantee meeting their deadlines and as soon as one of them overruns the low critical tasks
get canceled. As soon as the CPU is idle the scheduler will schedule all tasks which arrive in
the future

cu r ren tLeve l=0
}

TaskOverrun (task) {
i f (task . C r i t i c a l i t y L e v e l <= cu r ren tLeve l) {
task . cancel ()
return

}
queue . CancelAndDeleteAllTasks (cu r ren tLeve l)
cu r ren tLeve l+=1

}

2.4.2 Mixed Criticality Resource Flow

The Mixed Criticality Resource Flow (MCRF) algorithm has the advantage of a decreased num-
ber of canceled low critical tasks in a mixed criticality scheduling, while still remaining efficient
in terms of scheduling overhead. This means, that a certain task overrunning will not cancel all
tasks of lower criticality level. In contrast EDF-VD cancels all tasks of lower criticality level.
We assume each task gets assigned time slices of execution time, which guarantee that it will
meet its deadline, even when its execution time is equal to its worst case execution time of its
own level (which is the absolute worst case). Each task -called master task - has been assigned
tasks of lower criticality level, called slave tasks, to which it will flow its remaining resources,
i.e. the remaining time slices, after the master task is guaranteed. A resource flow (the amount
of time slices, that are given to slave tasks) has to be guaranteed, if the master task does not
overrun its own WCET of its own level. The overall system is called schedulable if the resources
flowed to a task of level i guarantee that said task meets its deadline, given no task it gets
resources from overruns the WCET of level i. This way it is guaranteed, that the slave task is
scheduled, when the master task does not overrun its WCET of the criticality level of the slave
task. When the master task overruns, it will not flow its resources, ensuring the meeting of its
own deadline, and possibly making the meeting of deadlines for the slave tasks impossible.
The resources originate from the CPU, which distributes its time among various tasks. Each task
has then unconditional resources (resource flows from the CPU) and/or conditional resources
(resources flows from other tasks, which will distribute their slack time). Which task flows its

18 CHAPTER 2. MIXED CRITICALITY SCHEDULING

freed execution time to which other task is determined when designing the system and is a nec-
essary information for the schedulability test. The only restriction for these resource flows is that
the criticality level of the master task has to be strictly larger than the one of the slave tasks. The
amount of resource flows is usually deliberately kept low in order to decrease scheduler com-
plexity. This is because every resource flow will, if used, be another reallocation of resources,
which causes overhead and also might trigger additional preemptions.

One can easily argue, that in general MCRF will cancel much less tasks than EDF-VD, because
the overrunning of one task, which would cancel all tasks of lower criticality level in EDF-VD
will only affect the slave tasks of the overrunning task. Not to mention the possibility, that each
slave task has a chance to get enough resources from other tasks to still meet its deadline.
However, one can also argue, that the scheduling overhead is most likely increased, due to the
large number of preemptions. Also the schedulability analysis and designing of the system is
quite sophisticated.

A pseudo-code example can be found in Listing 2.2. This code utilizes a server, which will be
scheduled in place of its own master task. The server is responsible for scheduling its master
task and all the slave tasks (which in turn might be replaced by servers responsible for said
tasks).
The main function is schedule, which uses a round robin schedule among the slave tasks, but
gives priority to an overrunning master task. Scheduling is performed by activating and deacti-
vating the other entities. In turn the server itself can be preempted by a call to the deactivate
method which will halt the schedule function and can be reactivated using activate.
In the implementation the activate and deactivate functions have to be synchronized properly
to allow concurrent calls to these functions. For simplicity this has been omitted in the pseudo-
code.
An example can be seen in Figure 2.2, which shows how a server for task 1 will redistribute its
execution time among its master and slave tasks as described in the pseudo code.

Listing 2.2: Pseudo code of a MCRF Server

schedule () {
while (t r ue) {

MasterTask . a c t i v a t e ()
wa i tFor (MasterTaskTimeSlice)
i f (MasterTask . hasOverrun) {
wa i t (Unt i lMasterTaskEnds)

}
MasterTask . deac t i va te ()
for each s lave {

s lave . a c t i v a t e ()
wa i tFor (s lave . TimeSlice)
s lave . deac t i va te ()

}
}

}

deac t i va te () {
schedule () . Ha l t ()
cur rent lyRunningTask . deac t i va te ()

}

a c t i v a t e () {
schedule () . Resume()
current lyRunningTask . a c t i v a t e ()

}

2.5 Summary 19

Task 1

Server

Task 4

Task 5

Task 2

Task 3

������ ���

�	

������

� ���

Figure 2.2: An example MCRF scheduling. The resource flows are depicted on the right side.
The left side shows when each task is scheduled. The “server” illustrates the time that is actually
allocated to task 1, even though some of it is then further distributed to tasks 4 and 5 because
task 1’s execution is already guaranteed

2.5 Summary

This section explained the fundamentals of mixed criticality scheduling, including the formal
problem description. It showed what the general idea of mixed criticality scheduling is and
demonstrated the execution of said idea with two example algorithms.

20 CHAPTER 2. MIXED CRITICALITY SCHEDULING

Chapter 3

Mixed Criticality Scheduling
Framework

3.1 Hierarchical Scheduling Framework

The software design is an extension of the Hierarchical Scheduling Framework (HSF) [2]. This
framework was designed to allow hierarchical scheduling simulation and implemented classical
scheduling algorithms such as “Earliest Deadline First”, “Time Division Multiple Access” and
“Fixed Priority”.

Figure 3.1: Design of the HSF-framework (source: [2])

Figure 3.1 shows the design of the HSF-framework. We briefly explain the components:

XML File This file holds the information of the simulation that will be carried out. This is in-
formation about the scheduling algorithm used and its parameters. The task set that will be
handled is also defined in this file.

Parser The Parser will extract the information from the XML File, create and initialize all the
components as described in the xml file.

Dispatcher For each task there exists a dispatcher, which will dispatch each instance of this
task. Usually interesting are periodic dispatchers which will dispatch a new instance after a fixed
time interval. But the framework also allows aperiodic dispatching.

Worker For each task there is exactly one worker responsible. As soon as the respective
dispatcher has created an instance of said task, the worker will request execution time from
the scheduler and start executing whenever the worker is granted any. The worker will also
inform the scheduler when an instance has finished or has to be aborted because it overran its
deadline.

21

22 CHAPTER 3. MIXED CRITICALITY SCHEDULING FRAMEWORK

Scheduler The scheduler will handle requests of workers who would like to execute their task
instances. It will activate and deactivate these tasks according to the chosen scheduling policy.
Schedulers may also be used hierarchically, where one scheduler is a subordinate of another
and also has to request execution time, the same as a worker.

Statistics The statistics entity will collect data about the simulation to calculate different
metrics after the simulation.

It is important to realize that this framework is designed as an application in the user space
of a Linux system. This means, that there is an underlying Linux kernel with a priority based
scheduler. Even though one should try to have no other tasks running when executing the
simulation, there are precautions to minimize the effect of other tasks.

All the components of HSF are realized as threads. These threads have so called “real-time
priorities” assigned, which makes them preempt any lower priority threads in the system. This
way it is ensured, that there are no other tasks blocking the execution of our simulation, with the
exception of other real-time tasks. The idea is that while being active, threads have a priority
specific to their role, while being inactive they have the inactive-priority. If a task has inactive-
priority, it will always be preempted by the idle thread, as it never sleeps and has a bigger priority,
the idle-priority. However the idle thread is only scheduled, when no other thread is active, as
they would then have a higher priority.

Figure 3.2 shows how the threads interact normally with each other. In the figure one can see,
how a dispatcher is triggered at a certain point in time, to dispatch a new task instance, register
it with the worker and request execution privilege for the worker. As soon as the scheduler
grants these privileges, the worker will start the execution. When the task instance execution is
finished, the worker will register the event with the scheduler.

Scheduler

Dispatcher

Worker

Idle Thread

Lowest priority

Highest priority

Figure 3.2: Execution order example of a task instance of an EDF simulation using the hierar-
chical scheduling framework.

3.2 Scope of the Implementation and Notation 23

3.2 Scope of the Implementation and Notation

Generally a task in mixed criticality scheduling has a separate worst case execution time
(WCET) for each criticality level, which increases with increased criticality level. For the sake
of simplicity, we will only consider systems with two criticality levels and thus each task has only
up to two WCETs. We call the WCET of the low criticality level “Typical Case Execution Time”
(TCET) and the high criticality level is still called “Worst Case Execution Time” (WCET).
The criticality level is represented by a value of “2” for high critical tasks and “1” for low critical
tasks.

3.3 Extensions

As this project does not just want to implement a classic deadline or priority-based scheduler,
some extensions to the existing HSF framework were required. This chapter will discuss why
each extension is needed and explains the implementation.

3.3.1 Randomized Task Execution Times

Thus far the framework only allowed static task sets (i.e. one task would always run for the same
amount of time). Mixed criticality scheduling is however only of interest if we have unknown task
execution times.
The actual execution time will then be calculated as a function of the two parameters WCET and
TCET and the third parameter Distribution, which may be a uniform (between 0 and WCET), bi-
nary (either WCET or TCET), normal (normally distributed) or fixed distribution (always WCET).
For our simulation, the actual execution time is assigned whenever a new task instance has
started and remains private knowledge of the task. The task will then run as usual for this exe-
cution time unless preempted. For the binary distribution, there exists an additional parameter
“Probability”. The actual execution time will be equal to WCET with this parametrized probability
and otherwise it will be equal to TCET.

Listing 3.1: Example description of a task of criticality level 2 with 10% probability of running 40
ms and 90% of running only 20 ms

<runnable type= " worker " p e r i o d i c i t y = " p e r i o d i c " task= " busy_wait "
mon i to r ing =" t r ue ">

<per iod value=" 50 " u n i t s ="ms" / >
<wcet value=" 40 " u n i t s ="ms" / >
< t c e t value=" 20 " u n i t s ="ms" / >
< d i s t r i b u t i o n value =" b inary " P r o b a b i l i t y = " 10 " / >
< c r i t i c a l i t y _ l e v e l value= "2 " / >
< r e l a t i v e _ d e a d l i n e value=" 50 " u n i t s ="ms" / >
< v i r t u a l _ d e a d l i n e value=" 25 " u n i t s ="ms" / >

< / runnable >

3.3.2 Monitoring

Due to the randomized task execution times, one does not know when a task is going to fin-
ish prior to its finishing. Thus there has to be a monitoring mechanism which will observe the
execution and inform the scheduler in case the task has overrun its typical case execution time.
In order to do this, each worker, which has in its xml-declaration monitoring=“true” set will create
an OverrunChecker -thread in parallel to its own worker-thread. The worker-thread will execute
the task, which will only locally know what the actual execution time is going to be. The Over-
runChecker -thread will run with higher priority than the task itself (with respect to the Linux-
scheduler) and check periodically whether the task has overrun its TCET. As soon as this hap-
pens the OverrunChecker -thread will call the OverrunJob-function on the scheduler, to inform it
about the overrun.

24 CHAPTER 3. MIXED CRITICALITY SCHEDULING FRAMEWORK

It should be noted, that monitoring is only supported for high critical tasks. Low critical tasks
would be aborted by the scheduler anyway in the event of an overrun, so we emulate this
behavior by defining that low critical tasks may never overrun their TCET in the first place.

3.3.3 Dynamic scheduling

When tasks of a high criticality level overrun, then the scheduler will need to cancel tasks of a
lower criticality level. This means, that the worker has to be able to cancel its task at any time
and free its resources to be ready for a new instance of the same task.
The scheduler may call the blocking function cancel on a worker, which will force the scheduling
of the corresponding worker thread and set a canceling-flag for this worker. The worker thread,
which will be busy executing the actual task, checks this canceling flag periodically and it will
abort execution, should the flag be set. The OverrunChecker -thread should do the same. The
worker will then have to properly finish the task, freeing its resources and as usual, register the
finished task with the scheduler. After this is done, cancel will stop forcing scheduling the worker
thread and return.

3.3.4 Congestion control

As a scheduler might set the scheduling to a high critical case for a long time and deny execution
of low critical tasks, the workers will accumulate old task instances, which are dispatched. These
tasks would all have to be handled, when the scheduler decides to reschedule low critical tasks,
which might cause a delay. Thus, a dispatcher will always cancel the currently running task on
the worker, when dispatching a new one. This will ensure, that each worker has only one task
waiting for execution, which limits the delay to the same one we have during execution of the
low critical scheduling anyway.

3.4 Implemented scheduling algorithms

Using the tools provided by the HSF-framework and the extension, the actual scheduling algo-
rithms could be implemented. While this section discusses the implementation, the algorithm
itself is described in Section 2.4.

3.4.1 Earliest Deadline First with Virtual Deadlines

The implementation of EDF-VD in this work only supports two criticality levels. The tasks which
are on these levels are from now on called high critical and low critical tasks respectively. EDF-
VD is a scheduling algorithm, which has just two possible schedules. Either it is in low critical
mode and all tasks will be scheduled, or it is in high critical mode and only high critical tasks will
be scheduled. Switching from low critical to high critical mode happens if any high critical task
overruns its WCET of the low critical level. Switching from high critical to low critical mode is a
difficult topic in itself. In the original paper [1] it was assumed, that normally no task overruns
and if it should happen nonetheless, scheduling would never switch back to low criticality mode.
In the case of this project, the implementation was simply done by just switching back if the
queue of tasks to be scheduled is empty. This implementation is not optimal. One can even
construct specific examples, where this policy would switch back a lot later than an optimal
policy could. Assume a system with a high critical task with a very large execution time and
period in comparison to the other tasks. For such a task set it would be optimal to precalculate
the utilization over the future and see if the additional utilization, that would be required for a low
critical task is available.
The implementations of EDF-VD are adaptions of a normal Earliest Deadline First (EDF) al-
gorithm, which existed in the original HSF, in order to keep the extensions consistent with
the framework. This implementation is event driven and will mostly operate around a Dead-
lineQueue. This queue will maintain tasks sorted by their deadlines. For our purpose it has
been modified and it now supports high critical and low critical mode. In the former mode it will
work the same as EDF and order tasks according to their relative deadlines. In the latter mode

3.4 Implemented scheduling algorithms 25

it will instead use virtual relative deadlines. These deadlines are calculated prior to execution as
explained in Section 2.4.1 and are written down in the xml-file.
The mode can not be switched on an existing queue, but has to be declared initially, when creat-
ing the queue. So instead of switching the mode one has to delete the old one and create a new
one using the new mode. By using this simplified implementation method, there is barely any
additional overhead, since the effor for rereading the deadlineas and reordering is necessary
anyway.
Due to the complex nature of the problem there have been two different versions of EDF-VD
implemented. One will construct a new queue when the criticality level is switched, whereas
the other one will precalculate a second queue for the other criticality level. None of these two
surpasses the other in every respect. Each is better suited for different scenarios, as explained
below (for further comparison refer to Section 5.1).

EDF-VD1

This first implementation utilizes one DeadlineQueue. In low critical mode it will insert all tasks
into the queue and schedule tasks like in standard EDF. Should a high critical task overrun
and call the OverrunJob-function, it will switch to high critical mode. It then has to create a
new DeadlineQueue, which runs in high critical mode and insert all tasks from the other Dead-
lineQueue. The new DeadlineQueue will have to be re-sorted, as the tasks are ordered by their
virtual deadlines in low critical mode, whereas they are ordered by their deadlines in high critical
mode.When started in high critical mode, a DeadlineQueue will automatically read the deadline
of low critical tasks as infinitely large. Thus after all the high critical tasks have finished execu-
tion, the low critical tasks will also be scheduled and canceled using the cancel function. It is
unwise to cancel tasks right when the mode is switched to high critical mode, as this will impose
additional overhead at a moment, where there is already a lot of overhead, whereas with the
method described, we will be canceling the tasks when the CPU would be idle anyway.
This implementation will have little average overhead, as in any of the two modes the overhead
should be the same as a standard EDF overhead, because there is no additional calculation
necessary when stable in one mode. When the mode is switched however, we expect a delay,
as the scheduler has to create the new queue and insert all tasks into it. This delay might be
quite large, because it would have to insert all tasks in a queue at once, whereas normally, we
only insert one at a time, yielding increased overhead.

EDF-VD2

This implementation uses two DeadlineQueues. A low critical mode DeadlineQueue, which will
have all tasks inserted(high critical tasks sorted by their virtual, low critical tasks by their actual
deadlines) and a high critical mode DeadlineQueue, which will only have high critical tasks
inserted, sorted by their actual deadlines. When switching to high critical mode, the scheduler
can directly access the already existing high critical DeadlineQueue, where all the high critical
tasks are already ordered correctly. As soon as the high critical Queue is emptied one can switch
back to the low critical Queue, cancel and finish the execution of the remaining low critical tasks
in this queue.
This implementation will have larger overhead during low critical mode, as there are always
two queues maintained for inserting, scheduling or finishing high critical tasks. However, this
implementation has a relatively small worst case overhead, as there is no additional overhead
for switching the mode, because the alternate DeadlineQueue is already prepared.

3.4.2 Mixed Criticality Resource Flowing

The implementation is a modification of a classical Time Division Multiple Access server, which
was already implemented. It uses a hierarchical approach, where multiple servers are linked to
each other.
For each task, there is a dedicated leaky-bucket-server. This server will schedule the task it
is dedicated to, the master task, and a set of tasks, we call the slave tasks, using a round
robin schedule, with different time slice sizes for each task. The master task will always get
the first time slice, if it is active. The time slices, which are given to slave tasks are equivalent

26 CHAPTER 3. MIXED CRITICALITY SCHEDULING FRAMEWORK

to the resource flows of the theoretical model explained in Section 2.4.2. The time slices are
calculated in such a way, that under the assumptions of the system designer all tasks finish by
their deadline, taking into account, that a task may get resource flows from multiple sources.
Should the master task overrun, then the leaky-bucket-server will stop flowing resources to the
slave tasks and only schedule the master task until it finishes.
Slave tasks can also be replaced by leaky-bucket-servers which will have their own master and
slave tasks of lower criticality levels. Tasks of the highest criticality level may get their resources
only from the CPU, which operates like a leaky-bucket-server, but is not dedicated to any master
task, thus ensuring its resource flows unconditionally, as specified.
Tasks are not explicitly canceled by the scheduler in MCRF. However, they may get too few
resources to meet their deadline. As a late execution is considered worthless, a worker missing
the deadline will cancel his current task instance himself.
Due to the modularity of this algorithm, the implementation is theoretically capable of operating
at an arbitrary count of criticality levels. However, as the framework does only support 2 levels,
this could never be tested properly.

Leaky Bucket Server

Acquire runtime

Master task

Guarantee

Distribute slack

time

Leaky Bucket Server Master task

Guarantee

CPU

Figure 3.3: Example of a resource flowing graph using leaky bucket servers.

3.5 Summary

This section introduced the Hierarchical Scheduling Framework and the modifications made to it
to create the Mixed Criticality Scheduling Framework (MCSF). Modifications include monitoring
and dynamic scheduling of overrunning tasks. The use of the framework is then demonstrated
by implementing two Mixed Criticality Schedulers: “Earliest Deadline First with Virtual Dead-
lines” and “Mixed Criticality Resource Flow”.

Chapter 4

Experimental Evaluation

4.1 Overheads

An interesting measure in real-time scheduling is always the overhead of a scheduler. In the
given system however, we have several time measures which we have to distinguish in order to
get meaningful results:

• ttasks: The time workers spend actually executing a task

• tidle: The time, no component of the system is active and the idle thread is running

• tLinux: The time used by the underlying priority based Linux scheduler

• tframework: The time used by the framework. This means all components of HSF, that are not
concerned with scheduling, which includes the Dispatchers, Workers and OverrunCheck-
ers.

• tscheduling: The time used by the scheduler. EDF-VD uses time for handling queue-updates
(insert/remove/resort), MCRF uses it for context switch when switching time slices

• tsystem tasks: The time used by other tasks, that are not part of our Simulation. Should there
be other real-time priority tasks in the system, then these would be able to preempt our
execution.

• ttotal overhead: The total overhead of the system

How these separate measures fit together can be seen in equation 4.1.

ttasks + tidle + tLinux + tframework + tscheduling
︸ ︷︷ ︸

ttotal overhead

+tsystem tasks = ttotal run-time (4.1)

We are primarily interested in tscheduling, as we want to compare various different algorithms,
however the total overhead shown in equation 4.2 might also be of interest.

ttotal overhead = tLinux + tframework + tscheduling (4.2)

4.2 Measurement method

tscheduling is supposed to be a meaningful measure for the complexity of the scheduling algorithm
used. It is defined as all time spent executing tasks, which are used for the algorithm. It is impor-
tant to note, that tscheduling is not simply equivalent to the execution time of the scheduling thread.
Some operations, which are part of the algorithms, such as inserting new jobs, are executed by
other threads. Also there are operations, that the scheduling thread performs on Workers, which
are not part of the algorithm itself (e.g. canceling task instances including saving the statistics).
Thus, tscheduling had to be measured separately. This measurement utilizes stopwatches, which
support start and stop functions, which will measure the time difference between the calls to

27

28 CHAPTER 4. EXPERIMENTAL EVALUATION

start and stop and add it up. To get deeper insight, there are several separate stopwatches used
for different parts of the algorithm.
For calculating ttotal overhead we reformulate equation 4.1 into equation 4.3.

ttotal overhead = ttotal run-time − ttasks − tidle − tsystem tasks (4.3)

ttasks is easily measurable, since this time is monitored to ensure that deadlines are met anyway.
ttotal run-time is known and tsystem tasks can be neglected, as the system tasks will run on the other
CPU cores. tidle is equivalent to the time that the idle thread has run during simulation, which is
the total run-time of the idle thread and the time the thread needed for initialization and freeing
its resources. If we just assume tidle is equal to the idle thread run-time, we will get a slightly too
small value. When we use this to calculate ttotal overhead according to equation 4.3 this will be a
pessimistic measure, since we chose the negative summand tidle too small.

4.3 Test set-up

To have objective results, the generation of task sets was done according to the randomized
algorithm presented in [4]. Task sets were generated with fixed utilization bounds in steps of
10% in the range of 10% up to 100%.
The utilization bound is defined as Ubound = max

(
ULO
LO + ULO

HI , U
HI
HI

)
where Uy

x represents the
utilization of all tasks of criticality level x using exactly their WCET of level y and the levels
HI,LO stand for “High criticality” and “Low criticality” respectively.
For the execution times of critical tasks, we have chosen a binary distribution, i.e. a task will
either exhibit exactly its worst case execution time (WCET) or its typical case execution time
(TCET). The probability with which it chooses the WCET can be configured. As in this setup
the setting of this probability is equivalent to setting the probability of overrunning for each
task execution, we will run each example multiple times for different probability settings. In the
standard case, we will use 10% steps from 0% to 100%, but this can be configured freely.
For one scheduling algorithm each task set is run for each probability setting for a user config-
urable time, where just a few seconds are usually sufficient, as execution times are quite small
(around 1ms).

EDF-VD MCRF

Number of task sets 1000 500

Utilization range of task sets 10 · · ·100% in steps of 10% 10 · · · 100% in steps of 10%

Probability tested for each task set 0% · · · 100% in steps of 10% 0% · · · 100% in steps of 10%

Execution time for 1 task 10µs · · · 1ms 10ms · · · 1 s

Time used for 1 simulation run 2 s 30 s

Table 4.1: Table of Simulation Setup parameters

4.4 Earliest Deadline First with Virtual Deadlines Experi-
ments

4.4.1 Task set

We randomly generated 1000 task sets to be scheduled, 100 for each utilization bound value
from 10% in 10% steps to 100% (For details, see Table 4.1) and each of these 1000 task sets
was simulated 11 times with probabilities of overrunning of critical tasks from 0% in 10% steps
to 100%. However, since the task sets were generated using tight bounds (i.e. the overhead is
assumed to be zero), some of these task sets cannot always be properly executed by a real
scheduler, which needs slack time for overhead. One recognizes a failure, when a critical task
has missed its deadline, which is in theory impossible, as meeting deadlines of critical tasks is

4.4 Earliest Deadline First with Virtual Deadlines Experiments 29

guaranteed. However, the probability of overrunning has also an effect, because the advertised
utilization bound might never be reached, when tasks simply never overrun. These results are
summarized in Figure 4.1, which shows, that indeed only for large probabilities and Utilization,
tests fail.

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
ro
b
a
b
ili
ty

o
f
o
v
e
rr
u
n
n
in
g
o
f
a
ta
s
k
[%

]

utilization [num]

schedulable
unschedulable

Figure 4.1: Scatter plot, where each ’o’ signifies, that for the respective probability/utilization
bound, at least one experiment succeeded, while a ’x’ shows, that at least one failed

4.4.2 Results

The results from these test runs can be seen in Figures 4.2 and 4.3. The framework measures
various separate overhead components of tscheduling during simulation. The shown data includes
the time taken for handling new, finishing and overrunning jobs and also the additional admin-
istrative time taken for preempting currently running workers and rescheduling. The sum of all
overheads is also included. Some small additional components are not shown, in order to keep
the graphs simple.

30
C

H
A

P
T

E
R

4.
E

X
P

E
R

IM
E

N
TA

L
E

VA
L

U
A

T
IO

N

Total Overhead

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 20 40 60 80 100

Administration
Inserting new J obs

Removing finished J obs
Handling overrunning J obs

O
v
e
rh

e
a
d

[µ
s
]

Probability of Overrunning [%]

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

Total Overhead
Administration

Inserting new Jobs

Removing finished Jobs
Handling overrunning Jobs

O
v
e
rh

e
a
d

[µ
s
]

Probability [%]

Figure 4.2: Average overheads of EDF-VD with 1 queue (left) and 2 queues (right), with utilization 70%

4.4
E

arliest
D

ead
lin

e
F

irst
w

ith
V

irtu
alD

ead
lin

es
E

xp
erim

en
ts

31

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Total Overhead
Administration

Inserting new Jobs

Removing finished Jobs
Handling overrunning Jobs

O
v
e
rh
e
a
d
[µ
s
]

Utilization [1]

0

2000

4000

6000

8000

10000

12000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Total Overhead
Administration

Inserting new Jobs

Removing finished Jobs
Handling overrunning Jobs

O
v
e
rh

e
a
d

[µ
s
]

Utilization [1]

Figure 4.3: Average overheads of EDF-VD with 1 queue (left) and 2 queues (right), with probability of overrunning 20%

32 CHAPTER 4. EXPERIMENTAL EVALUATION

These results are consistent with the argumentation presented in Section 3.4 . I.e. the imple-
mentation with 2 queues (EDF-VD2) has generally a higher overhead of about 10% than the
implementation using only 1 queue (EDF-VD1). We can explain the increase in overhead when
increasing the utilization, because there are more tasks in the queue at once. This will increase
the overhead for inserting task into the queue, because a task has to be inserted at the right
space into the queue, such that the queue is sorted by the deadlines. The increase in overhead
with probability is also because overrunning tasks will stay longer in the queues and make the
operations on the queue more complicated.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

re
la
ti
v
e
O
v
e
rh
e
a
d
o
f
s
c
h
e
d
u
lin
g
a
lg
o
ri
th
m
[1
]

Utilization Bound [1]

EDF-VD1 relative Overhead
EDF-VD1 switching Overhead
EDF-VD2 relative Overhead
EDF-VD2 switching Overhead

Figure 4.4: Aggregated graph of the relative overhead (absolute overhead
total run time) and the switching over-

head of the two EDF-VD implementations.

The claim, that EDF-VD2 has a smaller overhead, when switching criticality level can however
not be seen directly in the total overhead. One might think, that higher probability of overrun
implies more switching, which would favor EDF-VD2 in the overall overhead. However, the al-
gorithm switches to the critical level, as soon as only one task overruns and waits for the CPU
being idle, before switching back. This means that the scheduler often spends most of its time
in critical mode and switches rarely, even with low overrun probabilities. However, the figure
shows also the average time used for handling overruns. Whenever an overrun occurs in low
critical mode, the algorithm will have to switch to the critical mode. So the increased values of
EDF-VD1 in this respect, show the claim that EDF-VD1 has a larger overhead when switching
criticality levels. An aggregated view of the comparative results can be seen in Figure 4.4.

4.5 Mixed Criticality Resource Flow Experiments

4.5.1 Task set

There were 500 task sets to be scheduled, 50 for each utilization bound value from 10% in 10%
steps to 100% (For details, see Table 4.1) and each of these 1000 task sets was simulated 11
times with probabilities of overrunning of critical tasks from 0% in 10% steps to 100%.
It should be noted, that the algorithm used for the MCRF samples uses very small time slices,
relative to task execution times. The parameters had to be scaled up a lot (see Table 4.1) in

4.5 Mixed Criticality Resource Flow Experiments 33

order to run the simuations. Even in this configuration timeslots are still in the range of 1µs
· · · 1ms, which yields a lot of preemptions and thus additional overhead.

4.5.2 Results

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 20 40 60 80 100

relativeOverhead

Probability of Overrunning [%]

re
la

ti
v
e
 O

v
e
rh

e
a
d
 [

1
]

Figure 4.5: Average relative overhead of MCRF as function of the probability of overrunning for
each critical task.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

relativeOverhead

Utilization Bound [1]

re
la

ti
v
e
 O

v
e
rh

e
a
d
 [

1
]

Figure 4.6: Average relative overhead of MCRF as function of the Utilization Bound.

The results about MCRF in Figures 4.5 and 4.6 show, that the overhead of MCRF is mostly

34 CHAPTER 4. EXPERIMENTAL EVALUATION

independent of overrunning probability and utilization, contrary to the others, where there is
additional overhead for high utilizations and overrun probabilities. With high utilizations there
is already very little slack time to begin with, so additional overhead in such cases are not
desirable.
It should be noted, that one cannot directly compare the results of the two algorithms in this
section. This is due to the large scale of the MCRF examples explained in Section 4.3. MCRF
tasks are due to their small time slices much more often preempted and have thus a much larger
overhead, when comparing it to a scaled up version of EDF-VD.

4.6 Summary

In this section the various overheads, that appear in the Mixed Criticality Scheduling Framework
are explained and the ones, which are interesting metrics to analyze scheduling algorithms
are highlighted. Both implemented algorithms were evaluated with respect to their overhead
through extensive simulations. The simulation environment and the results of said simulations
are shown. The simulation results are used to validate for the theory of Sections 2.1 and 3.
There is also an explanation of why it is not fair to directly compare the results from the two
algorithms with each other using these settings.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In conclusion, we have seen, that none of the implementations is in all respects superior to
another. One should rather take the implementation, that fits best. Table 5.1 summarizes the
characteristics of the implementations. Also we have seen, that the created framework is indeed
capable of simulating different kinds of schedulers, using a modular and generic structure.

MCRF EDF-VD2 EDF-VD1

Implementation is similar to a
standard TDMA and also a
Round-Robin Server. Such im-
plementations can be used as
template

Implementation is a modification of standard EDF schedule

Same implementation for n crit-
icality levels

Implementation a lot more complicated for more than 2 critical-
ity levels

Large average overhead Low average overhead

Overhead does not depend on
probability of tasks overrunning

Overhead increases with increased overrunning probability

- No additional overhead when
switching in between criticality
levels

High overhead, when switching
criticality level

Complex schedulability test Simple schedulability test, which increases in complexity for
multiple criticality levels

Cancels only few tasks Cancels all tasks of lower criticality levels

Table 5.1: Comparison between the three implementations Mixed Criticality Resource Flow
(MCRF), Earliest Deadline First with Virtual Deadlines using 2 queues (EDF-VD2) and Earli-
est Deadline First with Virtual Deadlines using 1 queue (EDF-VD1)

5.2 Outlook

The newly presented extensions to the Hierarchical Scheduling Framework (HSF) are ready to
be used for other mixed criticality scheduling policies. Also one could even add more extensions,
allowing more than 2 criticality levels, or additionally randomizing arrival times of tasks. The ex-
planations within this thesis may also help, when implementing one of the algorithms in another
system. The results may, then, help in choosing an appropriate algorithm. Another feature to

35

36 CHAPTER 5. CONCLUSION AND FUTURE WORK

add would be multi-core support, as there are also mixed criticality schedulings proposed to
handle multi-core environments.

Appendix A

Mixed Criticality Scheduling
Framework manual

This section explains how the Mixed Criticality Scheduling Framework (MCSF) can be used.

A.1 Setup

Setup of the Mixed Criticality Scheduling Framework is the same as the setup for the Hierarchi-
cal Scheduling Framework [2]. Instructions can be taken from the README file found in the top
HSF folder. The file is also shown in Listing A.1.

Listing A.1: Content of the README file for HSF and MCSF

REQUIREMENTS:

HSF requ i res a ∗NIX kerne l w i th standard l i b r a r i e s . To compile
a l l sources , these packages are needed :

g++
make
octave
php
l ibmgl−dev
l ibX11−dev

Mathgl l i b r a r y should be compiled , and l i b m g l . so . 7 . 0 . 0 should be
placed i n / usr / l o c a l / l i b (otherwise the MATHGL v a r i a b l e i n the makef i le
should be changed to the approp r ia te l o c a t i o n . For more in fo rma t ion
on Mathgl , please v i s i t :

h t t p : / / mathgl . sourceforge . net /

CONFIGURATION:

1. I f you HSF f o l d e r i s not loca ted i n ~/ g i t , then please change
l i n e 3 of hsf_paths . sh to the path of your HSF f o l d e r

2 . In the termina l , type :

source hsf_paths . sh

This w i l l se t a new $HSF var iab le , and add i t to your $PATH v a r i a b l e .
You can also add i t to your ~ / . bashrc f i l e , to have i t load a u t o m a t i c a l l y

37

38 APPENDIX A. MIXED CRITICALITY SCHEDULING FRAMEWORK MANUAL

You need roo t p r i v i l e g e s to execute hs f . On some o lde r systems , you might have
to add the f o l l o w i n g l i n e to your bash p r o f i l e i n order to i n h e r i t you PATH
v a r i a b l e when using ’ sudo ’ :

a l i a s sudo= ’ sudo env PATH=$PATH $@’

3. Then type :

. / i n s t a l l . sh

4. Run HSF!

You can now type i n you te rm ina l the f o l l o w i n g commands :

sudo hs f [f i lename (. xml)]
s imu la te [f i lename (. xml)]
c a l c u l a t e [met r ic] [f i lename]
show [met r ic] [f i lename]
s i m f i g [f i lename]
pub l i sh [f i lename]

[met r ic] can be one (or more) o f the f o l l o w i n g :

exe | exec −> Execut ion Times
resp −> Response Times
throughput −> Throughput
u t i l −> U t i l i z a t i o n
a l l o c −> Resource a l l o c a t i o n costs
sys −> System a l l o c a t i o n costs
worker −> Worker costs
missed −> Missed deadl ines

A.2 Structure

There are 4 important sections in the folder structure:

Folder name Description

src Source Files for the core simulation

bin Binary Files and executable bash files for execution

scripts Additional scripts and source files for things that are not used during normal simulation

examples All .xml files, which describe task sets are saved in here

A.3 Functions

Here the most important functions provided by the framework will be shortly explained. Only
the functionalities used for mixed criticality simulations are mentioned. For core hierarchical
scheduling functions, refer to [2].

When not adding any functions to the system path, all these function are supposed to be called
directly from the top directory.

A.4 Creating a scheduler 39

Function call Description

getDuration.exe example.xml [newDuration]

If newDuration is omitted, it extracts the specified time for the simulation
duration from the xml file. Otherwise the xml file will be changed to newDu-
ration.

runProtected.sh exampleName [newDuration]

Runs the core simulation using the exampleName.xml example from the ex-
amples directory. The newDuration option lets one set a specific new dura-
tion for the simulation, using the getDuration.exe script

bin/setProbability Example.xml probability

Sets the probability of overrunning of all critical tasks in Example.xml to prob-
ability (value ranging from 0 to 100)

sweepProbability.sh ExampleName duration

The file examples/ExampleName.xml will be simulated using runProtected
once for each probability from 0% to 100% in 10% steps. duration has to be
set.

parseTaskSet.exe fileName SchedulerName

Will parse the task set specified in fileName using the Scheduler Sched-
ulerName and save all files under the name fileNameSchedulerNameNum-
ber.xml

parseAndSweep.sh fileName SchedulerName duration

Will run ’parseTaskSet.exe fileName SchedulerName’ and then run ’sweep-
Probability.sh exampleName duration’ for each exampleName, which was
created when parsing

graph.exe inputFile.csv OutputFile.eps xAxis [yaxis...]

Will save graph to OutputFile.eps constructed from the data in inputFile.csv
(e.g. tasksEDF_VD1_Overhead.csv). Will plot all arguments in yaxis as func-
tions of xaxis. xaxis and yaxis arguments must match exact header expres-
sions in inputFile.csv.
’–average’ will only display average.
’–fixed xAxis value’ will only display rows of data, where argument xAxis is
exactly equal value.

A.4 Creating a scheduler

This subsection will explain what needs to be done, should one want to implement a new Mixed
Criticality Scheduler:

• Create a new class MyScheduler, which extends the abstract class “Scheduler”.

• Implement the functions defined in “Scheduler”. We will only mention the most important
ones here:

Function Functionality to implement

schedule This is the main thread, it should perform all synchronized tasks

activate/deactivate suspend the main thread by setting it to idle priority

newJob Handle the arriving of a new job

finishedJob Handle, that a job has finished its execution

overrunJob Handle a job which has overrun its WCET of the low criticality level

40 APPENDIX A. MIXED CRITICALITY SCHEDULING FRAMEWORK MANUAL

Pay attention to synchronize these functions properly using semaphores.

• Extend the parser. Create a new entry in the Parser::parseScheduler function and add a
function “parseMyScheduler”, where you create your own Scheduler. Your parser function
will most likely the also contain other parseScheduler and parseWorker functions to parse
the xml-children of your scheduler (e.g. the workers who will execute the tasks that you
schedule).

• Write an example file, which utilizes your scheduler and execute it, with the commands
explained in the previous section.

Appendix B

Original Project Assignment

41

42 APPENDIX B. ORIGINAL PROJECT ASSIGNMENT

 Institut für

 Technische Informatik und

Kommunikationsnetze

Semester Thesis at the

Department of Information Technology and

Electrical Engineering

for

Felix Wermelinger

Safe Software for Safe Flights -

Implementation and Evaluation of

Mixed-Criticality Scheduling Approaches

Advisors: Pengcheng Huang

Georgia Giannopoulou

Professor: Prof. Dr. Lothar Thiele

Handout Date: 18.02.2013

Due Date: 25.05.2013

43

1 Project Description

Complex embedded systems typically involve functionalities of different importances
(criticalities). As an example, the airplane software applications can be usually
categorized as flight critical or mission critical. For flight critical applications,
like the autopilot, failures (e.g. pilot commands not being transmitted in time)
could result in an airplane crash, while for mission critical applications, like the
radio communication or the passengers’ video entertainment, the consequences of
failures (e.g. loss of communication or wrongly decoded videos) are not severe. On
the other hand, various unexpected situations may happen during the operation
of an airplane, since neither the hardware nor the software we build for airplanes
are perfect. How should the system react to such unexpected situations? And
which properties should/can we guarantee in such dynamic and mixed-criticality
environments? To answer those questions, smart online scheduling algorithms that
can react to unexpected scenarios need to be developed.
Recently, in our group, we have developed a resource flowing scheme that can
adaptively distribute resources to processes depending on the revealed situations
when the system is running. It is essential to evaluate the runtime overhead
of this scheduling technique in order to demonstrate its applicability to real-life
applications. Hence, an implementation of the proposed scheduling technique needs
to be conducted on a real platform. To achieve this, the Hierarchical Scheduling
Framework (HSF) [4] is selected as a general scheduling framework and this project
aims at integrating the new scheduler into this framework.

2 Project Goals

The goal of this semester thesis is to implement and evaluate the runtime behavior
of our resource flowing scheme by implementing it on a real platform. The student
needs to specify good metrics to quantify the performance and overheads of our
resource flowing scheme, and compare it with other existing approaches. Specifically,
some new features that need to be supported by HSF include:

• mechanism for runtime task monitoring;

• feedback control based on information monitored;

• a new scheduler which works on the basis of task monitoring and feedback
control and specifically targets mixed-criticality scheduling.

Depending on the progress of this project, the goals of this project may further
include:

• implement several other new schedulers (e.g. [5, 3]) in the HSF framework;

• propose metrics to quantify and compare the performances of different mixed-
criticality schedulers.

1

44 APPENDIX B. ORIGINAL PROJECT ASSIGNMENT

3 Tasks

The project will be split up into several subtasks, as described below:

3.1 Familiarization with HSF

In the beginning of the project, the focus is on getting acquainted with the HSF
scheduling framework, namely the mechanism that implements the hierarchical
schedulers, the utilization of Posix threads [2] for this purpose, etc. A tutorial on
the HSF framework is given in [4]. All the necessary resources for this part of the
project will be made available as soon as the project starts. At the end of this
project phase, it should be clear which parts of the HSF framework need to be
adapted for implementing the new schedulers and how the runtime monitoring and
feedback control can be supported by the HSF framework.

3.2 Implementation of Schedulers

In this second phase of the project, extensions to the HSF framework need to be first
done to support task monitoring and feedback control. Based on the new features
that will be developed, mixed-criticality schedulers will be integrated into the HSF
framework. By actually running the implemented schedulers, quantitative measures
on their performances need to be presented.

3.3 Thesis Report and Final Presentation

Finally, a thesis report is written that covers all aspects of the project. In addition,
the final presentation has to be prepared.

4 Project Organization

4.1 Weekly Meeting

There will be a weekly meeting to discuss the project’s progress based on a schedule
defined at the beginning of the project. A revision of the working document should
be provided at least 24 hours before the meeting.

4.2 Semester Thesis Report

Two hard-copies of the report are to be turned in. All copies remain the property
of the Computer Engineering and Networks Laboratory. A copy of the developed
software needs to be handed in on CD or DVD at the end of the project.

4.3 Initial and Final Presentation

In the first month of the project, the topic of the thesis will be presented in a short
presentation during the group meeting of the Computer Engineering Lab. The
duration of the talk is limited to three minutes. At the end of the project, the

2

45

outcome of the thesis will be presented in a 15 minutes task, again during the group
meeting of the Computer Engineering Lab.

4.4 Work Environment

The work will be carried out in the framework of the European CERTAINTY [1]
project, to which the Computer Engineering Lab is contributing in terms of
scheduling techniques, performance analysis and multi-core mapping optimization.
Concretely, this means that the results of this work can be used by the involved
project partners if the project goals are met.

References

[1] Certification of Real Time Applications designed for mixed criticality
(Certainty). http://www.certainty-project.eu/.

[2] POSIX Threads Programming. https://computing.llnl.gov/tutorials/pthreads/.

[3] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. Van
Der Ster, and L. Stougie. Mixed-criticality scheduling of sporadic task systems.
In Proceedings of the 19th European conference on Algorithms, ESA’11, pages
555–566, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] A. Gomez. Hierarchical Scheduling Framework - A Programmer’s Manual. 2013.

[5] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In Proceedings of the 28th IEEE International Real-

Time Systems Symposium, RTSS ’07, pages 239–243, Washington, DC, USA,
2007. IEEE Computer Society.

Zurich, February, 2013

3

46 APPENDIX B. ORIGINAL PROJECT ASSIGNMENT

47

48 APPENDIX C. PRESENTATION SLIDES

Appendix C

Presentation Slides

49

Implementation of Mixed Criticality Scheduling approaches

Introduction

Outline

1 Introduction
Problem
Motivation
Contribution

2 Mixed Criticality Scheduling Framework

3 Earliest Deadline First with Virtual Deadlines

4 Mixed Criticality Resource Flow

5 Conclusion

Implementation of Mixed Criticality Scheduling approaches

Introduction

Problem

Problem

Designer for a hardware/software system for airplanes
Guarantee all functionalities to client

System must be certified by Certification Authority
Assign criticality level to task
Pessimistic Performance Estimation

Idea: dynamically schedule different task sets
Guarantee execution of critical tasks
Schedule low critical tasks iff higher ones are guaranteed

50 APPENDIX C. PRESENTATION SLIDES

Implementation of Mixed Criticality Scheduling approaches

Introduction

Motivation

Motivation & Contribution

Motivation

Few implementations of mixed criticality schedulers exist1

Goal: real-time framework for implementing such schedulers

Contribution

Implementation of the Mixed Criticality Scheduling Framework

Implementation of 2 Mixed Criticality Scheduling Algorithms

Earliest Deadline First with Virtual Deadlines
Mixed Criticality Resource Flow

Evaluation of implemented Algorithms

scheduling overhead

1J. H. Anderson, S. K. Baruah, and B. B. Brandenburg, Multicore

Operating-System Support for Mixed Criticality

Implementation of Mixed Criticality Scheduling approaches

Mixed Criticality Scheduling Framework

Outline

1 Introduction

2 Mixed Criticality Scheduling Framework
Hierarchical Scheduling Framework
Mixed Criticality Scheduling Framework

3 Earliest Deadline First with Virtual Deadlines

4 Mixed Criticality Resource Flow

5 Conclusion

51

52 APPENDIX C. PRESENTATION SLIDES

Implementation of Mixed Criticality Scheduling approaches

Mixed Criticality Scheduling Framework

Mixed Criticality Scheduling Framework

Mixed Criticality Scheduling Framework (MCSF)

������ ����	
���

���������������

��������������	����

������������
�

����	
��

�
����	

������

Added Features to allow Mixed Criticality scheduling:

Randomized execution Times

Monitoring (Reporting Overruns)

Dynamic Scheduling (Canceling Tasks during execution)

Overhead measuring and calculation

Implementation of Mixed Criticality Scheduling approaches

Earliest Deadline First with Virtual Deadlines

Outline

1 Introduction

2 Mixed Criticality Scheduling Framework

3 Earliest Deadline First with Virtual Deadlines
Theory
Implementation
Simulation setup
Results

4 Mixed Criticality Resource Flow

5 Conclusion

53

Implementation of Mixed Criticality Scheduling approaches

Earliest Deadline First with Virtual Deadlines

Theory

Earliest Deadlines First with Virtual Deadlines3(EDF-VD)

Queue of all tasks sorted by Deadline

Two modes:

Low critical mode: assume typical Case Execution Times, run
all tasks.
High critical mode: assume Worst Case Execution Times, only
run critical tasks.

���������	�
�

������������	�
�

�������

�������3Sanjoy K. Baruah , Vincenzo Bonifaci , Gianlorenzo D’Angelo, Alberto

Marchetti-Spaccamela, Suzanne van der Ster and Leen Stougie,

Mixed-Criticality Scheduling of Sporadic Task Systems

Implementation of Mixed Criticality Scheduling approaches

Earliest Deadline First with Virtual Deadlines

Theory

Virtual Deadlines

���������	�
�

������������	�
�

���������	�
�

������������	�
�

�������

�������

Deadlines might get missed. Thus introduce Virtual Deadlines

54 APPENDIX C. PRESENTATION SLIDES

Implementation of Mixed Criticality Scheduling approaches

Earliest Deadline First with Virtual Deadlines

Implementation

Implementation

Implementation using 1 queue (EDF-VD1)

small average overhead, large switching overhead

Implementation using 2 queues (EDF-VD2)

large average overhead, small switching overhead

Implementations switch back from Critical to non-critical
Mode when CPU is idle

Implementation of Mixed Criticality Scheduling approaches

Earliest Deadline First with Virtual Deadlines

Simulation setup

Simulation Setup

Randomly generated Task sets

System utilization uniform 10% to 100%
Probability of overrunning uniform 0% to 100%

10.000 Simulations for 2 seconds each

Run time of a single task 10µs · · · 1ms

55

Implementation of Mixed Criticality Scheduling approaches

Earliest Deadline First with Virtual Deadlines

Results

Results of Simulation Run

0

0.001

0.002

0.003

0.004

0.005

0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

re
la
ti
v
e
O
v
e
rh
e
a
d
o
f
s
c
h
e
d
u
lin
g
a
lg
o
ri
th
m
[1
]

Utilization Bound [1]

EDF-VD1 relative Overhead
EDF-VD1 switching Overhead
EDF-VD2 relative Overhead
EDF-VD2 switching Overhead

Implementation of Mixed Criticality Scheduling approaches

Mixed Criticality Resource Flow

Outline

1 Introduction

2 Mixed Criticality Scheduling Framework

3 Earliest Deadline First with Virtual Deadlines

4 Mixed Criticality Resource Flow
Theory/Implementation
Simulation setup
Results

5 Conclusion

56 APPENDIX C. PRESENTATION SLIDES

Implementation of Mixed Criticality Scheduling approaches

Mixed Criticality Resource Flow

Theory/Implementation

Leaky Bucket Server4

��������	��
������

�	���������
���

���
���
���

������
��

���
����
�����	��

���

������
��

4P. Huang, Efficient Resource Flowing in Interference Constrained

Mixed-Criticality Systems, 2013

Implementation of Mixed Criticality Scheduling approaches

Mixed Criticality Resource Flow

Theory/Implementation

Leaky Bucket Server

��������	��
������

�	���������
���

���
���
���

������
��

���
����
�����	��

���

����
��������	��
������ ���
���
���

��������	��
������ ���
���
���

������
��

������
��

57

58 APPENDIX C. PRESENTATION SLIDES

Implementation of Mixed Criticality Scheduling approaches

Mixed Criticality Resource Flow

Simulation setup

Simulation Setup

Randomly generated Task sets

System utilization uniform 10% to 100%
Probability of overrunning uniform 0% to 100%

5.000 simulations for 30 seconds each

Run time of a single task 10ms · · · 1 s

Implementation of Mixed Criticality Scheduling approaches

Mixed Criticality Resource Flow

Results

Results of Simulation Run

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

relative overhead

Utilization [1]

re
la

ti
v
e

 O
v
e

rh
e

a
d

 [
1

]

59

Implementation of Mixed Criticality Scheduling approaches

Conclusion

Outline

1 Introduction

2 Mixed Criticality Scheduling Framework

3 Earliest Deadline First with Virtual Deadlines

4 Mixed Criticality Resource Flow

5 Conclusion

Implementation of Mixed Criticality Scheduling approaches

Conclusion

Conclusion

Mixed Criticality Scheduling Framework is usable for different
manners of schedulers and can be extended easily

Earliest Deadline First Implementations have low overhead,
but increases with increasing system utilization

Mixed Criticality Resource Flow has low overhead independent
of system utilization

60 APPENDIX C. PRESENTATION SLIDES

Implementation of Mixed Criticality Scheduling approaches

Conclusion

Questions?

Bibliography

[1] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. Van Der Ster, and
L. Stougie. Mixed-criticality scheduling of sporadic task systems. In Proceedings of the 19th
European conference on Algorithms, ESA’11, pages 555–566, Berlin, Heidelberg, 2011.
Springer-Verlag.

[2] A. Gomez. Hierarchical scheduling framework - a programmer’s manual, 2013.

[3] P. Huang. Efficient resource flowing in interference constrained mixed-criticality systems.
unpublished article, 2013.

[4] H. Li and S. Baruah. Outstanding paper award: Global mixed-criticality scheduling on mul-
tiprocessors. In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on, pages
166–175, 2012.

[5] J. Stankovic. Deadline Scheduling for Real-Time Systems: Edf and Related Algorithms.
Real-time systems series. Kluwer Academic Publishers, 1998.

61

