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Abstract

As CPU performance and power consumption of computing systems increase,
so does the need for better cooling systems, in order to ensure the reliability
and prevent thermal breakdown of the system. However, employing ever
more capable cooling systems adds to the bulk and complexity of the system,
and worst of all, it is very expensive. A key challenge in research is therefore
to find alternative ways of effectively keeping large computer systems cool.

In this thesis, a framework called Cool Linux is developed, which allows the
execution of a CPU intensive task on any Linux distribution, while keep-
ing the CPU temperature below a certain temperature threshold. This is
achieved by using three different Dynamic Thermal Management (DTM)
techniques (frequency scaling, task migration, scheduled sleep). The frame-
work uses a predictive control algorithm that bases its decisions on the cur-
rent CPU temperatures and a prediction of the future temperature develop-
ment, based on the current CPU load. The entire framework is implemented
in theuser space, and therefore independent of special features in the software
stack.

Finally, the framework has been evaluated in various case studies. First, the
performance is evaluated for different frequencies of the predictive controller,
thus finding optimal values for the controller speed. Then, the overall per-
formance of the framework and the accuracy of the temperature predictions
are evaluated. Furthermore, the feasibility of the individual DTM -methods
is determined. Finally, Cool Linux is compared to the default on-demand
frequency governor of Linux. Cool Linux manages to significantly decrease
the average CPU temperature under full load (up to 20◦C on a HP laptop),
at a minimum performance loss. For some cases (medium CPU load), the
framework does not only lower the temperature, but also increases the per-
formance of the evaluated application.
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1
Introduction

1.1 Motivation

The demand for more computation power leads to more complex processor
designs and integration. One of the consequences is a high power consump-
tion within a small spatial region. This leads to hot processors, which is
bad for mainly two reasons. First, it decreases the reliability of the system.
Second, at higher temperatures, the power consumption is higher, leading
to a vicious cycle that can cause a thermal breakdown. Reducing on-chip
temperatures is widely recognised as a key challenge in the design of future
computing systems.

Several solutions are being explored to tackle the above challenge. Fore-
most is the use of cooling solutions ranging from conventional heat sinks
to expensive liquid cooling subsystems. Such solutions are expensive and
add to the bulk of the system. The second solution is temperature-aware
low-level VLSI design. This solution has been adopted for a several decades
now. However, it has limitations, especially, as we move towards ever smaller
transistor sizes.

A third solution is becoming increasingly crucial; making the software more
aware of the temperature of the processor. There have been several works
which have explored this solution, such as reducing the frequency of the
processor, migration of tasks to cooler parts of the system and delaying the
arrival of incoming jobs, among others. Broadly, these techniques are referred
to as Dynamic Thermal Management (DTM). However, these techniques
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CHAPTER 1. INTRODUCTION

have not yet been combined into a single framework.

In this thesis a framework called Cool Linux (henceforth referred to as CL)
is developed. CL uses three known DTM techniques and integrates them
into one framework to be run on an off-the-shelf computer with any Linux
distribution. The DTM techniques will be implemented in the user space,
thus not relying on special features in the software stack, and therefore en-
suring maximum portability. The CL-framework bases its DTM-decisions
on the current temperatures and on predictions of the future temperature
development of the CPU-cores. The goal of the Cool Linux -framework is
to execute a CPU-intensive task on a Linux system while keeping the CPU
temperature below a certain threshold. This temperature threshold is freely
configurable and it enables the use of less effective and less expensive cool-
ing systems, while still guaranteeing a certain level of performance. Our
approach is entirely software based, and therefore cheap to implement.

1.2 Contributions

Temperature Predictions: A program is developed that allows to pre-
dict the temperature of the CPU cores based on the current load,
without need for manual configuration. The prediction-accuracy is
evaluated for different scenarios.

Integration of DTM-Techniques: The feasibility of three different
DTM techniques (frequency scaling, task migration, sleeping) is eval-
uated.

Configurable Framework: Temperature predictions and DTM tech-
niques are combined into a single framework that allows to execute
a CPU-intensive task in a cool manner. The effectiveness of the frame-
work is evaluated for different scenarios. The results are compared
to the tests done without the framework, or with certain DTM-parts
switched off, respectively. In addition, we compare our framework to
the default Linux on demand frequency governor.

1.3 Outline

The remainder of this thesis is structured as follows:

Chapter 2 shows how the temperatures of the CPU are predicted in the
framework. First, it explains how the CPU-core temperatures can be ac-
cessed. The second part describes how the temperature development is
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1.3. OUTLINE

modelled, which is then analyzed in the third part. The last section of
this chapter explains the temperature prediction mechanism.

Chapter 3 introduces the dynamic thermal management-techniques that are
used in the framework. First, it gives a short overview of power- and thermal
management technologies implemented in modern Intel CPUs, and explains
how these mechanisms differ from our approach. Then it explains how the
CPU frequency can be changed on a Linux system, and what the implications
on performance and temperature are. After that, a brief explanation of task
migration is given. Finally, it describes how the framework is able to block,
i.e. put to sleep, a worker thread.

Chapter 4 presents the final framework. It gives an overview of the specific-
ations/parameters, the overall architecture and features of the framework.
It then goes into more detail on the separate parts of the framework and ex-
plains how exactly it manages to keep the CPU temperature below a certain
temperature threshold.

The evaluation of the CL framework is done in Chapter 5. First comes a
description of the two different test systems. Then, tests are performed for
different controller-speeds and temperature tresholds. Afterwards, different
DTM -parts of the framework are switched off and the performance of the “re-
mainin” framework is evaluated. Finally, the performance of the framework
is compared to the default Linux ondemand frequency governor.

The evaluation of the Cool Linux framework is presented in Chapter 5. It
describes the different experiments that were conducted, and shows their
results.

Chapter 6 brings the thesis to a conclusion and presents possible directions
for future improvements.
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2
CPU Temperature Prediction

This chapter focuses on the requirements and necessary steps to develop a
temperature predicting algorithm for CPU temperatures. First, section 2.1
explains the approach used to tackle the problem. Section 2.2 discusses how
to obtain current CPU core temperatures. Next, Section 2.3 explains the
model used for temperature development and in the last section, the topic
of temperature development is discussed.

2.1 Used Approach

The used approach is based on an exponential temperature model (see Sec-
tion 2.3) for the CPU cores temperatures. The model depends on the current
temperatures of all cores as well as on the time difference to the moment for
which the prediction should be made. Also, the model is based on constant
parameters, explained in Section 2.3.4. In order to consider the neighbouring
effect (see Section 2.4.2) in the model, the final predictions are composed
of the influences of each stressed core to the core for which the predictions
are made, using an instance of the model with its own parameters for every
stressed-predicted core combination.

The predicting algorithm is based on current temperature values only and
takes neither a history of temperatures nor the history of taken measures to
reduce the core temperatures into account. It assumes a constant environ-
ment, for example steady room temperature and that no other programs are
running on the framework’s target machines.
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CHAPTER 2. CPU TEMPERATURE PREDICTION

Due to limitations of the library used (discussed in Section 2.2.1), the res-
olution of the temperature readings is 1◦C, as the temperature values are
returned as Integers.

2.2 Accessing CPU Core Temperatures

Obtaining the values of the temperature sensors of a processor may seem
to be a trivial task, but the variety of different CPUs and chipsets is so
vast, that it gets complicated heavily, for every chipset needs to be accessed
differently. Therefore, it is essential to find a convenient way to access the
temperatures regardless of the device’s chipset.

Therefore, an existing library was integrated in our solution to solve the prob-
lem. The next Sections describe which library was used and what problems
were encountered and how they were solved.

2.2.1 lm-sensors Library

lm-sensors is an open-source library which provides access to temperatures,
voltages, and fans [2]. In this project, it is used to access the individual
CPU core’s temperature sensors and the general CPU temperature sensor if
available.

After installation (described in Appendix B.1.2), an initialisation script has
to be run once to detect the device’s chipset.

1 sudo yes | s ensor s−detec t

The command is also required for checking the compability of the computer
with the coretemp kernel module, which is required for accessing the CPUs
individual core temperatures. After running this script, the library is func-
tional.

2.2.2 Frequency of Temperature Updates

While developing the interface to access the temperatures of the CPU, the
temperatures happened to be updating at a very slow rate of approximately
once every 1.5 seconds. In terms of degrees this meant that the temperature
could jump five to ten degrees in one resolution step. As this uncertainty
is too big for this thesis’ purpose, the sensor update frequency had to be
increased to once every 10ms.
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2.3. TEMPERATURE MODEL

The official lm-sensors FAQ1 states the following on that topic:

Q: I read sensor values several times a second, but
they are only updated only each second or so. Why?

A: If we would read the registers more often, it would not
find the time to update them. So we only update our readings
once each 1.5 seconds (the actual delay is chip-specific; for some
chips, it may not be needed at all).

Analysing the source code of libsensors showed that the temperature
sensors are in fact accessed through the sysfs interface2, which is a vir-
tual file system provided by Linux to access device and driver information
in userspace. Accessing sysfs directly by running the following line of
bash showed the same temperature behaviour as accessing the temperat-
ures through lm-sensors.

1 cd / sys / c l a s s /hwmon/hwmon1/ dev i ce / d r i v e r / coretemp .0
2 whi le [ 1 ] ; do cat temp1_input ; done

Therefore, the change of frequency had to be limited in the Linux kernel
coretemp module. A slight modification of the module’s source code results
in a drastically higher resolution, which is enough for this project’s purposes
(it has been tested down to a period of 10ms).

The procedure to modify, compile, and install the coretemp module can be
found in Appendix C.

2.2.3 CoreTemperatures Class

A wrapper class has been developed to have easy access to the cores in-
dividual temperatures. At initialisation of an object of the class, the con-
structor automatically calls the required lm-sensors functions to get the
number of cores and to prepare the library for sensor data reading.

A more detailed description of the interface can be found in Appendix D.1.

2.3 Temperature Model

To be able to approximate the temperatures of individual cores, an appro-
priate temperature model is needed. Due to the physical nature of a modern

1http://www.lm-sensors.org/wiki/FAQ/Chapter3#Ireadsensorvaluesseveraltimesasecondbuttheyareonlyupdatedonlyeachsecondorso.
Why

2http://en.wikipedia.org/wiki/Sysfs
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CHAPTER 2. CPU TEMPERATURE PREDICTION

CPU and heat propagation, the temperature of a core rises very fast at the
beginning, but takes increasingly more time to get to its maximum. There-
fore, the temperature curve is approximated by an exponential function.

2.3.1 Rising Temperature Model

For the approximation of the temperature of a single core, the following
equation is used:

T (t+ tdiff ) = T (t) + (T∞ − T (t)) ∗ (1− exp (−
tdiff
τi

)) (2.1)

An example of the model can be found in Figure 2.1. The parameter T∞
represents the maximum temperature the model can attain for t→∞ (rep-
resented by the green line in Fig. 2.1) and the parameter τi is a time constant
for the speed with which the exponential curve rises.

Figure 2.1: Graph of the temperature model.

To further calculate the influence of other stressed cores on the measured
one (see Section 2.4.2), the model was extended to the following equation:

Ti(t+tdiff ) = Ti(t)+
∑

j∈stressed cores
(T∞ij−Ti(t))∗(1−exp (−

tdiff
τij

)) (2.2)

Now the model for the predicted temperature does not only depends on the
temperature and parameters of the core for which the prediction should be
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made, but rather on all cores which are stressed during tdiff . This approx-
imation is used to include the Neighbouring effect into the model and is
based on the linearity of the temperatures.

2.3.2 Falling Temperature

Similar to temperature increase, it is possible to calculate the cooling down
of a core using the same constants calculated for the model in the previous
section and an additional constant T0. The curve converges to this very
constant, which represents the idle temperature of the core:

T (t+ tdiff ) = T (t)− (T (t)− T0) ∗ (1− exp (−
tdiff
τi

)) (2.3)

An example of the cooling down curve can be seen in Figure 2.2, T0 is
represented by the green line.

Figure 2.2: Graph of the cooling down temperature model.

2.3.3 Temperature development when coming from a higher
frequency

When changing from a hot temperature and a high frequency to a lower
frequency, where the actual temperature exceeds T∞ of the lower frequency
and core, the resulting temperature curve for the next tdiff looks very similar
to the normal cooling down temperature curve. However, instead of T0, the
curve converges to the T∞ of the lower frequency model.
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T (t+ tdiff ) = T (t)− (T (t)− T∞) ∗ (1− exp (−
tdiff
τi

)) (2.4)

Using this equation, the predictor is able to calculate the temperature of a
stressed core even if it is currently hotter than T∞. However, this formula can
only be used for one stressed core at a time and would have to be extended
for multiple concurrent tasks.

2.3.4 Temperature Model Constants

For all equations discussed in the previous sections, the constants T∞ij and
τij are required for each combination of stressed and measured cores. To
calculate the temperature of a core which is cooling down, an additional
constant T0 is needed.

For this purpose, the application TemperatureParameterTester, which fully
automates the process of measuring data and calculating all required para-
meters, has been developed. Section 2.4 describes in more detail what is
done internally while running this tool.

2.4 Temperature Development Analysis

In order for the temperature model to work correctly, the constants T0, T∞ij

and τij have to be obtained. As the values of these constants may differ
greatly depending on the machine used and its environment, they have to
be analysed at least once for every machine and environment combination.

The developed TemperatureParameterTester tool works by setting a static
frequency and choosing a single core to stress for 20 seconds while measuring
the temperatures of all cores. Using these measurements, all parameters are
calculated online for the chosen frequency. Looping through all available
frequencies and running the same test multiple times to average the resulting
values, all required parameters are calculated and stored in /etc/CoolLinux.

Notice that the program has to be run as root in order to be able to change
the CPUs frequency while measuring.

2.4.1 Stressing Individual Cores

To stress an individual core, a stressing thread has to be created, moved to
the desired core and run.

— 10 —



2.4. TEMPERATURE DEVELOPMENT ANALYSIS

The following code can be used to stress a core by using an infinite loop of
integer additions:

1 i n t i =0;
2 whi le ( running !=−1)
3 i++;

Notice that the stressing algorithm used in this project actually is a program
called MJPEG decoder. However, a simple integer addition is described here
for convenience.

To set the affinity of a thread, first an instance of cpu_set_t has to be
created. The resulting object represents a mask to describe on which
core the thread is allowed to run. CPU_ZERO(&cpuset) sets the permis-
sion to run to zero for all cores, CPU_SET(coreId,&cpuset) adds the de-
sired core with ID coreId to the set. Finally, the thread migration function
pthread_setaffinity_np() can be called, given the thread and the cpuset
instance as parameters.

In the following example, the affinity of the calling thread is set to CPU0.

1 i n t co re Id = 0 ;
2 cpu_set_t cpuset ;
3 pthread_t thread = pthread_se l f ( ) ;
4

5 CPU_ZERO(&cpuset ) ;
6 CPU_SET( coreId , &cpuset ) ;
7

8 i n t s = pthread_seta f f in i ty_np ( thread , s i z e o f ( cpu_set_t ) , &
cpuset ) ;

9 i f ( s !=0)
10 std : : ce r r<<"pthread_seta f f in i ty_np "<<s<<std : : endl ;

2.4.2 Heat Propagation

Due to the physical proximity of the individual cores, there is heat propaga-
tion which cannot be disregarded. Therefore, the intensity and delay with
which the CPU core’s temperatures correlate have to be considered in the CL
framework. This correlating heat propagation between cores is also called
the neighbouring effect.

Running a task on core 1, one can clearly see the temperature rising on the
idle core 0. To account for this fact, the TemperatureParameterTester pro-
gram calculates τ and T∞ for each measured and stressed core individually,
always stressing exactly one core at a time. The temperature of a single
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core can then be calculated by superposition of all calculated temperature
differences for each stressed core. This functionality is already built into
the framework, ready to be used in future projects with multiple working
threads.

However, the delay aspect of heat propagation was not pursued. Tests
showed that the influence of this factor had only a small dimension. There-
fore, this aspect was omitted in favour of other parts of the thesis.

2.4.3 Environmental Influence

The environment has a very important role in the development of the tem-
perature. Just a few degrees difference in room temperature can be directly
seen in the temperature development of the CPU. Even direct sunlight can
heat up the system by a considerable amount. Therefore, it is essential that
all parameters are recalculated with big changes of the environment.

2.5 Temperature Prediction

The final temperature predicting algorithm is based on the following argu-
ments:

• Array of all current CPU core temperatures,

• information which core will be stressed during tdiff ,

• targeted core ID for which the prediction should be made, and

• time difference tdiff .

Before actually calling the predictCoreTemp() function, an instance of
CpuStressMap has to be set in the predictor using setStressMap(). The
StressMap contains information about the core, which will be stressed and
is called within the predictCoreTemp() function.

Using the model and the arguments mentioned before, the influence of the
temperatures of each stressed core on the one to be predicted is calculated in
degrees and summed up, thus obtaining an approximation of the temperat-
ure. If no core is stressed, the function calculates the resulting temperature
by using the cooling down curve of the very same core for which the predic-
tion is made. The temperature of the other cores are not taken into account
for this calculation.

Another case for the prediction is when the controller is switching to a lower
frequency where the actual temperature is higher than the lower frequencies
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2.6. SUMMARY

T∞. Since the CL framework is designed to work with one simultaneous
task, it is easily possible to predict the temperature in this case. Here, the
cooling down temperature model discussed in Section 2.3.3 is used to predict
the temperature.

2.6 Summary

The CL framework makes use of multiple variations of an exponential model
for the CPU core’s temperature development. It is not only able to calcu-
late the temperature when stressing a core, but also the temperature when
cooling down or for a core while another core is being stressed.

As the models used depend on constant parameters which are system-
specific, they have to be calculated in advance. For this very purpose, the
TemperatureParameterTester program has been built to fully automatic-
ally calculate and calibrate these parameters.

The sensors providing data about the actual CPU core temperatures can be
read at any moment, with a resolution of 1◦C, using the modified version of
the coretemp kernel module.
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3
Dynamic Thermal Management

This chapter describes the means of the Cool Linux framework to reduce the
system’s temperature, other than using more effective, and therefore more
expensive, cooling systems. Dynamic Thermal Management is fairly easy to
use, since it is software-based and much can be done from the user space
of an operating system. DTM offers a lot of room for innovations through
various possibilities of combining different DTM -mechanisms.

Section 3.1 gives an overview of the power management mechanisms of mod-
ern Intel CPUs. It also gives a short introduction about CPU-states (the
CPU’s “power saving too”). A basic understanding of these states is required
to understand Sections 3.4 and 3.6. Section 3.2 then discusses the “built-in”
thermal mamagement mechanisms of Intel CPUs, and how their functional-
ities and goals differ from the CL-framework’s approach. Section 3.4 shows
how the operating frequency of the CPU can be changed, the resulting effects
on performance and how lower frequencies influence the CPU temperature.
Section 3.5 shortly explains the idea of migrating POSIX-threads between
different cores, and how that mechanism can be used to keep a multi-core
CPU cool. The third possibility to reduce the temperature of the CPU is to
put the working thread into a sleep state until the CPU has cooled down.
This is described in Section 3.6 and is henceforth referred to as scheduled
sleep.
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3.1 Intel Power Management - CPU-States

A CPU can be in different states, mostly depending on the current load
and power saving settings. These states basically determine which parts of
the CPU are active, i.e. how much power it consumes. ACPI (Advanced
Configuration and Power Interface) defines a standard interface for the OS
to utilize hardware power features and also defines data structures to track
the states, and functions to operate on the states. The CPU implements
mechanisms to support these states. The BIOS and software drivers hide the
difference in CPU-architectures (and therefore the different CPU-states) to
support the structures and functions defined by ACPI. In other words, ACPI-
states are abstractions of CPU-states. The following discussion is based on
a mobile 3rd generation core i7 processor. The exact number/function of
CPU-states may therefore differ from other CPU-models.

Figure 3.1: Hierarchy of CPU-states for a 3rd-gen core i7 processor [1]

Figure 3.1 shows the CPU-state hierarchy. The important states are the
P - and C-states. The S-states are only entered if one manually suspends,
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hibernates or powers down the system. How much energy a system consumes
while it is in an S-state is generally important, as it determines for how
long mobile systems can run on battery power. However, for this thesis,
this aspect does not matter since the CL-framework assumes continuous
workload, and the CPU will therefore never enter an S-state.

From Figure 3.1 one can see that whenever the CPU is executing code, it
must be in the C0-state. When the CPU is in C0, it resides in one of the
P -states, which indicate the current level of performance. Lower numbers
mean higher performance and power consumption. While the CPU is idle,
it resides in one of the higher C-states (C1, C1E, C3, etc.). The higher
the C-state, the lower the power consumption and the higher is the resume
delay. The resume delay is the time it takes for the CPU to transition to the
active state, i.e. to C0.

3.1.1 Low-Power Idle States (C-States)

As mentioned previously, higher C-states (i.e. all C-states except C0) are
low-power idle states. Further, the C-states are divided into Thread C-states
(for CPUs with Hyper Threading), Core C-states and Package C-states.
Depending on which thread-/core-/package-state the CPU is in, different
power saving actions are taken.

Core C-state

• Core C-state is determined by the lowest numerical thread state. For
example: Thread 0 is in C1 and thread 1 is in C3, therefore the Core
C-state is C1.

• Transitions between different core C-states always go through C0.

Package C-state

• Package C-state is determined by the lowest core C-state of all cores.

• Transitions between different package C-states can be done directly
without first entering C0.

In essence, this means that different cores (or even threads) can be in dif-
ferent C-states at the same time, therefore consuming different amounts of
energy. The CPU can only make the transition into a higher package C-state
(and therefore save more energy) when all threads/cores are in the same (or
higher) thread-/core C-state.

The implication of this behavior on frequency scaling is explained in Section
3.4.
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3.1.2 Enhanced Intel SpeedStep Technology (P-States)

“Newer” generation Intel processors (most CPUs since Pentium III ) have a
technology called Enhanced Intel Speedstep Technology (EIST), which does
dynamic frequency and voltage scaling. The P-states represent different op-
eration points of the CPU, i.e. (frequency, voltage)-tuples. When the CPU
goes into a higher P-state (lower performance), both voltage and frequency
are reduced, which leads to lower power consumption: P = ACV 2f , where
P is the consumed power, A is the activity factor (the fraction of the tran-
sistors that are actually switching) C is the switched capacitance, V is the
supply voltage and f is the frequency [3]. EIST is software controlled. It is
automatically done by the operating system (e.g. by the Linux on demand
governor) through writing to processor registers. However, the frequency can
also be set manually over the ACPI-interface as done in Section 3.4.

As explained in Section 3.1.1, different CPU-cores can be in different C-
states at the same time. However, all cores that are in C0 have to be in the
same P-state. This means that it is not possible to change the operating
frequency for each core individually. However, it is possible to have different
average frequencies for different cores, because they can be in different C-
states. For example: Core 0 is heavily utilized and will be in C0 100% of
the time, while core 1 is mostly idle and will reside e.g. in C6, and therefore
have its voltage/frequency reduced to zero. Tools that measure the average
operating frequency (e.g. i7z ) will then display a lower (average) frequency
value for core 1. However, as soon as core 1 enters C0 to execute some
code, it will be in the same P -state as core 0, therefore running at the same
frequency/voltage as core 0.

3.2 Intel Thermal Management

In the official manual for 3rd-generation core i7 processors it is stated:

To allow for optimal operation and long-term reliability of In-
tel processor-based systems, the system/processor thermal solu-
tion should be designed so that the processor:

• Remains below the maximum junction temperature
(Tj ,Max) specification at the maximum thermal design
power (TDP).

• Conforms to system constraints, such as system acous-
tics, system skin-temperatures, and exhaust-temperature
requirements.

— 18 —



3.2. INTEL THERMAL MANAGEMENT

These two design goals already show that Intel optimizes it’s CPU for per-
formance first and foremost. Thermal management is mainly done to prevent
system failure, and not to save energy, or keep the system cool. The follow-
ing subsections introduce different thermal management features of Intel
processors.

3.2.1 Intel Turbo Boost and TDP

Newer generation Intel processors have a function called Turbo Boost, which
allows the processor to run at a higher frequency for a certain time. Turbo
Boost mode is entered automatically and opportunistically, as long as the
processor stays within current specification limits. While not a thermal man-
agement feature in its closest sense, Turbo Boost has several functionalities
to enable thermal management.

The processor TDP (Thermal Design Power) represents an expected max-
imum sustained power for realistic applications when all cores are active and
running at the processor’s rated frequency. However, in the typical use case,
not all cores are active at the same time, therefore the CPU usually consumes
less than the TDP at its rated frequency.

When applications are running at Turbo Boost frequency, the system is
expected to get closer to the TDP. The TDP may even be exceeded for a
short period of time, as long as there is enough “thermal headroom”.

When in Turbo Boost Mode, the processor monitors and controls its power
consumption. There are several parameters that influence the behaviour of
the Turbo Boost mode, which are adjusted automatically. These parameters
basically determine by how much the TDP may be exceeded and for how
long. Additionally, they specify limits on the average power consumption
over certain periods of time.

Running in Turbo Boost Mode has a large impact on power consumption
and therefore heat generation. Changing Turbo Mode parameters, or even
disabling it entirely, would lead to a cooler system. However, these paramet-
ers are not easily tunable from the user space, and one would miss out on the
performance gains that Turbo Boost provides. The CL framework automat-
ically “disables” (i.e. does not use) Turbo Boost, when using it would cause
the CPU-temperature to overstep a specified threshold. But when there is
enough thermal headroom, CL makes use of the additional performance of
Turbo Boost. In other words: There is no need to manually configure the
Turbo Boost parameters, CL automatically uses Turbo Mode whenever the
current CPU temperature allows it. CL could even allow to temporarily
disregard temperature constraints and run in Turbo Mode nonetheless for a
certain time. This could be useful when there is a workload burst and real
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time constraints have to be met.

For more information on Intel Turbo Boost, see Sections 5.2 and 5.3 of [1].

3.2.2 Configurable TDP (cTDP) and Low Power Mode
(LPM)

Other thermal management-functionality of modern Intel CPUs are config-
urable Thermal Design Point (cTDP) and Low Power Mode (LPM ).

cTDP allows the CPU to adapt its TDP to different operating modes (e.g.
power plugged-in, battery power, etc.). Changing the TDP automatically
results in a change in performance. cTDP has three modes:

Nominal: Processor’s rated frequency and TDP.

TDP-Up: When extra cooling capacity is avaiable, e.g. when a laptop is
put on a docking station with additional fans, the CPU can operate
at higher TDP and ensured frequency. This naturally increases the
average power consumption.

TDP-Down: To operate cooler, quieter and longer, the CPU can use this
mode to lower TDP and ensured frequency. This of course lowers
performance as well as temperature.

Each mode uses different power and frequency ranges for Turbo Boost. How-
ever, the maximum Turbo frequency is not changed.

LPM allows the system to operate even below TDP-Down. LPM can be
configured to use the following methods to reduce power consumption:

• Restrict Turbo Boost Power limits and availability,

• off-Lining core activity, i.e. move processor traffic to a subset of cores,

• place cores in Low/Minimum Frequency Mode, and

• utilize clock modulation.

Configuring cTDP and LPM could lead to lower power consumption and
therefore lower heat generation. However, it is (1) not something one can do
from the user space and (2) restricts performance even if it is not necessary.
Both methods are designed by Intel to enable more versatile use-cases for
their CPUs; the same CPU can be put into different devices with different
performance requirements, cooling- and docking capabilities.

The CL framework on the other hand is capable of dynamically adjust to
performance needs while staying within temperature bounds. There is no
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need to preliminarily restrict the CPUs maximum performance by lowering
the TDP. Additionally, it operates entirely in the user space, which makes it
easy to use and configure.

Note that currently only the absolute high-end Core i7 models (Extreme
Edition and Dual Core Ultra) are capable of cTDP and LPM. For more
detail see (Section 5.4 of [1])

3.3 Implications of Intel’s Power/Thermal Manage-
ment Capabilities for Cool Linux

This section gives a short summary of the above discussed Intel technologies’
implications on the design of the CL framework.

• All active cores (i.e. cores in C0) run at the same frequency, i.e. are in
the same P-State. Therefore, it is not possible to set different operating
frequencies for different cores.

• It is not easily possible to directly manipulate the CPU’s C-states from
the user space. "Putting a CPU-core to sleep" by manually requesting
a transition to a higher C-state can therefore not be done.

• The Intel power- and thermal management technologies are mostly
there to guarantee safe operation, i.e. to prevent thermal breakdown.
Maximum performance is more important than low temperature, as
long as the system is able to provide “sufficient” cooling. Sufficient
means that the CPU-temperature must not reach the maximum junc-
tion temperature Tj,max, which is usually around 105◦C.

• The Intel power- and thermal management technologies are not de-
signed to be used from the user space, they are normally used by the
operating system. That means, relying on these Intel technologies for
the CL framework is not a viable option. Making some of them access-
ible in the user space might be possible, but certainly not easy to do,
nor would they then be easy to use.

3.4 Changing CPU Frequency

Naturally, the current operating frequency of the CPU has an influence on its
temperature: The faster the transistors switch, the higher the dynamic power
dissipation P = ACV 2f is. Therefore, reducing the frequency results in less
dynamic power dissipation, which generally leads to lower temperatures.
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This section explains how the CPU frequency can be set from the user space
and how changing the frequency influences CPU temperature and perform-
ance, or execution time of code respectively.

3.4.1 Frequency Scaling on Linux

On Linux, one can get control over the ACPI 1 CPU frequency kernel func-
tions by using the cpufreq library (see Appendix D.3 for more information).
Cpufreq provides functions to set/get the frequency governors, operating fre-
quencies and other information about the system, like possible frequencies,
switching latency and so on. To use the cpufreq-functions in a C-program,
the cpufreq library has to be installed and cpufreq.h has to be included.
The ACPI cpufreq library supports the prevously discussed Intel SpeedStep
technology to change the operating frequency.

As explained in Section 3.1.1, it is not possible to set different frequencies
for each individual core; all running/active cores are in the same P -state and
therefore running at the same frequency. This means that the Cool Linux
framework always changes the frequency of all cores. Since the framework
currently only supports one worker-thread, i.e. only one core is utilized at
the same time, this fact does not have any major impact. To support several
worker-threads all running on different cores, one would have to consider the
fact that lowering the frequency based on the overheating of one core, also
lowers the frequency for all other cores, even if they are not too hot. However,
this is part of future work. See Section 4 for details on the integration of
frequency scaling in the framework.

3.4.2 Influence on Temperature

In order to assess the viability of frequency scaling for the purpose of keep-
ing a CPU cool, several tests were done to quantify the effect of frequency
scaling on CPU-temperature. The results are shown in Figure 3.2. One can
clearly see that the steady state temperature monotonically decreases with
lower frequencies. Also note that the turbo-frequency of the i7-processor (≈
3.4GHz) disproportionately increases the CPU temperature.

The test was run on core 0, which happens to be the hottest core in the
test system, supposedly due to the unsymmetrical placing of the cores on
the CPU. To stress the CPU, a C-program corresponding to the following
pseudo-code was used:

1Advanced Configuration and Power Interface, provides standard interface for OSes to
utilize hardware power features.
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Algorithm 1 Stress CPU
for i ≤ iter, i++ do

for j ≤ iter, j ++ do
pow(i ∗ j, 10)

end for
end for

These preliminary results show that frequency scaling is a viable option to
regulate the temperature of the CPU.

Figure 3.2: Temperature of core 0 in dependence of operating frequency.

3.4.3 Influence on Performance

While the "cooling"-effect shown in the previous subsection is desirable,
lowering the frequency also decreases performance, which might be a problem
depending on the application. To measure the effects of frequency scaling on
performance, the following test was done: The machine executes some piece
of code in a while loop for n iterations and measures the execution time for
different frequencies. As for the previous test, C-code corresponding to the
pseudo code in 1 was used, where iter was fixed to n for all tested frequencies.

The test was repeated for different combinations of mathematical expressions
and also for operations on large arrays, in order to “incorporate” the L2 and
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maybe L3 cache. However, the results were all the same.

Figure 3.3 shows the results. One can see that the performance scales per-
fectly linearly. In theory, this would mean that the performance loss directly
corresponds to the decrease in frequency. In other words: If the CL frame-
work reduces the average frequency by 30% in order to keep the CPU cool,
the expected performance-loss is also 30%. If this is always true in practice
will be discussed in the evaluation (Chapter 5).

The final framework is able to enforce a minimum operating frequency in
order to somewhat guarantee a certain level of performance. This is covered
in more detail in Chapter 4, where the integration of frequency scaling into
the framework is covered. Further evaluations of the feasibility of frequency
scaling are done in Chapter 5.

Figure 3.3: Dependence of execution time on operating frequency.

3.5 Task Migration

CPUs in server systems can have up to several dozens of cores and it is very
likely that not all cores are symmetrically placed on the chip, nor equally
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utilized at all times, and therefore, the different cores will have different
temperature characteristics. By using the POSIX pthread_setaffinity_np
method it is possible to tell the OS to continue the execution of a task on
another core. By choosing a core with lower temperature than the current
one, it is possible to keep the overall CPU temperature lower than if the task
is executed on a single core.

When migrating a thread from one core to another there is a certain over-
head. Depending on the processor, the average time for a process context
switch with possible migration to another core, is between 3000 and 4500 ns
per context switch [4]. Thread context switches are only marginally faster.
However, these numbers indicate the duration of mere context switches (and
possible migrations to another core), without considering cache pollution. In
a real world application, these numbers are expected to be a little higher,
depending on the working set size with respect to cache size [5]. Another
factor that influences the durations of context switches is the number of con-
currently running threads, which generally should not exceed the system’s
number of hardware threads.

Having said that, the main goal of the Cool Linux framework is not to
optimize performance, but to minimize (i.e. set an upper bound on) the
temperature of the CPU. Therefore, we make do with ensuring there are
not too many (“unnecessary”) task migrations. However, the frequency of
task migrations is anyway lower bounded by the maximum frequency of
the temperature-control-loop, which is somewhere betwen 100 and 200 mili-
seconds. Additionally, task migration allows to do load balancing. If, for
example, other tasks than the CL framework are running on the machine,
CL can make sure that its own tasks do not run on the same core as the
other tasks whom it has no control over. Furthermore, CPU-cores are not
symmetrically placed on the chip, which can lead to very different temperat-
ure dynamics for the individual cores. On one test system, the first core got
up to 10◦C hotter than the fourth core. Task migration allows to take these
differences into account and preferably run the tasks on these inherently
cooler cores.

Chapter 4 explains how task migration is integrated in the framework.
Chapter 5 shows how good task migration is for the purpose of dynamic
thermal management in our framework.

3.6 Scheduled Sleep

Another way to reduce the temperature of the CPU is to force the working
thread to sleep, thereby allowing the entire framework to sleep. Of course,
this has a more serious impact on performance than reducing frequency an-
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d/or migrating a thread to another core. This is why forcing a thread to
sleep is intended to be used as a safeguard to cool down the CPU when it
gets unexpectedly hot very fast and the other mechanisms (frequency scaling,
task migration) are not able to keep it cool enough.

3.6.1 Using CPU C-States to Sleep

As discussed in Section 3.1, there are different CPU-states, namely C-states
(Processor Power States), P-states (Performance States) and S-states (Sleep
states). Normally, the OS decides which state the CPU should be in and
there are several possible ways to do so [1]:

1. Execute HLT instruction to enter C1 or C1E.

2. Using MONITOR/MWAIT: MONITOR specifies a memory range to
be monitored. MWAIT halts the processor until the address specified
with MONITOR is accessed.

3. Reading of the P_LVLx I/O registers will cause the CPU to enter
a model-specific C-state. Reading the P_LVLx register is internally
translated into an MWAIT instruction.

This naturally raises the question whether it is possible to manually set/re-
quest different C-states from the user space to put entire cores into a low-
power state when they get too hot.

Unfortunately, the methods described above only work from kernel space.
There seems to be a loadable kernel driver available for Solaris systems that
exposes MONITOR/MWAIT to the user space [6]. However, we did not find
something similar for Linux that would be ready-to-use. This means that
manipulating the CPU-states from the user space could actually be done,
but to the best of our knowledge, it is not straightforward to do so, neither
are there any manuals on the matter. However, we could find some pointers
on how it could be done, including (1) integrating ACPICA into the OS as
a kernel-resident subsystem, which requires an adaption to the specific OS,
or (2) exploring Kernel Mode Linux [6].

Integrating a sleep-functionality that directly utilizes the CPU-states could
be topic of future work. The next section describes the idea behind the sleep
functionality of the final framework; instead of putting entire CPU-cores to
sleep, we temproarily suspend the POSIX thread that is doing the work, and
therefore has the highest CPU utilization.
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3.6.2 Suspending the Worker Thread

Linux offers an easy-to-use sleep mechanism; in order to suspend the execu-
tion of a thread for at least t microseconds, one can just call the function
usleep(t). When a thread calls the usleep(t), it loses the CPU to other threads
for at least t microseconds, before it resumes execution.

In the CL framework, there is a worker -thread that executes code, e.g. de-
codes an MJPEG video. In order to cool down the CPU, i.e. to put the
worker to sleep, we use amutex shared between the controller -thread and the
worker -thread. When the contoller -thread decides that the worker should
sleep, it locks the mutex, i.e. blocks the worker, and then the main-thread
calls usleep. Because the controller -thread has locked the mutex, the worker
cannot resume execution, even though the controller -thread loses the CPU
for the sleep duration. Through that we make sure that (1) the worker is
indeed doing nothing, and (2) we do not use busy-wait. Using busy-wait
would prevent the main-thread from losing the CPU, and therefore prevent
the worker from resuming execution. However, the CPU cannot cool down
during a busy-wait, which defeats the purpose of sleeping in the first place.

Section 4 goes into more detail about this sleep mechanism as part of the
entire framework. Section 5 shows how well suited this sleeping-mechanism
is to keep the CPU cool.

3.7 Summary

Chapter 3 gave necessary background on processor states and introduced the
three main actuation mechanisms of the Cool Linux Framework:

Frequency scaling: Reducing the frequency lowers CPU-temperature as
well as performance. The performance scales linearly with respect to
operating frequency. All active cores (C0-state) are in the same P -state
and therefore run at the same frequency. To do frequency scaling in
Linux, the cpufreq-library, which grants access to the ACPI-functions,
is used.

Task migration: Migrating threads (or tasks respectively) from a hot core
to a cooler one can be used to keep the entire CPU cool. This can be es-
pecially useful if there are other tasks running on the system; migration
allows the tasks controlled by the Cool Linux framework to "dodge"
those processes. Additionally, CPU-cores are not symmetrically placed
on the chip and therefore have different temperature behaviours; mi-
gration allows to preferably run tasks on cores that stay cooler. The
migration delay is negligible for Cool Linux. However, the migration
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overhead might contribute to heating up the CPU.

Scheduled sleep: Scheduling sleep-times for the worker-thread gives the
CPU time to cool down. This method has the most negative impact on
performance, and should therefore only be used when frequency scaling
and task migration fail to keep the CPU cool enough. In order to put
the entire program to sleep, a higher priority thread locks a mutex that
is shared with a lower priority worker-thread, and then executes usleep.
For the mutex is locked by the sleeping thread, the worker thread is in
fact also sleeping.
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Cool Linux Framework

This chapter discusses the implementation of the CL framework. Sensing-
(Chapter 2) and actuation mechanisms (Chapter 3) are brought together in
a control loop to regulate the CPU-temperature.

Section 4.1 introduces some important parameters of the framework. Section
4.2 shows basic the structure of the framework. The most important features
of the framework are then discussed in Section 4.3. Section 4.4 explains how
the worker and dispatcher threads work, and how they are integrated in the
framework. Finally, Section 4.5 introduces the main control loop thread, and
shows how it manages to control the CPU temperature.

4.1 Specification

In the CL framework the following goals can be specified:

prediction threshold Tpt: The prediction threshold is the desired temper-
ature of the system. The system’s CPU-temperature should be as close
to the prediction threshold as possible without exceeding it. Of course,
depending on how hot a particular system can get and what it’s idle
temperature is, this value must be adapted accordingly.

performance threshold ft: The performance threshold specifies a lower
bound on the average operating frequency of the system. This makes
sure that it is not possible to simply run at the minimum frequency,
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completely disregarding any kind of performance considerations. While
the main goal of the framework is temperature control, it also aims at
having high performance.

Other parameters of the framework are:

Controller Speed/Period: The controller speed specifies how often the
sensors are read and how fast the controller actuates. It is a parameter
that must be optimized for a specific system.

Operating Frequency: The CPU’s operating frequency is a system-wide
parameter and can be set by the actuator.

CPU Affinity: The CPU affinity denotes the core where the application
is currently running on. The actuator can set it separately for each
POSIX thread.

Duration of Scheduled Sleep: Indicates for how long the actuator
should put the worker to sleep.

4.2 Framework Architecture Overview

Figure 4.1 shows the most important building blocks of the framework and
how they interact.

There are three separate POSIX threads: (1) The main control loop thread,
(2) a dispatcher thread, and (3) a worker thread. The main control loop
thread is where all the intelligence resides and the decisions (i.e. actuation
and control) are done. Section 4.5 describes the control loop in more detail.
The dispatcher and worker form the CPU-intensive part of the framework,
and therefore must be controlled by the main control loop, in order to keep
the CPU cool. Section 4.4 gives some more insight on the implementation
of the dispatcher and worker.

4.3 Framework Features

This section gives a short overview of the CL framework’s most important
and distinguishing features:

• Keeping CPU-temperature below specified threshold. The framework
automatically decides which DTM-measures to take in order to reach
that goal.
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Figure 4.1: Overview of the framework and its most important parts.

• Always run on best core, i.e. on the core that has the best temperature
dynamics.

• Allow for maximum performance if enough thermal headroom. The
framework allows to specify lower bound on operating frequency, which
is then used as a lower bound on the operating frequency’s moving
average.

• Whenever possible, the task keeps running on the same core. Unne-
cessary task-migrations are avoided due to the associated overhead.

Future Work:

• The framework could allow to deliberately overstep temperature
threshold to meet real time deadlines, e.g. allow to run at turbo for a
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certain time even if there is not enough thermal headroom.

• The framework could allow to monitor performance requirements of the
worker thread. If, e.g., the worker cannot display a video at 24 fps at
the current frequency (the video stutters), the framework could choose
a higher frequency to play the video smoothly =⇒ Better awareness
of the workload. For instance, instead of always running as fast as
possible (within the temperature upper-bound), CL could always run
as fast as necessary to meet real-time constraints; if a frequency of 1.2
GHz suffices to run a video at 24 fps, it does not make much sense to
run at 2.2 GHz just because the current CPU-temperature would allow
it.

4.4 Worker and Dispatcher

The workload executed within the CL framework is composed of a worker
and a dispatcher thread. Since the framework is implemented in the user-
space (i.e. it is not a substitute for the OS scheduler), direct control over
the workload is necessary in order to perform effective actuation using the
three DTM-mechanisms discussed in Chapter 3.

For that purpose, the main control loop thread starts two separate threads
which it has full control over: (1) The dispatcher and the (2) worker. The
right half of Figure 4.1 shows the dispatcher, worker and the workload-buffer.
In the current framework, the workload consists of a series of MJPEG frames
that, when decoded, display a little video. A higher framerate results in a
higher workload and generally in higher CPU temperatures. Note that for
all tests conducted with the final CL framework (see Chapter 5) the video
frames were only decoded, but not displayed. The reason is that the video
is shown in an external player so that the framework does not have full
control over the application anymore, e.g. it cannot migrate the video task
to another core.

The dispatcher provides work to the worker by filling the workload buffer
with undecoded video frames. This means the dispatcher controls how fast
the application runs. If the workload buffer is empty, the worker stops and
if the dispatcher fills the workload buffer with 30 video frames per second,
the worker runs with a maximum framerate of 30 fps. For the tests done in
Chapter 5 the framerate was set to 5000fps to ensure that the CPU is put
under maximum load. The value of 5000 was chosen high enough, such that
the stressed core is in C0 for 100% of the time.

The worker has no built-in intelligence and just works as fast as it can. It can
however be blocked by the main control loop. This is done using a mutex :
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Algorithm 2 Worker Thread
loop

if workloadBuffer 6= empty then
lock(mutex)
fire(decode_frame)
unlock(mutex)
usleep(1) . Give the main control loop time to lock the mutex

end if
end loop

Therefore, when the controller decides to put the worker to sleep, it just has
to lock the mutex first and then call usleep(t). As a consequence, the entire
program sleeps for t microseconds.

4.5 The Control Loop

The heart of the framework is the control loop inside the main control loop
thread. As shown in Figure 4.1, it contains two main functions: (1) the
controller and (2) the actuator.

The main thread wakes up every tmp microseconds and performs the follow-
ing tasks before it sleeps again for tmp microseconds:

Algorithm 3 Main Control Loop Thread
loop

coreTemps=getCoreTemps()
currentFreq=getCurFreq()
controlDecisions=CONTROLLER(coreTemps,currentFreq)
ACTUATOR(controlDecisions)
usleep(tmp)

end loop

Subsections 4.5.1 and 4.5.2 discuss the controller and actuator in more detail.

4.5.1 The Controller

Figure 4.2 shows a flow chart of the controller. The chart describes how
the controller makes its decisions, i.e. which actions the actuator should
take afterwards in order to keep the CPU temperature below the specified
temperature threshold for the next iteration.
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Figure 4.2: Flow chart of the controller

The enumeration below describes Figure 4.2 in more detail. The numbers in
the enumeration correspond to the numbers in the flow chart.

(1) : The controller calculates the temperature predictions for all cores and
all available frequencies. For example: Predictions[2][3] would be the
predicted temperature if the worker was migrated to core 2 and the
frequency was changed to the frequency with index 3, e.g. 2Ghz.

(2) : The controller manages a list of cores where the worker/dispatcher

— 34 —



4.5. THE CONTROL LOOP

can potentially run on for the next iteration. At the beginning, all
cores are on the list. The controller then removes all cores from the
list whose current temperatures are above temperature threshold.

(3) : If possible, the task should not be migrated to avoid unnecessary
overhead: Check if current core is still on the list, if yes =⇒ (4a). If
not, i.e. the task cannot continue to run on the same core =⇒ (6).

(4a) : Find the new maximum operating frequency fmax, such that the
predicted temperature Tp for the next iteration is below the prediction
threshold Tpt and above the performance threshold ft. For example:
Tpt = 65◦C, ft = 1.8GHz, the new frequency (for which the predicted
temperature would be below 65◦C) is f∗max = 1.2GHz < ft = 1.8GHz
⇒ 1.2GHz is not a valid frequency!

=⇒ (4b).

Note: Internally, the performance threshold is implemented as the
average of the frequency over a certain time interval, and therefore
temporarily allows for lower frequency values than ft.

(4b) : If a valid frequency is found =⇒ (4c). If no valid frequency is found
=⇒ (5).

(4c) : Decide to change CPU-frequency to fmax as found in (4a). =⇒
END

(5) : No valid frequency for current core found, therefore the controller looks
for another core to migrate to. Also, it removes the current core from
the list of potential cores =⇒ (6).

(6) : Repeat the process of 4a, but this time for all cores that are remaining
in the list L of potential core. Try to find a (newCore, fmax)-tuple
that satisfies the temperature and performance constraints =⇒ (7).

(7) : If there is a valid (core, frequency)-tuple =⇒ (8). Note: If there
are several valid (core, frequency)-tuples with the same frequency, the
controller chooses the core with the lowest current temperature.

If there are no valid frequencies for any core, i.e. task migration and
frequency scaling cannot keep the core cool anymore =⇒ (9).

(8) : Controller decides to migrate to newCore and change frequency to
the newly found fmax =⇒ END.

(9) : Since there is no way to keep the CPU-temperature below the predic-
tion threshold and keep the operating frequency above the performance
threshold, the controller decides to put the worker/dispatcher to sleep.
The actuator also sets the CPU frequency to the minimum value before
sleeping, to get the biggest cooling-effect =⇒ END.
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4.5.2 The Actuator

As soon as the controller has made its decisions, the actuator -method is
called. The actuator performs one of the following actions:

Change CPU frequency: The task continues to run on the same core.
The CPU frequency is set to fmax which was determined by the con-
troller.

Migrate task: The controller decided that the current core is too hot and
even lowering the frequency cannot change that quickly enough. There-
fore the actuator migrates the task (i.e. worker and dispatcher) to
another core. At the same time, the CPU frequency might be changed
as well.

Scheduled sleep: The controller decided that neither frequency scaling
nor task migration are sufficient to keep the CPU-temperature below
the temperature threshold. The actuator then blocks the task (using
mutexes) and goes to sleep. To figure out how long the work should be
suspended, the actuator calls the temperature predictor. The predictor
computes how long it takes for the current core to cool down x◦C. x
can be chosen freely, as long as it is not too large. Tcurrent − x must
not be lower than the idle temperature of the corresponding CPU core.

4.6 Summary

This chapter described the architecture of the Cool Linux framework and
explained how it controls the CPU temperature.

The framework consists of two parts: (1) A controlling part and (2) a working
part. The working part (dispatcher and worker) try to work as fast as
possible, or as specified respectively. The goal of the controlling part is to let
the working part run as fast as possible, while keeping the CPU temperature
below the prediction threshold.

The controlling part itself basically performs two actions:

Controller: The controller makes the decisions to change the frequency,
migrate the task or put the worker to sleep, based on performance and
temperature criteria. In order to do that, it uses temperature sensor
readings and temperature predictions.

Actuator: Executes the controllers decisions: (1) Changes operating
frequency, (2) migrates the worker/dispatcher and/or (3) puts the
worker/dispatcher to sleep.
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Evaluation

The performance of the CL framework depends heavily on the chosen para-
meters. For example a very low period for the controller and actuator would
lead to a high temperature prediction accuracy, but it would also increase
the risk of overshoots, which would have a negative influence on both per-
formance and temperature of the framework. On the other hand, a controller
period chosen too high would lead to the controller not reacting fast enough
when the temperature of the cores exceeds the temperature threshold. Many
temperature violations would be the consequence.

Therefore, in order to obtain optimal parameters, the CL framework has
been evaluated using several tests focusing on different targets, which are
explained in the next paragraph. The obtained data and plots can be found
in this chapter.

The first experiment in Section 5.2 aims at determining good values for the
control loop period. The second one in Section 5.3 measures the performance
of each DTM method using the parameters obtained in the first experiment.
Finally, the last experiment in Section 5.4 compares the performance and
temperature development of the CL framework against the standard Linux
On Demand governor.
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Lab PC T48 HP notebook
Name Intel Core2Quad Q6600 Intel Core i7-2760QM
Default
frequency 2.4 GHz 2.4 Ghz

Supported
frequencies 2.4, 2.1, 1.86, 1.6 GHz

3.4(TB), 2.4, 2.2, 2.0,
1.8, 1.6, 1.4, 1.2, 1.0, 0.8
GHz

Hyperthreading No Disabled
Turboboost No Yes (up to 3.4Ghz)
Operating
System Ubuntu 12.04 x64 Ubuntu 12.04 x64

Table 5.1: Overview of the used target platforms

5.1 Experimental Setup

As can be seen in Table 5.1, the three experiments have been running on two
different machines, a desktop computer and notebook by HP. Both machines
run an Intel quad core CPU at rated frequency of 2.4 GHz and use a 64 bit
version of Ubuntu 12.04 as their operating system.

The notebook’s CPU uses the Intel Turboboost technology, which enables the
processor to overclock itself to higher frequencies for a short amount of time
if more processing power is required. During analysis of the measured data,
this mode is marked with a frequency of 3.4 Ghz.

However, the results for both machines resemble each other very much and
therefore, in order to avoid repetition, the experiments are always discussed
for one single machine.

5.2 Controller Speed and Temperature Threshold

The first experiment is aimed at controller tuning. The goal is to determine
optimal values for the control loop period and the temperature threshold,
to enable the CL framework to keep the system cool while still achieving
reasonable performance.

The parameters obtained will be used later in the following experiments. The
task being executed is the MJPEG decoder decoding frames at maximum
speed.
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5.2.1 Measured and variable parameters

For this experiment, the full framework was run multiple times for 60
seconds, each time varying the values for the controller period and the tem-
perature threshold. The following parameters have been measured:

• CPU frequency

• ID of stressed core

• Temperature of stressed core

• Previously predicted temperature for the stressed core

5.2.2 Results

Analysis

The resulting data of this first experiment using the T48 lab PC can be
found in Figure 5.1. It shows a 3D-plot for the average overshoot per
second over the controller period and the temperature threshold. The
overshoot per second is a measure obtained by calculating the overshoot
over the temperature threshold each time an overshoot occurs and summing
it up. Finally, the value is divided by the total execution time, therefore
giving a measure to define by how much the temperature overshoots the
threshold for a given parameter configuration each second.

Figure 5.1: First experiment using T48 showing average overshoots per
second.
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With increasing controller period, the overshoot per second increases dra-
matically, the framework even reaches an average overshoot per second of
4◦Celsius at the highest point. However, as expected, small controller peri-
ods result in very few overshoots per second. In this situation, the controller
is called so frequently that it is able to react very quickly to the smallest
temperature changes and therefore almost no overshoots occur.

For very small as well as for very high temperature thresholds the value
for the overshoots per second is also very low. On the one hand, for small
thresholds near the CPU’s idle temperature, the framework uses the sched-
uled sleep DTM technique very often, which causes only few overshoots. For
very large thresholds on the other hand, the executed task simply does not
heat up the CPU enough in order to be able to overshoot the threshold.

Determining Optimal Values

In order to select the optimal values from the graphs, multiple things have
to be considered.

Controller period This variable should be as high as possible. The lower
the controller period, the more often the controller is called, which
leads to the CL framework itself requiring more performance, which in
turn leads to a higher temperature.

Temperature threshold Using a value near the idle temperature of the
CPU causes the framework to lose much of its performance, as it is
forced to sleep more frequently. However, a temperature near T∞ leads
the framework to always choose the highest frequency and using the
other DTM techniques only very rarely.

Using these criteria, the following values have been selected to be optimal
for further experiments on the testing systems:

Lab PC T48 HP notebook
Controller period 150 ms 200 ms

Temperature threshold 58 Celsius 57 Celsius

5.3 Effect of Different Cooling Methods

The goal of this experiment is to compare the effect of the used DTM tech-
niques on the core’s temperatures. Therefore, the CL framework was run for
every combination of activated DTM methods.
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5.3.1 Measured and Variable Parameters

For each combination of the following DTM methods (see Chapter 3), the
framework was run for 60 seconds.

• Sleep

• Frequency changing

• Migration

While running the experiment, the following parameters had been measured:

• CPU frequency

• ID of stressed core

• Temperature of stressed core

• Previously predicted temperature

For this evaluation, the parameters for the controller period as well as the
temperature threshold have been fixed to the values obtained in the previous
experiment (see Section 5.2).

5.3.2 Results

In this section three specific cases are discussed. For the first case, frequency
scaling is the only DTM technique which was disabled. The second case uses
only frequency scaling and the last case makes use of the full framework.

The data shown in this section originates from the HP notebook.

Sleeping and Migration

For disabled frequency scaling, the result can be seen in Figure 5.2. Focus-
ing on the plot for the stressed cores, very rapid migration can be seen. The
pauses between the migration, as can be also seen in the frequency graph, rep-
resent the controller having decided to sleep during this time. However, the
temperature plot clearly shows that the temperature exceeds the threshold
of 57◦C. However, the temperatures during the sleeping are lower than what
the graphs indicate, as the measurements are taken when the framework’s
controller is called (which in turn is not called while sleeping). The predic-
tions for this combination were always approximately 5◦C below the actual
temperature and are not shown in the figure.
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Figure 5.2: Snapshot of the second experiment using the HP notebook, with
frequency scaling disabled.

Although sleeping reduces the temperature during the sleep time, the tem-
perature immediately jumps up to nearly the same level as before (± 1.5◦C).
However, during that time the task cannot be executed at all which results
in great performance losses for the framework. Therefore, sleeping as the
only DTM method is not enough and might only be used in emergencies.

For migration, one can see that the temperature curve is very bumpy and it is
also not able to drastically reduce the temperature. Also, there seems to be a
big overhead for the CPU using migration, which has not been considered in
the prediction algorithm. Furthermore, due to the exponential temperature
increase and the Neighbouring effect, it is not feasible for a task to "cycle"
through all CPU cores using migration to keep the system cool. The heat
correlation between the cores of a quad core CPU is too high and the entire
CPU heats up during this process, giving almost no temperature advantage
to stay on the current core.

As a conclusion, we can say that sleeping and migration alone are not enough
to effectively cool the CPU down.
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Figure 5.3: Snapshot of the second experiment using the HP notebook, only
frequency scaling enabled.

Frequency Scaling

The result for the case when frequency scaling can be used is shown in Fig-
ure 5.3. During this instance of the experiment, the task ran at a very
low average frequency. This enabled the framework to stay very close to
the desired temperature threshold of 57◦C. However, the predictions were
off by an average of approximately -2◦C, which was caused by a too low
prediction of T∞. This deviation is very likely to originate by a slight
change of environment compared to when the parameter finding algorithm
TemperatureParameterTester had been executed (e.g., a higher room tem-
perature).

We can conclude from this experiment that frequency scaling is a good DTM
technique which enables the CL framework to efficiently reduce the temper-
ature while producing a very steady temperature curve. This experiment
also shows the importance of the exactness of the parameters used for the
temperature prediction algorithm (see Section 2).

However, compared to the results of the full framework, which can be seen
in the next section, the framework runs at a much lower average frequency,
thus limiting its performance by a great factor.
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Full Framework

Figure 5.4: Snapshot of the second experiment using the HP notebook, all
DTM techniques enabled

The results for the full CL framework can be seen in Figure 5.4. In this
scenario, the first step that the framework takes is to migrate the task from
core 0 to core 3, which essentially is the coolest core on this machine, while
also changing the frequency from Turbo-Boost to 2.2 GHz. This enables the
framework to cool the CPU down from 72◦C to 55◦C. In the next call of the
controller, the framework decides to switch to 2.4 GHz, since the prediction
for 2.4 GHz is 0.25◦C still stays under the temperature threshold of 57◦C.

Looking at the temperature prediction accuracy, we see that it is below 1◦C,
1.4◦C at maximum. Considering the resolution of the temperature sensing
method being 1◦C, the predictions are very close to the actual temperatures.

In this scenario, the CL framework was able to effectively cool down the
system temperature from 72◦C at the beginning to the temperature threshold
of 57◦C. The average frequency is near 2.4 GHz, which corresponds to the
maximum non-turbo frequency of the CPU.

While no DTM method alone would have been able to reduce the temperat-
ure that much, the combination of the methods was not only able to achieve
this goal, but also to stay at a frequency of 2.4 GHz. The resulting temper-
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ature curve is very steady and the predictions are precise.

5.4 Linux On Demand vs. Cool Linux

The purpose of this test is to compare the effect of the developed framework
on the core temperatures in comparison to the standard Ubuntu On Demand
Frequency Governor (from hereby referenced as ODG).

Both the framework and the ODG were given the same task, to decode
2000 frames using the MJPEG decoder. To measure the performance and
temperature for different workloads, the frames per second coming into the
dispatcher were limited, this measure is referred to as dispatcher FPS.

5.4.1 Measured and Variable Parameters

During the experiment, the average temperature as well as the total execu-
tion time are logged. The task was run multiple times, taking the average
of all measured values.

To account for varying workload, the experiment was run for differing dis-
patcher FPS.

5.4.2 Results

The resulting plots for the average temperature as well as the total execution
time can be seen in Figure 5.5. The data was conducted using the HP
notebook.

The CL framework was able to stay at an average CPU temperature below
the given threshold of 60◦C for every dispatcher FPS tested, in contrast to the
Linux ODG, which exceeds the threshold at approximately 250 FPS. While
consulting these numbers one has to keep in mind that the temperature seen
in the plot is an average, so the maximum temperature of the ODG may be
even higher than 60◦C before that point.

For our highest workload tested (5000 FPS), which causes the CPU utiliz-
ation to be 100%, the CL framework executed the given task 16.7◦C cooler
than the ODG, which heated the CPU up to an average of 74.6◦C. The total
execution time of the framework rose from 15.7s to 21.9s, which represents
a time increase of 28.4%.

For the the dispatcher FPS being lower than 220, the CL framework runs
at an increased CPU temperature compared to the the Linux ODG, but
it also executes the task much faster. This behaviour can be explained
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Figure 5.5: Linux On Demand vs. Cool Linux using HP

by the framework choosing the highest frequency if it is possible to stay
below the temperature threshold, whereas the Linux ODG rapidly changes
its frequency, mostly using the highest and the lowest one alternately. For the
ODG, this is caused by the frames for the worker arriving at much slower rate
than the CPU could handle and therefore creating demand bursts. Running
at the lowest frequency causes the CPU to stay cooler, but it also decreases
the performance of the governor.

However, the two most interesting part of these plots can be seen between
the point where the average temperature of both algorithms meet and the
point where the performance of both methods is the same. The first point
can be found at approximately 220 FPS. While the average temperature is
the same for both algorithms, the CL framework executes the given task
36% faster than the Linux ODG. At a workload of approximately 340 FPS,
the CL framework executes the given task as fast as the Linux ODG, while
staying 12◦C cooler on average.

Between these two points, the developed CL framework does not only cause
the CPU to stay cooler than the standard Linux ODG, but it also executes
the task faster.
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5.5 Summary and Conclusion

The three experiments conducted show that the developed CL framework
behaves as expected and intended. The effect of each DTM technique was
analysed and can be clearly seen in the resulting data.

The unique combination of the DTM techniques used as well as the de-
veloped temperature prediction algorithm ensure a huge reduction of the
CPU’s temperature. For certain workloads the CL framework even outper-
forms the default Linux On Demand Governor, while still having a clear
advantage in terms of temperature.
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6
Conclusion and Outlook

6.1 Conclusion

The resulting CL framework integrates the three DTM techniques, namely
frequency scaling, task migration and scheduled sleep into a unique frame-
work. It makes use of an automatically calibrated temperature predictor
and decides dynamically based on those predictions, the current temper-
atures and other program parameters which combination of DTMs to use
next.

A temperature predicting algorithm has been developed and its required
machine-dependant parameters are automatically calibrated in a separate
offline tool. The algorithm is based on the current CPU core temperatures
as well as on information about which core is going to be stressed during
the next time period. Furthermore the algorithm is able to predict the
temperatures while multiple CPU cores are stressed and a first simple online
recalibration algorithm for one parameter is included.

All three DTM techniques used were evaluated, providing useful information
about their feasibility. Sleeping can be used to cool down the CPU in a very
short amount of time, but the temperature jumps up instantly afterwards
and therefore, sleeping should only be used for small time differences in the
order of milliseconds. Migration performs very well in terms of cooling the
system down, however the predictor would have to be adjusted to take the
heat produced during the migration into account. Frequency scaling turns
out to be the most efficient way to cool the system down by a small amount
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of degrees while not overly negatively influencing the system’s performance.

The unique combination of DTM methods and temperature prediction of the
Cool Linux framework enables a Linux system to run tasks with very high
workload up to 20◦C cooler than the standard Linux On Demand Governor
at its peak and 18◦C cooler on average. For a certain workload, the CL
framework even outperforms the default governor in terms of performance
while still keeping the system cooler.

6.2 Outlook

Live Parameter Calculation

Offline calculation of the temperature model’s parameters has several draw-
backs. For the obtained parameters remaining constant, they cannot react to
environmental changes like increased room temperature or direct sunlight.
Also, the framework cannot easily handle predictions for varying average
CPU loads from different tasks (the MJPEG decoder might use the CPU in
another manner than a prime finding program).

Live parameter calculation, however, could solve these problems. An online
(re-)calculation of the parameters could react quickly to environmental or
task changes. In order for this to work, all required temperature parameters
τ , T0 and T∞ would have to be (re-)calculated at runtime. A first draft of
a self-learning algorithm, in this thesis referred to as live τ correction, has
already been developed and integrated in the framework as an experimental
feature.
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B
Cool Linux HowTo

B.1 Required Libraries and Configurations

B.1.1 Frequency Scaling

In order to do frequency scaling on Linux, one has to install the cpufreq lib-
rary. The library and corresponding header files can be downloaded from
http://packages.debian.org/stable/libdevel/libcpufreq-dev, or by
using

1 sudo apt−get i n s t a l l l i b cpu f r eq−dev

If everything worked fine, it should now be possible to include cpufreq.h in
your C-code. The CL framework itself uses some wrapper functions, located
in changeFreq.c, that make use of the cpufreq functions internally.

B.1.2 CPU Temperatures

To be able to access the systems temperatures, one can use lm-sensors.
The following command line installs the required library and header files on
a Ubuntu based machine.

1 sudo apt−get i n s t a l l l i b s e n s o r s l i b s e n s o r s−dev
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B.2. COMPILER AND LINKER SETTINGS

After the installation, an initialisation script has to be run once to detect
the device’s chipset.

1 sudo yes | s ensor s−detec t

However, the library is only able to get a new sample of the temperature
sensors each 1.5 seconds. The process of how to increase the accessing fre-
quency is described in Appendix C.

B.2 Compiler and Linker Settings

This section gives an overview over the linker and compiler settings that are
needed to sucessfully compile the program:

Compiler:

VIEWER Set this variable to enable X11 video output of the MJPEG
decoder

Linker (-l):

libcpufreq Enables the use of the cpufreq library

pthread Required for task migration

libsensors Required for accessing CPU temperatures

X11 Enables to display the decoded video

B.3 How to Run the Framework

After successful compilation, the framework can be run from the command
line. Use the -h option to learn about the configurable parameters.

1 . /CLFramework −h
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Increasing update frequency

First get linux sources:

1 apt−get source l inux−image−$ (uname −r )
2 cp l inux −3.2.0/ d r i v e r s /hwmon/coretemp . c .

Next, edit the code in coretemp.c as follows:

1 #de f i n e MS 1
2

3 [ . . . ]
4

5 s t a t i c s s i z e_t show_temp ( . . . ) {
6 [ . . . ]
7 /∗ Check whether the time i n t e r v a l has e lapsed ∗/
8 i f ( ! tdata−>va l i d | | t ime_after ( j i f f i e s , tdata−>last_updated +

HZ/HZ∗MS) ) {
9 [ . . . ]

10 }
11 [ . . . ]
12 }

Listing C.1: Changed code in coretemp.c

Create the following Makefile:

1 obj−m = coretemp . o
2 KVERSION = $ ( s h e l l uname −r )
3

4 a l l :
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5 make −C / l i b /modules/$ (KVERSION)/ bu i ld M=$ (PWD) modules
6 c l ean :
7 make −C / l i b /modules/$ (KVERSION)/ bu i ld M=$ (PWD) c l ean
8

9 i n s t a l l :
10 mv / l i b /modules/$ (KVERSION)/ ke rne l / d r i v e r s /hwmon/coretemp . ko /

l i b /modules/$ (KVERSION)/ ke rne l / d r i v e r s /hwmon/coretemp . ko . o ld
11 cp coretemp . ko / l i b /modules/$ (KVERSION)/ ke rne l / d r i v e r s /hwmon/
12 depmod −a
13

14 un i n s t a l l :
15 mv / l i b /modules/$ (KVERSION)/ ke rne l / d r i v e r s /hwmon/coretemp . ko .

o ld / l i b /modules/$ (KVERSION)/ ke rne l / d r i v e r s /hwmon/coretemp . ko
16 depmod −a

Listing C.2: Makefile

Finally, execute:

1 make
2 sudo make i n s t a l l

The module is available after rebooting the system.
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Interfaces

D.1 Interface for accessing core temperatures

To get easy access to the core temperatures, we developed the class
CoreTemperatures. When creating an instance of this class, libsensors is
automatically initialized and the number of cores is detected. The temper-
atures and the number of cores are accessible using the following functions:

Function Description
int getNumberOfCores() returns the number of cores

int getChipTemp() returns the temperature of the whole CPU if avail-
able and -1 if it is not

int getCoreTemp(uint n) returns the temperature of an individual core n

void cleanUp()
needs to be called in order to securely shut down
libsensors; is automatically called by the de-
structor

D.2 Interface for temperature prediction

For easy access to the temperature predictions, we developed the class
TemperatureFrequencyPredictor. Internally, it stores a map of all Fre-
quencies with their individual TemperaturePredictors. The parameters are
automatically loaded from /etc/CoolLinux if TemperatureParameterTester
had previously been executed.
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Function Description
void setStressMap(
CoreStressMap* map)

gives a pointer of a StressMap to all Temperat-
urePredictors to be used for all future predictions

float
predictCoreTemp(int
freq, int* actualTemps, int
core, float timeDiff)

predicts the temperature for a given frequency
freq, an array of all current temperatures
actualTemps, the core for which it should be
predicted and the time difference timeDiff (in
seconds)

float*
predictCoreTemp(int*
actualTemps, int core,
float timeDiff)

predicts the temperature for all available frequen-
cies freq given an array of all current temper-
atures actualTemps, the core for which the pre-
diction should be made and the time difference
timeDiff (in seconds)

float
predictCoolTime(int
freq, int* actualTemps, int
core, float newTemp)

predicts the time required for cooling down to
newTemp for a given frequency freq, an array of all
current temperatures actualTemps and the core
for which the prediction should be made

float*
predictCoolTime(int*
actualTemps, int core,
float newTemp)

predicts the time required for cooling down to
newTemp for all available frequencies given an ar-
ray of all current temperatures actualTemps and
the core for which the prediction should be made

void recalculateTau(int
freq, float startTemp, float
endTemp, float timeDiff,
int measureCore, int
stressedCore)

recalculates the tau for the frequency freq for
a certain measureCore and stressedCore com-
bination, given the startTemp and endTemp after
timeDiff (in seconds)

D.3 Interface for Frequency Scaling

For easier use of frequency scaling methods, we implemented several func-
tions that internally use the cpufreq-library functions, but externally, are
taylored to the needs of our framework. To use those functions, include
changeFreq.h in your C-code. changeFreq.c does not implement all
cpufreq functions. If more are needed in the future, they can easily be
implemented. changeFreq.c provides the following methods:
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Function Description

void setFrequency(int
freq, int cpuNum)

Sets the operating frequency to freq. The func-
tion also needs the number of CPU cores in the
system as parameter cpuNum.

int getFrequency(int
core, int mode)

Returns the operating frequency of a specified
core. However, core can always be set to 0,
since the frequency is the same for all cores.
The parameter mode specifies if the kernel fre-
quency (mode = 0) or the hardware frequency
(mode = 1) should be returned.

void setGovernor(char *
governor, int cpuNum)

Sets the Linux frequency governor to governor.
The number of CPU cores in the system has to
be provided in cpuNum.

vector<int>
getAvailableFreq(
unsigned int cpuNum)

Returns a vector of all available frequencies of the
system. setFrequency can only set the frequency
to one of those values. The number of CPU cores
in the system has to be provided in cpuNum.
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