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Zürich, 21. June 2013
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Goal

The aim of this thesis is to implement a dynamic power management (DPM) module
for the CoreStation platform [1]. The DPM module should be generic with respect to
the scheduling algorithm, such that different algorithms can be easily integrated and
evaluated. For this purpose, the backlog software stack [2] is first modified, so that stand-
alone operation on a desktop environment is possible for experimentation and evaluation
of the algorithms. After successful completion, the DPM module will be integrated into
the backlog framework, so that it can be used on the CoreStation platform.



Assignment iii

A rough outline of the tasks:

1. Configure backlog so that it runs on a desktop PC.

2. Implement a simple Plugin.

3. Implement a plugin wrapper that provides the necessary information to simulate
the plugin (read energy input from file, provide battery SoC based on energy input
and consumption, write output to file).

4. Implement ”exponentially weighted moving average” (EWMA).

5. Implement ”weather-conditioned moving average” (WCMA).

6. Implement interface to weather forecast service.

7. Use weather forecast (WF) service to compute future WLAN duty-cycle.

8. Implement necessary functionality to write new schedule based on computed duty-
cycle.

9. Evaluate WF, EWMA, WCMA.

Tentative Timeplan

A semester thesis is to be completed within 14 weeks [3]. The following tentative schedule
is to be followed, and will only be modified with the approval of the supervisors.

Week Date Description

1 18.03. - 24.03. Set up working environment
Get to know BackLog

2 25.03. - 31.03. Read relevant literature
3 01.04. - 07.04. Design flexible, dynamic power management architecture
4 08.04. - 14.04. Implement PM with EWMA
5 15.04. - 21.04. Implement PM with WCMA

Give initial presentation at TIK group meeting
6 22.04. - 28.04. Implement PM with forecast
7 29.04. - 05.05. Implement PM with forecast
8 06.05. - 12.05. Implement PM for long-term sustainability
9 13.05. - 19.05. Implement PM for long-term sustainability
X 20.05. - 26.05. Reserved
10 27.05. - 02.06. Simulate and evaluate with trace data
11 03.06. - 09.06. Simulate and evaluate with trace data
12 10.06. - 16.06. Write report
13 17.06. - 23.06. Write report
14 24.06. - 30.06. Give final presentation
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Requirements

• 20 hours per week minimum (but quality over quantity).

• Weekly status meetings (on demand).

• Weekly status email containing progress of the week, outcome, problems encoun-
tered and solution proposal, work for following week.

• In addition to the above, the institute’s guidelines apply [3].

• Sign plagiarism statement [4].

Relevant literature

Note that this list may not be exhaustive!

1. Power/Energy Simulator: N. Ferry, et. Al., ”Power/Energy Estimator for De-
signing WSN Nodes with Ambient Energy Harvesting Feature,” in EURASIP Jour-
nal on embedded systems, 2011.

2. EWMA vs. WCMA comparison:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5184785

3. EWMA:

• C. Vigorito, D. Ganesan, and A. Barto, ”Adaptive control of duty cycling in
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and Ad Hoc Communications and Networks (SECON’07), 2007.
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energy harvesting sensor Networks,” in ACM Transactions on Embedded Com-
puting Systems (TECS’07) , vol. 6, no. 4, Sep. 2007.

4. EWMA background:

• D. R. Cox, ”Prediction by exponentially weighted moving averages and related
methods,” Royal Statistical Society , vol. 23, no. 2, pp. 414–422.

• J. S. Hunter, ”The exponentially weighted moving average,” Quality Technol-
ogy , vol. 18, no. 4, pp. 203–207, 1986

5. WCMA:
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6. Weather forecast:

• Paper: http://www.sciencedirect.com/science/article/pii/
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• API: http://stackoverflow.com/questions/3363052/best-weather-apis-
free-for-commercial-use

• http://blog.programmableweb.com/2009/04/15/5-weather-apis-from-
weatherbug-to-weather-channel/
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Abstract

The semester thesis reports on the findings of simulating a power management algorithm
for the CoreStation platform. The goal of power management is to provide a reliable
system with zero uncontrolled power outages, because of critical battery state of charge.
Exponentially weighted moving average and weather-conditioned moving average predic-
tion algorithms are employed for predicting harvested solar energy. A professional weather
forecast service is implemented and investigated with the purpose of improving long-term
stability. The power management algorithm reduces power consumption with calculating
and updating the wireless LAN duty cycle in regular time intervals. Simulation results
show that the choice of hardware, the battery capacity and solar panel power, plays a
predominant role in system reliability, and determines the effectiveness of any software
efforts.



Chapter 1

Introduction

Wireless sensor networks like the X-Sense project [5] are growing in size and complexity.
Wireless sensors may operate at varying sample and data rates, the network might re-
quire user interaction. Base stations that connect these sensors together and gather their
data must therefore have diverse and powerful functionality, but this often comes at the
price of high energy consumption. The wireless base station of interest to this thesis, the
CoreStation platform [1], has to operate under constrained conditions, yet still deliver
sufficient functionality while avoiding sporadic power outages.

Figure 1.1: Locations of CoreStation deployments and positioning on the mountain face.

1.1 Motivation

The CoreStation platforms in the X-Sense project are deployed on various locations in
the swiss mountains, e.g. Jungfraujoch and Matterhorn, at high altitudes (Figure 1.1).
They rely only on a battery and solar energy harvesting for power. Harvested solar energy
is dependent on weather conditions, mainly on the amount of illumination that the solar
panel is exposed to. But the weather is often unpredictable and changes rapidly, and so
does the amount of harvested energy. Consequently the battery state of charge (SoC)
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fluctuates rapidly and unpredictably as well.
We would like our system to run unattended and uninterrupted, even with limited

power. We can not rely on the battery and solar panel alone to provide just enough power
for our system to be energy neutral. Some sort of power management software could be
put into place to respond to current energy conditions and reduce the system’s power
consumption when needed, to avoid power outages.

1.2 Goals

The goal of the thesis was to implement a dynamic power management module for the
CoreStation platform. The module first had to be simulated on a desktop PC to allow
for fast testing. Two energy prediction algorithms, EWMA and WCMA, had to be im-
plemented, as well as an interface to a professional weather forecast service, through an
API (application programming interface). The power management module then had to
use them and calculate the future wireless LAN duty cycle, as this is the largest power
consumer on the whole platform. A new schedule had to be written for the platform, with
the newly calculated duty cycle, and updated in the next time period. The final step was
to evaluate the results of individual components.

1.3 Thesis overview

The semester thesis report is organized as follows: Chapter 2 offers the theoretical back-
ground on EWMA and WCMA prediction algorithms. Chapter 3 shows how the algo-
rithms are implemented and how parameters of WCMA are optimized for performance.
This chapter also explains the implementetion of a professional weather forecast service,
using an API, and calculation of a weather scaling factor. Chapter 4 talks about power
management, lists different approaches to duty cycle calculation and reviews the results
of simulations with these approaches. The evaluation of results in the thesis is written
in chapter 5, and chapter 6 gives conclusions about the thesis and an outlook on fur-
ther work. Segments of code from energy prediction algorithms, parameter optimization,
weather API and power management are located in the appendix.



Chapter 2

Theory

Power management software running on a real system must not only give output to the
system, but also take input from it, such as measurements of the state the system is in. But
measurements only give us the current state, the condition the system (mainly the battery
charge) is in right at this moment. If we want to save battery charge by reducing power
consumption, we need to set the duty cycle of our biggest power consumer, the WLAN,
for the next time interval based on measurements done in the current time interval.

It would make sense to introduce prediction algorithms at this point, since this is
exactly what they do. A prediction algorithm predicts an output variable quantity in the
next time interval based on measurements or inputs from the current time interval. We
will look at two prediction algorithms, that are going to be used to predict harvested
solar energy.

It must be noted, that we are making a simplification. We are assuming that we know
the harvested energy and can measure it accurately, but in reality, the CoreStation has no
dedicated hardware to measure energy taken from the solar panel. The only way we can
calculate harvested solar energy is with battery SoC. Calculations can be incorrect, when
battery SoC reaches 100% and saturates, but solar energy is still being harvested. This
energy goes to waste, as it does not recharge the battery. The system should recognize
the real amount of energy being harvested however, so a power management algorithm
can set the appropriate power usage of the system. If we know the power consumed by
the station and the difference in the battery state of charge, we can calculate the amount
of energy harvested in the current time interval

SoC(n) − SoC(n− 1) = δSoC = Eg − Pconsumed · Tinterval
Eg = δSoC + Pconsumed · Tinterval

(2.1)

where the battery states of charge SoC(t) and SoC(t− 1), the difference in battery state
of charge δSoC, and the harvested (or generated) solar energy Eg are energy values in
(Wh), Pconsumed is the platform power consumption in (W ) and Tinterval is the time
interval in (h).
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2.1 Exponentially Weighted Moving Average

Exponentially Weighted Moving Average, or EWMA, has long been used [6] for data pre-
diction because of its simplicity and relatively good accuracy. When implemented on a
platform like the CoreStation, it has low complexity and low computational intensity since
it is run only once per time interval, which can be once per 30 minutes up to once per day.

Equation 2.2 explains how it works:

Epred(n+ 1) = αEmeas(n) + (1 − α)Epred(n) (2.2)

Epred(n + 1) is the energy prediction for the following time interval, Emeas(n) is the
current measurement (true value) and Epred(n) is the energy prediction for the current
time interval, which we made in the previous interval. All value units are (Wh). α is a
scaling factor, which determines how much the current value or past predictions influence
our current prediction. It can have any value in the interval [0, 1]. For a large α, past
predictions influence less, and we value the current measurement more, but for a smaller
α, we value past predictions more and the current measurement less.

Figure 2.1: Graph, showing the weights of samples for successively older time intervals.

Figure 2.1 shows the weights of past predictions and how much they influence the
current prediction. With each time interval, the sample contributes less to the current
EWMA prediction. Because of this, the predictions are slow to respond to quick changes,
such as night/day solar energy changes.

2.2 Weather-Conditioned Moving Average

Weather-Conditioned Moving Average, or WCMA, takes into account also weather changes
[7]. It is based on EWMA, but is more complex and computationally intense, when im-
plemented. It shows faster responses to night and day changes and even adapts sunrise
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and sunset times and seasonal variations. Figure 2.2 and Equations (2.3) demonstrate,
how the algorithm works.

E(d, n+ 1) = α · E(d, n) + (1 − α) ·GAPk ·MD(d, n+ 1)

MD(d, n+ 1) =

d−D∑
i=d−1

E(i, n+ 1)

D
GAPk =

V · P∑
P

P = [p1, . . . , pk, . . . , pK ] pk =
k

K

V = [v1, . . . , vk, . . . , vK ] vk =
E(d, n−K + k)

MD(d, n−K + k)

(2.3)

The variables d and n signify the day, or sample in the day, respectively. d is the current
day, n is the current sample, so (d,n+1) would mean a sample in the current day and
the next time interval (current prediction). There are N-samples in a day and we keep
a history of at least D-days and K-previous samples for calculations. Therefore, WCMA
needs (N ∗D +K − 1) historical samples to predict a value in the next time interval.

Contrary to EWMA, WCMA uses only real values, past measurements, to calculate the
prediction in the next time interval. E(d, n + 1) is the predicted energy value, shown in
green in Figure 2.2, E(d, n) is the current energy measurement, shown in brown, both in
(Wh) α is a scaling factor, similar to the one in EWMA. MD(d, n+ 1) is a mean value of
the samples at (n+ 1) for the past days (d− 1) to (d−D). The innovation in WCMA is
the additional scaling factor GAPk, which gives weather information about the current
day. It compares samples (n −K + 1)-to-(n) in the current day d, to the mean value of
the same samples in previous days. This is done by vector V and its values vk. These tell
us if, the weather today is better than the previous days, there will be more harvested
energy and the factor GAPk will be greater than 1, but if we are getting less energy, the
factor is less than 1. The vector P weighs the samples according to relevance by time.

The WCMA algorithm has four parameters, that we need to consider :

1. Scaling factor α: value from 0 to 1.

2. Number of days in the calculation D. In our demonstration, D=4.

3. Number of previous samples K. In our demonstration, K=4.

4. Number of samples per day N . Our system is set up for hourly values, N=24.
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Figure 2.2: A schematic showing the working of WCMA. The white boxes represent
measured energy values for individual time intervals. There are N = 24 samples per day
and the algorithm needs a history of values for D = 4 days and K = 4 samples. n is the
current sample of the current day d.



Chapter 3

Energy prediction

In the previous chapter, two energy prediction algorithms have been introduced. Now,
let us see them being used on simulated harvested energy data. This data is a set of
harvested energy values (in Wh) in one hour intervals over 12 years. Night and day
values are clearly distinguishable, as are seasonal variations. Figure 3.1 shows a subset of
this data for three days in mid-March. The real values of the harvested energy are shown
in blue, these represent the ground truth. EWMA prediction is shown in red and WCMA
is shown in green.

Figure 3.1: EWMA and WCMA prediction algorithms plotted against measured values
of harvested energy. Samples are spaced in one hour time intervals, units are Wh.

3.1 EWMA

The only parameter that we must set is the scaling factor α. After looking at related work
in articles and publications [7, 8, 9, 10, 11], an α = 0.6 was chosen. The outline of the plot
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matches the ground truth very well, but the actual values vary from the measurements
like they are ”lagging behind”. The curve looks like it is shifted to the right. The benefit
of implementing this method on a real system is its simplicity and low computational
intensity, even though we have mismatch.

3.2 WCMA

This prediction method shows in Figure 3.1 that it responds to a fast changing data set
superiorly to EWMA. It has less ”lag effect”, because is uses a diurnal correlation of energy
samples and is able to determine the approximate value of the harvested energy based
on previous days. This however means a long initialization period, as the first prediction
can only be made once we have a sufficient (N ∗D +K − 1)-number of values. If we are
predicting hourly values, it takes the full D−days plus K−hours (in our case 99 hours),
but if we are only running predictions for daily values, this means 99 days and might not
be acceptable for power management.

We need to consider this trade off: since WCMA is complex and computationally
intense, making only daily energy predictions might be a good way to save valuable
computing power, but the algorithm has proven to be less successful, since there is no
more diurnal correlation between samples, and therefore D and N have no more mean-
ing. Making several observations per day, in our case once per hour, gives much more
precise predictions, even more precise than EWMA, but we are possibly straining the
resource constrained system which has only limited computing time available for power
management.

There are also three parameters to consider and optimize when implementing WCMA
on a system: D, K, and α. For our system, N is set to 24 in all cases.

3.2.1 Parameter optimization

The optimization process in this thesis is similar to the one described in article [7]. The
error function is given by Equation (3.1).

Err =
1

N

N∑
i=1

abs(
EReal

EPred
− 1) (3.1)

Err is the relative error, EReal and EPred are the ground-truth and WCMA predictions
respectively, in (Wh).

We calculate the mean daily error, discarding ”night values”, for each day of the year.
Article [7] defines night values as energy values that are less than 10% of the maximum.
We define night values as values that do not exceed 10% of the maximum energy value for
that day, since energy values of sunny and cloudy days can vary by as much as a factor
of 3, and so can summer and winter days. Therefore it’s important to only discard night
values that correspond to energy values for the individual day. The sample count N is
reduced accordingly.
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Figure 3.2: Histogram of relative errors between measured values and WCMA predictions
for two different parameter sets. ”Default” parameters, that article [7] claims are optimal
are α = 0.7, K = 3, D = 4. ”Optimized” parameters are a result of the optimization
process performed during this thesis and are α = 0.5, K = 1, D = 9. N = 24 in both
cases and the histogram bins are of width 0.025.

If we look at the histogram of relative errors (Figure 3.2), we can see, that the op-
timization of parameters based on the smallest maximum error among the parameter
combinations might not be the best option, as claimed in article [7], since there is only
one occurrence of such a large error, and we would like to minimize the ”overall” error of
the WCMA prediction. Therefore in this thesis, a minimum of the mean error among the
parameter combinations determines the optimal parameters.

Histogram in Figure 3.2 shows the comparison between relative errors of our optimized
parameters in green, and the parameters optimized in the article, in red.

In the first step of the optimization, we look at mean error values for combinations
of parameters α from 0.1 to 1 in intervals of 0.1, and D from 1 to 10, with the default
K = 3. The results are plotted in Figure 3.3. The optimized α is 0.5 and the optimal
D is 5. Since the values for different D are very similar, we make another run with this
parameter, together with K.

The results of the second step are plotted in Figure 3.4. Here, we look at error values
for combinations of D from 2 to 11 and K from 1 to 10, with optimal α = 0.5. We
can see that the function has a minimum at K = 1 and D = 9. These are our final
optimized parameters, with which we will use the WCMA prediction algorithm in the
power management software.
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Figure 3.3: 3-D plot of relative error size for combinations of WCMA parameters α and
D with constant K = 3.

Figure 3.4: 3-D plot of relative error size for combinations of WCMA parameters K and
D with constant α = 0.5.
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3.3 Weather Forecast

Since the prediction algorithms are based on historical values, they provide only limited
accuracy in calculating the harvested energy of the next time interval. More importantly,
they are accurate on a short time scale. But this does not guarantee the long term
reliability that we require for our autonomous system. A professional weather forecast
should improve this by providing the system with information on weather conditions and
consequently harvested energy for several days in advance.

In this project, we used OpenWeatherMap.com weather forecast service and web API
to provide our system with weather data such as precipitation, cloudiness and temper-
ature. The API offers a more precise 5-day forecast with data in three hour intervals.
It also offers a more general 14-day forecast with daily data. The service offers weather
forecast from a multitude of weather stations around the world, for any location specified
by geographic coordinates (longitude and latitude).

Figure 3.5: Plot showing OpenWeatherMap weather forecast data for July 12th, 2013. A
14-day forecast for sky clarity percentage (= 100%−%cloudiness) is plotted in blue and
a linear fit is applied to it in red. A 5-day forecast is plotted in green and the scaled 5-day
forecast in dashed black. The solid black line indicates the value of the weather scaling
factor (WSF).

Since we introduced a weather forecast in trying to improve the long term stability
of our system, we try to determine the progression of our harvested energy in the follow-
ing days and incorporate this knowledge into our decision making process in the power
management. We can determine the energy available for harvesting with one particular
weather parameter: cloudiness. A simple approach was taken in this thesis, where 40%
clear-sky ratio (the same as 100%”minus”60%cloudiness) means that only 40% of the
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energy can be harvested on that day, compared to the full energy on a sunny day with
100% clear sky.

Figure 3.5 is a plot demonstrating both the 14-day clear-sky forecast (in blue) and
the 5-day clear-sky forecast (in green). The harvested energy progression, or trend, is
determined by simply applying a linear fit to the 14-day forecast (red in Figure 3.5). This
figure shows a negative trend, which means the weather is going to be worse in a couple of
days and the power management should start conserving energy despite having a possible
surplus of harvested energy with the current WLAN duty cycle at the moment, because
the harvested energy is going to decrease with the weather conditions.

The 5-day forecast shows a more precise picture of the weather conditions and the
potentially available harvested energy. We introduce the weather scaling factor, or WSF,
which is calculated as a mean of the values for the following day, from the 5-day forecast
and then scaled by the 14-day trend. The final WSF is plotted with a solid black line
with stars.

Figure 3.6: Plot showing OpenWeatherMap weather forecast data for July 24th, 2013. A
14-day forecast for sky clarity percentage (= 100%−%cloudiness) is plotted in blue and
a linear fit is applied to it in red. A 5-day forecast is plotted in green and the scaled 5-day
forecast in dashed black. The solid black line indicates the value of the weather scaling
factor (WSF).

Figure 3.6 is an example, where the 14-day trend is positive and therefore the 5-day
forecast and WSF are scaled up. The WSF is ultimately used to correct the duty cycle
of the WLAN.

Because of time constraints, the weather forecast could not be tested effectively. Con-
trary to harvested energy, which can be generated or old recorded values could be used
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for simulation purposes, a weather forecast needs to be real, not generated, otherwise
our power management has little meaning and is dependent on the generated forecast. It
would take a long time to test the weather forecast with real CoreStation platforms and
real data, and would require additional changes to the BackLog core functionality. This
surpasses the scope of this semester thesis, so the weather forecast could not be evaluated.
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Power management

Predicting the harvested energy is only a building block in the entire power management.
What is missing, is the calculation of the WLAN duty cycle, which will actually reduce
the power consumption and drainage of the battery. WLAN was chosen for duty cycling,
because it is the most power-hungry part of the CoreStation. A simple approach to mod-
eling and simulating the CoreStation was employed.

For purposes of this thesis, the system consists of three parts. The battery, acting as
a buffer, has a nominal voltage of 12V , a nominal capacity of 34Ah but the energy
available is only eighty percent of the maximum: 80% ∗ 12V ∗ 34Ah = 326.4Wh. The
CoreStation is the power consumer and it is split into power consumed by the WLAN,
PWLAN = 12V ∗ 250mA = 3W , and the power consumed by the station itself, reffered to
as ”base power”, Pbase = 12V ∗ 200mA = 2.4W . The solar panel provides power to the
battery.

Calculating the duty cycle of the WLAN was not as trivial as first assumed. Several
approaches were tested to see which one performs best. The criteria were: highest average
WLAN duty cycle, which gives the most functionality to the system, and uninterrupted
operation without power outages. Here are short descriptions of differences in duty cycle
calculation for the power management versions. Full code is in Appendix A.

• Version 1.0:
The harvested energy was used in the WLAN duty cycle calculation. CoreStations in
our systems do not have hardware for energy measurements and therefore do not have
access to the harvested energy. Only we do for simulation purposes.

• Version 2.0:
The harvested energy is calculated from the battery state of charge and used to get
duty cycle.

• Version 3.0:
Same DC calculation as in 2.0, but the maximum DC is not 100%, rather the current
percentage of SoC (unless this is smaller than minimal).



15

• Version 4.0:
Same DC calculation as in 2.0. The system is shut down during the night time, when
the harvested energy is zero. This reduces critical battery shutdown, but does not
eliminate it. The overall system down-time is always over 50%, thus functionality is
unacceptably reduced by concept. This approach was simulated, as it is sometimes
being used in practice on real systems.

• Version 2.1:
Same as 2.0, but only change the duty cycle once per day. This stabilizes the rapid DC
toggling present in other versions with hourly DC changes.

• Version 2.2:
Same as 2.1, but the DC can only change in finite increments, smaller than 25%.

There are several parts to all versions of the power management. The system is simulated
in different conditions to observe the behavior of the algorithm.

• No wlan - Used as comparison for all versions. There is no WLAN power consumption,
only CoreStation base consumption. This determines the best case scenario in terms of
power requirement and drainage.

• No duty cycle - WLAN is on all the time (100% duty cycle). Also for reference and
comparison. This determines the worst case scenario in terms of power requirement.

• Simple duty cycling - Energy conditions are thought to be constant. No prediction is
used. The error we are making is the same as the change in conditions from the last
time interval to the current one.

• EWMA predictions - Duty cycle is calculated using this prediction algorithm.

• WCMA predictions - Duty cycle is calculated using this prediction algorithm.

To simulate conditions on a real system, there is a critical battery shutdown at SoC =
5% ∗ Ebat,max = 16, 32Wh and a reconnect hysteresis at 60% SoC. There is also a mini-
mum duty cycle for the WLAN of 10%, because the system needs some functionality and
must be observable and controllable.

Table 4.1 gathers results of all the power management versions. We observe the num-
ber of hours, the system spends in shutdown and the average duty cycle while the system
is on-line.

Version 2.1 of our power management has the best results. The duty cycle is only changed
once per day. This was implemented, because the duty cycle was toggling rapidly in other
versions and changing the battery state of charge more violently than necessary. This
approach stabilizes the power consumption over one day, while also reducing the compu-
tational intensity from the prediction algorithms and providing better long-term results.
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Version No WLAN 100% DC Simple DC EWMA DC WCMA DC

1.0 1302 (14.8%) 3874 (44.1%) 2133 (24.3%) 2056 (23.4%) 2019 (23.0%)
38.5% 37.2% 36.0%

2.0 1302 (14.8%) 3874 (44.1%) 2021 (23.0%) 2047 (23.3%) 2109 (24.0%)
37.0% 38.3% 38.3%

3.0 1302 (14.8%) 3874 (44.1%) 1816 (20.7%) 1826 (20.8%) 1888 (21.5%)
31.4% 32.7% 32.7%

4.0 4104/0 4760/656 4269/165 4214/110 4150/46
56.6% 55.3% 52.2%

2.1 1302 (14.8%) 3874 (44.1%) 1962 (22.3%) 1783 (20.3%) 1873 (21.3%)
48.0% 45.9% 47.1%

2.2 1302 (14.8%) 3874 (44.1%) 1960 (22.3%) 1807 (20.6%) 1908 (21.7%)
48.6% 46.6% 47.8%

Table 4.1: Results of different power management script versions. Numbers in the top left
corners are hour counts (and percentages in parentheses) of the CoreStation being forced
into critical battery shutdown. The total number of hours in the year is 24 ∗ 366 = 8784.
Version 4.0 is different and shows rather the total number of hours off-line and the number
of hours off-line because of critical battery respectively, separated by a forward slash.
The percentages in the bottom right corners of cells are the average duty cycle values
throughout the year.

Figure 4.1: Battery state of charge (in Wh) in solid lines. Simple duty cycling calculated
based on current conditions and not on prediction (blue), EWMA prediction duty cycling
(red), WCMA duty cycling (green) and only base power consumption, with no WLAN
(black, all subplots). Dashed lines represent duty cycle values for respective approaches.
Time axis shows the time of year (in hours) starting from January 1st (hour 0).
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But because we are dealing with daily changes, the WCMA prediction algorithm takes
a very long time to initialize, several months in fact. While waiting for historical samples
to accumulate, we use EWMA prediction for this time period rather than leaving the
system without power management. Figure 4.1 shows all three duty cycling approaches
and the ”no WLAN” plot in black, for comparison. WCMA is the same as EWMA until
it is fully initialized. No matter what the duty cycling approach though, the battery
inevitably drains below critical.

Figure 4.2: Battery state of charge (in Wh) in solid lines. Simple duty cycling calculated
based on current conditions and not on prediction (blue), EWMA prediction duty cycling
(red), WCMA duty cycling (green) and only base power consumption, with no WLAN
(black, all subplots). Dashed lines represent duty cycle values for respective approaches.
Time axis shows the time of year (in hours) starting from April 6th (hour 2304).

Figure 4.2 shows the same simulations, but in the 2300th hour (April 6th). WCMA
is fully initialized on the 100th day and starts to differ from EWMA. It can be observed
that WCMA performs worse than EWMA and actually forces the system into shutdown.
This might be due to the fact, that WCMA prediction loses diurnal sample correlation
when calculating only daily values, and performs worse than EWMA.

None of the power management versions could achieve zero power outages. Even with
no WLAN, our base station consumes so much power, that the battery inevitably drains
below the critical point and the system forces shutdown. This means that our system is
incapable under any circumstances of running uninterrupted. The next step was to de-
termine, what kind of system would in fact be able to run uninterrupted. In other words,
how large does the battery need to be, to support such power consumption, and what
is the maximum, long-term, average duty cycle of the WLAN, that our solar panel can
support in a long time-span, provided the battery has enough capacity.
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This was explored in power management version 2.3. It is similar to v2.1, but has
an over-sized battery of 7500Wh, which is just enough to buffer the seasonal changes in
harvested energy. V2.3 simulates results over 12 years of harvested energy data, so the
long-term effects on the system can be observed. The duty cycle is updated once per
day, but is upward-limited to the average duty cycle value of the last 30 days, not to
100%. This decision was made, because the system can only be stable over a long period
(many years), if the cumulative energy consumption is lower or equal to the cumulative
harvested energy of the system. If we subtract the constant base consumption from the
12-year average of the harvested energy, we are left with the energy available for the
duty-cycled WLAN. In our system, this is equal to Premaining = 0.6W of power. Because
WLAN requires 3W of power, the maximum, long-term, average duty cycle is exactly
20%.

Figures 4.3, 4.4, 4.5 show simulation results for power management version 2.3. The
normalized battery state of charge, as a result of a constant duty cycle of DC = 20%, is
shown in blue (Figure 4.3). EWMA calculated duty cycle (black) and the resulting battery
state of charge (red) are shown in Figure 4.4. WCMA calculated duty cycle (black) and
the resulting battery state of charge (green) are shown in Figure 4.5. The average EWMA
duty cycle is 17.11% and 16.58% for WCMA.

These two results indicate that there is a possibility to have a working power man-
agement algorithm, but only if our system is augmented by increasing the battery size
dramatically. EWMA performs better than WCMA, because it has a higher average duty
cycle, but both average duty cycles are below 20%, which is the upper-bound for our
system. The prediction algorithms do make a difference on the system, as can be seen
by the seasonally changing duty cycle. The system tries to conserve energy during the
winters by decreasing the duty cycle to the minimum, and exploits the excess energy in
the summer, which is apparent by the rising of the duty cycle above 20%. This means
the battery does not drain as low as it does with the constant duty cycle approach in the
winter, stabilizing the SoC more.
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Figure 4.3: Battery state of charge for a constant WLAN duty cycle of 20% (blue) and har-
vested energy data for 12 years (grey), both normalized. The battery capacity is changed
to 7500Wh.

Figure 4.4: Battery state of charge for EWMA duty-cycling (red) and harvested energy
data for 12 years (grey), both normalized. The black curve shows the duty cycle value.
The battery capacity is changed to 7500Wh.
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Figure 4.5: Battery state of charge for WCMA duty-cycling (green) and harvested energy
data for 12 years (grey), both normalized. The black curve shows the duty cycle value.
The battery capacity is changed to 7500Wh.
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Evaluation

Both prediction algorithms are fairly accurate when using and predicting hourly values
of harvested energy. The mean value of the relative error for WCMA with optimized
parameters is 34.2%, the mean for WCMA with default parameters is 37.5%, and for
EWMA it is 53.9%. The error histogram is shown in Figure 5.1. We can see that WCMA
performs better and that parameter optimization improves performance, although by
3.3%, but this improvement does not necessarily impact the entire power management at
all.

Figure 5.1: Error histogram showing the distribution of relative errors of WCMA (default
parameters in red, optimal parameters in green) and EWMA (blue) prediction algorithms.

Professional weather forecast should be implemented and tested on a real system
together with energy prediction to determine its impact on power management and long-
term stability of the system. Since the main problem of power management with energy



22 5 Evaluation

prediction alone is the scope in which the prediction takes place, weather forecast would
probably have a larger impact on the system. Because prediction algorithms can predict
only one value in advance, the power management can not be made very sophisticated
and stable over longer time periods, since the changes in the duty cycle are made either
during the rising and setting of the sun when hourly values are used, or when the weather
is changing locally, on a timescale of a couple of days, when daily values are used. The
power management software will drive the WLAN harder in case the system sees a short
excess of energy, but can not predict a possible long period of bad weather, that will
drain the battery even with intense power saving. The battery might drain below critical
in such a case. On the other hand the power management software can not predict a
possible period of intense sunshine in the summer, for example, and will try to conserve
power in the cloudy days preceding this period, resulting in the saturation of the battery
charge at 100% for a sizable amount of time, losing the surplus harvested energy even if
the duty cycle is at 100% constantly.

One solution would be to pre-program an average (or maximum) value of the harvested
energy into the system, taking into account several years of statistical measurements.
This would give the power management algorithm information about seasonal changes
in harvested energy. But the weather can be very unpredictable and vary greatly, so our
system would have to be over-sized to compensate for a lack of accuracy of this method.
It would also be difficult to produce from statistical data, values to input into the power
management algorithm, that are significant for high alpine environments.

Although trying out several approaches of calculating the duty cycle, none of the power
management versions could achieve zero power outages, even with minimal power re-
quirements of Pbase + 0.1 ∗ PWLAN . Because the system has a reconnect hysteresis that
requires the battery to charge above 60% SoC after it has been discharged below crit-
ical, the power outages last even longer. In this time, the station is inoperative. If the
reconnect hysteresis were smaller, the system would be able to reboot faster and perhaps
run the WLAN at least at minimal duty cycle, providing minimal required functionality.
This might force the system into a new critical battery shutdown even sooner than with
a larger reconnect hysteresis. The reduced down-time might not even make a difference,
because we have not achieved our goal of uninterrupted operation. But since the system
is going to fail inevitably, it might make sense to try and reduce the down-time anyway.

There is another mechanism spoiling our simulations. There are two possibilities for
what kind of data our prediction algorithms receive during system shutdown: no SoC
(and consequently harvested energy) data, or false valued data. Also, after the system is
running again, the difference in SoC, from which the harvested energy is calculated, is
enormous. This makes the duty cycle too big right after reboot, and the system drains
more power than ideal for the harvested energy conditions. This contributes to faster
battery draining and reaching a new critical battery shutdown sooner.



Chapter 6

Conclusion

Any power management effort is unsuccessful in providing 100% reliability to our system.
The hardware simply does not allow it. Simulations in power management version 2.3
have shown that only an unfeasibly large battery capacity, compared to the one used
with real CoreStations, can buffer energy surplus and deficit associated with seasonal
variations in solar conditions.

The battery capacity and solar panel power must be determined properly according
to the type and strength of the load. Only then can any kind of power management effort
improve system reliability and performance. If the power hardware is under-scaled, like
in our case, not even aggressive duty cycling will guarantee zero power outages, and the
best we can do is to try and minimize the system down-time with more complex and
elaborate prediction algorithms, weather forecast and power management schemes.

Figure 6.1: Harvested energy values in 1h intervals for 366 days.
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Figure 6.1 shows one year of hourly harvested energy values. The mean value of
harvested energy allows the system to run the WLAN at an average duty cycle of 20%.
Since the moving average of the harvested energy is a sinusoid-like curve, approximately
half of it is under the mean value and half of it is above the mean value. This means that
for approximately six months, our battery will be drained on average, and for the other
six, it will be charged, as can be seen in Figures 4.3, 4.4, 4.5. The weather variations
however might shift this to 7 months of draining and 5 of charging, or move these periods
one month earlier or later. This can not be predicted. In the end, the overwhelming
factor in the reliability of the system is the choice of hardware. Statistical weather data,
experience and an ”educated guess” can help determine the battery size and solar panel
power.

6.1 Outlook

Even though our system can not be 100% reliable, we can still try and improve per-
formance and decrease down-time. The choice of energy prediction algorithms has an
impact on the system and if WCMA is chosen, the parameter optimization could be fur-
ther investigated together with its effects on the overall power management. The optimal
parameters might be dependent on the input data or the order in which we optimize the
parameters. This can be investigate further.

An important part of this thesis, the weather forecast, could be implemented on an actual
system and tested in another thesis. This would require additional changes to BackLog
and implementation of code into the core functionality, as well as longer testing periods.

Version 2.3 of the power management algorithm is able to provide system reliability
over a period of 12 years with both EWMA anc WCMA prediction algorithm, without
prior knowledge of the maximum allowed mean duty cycle value of 20% (in our case).
This means, that with a large battery, endeavors in power management can provide zero
power outages and increase performance. Perhaps a larger solar panel would not only
facilitate a larger overall duty cycle for WLAN, but also decrease the needed battery size,
as this would be recharged more quickly, even during winter.

Further investigation could also be done to see if the seasonal variation in solar condi-
tions and consequently the harvested energy is greater than we are able to mitigate with
duty cycling, and what kind of proportion would the WLAN power consumption have to
have compared to the base power consumption of the CoreStation, to equalize this effect.
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Appendix A

Code

*** The following are snippets of python code used in various parts of this thesis.***

####################################################################################################

### Creating battery SoC from harvested energy data and predicting values with EWMA and WCMA.

####################################################################################################

import csv

import numpy

""" Initial battery state of charge = 1 (full)

wlan current = 250mA

base current = 150mA

wlan energy = hourly energy in Wh """

batt_volt = 12.0 # Voltage in V

batt_cap = 34 # Nominal capacity in Ah

batt_e = batt_volt*batt_cap*0.8 # Available energy in Wh

wlan_p = 0.25*batt_volt # Power consumption in W

base_p = 0.15*batt_volt # Power consumption in W

## Loading harvested energy data from file ##

with open(’eH_30W_daily_12x8784x1_scaled.csv’,’r+b’) as file1:

reader = csv.reader(file1, delimiter=’,’)

pv_matrix = list(reader)

pv_list = map(float,pv_matrix[0]) #Choose data for 1 of 12 years (0-11)

##################################################

def EWMA(Y, N=4):

""" Computes an N-period exponential moving average for the time series Y

Y is the input list, N is the number of previous values used for one step

Returns a list of the exponential moving average approximation. """

ema0 = sum(Y[:N])/float(N) #Starting value = average over N samples

alpha = 2/float(1+N) #Scaling factor between [0,1]

ema = list(ema0 for i in range(N))

""" S(t+1) = alpha*S(t) + (1-alpha)*Y(t) """

for i,val in enumerate(Y[N-1:]):

ema.append(alpha*ema[i] + (1-alpha)*val)

none = ema.pop() ## Destroys the last value, which goes over len(Y)

return ema

##################################################

def WCMA(E, alpha=0.7, D=4, K=3):
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""" "E" is a list of 24 hourly measurements concatenated by day

"alpha" is a weighting factor (similar to EWMA)

"K" is the number of previous samples used by WCMA

"D" is the number of previous days used by WCMA

WCMA needs (24*D+K) previous samples to make a prediction for sample

[d,n+1], so n_start >= (24*D+K-1)

"d" is the label for the current day

"n" is the label for the current sample ("n+1" = next sample)

First possible prediction: d=D-1, n=K-1

FORMULA:

E[d,n+1] = (alpha * E[d,n]) + (1-alpha) * GAP * M_D[d,n+1]

E[d,n+1] is the predicted value

E[d,n] is the curent mesured value

M_D[d,n+1] is the mean for "D" past days at sample "n+1"

GAP is a factor of past solar conditions

For code reference: S[d,n+1] is the predicted value and E are measurements.

We are only storing predictions to observe accuracy. """

S = list(0 for i in range(len(E)+1))

MD = list(0 for i in range(len(E)+1))

GAP = list(0 for i in E)

P = list((i+1.0)/K for i in range(K))

for n, e in enumerate(E):

if (D*24) <= n <= (D*24+(K-1)):

MDsum = 0.0

for i in range(D):

MDsum = MDsum + E[n-(i+1)*24]

MD[n] = (MDsum/D)

if n >= (D*24+(K-1)):

V = list((E[n-(K-1)+i]/MD[n-(K-1)+i]) for i in range(K))

GAP[n] = (numpy.dot(V,P)/sum(P))

MDsum = 0.0

for i in range(D):

MDsum = MDsum + E[(n+1)-(i+1)*24]

MD[n+1] = (MDsum/D)

S[n+1] = alpha*e+(1-alpha)*GAP[n]*MD[n+1]

none = S.pop()

none = MD.pop()

return S

##################################################

## 1. CREATING BATTERY SoC FROM HARVESTED ENERGY DATA

wlan_off = 0

power_down = 0

batt_SoC = []

energy = batt_e

for index, harv_e in enumerate(pv_list):

if not power_down:

if wlan_off:

energy += (harv_e - base_p)

elif not wlan_off:
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energy += (harv_e - wlan_e - base_p)

elif power_down:

energy += harv_e

if (energy>batt_e*0.6) and (wlan_off):

wlan_off = 0

elif (energy>batt_e*0.05) and (power_down):

power_down = 0

elif (energy<=batt_e*0.05):

power_down = 1

wlan_off = 1

if energy > batt_e:

energy = batt_e

elif energy < 0:

energy = 0

batt_SoC.append(energy)

##################################################

## 2. WRITING BATTERY SoC, EWMA AND WCMA TO FILE

ewma = EWMA(batt_SoC,N=4) #alpha = 0.6

##wcma = WCMA(batt_SoC, alpha=0.7, D=4, K=3) ## Default parameters

wcma = WCMA(batt_SoC, alpha=0.5, D=9, K=1) ## Optimized parameters

results = [batt_SoC, ewma, wcma]

with open(’SoC_calc_noPM.csv’, ’wb’) as file5:

file_writer = csv.writer(file5)

for i in range(len(results[0])):

file_writer.writerow([x[i] for x in results])

####################################################################################################

### OpenWeatherMap.org weather forecast API implementation and WSF calculation.

####################################################################################################

from datetime import datetime

import csv

import numpy

import requests

Pwlan = 0.250 * 12

Pbase = 0.200 * 12

Ebat_max = 12 * 34 * 0.8

today = datetime.now()

timestamp = float(today.strftime("%s"))

##################################################

## 1. 5-DAY FORECAST

""" Forecast data for every 3 hours for 5 days = 41 values.

Endpoint: http://api.openweathermap.org/data/2.5/forecast

Keys: "city" : dict (location info)

"cod" : HTTP code (200 = OK)

"cnt" : len(response["list"])

"list" : 24/3*5 + 1 (41 values), each value = dictionary

Keys: clouds : {"all": cloud_value}

dt_txt : DateTime (string)

weather : list(dict("key": "value",...))

dt : linux timestamp (int)

main : temp, pressure, ...

wind : speed, degrees

Querry parameters: "q": "London,uk" - search by city name
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"lat": "47.378" - lattitude (N-S)

"lon": "8.553" - longitude (E-W)

"id": 524901" - search by city ID """

query_params = {"APPID": "***INSERT OWN API-ID***","lat": "47.378","lon": "8.553"}

endpoint = "http://api.openweathermap.org/data/2.5/forecast"

response = requests.get(endpoint, params=query_params)

weather = response.json()

timestamp5 = []

clouds5 = []

for idx, item in enumerate(weather["list"]):

timestamp5.append(int(item["dt"]))

clouds5.append(int(item["clouds"]["all"])/100.0)

time5 = list(((timestamp5[i]-timestamp5[0])/86400.0) for i in range(len(timestamp5)))

sky5 = list(1-clouds5[i] for i in range(len(clouds5)))

##################################################

## 2. 14 DAY FORECAST:

""" Daily forecast data for 14 days = 14 values.

Endpoint: http://api.openweathermap.org/data/2.5/forecast/daily

Keys: "city" : dict (location info)

"cod" : HTTP code (200 = OK)

"cnt" : len(response["list"])

"list" : all data values (each day = one dict)

Keys: clouds : percent clouds

temp : min, max, eve, morn, night, day

humidity: percent humidity

pressure: in mbar

weather : main, id, icon, description

dt : linux time

speed : wind speed

deg : wind direction

Querry parameters: "q": "London,uk" - search by city name

"lat": "47.378" - lattitude (N-S)

"lon": "8.553" - longitude (E-W)

"id": 524901" - search by city ID

"mode": "json" or "xml"

"units": "metric" or "imperial"

"cnt": "10" - days to display (1 to 14, default = 7) """

query_params = {"APPID": "***INSERT OWN API-ID***","lat": "47.378",

"lon": "8.553","mode": "json","units": "metric","cnt": "14"}

endpoint = "http://api.openweathermap.org/data/2.5/forecast/daily"

response = requests.get(endpoint, params=query_params)

weather = response.json()

timestamp14 = []

clouds14 = []

for idx, item in enumerate(weather["list"]):

timestamp14.append(int(item["dt"]))

clouds14.append(int(item["clouds"])/100.0)

time14 = list(((timestamp14[i]-timestamp14[0])/86400.0) for i in range(len(timestamp14)))

sky14 = list(1-clouds14[i] for i in range(len(clouds14)))

time105 = [round(x*(time5[1]-time5[0]),4) for x in range(0,int((len(time14)-1)/(time5[1]-time5[0])+1))]

##################################################

## 3. WEATHER SCALING FACTOR - WSF
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k14 = numpy.polyfit(time14,sky14,1)

yfit = list(numpy.polyval(k14,time105))

##yscale = [x for x in yfit[0:len(sky5)]] #5day average

yscale = [x for x in yfit[0:int(1.0/(time5[1]-time5[0]))]] #1day average

sky5scale = [a*b for a,b in zip(sky5,yscale)]

WSF = float(sum(sky5scale))/len(sky5scale)

if WSF > 1:

WSF = 1

elif WSF < 0:

WSF = 0

####################################################################################################

### WCMA parameter optimization

####################################################################################################

import csv

import numpy

with open(’eH_30W_daily_12x8784x1_scaled.csv’,’r+b’) as file1:

reader = csv.reader(file1, delimiter=’,’)

pv_matrix = list(reader)

pv_list = map(float,pv_matrix[0])

pv_list_plus = list(pv_list[i]+100 for i in range(len(pv_list)))

""" For the purposes of calculating the WCMA, there need to be non-zero values

in our pv_list_plus, otherwise we divide by 0 when calculating vector V. """

##################################################

def EWMA(Y, N=4):

...

def WCMA(E, alpha=0.7, D=4, K=3):

...

##################################################

## 1. SEARCHING FOR BEST "alpha" AND "D"

""" error_matrix1 contains maximum error values for alpha-D combinations.

errors1 contains lists of daily errors from which these maximums are taken ."""

error_matrix1 = []

error_average1 = []

errors1 = []

## Starting parameters: ##

dmax = 11

N = 24

K = 3

error_list1 = [] #temp

error_list2 = [] #temp

for a in range(1,11):

for d in range(1,dmax):

wcma = WCMA(pv_list_plus, alpha=0.1*a, D=d+1, K=K)

wcma = list(wcma[i]-100 for i in range(len(wcma)))

param_pair_error = []

for i in range(len(pv_list)/N - dmax - 1):

##Calculate for 366 days -1 at end -dmax in front

err = 0

count = 0

## Calculate errors for individual days. ##

for j in range(N):

idx = dmax*24 + N*i

thr1 = 0.1*max(pv_list[idx:idx+24])

thr2 = 0.1*max(wcma[idx:idx+24])
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##Thresholds for current day, depend on "i"

if pv_list[idx+j] > thr1 and wcma[idx+j] > thr2:

err = err + abs( (float(wcma[idx+j])/float(pv_list[idx+j])) -1)

count += 1

err = err/float(count)

##Error for current day, appended to list for chosen "alpha, D"

param_pair_error.append(err)

errors1.append(param_pair_error)

##One list for "alpha, D" with errors for whole year

error_list1.append(max(param_pair_error))

error_list2.append(numpy.mean(param_pair_error))

error_matrix1.append(error_list1)

error_average1.append(error_list2)

error_list1 = []

error_list2 = []

tmp = []

for i in error_average1:

tmp.extend(i)

value,index = min((value, index) for (index, value) in enumerate(tmp))

alpha = ((index/(dmax-1))+1)*0.1 ## Optimized alpha (= 0.5)

best_D_avg = index%(dmax-1) + 2

##################################################

## 2. SEARCHING FOR BEST "D" AND "K"

error_matrix2 = []

error_average2 = []

errors2 = []

for k in range(1,11):

for d in range(1,dmax):

wcma = WCMA(pv_list_plus, alpha=alpha, D=d+1, K=k)

wcma = list(wcma[i]-100 for i in range(len(wcma)))

param_pair_error = []

for i in range(len(pv_list)/N - dmax - 1):

##Calculate for 366 days -1 at end -dmax in front

err = 0

count = 0

## Calculate errors for individual days. ##

for j in range(N):

idx = dmax*24 + N*i

thr1 = 0.1*max(pv_list[idx:idx+24])

thr2 = 0.1*max(wcma[idx:idx+24])

##Thresholds for current day, depend on "i"

if pv_list[idx+j] > thr1 and wcma[idx+j] > thr2:

err = err + abs( (float(wcma[idx+j])/float(pv_list[idx+j])) -1)

count += 1

err = err/float(count)

##Error for current day, appended to list for chosen "alpha, D"

param_pair_error.append(err)

errors2.append(param_pair_error)

##One list for "alpha, D" with errors for whole year

error_list1.append(max(param_pair_error))

error_list2.append(numpy.mean(param_pair_error))

error_matrix2.append(error_list1)

error_average2.append(error_list2)

error_list1 = []

error_list2 = []

tmp = []

for i in error_average2:
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tmp.extend(i)

value,index = min((value, index) for (index, value) in enumerate(tmp))

K = ((index/(dmax-1))+1) ## Optimized K (= 1)

D = index%(dmax-1) + 2 ## Optimized D (= 9)

##################################################

## 3. APPROXIMATION RESULTS FOR DEFAULT AND OPTIMIZED "alpha, K, D"

ewma_e_list = EWMA(pv_list,N=4)

wcma_e_list = WCMA(pv_list_plus, alpha=0.7, D=4, K=3)

wcma_e_list = list(wcma_e_list[i]-100 for i in range(len(wcma_e_list)))

wcma_e_opt = WCMA(pv_list_plus, alpha=alpha, D=D, K=K)

wcma_e_opt = list(wcma_e_opt[i]-100 for i in range(len(wcma_e_opt)))

results = [pv_list,ewma_e_list, wcma_e_list, wcma_e_opt]

##################################################

## 4.1 CALCULATE ERRORS FOR DEFAULT "alpha, K, D"

default_error = []

for i in range(len(pv_list)/N - dmax - 1):

##Calculate for 366 days -1 at end -dmax in front

err = 0

count = 0

for j in range(N):

idx = dmax*24 + N*i

thr1 = 0.1*max(pv_list[idx:idx+24])

thr2 = 0.1*max(wcma_e_list[idx:idx+24])

##Thresholds for current day, depend on "i"

if pv_list[idx+j] > thr1 and wcma_e_list[idx+j] > thr2:

err = err + abs( (float(wcma_e_list[idx+j])/float(pv_list[idx+j])) -1)

count += 1

err = err/float(count)

##Error for current day, appended to list for optimal "alpha, D, K"

default_error.append(err)

## 4.2 CALCULATE ERRORS FOR OPTIMIZED "alpha, K, D"

optimized_error = []

for i in range(len(pv_list)/N - dmax - 1):

##Calculate for 366 days -1 at end -dmax in front

err = 0

count = 0

for j in range(N):

idx = dmax*24 + N*i

thr1 = 0.1*max(pv_list[idx:idx+24])

thr2 = 0.1*max(wcma_e_opt[idx:idx+24])

##Thresholds for current day, depend on "i"

if pv_list[idx+j] > thr1 and wcma_e_opt[idx+j] > thr2:

err = err + abs( (float(wcma_e_opt[idx+j])/float(pv_list[idx+j])) -1)

count += 1

err = err/float(count)

##Error for current day, appended to list for default "alpha, D, K"

optimized_error.append(err)

## 4.3 CALCULATE ERRORS FOR EWMA

ewma_error = []

for i in range(len(pv_list)/N - dmax - 1):

##Calculate for 366 days -1 at end -dmax in front

err = 0

count = 0

for j in range(N):

idx = dmax*24 + N*i

thr1 = 0.1*max(pv_list[idx:idx+24])

thr2 = 0.1*max(ewma_e_list[idx:idx+24])
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##Thresholds for current day, depend on "i"

if pv_list[idx+j] > thr1 and ewma_e_list[idx+j] > thr2:

err = err + abs( (float(ewma_e_list[idx+j])/float(pv_list[idx+j])) -1)

count += 1

err = err/float(count)

##Error for current day, appended to list

ewma_error.append(err)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

##################################################

## 5. WRITING RESULTS TO FILE

with open(’matlab1_max_alphaD_KD.csv’, ’w+’) as file2:

file_writer = csv.writer(file2)

file_writer.writerows(error_matrix1)

file_writer.writerow("")

file_writer.writerows(error_matrix2)

with open(’matlab2_avg_alphaD_KD.csv’, ’w+’) as file3:

file_writer = csv.writer(file3)

file_writer.writerows(error_average1)

file_writer.writerow("")

file_writer.writerows(error_average2)

with open(’ParameterOptimization2.csv’, ’wb’) as file4:

file_writer = csv.writer(file4)

for i in range(len(results[0])):

file_writer.writerow([x[i] for x in results])

with open(’matlab3_all_errors_histogram.csv’, ’w+’) as file5:

file_writer = csv.writer(file5)

file_writer.writerow(default_error)

file_writer.writerow("")

file_writer.writerow(optimized_error)

file_writer.writerow("")

file_writer.writerow(ewma_error)

####################################################################################################

*** Matlab script to plot optimization results. ***

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% WCMA parameter optimization - MATLAB script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

close all

results = transpose(csvread(’ParameterOptimization2.csv’));

eH = results(1,:);

ewma = results(2,:);

wcma_def = results(3,:);

wcma_opt = results(4,:);

t = [1:length(eH)];

figure

plot(t,eH,t,ewma,t,wcma_def,t,wcma_opt)

title(’Solar energy and predictions’);

xlabel(’Day’);

ylabel(’Energy’);

legend(’Harvested energy’,’ewma’,’wcma default param’,’wcma optimal param’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tmp = csvread(’matlab1_max_alphaD_KD.csv’);

error_max_alphaD = tmp(1:10,:);

error_max_KD = tmp(11:end,:);

tmp = csvread(’matlab2_avg_alphaD_KD.csv’);

error_avg_alphaD = tmp(1:10,:);

error_avg_KD = tmp(11:end,:);

clear tmp

figure



35

surf(2:11,0.1:0.1:1,error_max_alphaD)

title(’Error max alpha-D, K=3’);

xlabel(’D’);

ylabel(’alpha’);

figure

surf(2:11,1:10,error_max_KD)

title(’Error max K-D, alpha=0.5’);

xlabel(’D’);

ylabel(’K’);

figure

surf(2:11,0.1:0.1:1,error_avg_alphaD)

title(’Error avg alpha-D, K=3’);

xlabel(’D’);

ylabel(’alpha’);

figure

surf(2:11,1:10,error_avg_KD)

title(’Error avg K-D, alpha=0.5’);

xlabel(’D’);

ylabel(’K’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

errors = csvread(’matlab3_all_errors_histogram.csv’);

errors_default = errors(1,:);

errors_optimized = errors(2,:);

errors_ewma = errors(3,:);

figure

plot(errors_default,’b’);

hold on

plot(errors_optimized,’r’);

hold on

plot(errors_ewma,’g’);

title(’WCMA and EWMA errors’);

xlabel(’Day’);

ylabel(’Relative error’);

legend(’Default WCMA parameters’,’Optimized WCMA parameters’, ’EWMA’);

bins = 50;

[histogram,bin] = hist(transpose(errors),bins);

figure

bar(bin,histogram);

title(’WCMA and EWMA error histogram’);

colormap([1,0.5,0.5;0.5,1,0.5;0.5,0.5,1])

grid on

xlabel(’Relative error (bins)’);

ylabel(’Frequency’);

legend(’Default WCMA parameters’,’Optimized WCMA parameters’, ’EWMA’);

% Expected values of the Poisson-distributed errors for EWMA and WCMA predictions

avgdef = mean(errors_default)

avgopt = mean(errors_optimized)

avgewma = mean(errors_ewma)

####################################################################################################

### Power management code

####################################################################################################

""" Version 1.0:

I don’t like the duty cycle (DC) calculation formula: it uses harvested energy (Eg) to

calculate the DC, and we can’t get Eg in a real system, unless we calculate it from

battery SoC! Eg is only accessible to us for simulation purposes.
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Problems:

- Our battery is too small for the job (problems in the winter)

- In the summer, we don’t drive the wlan as hard as we could!

Surplus energy from the battery is wasted... """

import csv

import numpy

""" Initial battery state of charge = Ebat_max (full, 100%)

wlan current = 250mA

base current = 200mA """

Vbat = 12.0 # Voltage in V

Cbat = 34 # Nominal capacity in Ah

Ebat_max = Vbat*Cbat*0.8 # Available energy in Wh

Pwlan = 0.25*Vbat # Power consumption in W

Pbase = 0.20*Vbat # Power consumption in W

Tint = 1.0 # Time interval between samples in h - IMPORTANT!!!

Twlan_min = 0.1 # Minimum WLAN on-time (or percentage)

with open(’eH_30W_daily_12x8784x1_scaled.csv’,’r+b’) as file1:

reader = csv.reader(file1, delimiter=’,’)

pv_matrix = list(reader)

pv_list = map(float,pv_matrix[0]) #Choose data for 1 of 12 years (0-11)

def EWMA(Y, N=4):

...

def EWMAstep(Y, N=4):

""" Same as EWMA(), but returnes one value (prediction). """

if not 0<N<len(Y):

raise Exception("Must have 0<N<len(Y)")

ema0 = sum(Y[:N])/float(N) #Starting value = average over N samples

alpha = 1- 2/float(1+N) #Scaling factor between [0,1]

ema = list(ema0 for i in range(N))

""" S(t+1) = alpha*S(t) + (1-alpha)*Y(t) """

for i,val in enumerate(Y[N-1:]):

ema.append(alpha*ema[i+N-1] + (1-alpha)*val)

pred = ema.pop()

return pred

def WCMA(E, alpha=0.7, D=4, K=3):

...

def WCMAstep(E, alpha=0.7, D=4, K=3):

""" Does the same as WCMA(), but returnes one value. """

if not 0<(D*24+K-1)<=len(E):

raise Exception("Must have 0<(D*24+K-1)<=len(E)")

S = list(0 for i in range(len(E)+1))

MD = list(0 for i in range(len(E)+1))

GAP = list(0 for i in E)

P = list((i+1.0)/K for i in range(K))

for n, e in enumerate(E):

if (D*24) <= n <= (D*24+(K-1)):

MDsum = 0.0

for i in range(D):

MDsum = MDsum + E[n-(i+1)*24]

MD[n] = (MDsum/D)
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if n >= (D*24+(K-1)):

V = list((E[n-(K-1)+i]/MD[n-(K-1)+i]) for i in range(K))

GAP[n] = (numpy.dot(V,P)/sum(P))

MDsum = 0.0

for i in range(D):

MDsum = MDsum + E[(n+1)-(i+1)*24]

MD[n+1] = (MDsum/D)

S[n+1] = alpha*e+(1-alpha)*GAP[n]*MD[n+1]

none = MD.pop()

pred = S.pop()

return pred

## 1.1 CREATING BATTERY SoC - NO WLAN! Control run

Toff = [0,0,0,0,0]

power_down = 0

noWLAN_SoC = []

energy = Ebat_max

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

noWLAN_SoC.append(energy)

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

power_down = 0

elif (energy<=Ebat_max*0.05) and not power_down:

power_down = 1

# Energy consumption throughout current time interval

# and until beginning of next time interval (next iteration)

if not power_down:

energy += (Eg - Pbase)

elif power_down:

energy += Eg

Toff[0] += 1

if energy > Ebat_max:

energy = Ebat_max

elif energy < 0:

energy = 0

## 1.2 CREATING BATTERY SoC - duty_cycle = 100%

power_down = 0

noPM_SoC = []

energy = Ebat_max

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

noPM_SoC.append(energy)

... *** Code same as "no wlan" ***

# and until beginning of next time interval (next iteration)

if not power_down:

energy += (Eg - Pwlan - Pbase)

elif power_down:

energy += Eg

Toff[1] += 1

...

## 1.3 CREATING BATTERY SoC - simple duty cycling

""" First values are all maximal (duty cycle, battery state of charge).

The energy calculations are as follows:

"pv-list" is the harvested energy from the sun. In a real system,

this would be measured, here it is simulated in advance.

"DC_SoC" is the battery state of charge at the beginning of the
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time interval, taking into account energy consumption/surplus in

the previous time interval.

"duty_cycle" is calculated for the duration of the current time

interval, provided we have a current and a previous battery state

of charge ’measurement’.

"energy" is modified with respect to power consumption/surplus

during the current time interval. It will be appended to SoC... """

power_down = 0

duty_cycle = 1.0

DC_SoC = []

energy = Ebat_max

DChist = []

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

DC_SoC.append(energy)

# DC calculation for this time interval

# dSoC is a calculation for this interval based on history #

if len(DC_SoC) > 1:

dSoC = DC_SoC[index] - DC_SoC[index-1]

duty_cycle = ( ( ((Eg-dSoC)/Tint) - Pbase) / Pwlan )

if duty_cycle < Twlan_min/float(Tint):

duty_cycle = Twlan_min/float(Tint)

if duty_cycle > 1:

duty_cycle = 1

# Emergency power-down

...

# Energy consumption throughout current time interval

# and until beginning of next time interval (next iteration)

if not power_down:

energy += (Eg - Pwlan*duty_cycle - Pbase)

elif power_down:

duty_cycle = 0

energy += Eg

Toff[2] += 1

if energy > Ebat_max:

...

DChist.append(duty_cycle)

## 1.4 CREATING BATTERY SoC - EWMA PM

power_down = 0

duty_cycle = 1.0

ewma_SoC = []

energy = Ebat_max

ewmaDChist = []

N_ewma = 4

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

ewma_SoC.append(energy)

# DC calculation for this time interval

# dSoC is a forecast for this interval based on EWMA #

if len(ewma_SoC) > N_ewma:

if len(ewma_SoC)<(20*N_ewma):

dSoC = EWMAstep(ewma_SoC,N=N_ewma) - ewma_SoC[index]

# Restricting EWMA calculation to smaller number of samples

else:

dSoC = EWMAstep(ewma_SoC[index-20*N_ewma+1:index],N=N_ewma) - ewma_SoC[index]

duty_cycle = ( ( ((Eg-dSoC)/Tint) - Pbase) / Pwlan )

...
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elif power_down:

duty_cycle = 0

energy += Eg

Toff[3] += 1

if energy > Ebat_max:

...

ewmaDChist.append(duty_cycle)

## 1.5 CREATING BATTERY SoC - WCMA PM

power_down = 0

duty_cycle = 1.0

wcma_SoC = []

energy = Ebat_max

wcmaDChist = []

A_wcma = 0.7

D_wcma = 4

K_wcma = 3

N_wcma = 24*D_wcma+K_wcma-1

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

wcma_SoC.append(energy)

# DC calculation for this time interval

# dSoC is a forecast for this interval based on WCMA

# Also: restricting WCMA calculation to necessary number of samples

if len(wcma_SoC) > N_wcma+1:

dSoC = WCMAstep(wcma_SoC[index-N_wcma-1:index],alpha=A_wcma,D=D_wcma,K=K_wcma) - wcma_SoC[index-1]

duty_cycle = ( ( ((Eg-dSoC)/Tint) - Pbase) / Pwlan )

if duty_cycle < Twlan_min/float(Tint):

...

# Energy consumption throughout current time interval

# and until beginning of next time interval (next iteration)

if not power_down:

energy += (Eg - Pwlan*duty_cycle - Pbase)

elif power_down:

duty_cycle = 0

energy += Eg

Toff[4] += 1

if energy > Ebat_max:

...

wcmaDChist.append(duty_cycle)

## 2. PRINTING POWER MANAGEMENT TO FILE

results = [noWLAN_SoC,noPM_SoC,DC_SoC,DChist,ewma_SoC,ewmaDChist,wcma_SoC,wcmaDChist]

item_length = len(results[0])

with open(’SoC_calc_PM1.0.csv’, ’wb’) as file6:

file_writer = csv.writer(file6)

for i in range(item_length):

file_writer.writerow([x[i] for x in results])

print "Finished SoC_calc_PM v1.0, Results stored in .csv files."

print "Hours offline:"

print "No WLAN: "+str(Toff[0])+" = %.4f"%(Toff[0]/8784.0*100)+"%."

print "No PM: "+str(Toff[1])+" = %.4f"%(Toff[1]/8784.0*100)+"%."

print "DC PM: "+str(Toff[2])+" = %.4f"%(Toff[2]/8784.0*100)+"%."

print "EWMA PM: "+str(Toff[3])+" = %.4f"%(Toff[3]/8784.0*100)+"%."

print "WCMA PM: "+str(Toff[4])+" = %.4f"%(Toff[4]/8784.0*100)+"%."

print ""

print "During ON-time, average duty cycle is:"

print "DC PM: %.4f"%(sum(DChist)/(8784-Toff[2])*100)+"%."

print "EWMA PM: %.4f"%(sum(ewmaDChist)/(8784-Toff[3])*100)+"%."
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print "WCMA PM: %.4f"%(sum(wcmaDChist)/(8784-Toff[4])*100)+"%."

##################################################

""" Version 2.0:

Different duty cycle calculation - using SoC to calculate Eg """

...

## 1.3 CREATING BATTERY SoC - simple duty cycling

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

DC_SoC.append(energy)

# DC calculation for this time interval

# dSoC is a calculation for this interval based on history #

if len(DC_SoC) > 1:

dSoC = DC_SoC[index] - DC_SoC[index-1]

duty_cycle += dSoC/float(Pwlan)

if duty_cycle < Twlan_min/float(Tint):

...

## 1.4 CREATING BATTERY SoC - EWMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

ewma_SoC.append(energy)

# Making energy prediction:

if len(ewma_SoC) > 1:

dSoC = ewma_SoC[index] - ewma_SoC[index-1]

ewmaEg.append(dSoC + Pbase + Pwlan*duty_cycle)

# DC calculation for this time interval

if len(ewma_SoC) > N_ewma+1:

if len(ewma_SoC)<(20*N_ewma):

Eg_pred = EWMAstep(ewmaEg,N=N_ewma)

# Restricting EWMA calculation to smaller number of samples

else:

Eg_pred = EWMAstep(ewmaEg[index-20*N_ewma+1:index],N=N_ewma)

duty_cycle = ((Eg_pred/Tint)-Pbase)/Pwlan

if duty_cycle < Twlan_min/float(Tint):

...

## 1.5 CREATING BATTERY SoC - WCMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

wcma_SoC.append(energy)

# Making energy prediction:

if len(wcma_SoC) > 1:

dSoC = wcma_SoC[index] - wcma_SoC[index-1]

wcmaEg.append(dSoC + Pbase + Pwlan*duty_cycle)

# DC calculation for this time interval

# Eg is a forecast for this interval based on WCMA

# Also: restricting WCMA calculation to necessary number of samples

if len(wcma_SoC) > N_wcma+1:

Eg_pred = WCMAstep(wcmaEg[index-N_wcma-1:index],alpha=A_wcma,D=D_wcma,K=K_wcma)

Eg_pred -= 100

duty_cycle = ((Eg_pred/Tint)-Pbase)/Pwlan

if duty_cycle < Twlan_min/float(Tint):

...

##################################################

""" Version 3.0:

Duty cycle calculation same as 2.0, also scale with %SoC """
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...

## 1.3 CREATING BATTERY SoC - simple duty cycling

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

DC_SoC.append(energy)

# DC calculation for this time interval

# dSoC is a calculation for this interval based on history #

if len(DC_SoC) > 1:

dSoC = DC_SoC[index] - DC_SoC[index-1]

duty_cycle += dSoC/float(Pwlan)

if duty_cycle > 1:

duty_cycle = 1

duty_cycle = duty_cycle*energy/float(Ebat_max)

if duty_cycle < Twlan_min/float(Tint):

duty_cycle = Twlan_min/float(Tint)

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

...

## 1.4 CREATING BATTERY SoC - EWMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

ewma_SoC.append(energy)

# Making energy prediction:

if len(ewma_SoC) > 1:

dSoC = ewma_SoC[index] - ewma_SoC[index-1]

ewmaEg.append(dSoC + Pbase + Pwlan*duty_cycle)

# DC calculation for this time interval

if len(ewma_SoC) > N_ewma+1:

if len(ewma_SoC)<(20*N_ewma):

Eg_pred = EWMAstep(ewmaEg,N=N_ewma)

# Restricting EWMA calculation to smaller number of samples

else:

Eg_pred = EWMAstep(ewmaEg[index-20*N_ewma+1:index],N=N_ewma)

duty_cycle = ((Eg_pred/Tint)-Pbase)/Pwlan

if duty_cycle > 1:

duty_cycle = 1

duty_cycle = duty_cycle*energy/float(Ebat_max)

if duty_cycle < Twlan_min/float(Tint):

duty_cycle = Twlan_min/float(Tint)

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

...

## 1.5 CREATING BATTERY SoC - WCMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

wcma_SoC.append(energy)

# Making energy prediction:

if len(wcma_SoC) > 1:

dSoC = wcma_SoC[index] - wcma_SoC[index-1]

wcmaEg.append(dSoC + Pbase + Pwlan*duty_cycle)

# DC calculation for this time interval

if len(wcma_SoC) > N_wcma+1:

Eg_pred = WCMAstep(wcmaEg[index-N_wcma-1:index],alpha=A_wcma,D=D_wcma,K=K_wcma)

Eg_pred -= 100

duty_cycle = ((Eg_pred/Tint)-Pbase)/Pwlan

if duty_cycle > 1:

duty_cycle = 1
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duty_cycle = duty_cycle*energy/float(Ebat_max)

if duty_cycle < Twlan_min/float(Tint):

duty_cycle = Twlan_min/float(Tint)

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

...

##################################################

""" Version 4.0:

Duty cycle calculation same as 2.0

Turn station off during night (~12h), and also

below critical battery """

## 1.1 CREATING BATTERY SoC - NO WLAN!!! Control run

...

for index, Eg in enumerate(pv_list):

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

power_down = 0

elif (energy<=Ebat_max*0.05) and not power_down:

power_down = 1

# Power off during night:

if Eg == 0.0:

power_down = 1

# Energy consumption throughout current time interval

# and until beginning of next time interval (next iteration)

if not power_down:

...

## 1.2 CREATING BATTERY SoC - NO duty_cycle

...

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

power_down = 0

elif (energy<=Ebat_max*0.05) and not power_down:

power_down = 1

# Power off during night:

if Eg == 0.0:

power_down = 1

# Energy consumption throughout current time interval

# and until beginning of next time interval (next iteration)

if not power_down:

...

## 1.3 CREATING BATTERY SoC - duty_cycle PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

DC_SoC.append(energy)

# Power off during night:

if Eg == 0.0:

power_down = 1

# DC calculation for this time interval

if len(DC_SoC) > 1:

dSoC = DC_SoC[index] - DC_SoC[index-1]

duty_cycle += dSoC/float(Pwlan)

if duty_cycle > 1:

duty_cycle = 1

if duty_cycle < Twlan_min/float(Tint):

duty_cycle = Twlan_min/float(Tint)

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down and (not Eg == 0.0):
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...

## 1.4 CREATING BATTERY SoC - EWMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

ewma_SoC.append(energy)

# Power off during night:

if Eg == 0.0:

power_down = 1

# Making energy prediction:

if len(ewma_SoC) > 1:

dSoC = ewma_SoC[index] - ewma_SoC[index-1]

ewmaEg.append(dSoC + Pbase + Pwlan*duty_cycle)

# DC calculation for this time interval

if len(ewma_SoC) > N_ewma+1:

...

## 1.5 CREATING BATTERY SoC - WCMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

wcma_SoC.append(energy)

# Power off during night:

if Eg == 0.0:

power_down = 1

# Making energy prediction:

if len(wcma_SoC) > 1:

dSoC = wcma_SoC[index] - wcma_SoC[index-1]

wcmaEg.append(dSoC + Pbase + Pwlan*duty_cycle)

# DC calculation for this time interval

if len(wcma_SoC) > N_wcma+1:

...

## 2. PRINTING POWER MANAGEMENT TO FILE

results = [noWLAN_SoC,noPM_SoC,DC_SoC,DChist,ewma_SoC,ewmaDChist,wcma_SoC,wcmaDChist]

item_length = len(results[0])

with open(’SoC_calc_PM.csv’, ’wb’) as file6:

file_writer = csv.writer(file6)

for i in range(item_length):

file_writer.writerow([x[i] for x in results])

print "Finished SoC_calc_PM v4.0, Results stored in .csv files."

print "There are 4104 ’controlled shutdown hours’ in the year"

print "Of those: hours offline, critical offline"

print "No WLAN: "+str(Toff[0])+", "+str(Toff[0]-4104)+"."

print "No PM: "+str(Toff[1])+", "+str(Toff[1]-4104)+"."

print "DC PM: "+str(Toff[2])+", "+str(Toff[2]-4104)+"."

print "EWMA PM: "+str(Toff[3])+", "+str(Toff[3]-4104)+"."

print "WCMA PM: "+str(Toff[4])+", "+str(Toff[4]-4104)+"."

print ""

print "During ON-time, average duty cycle is:"

print "DC PM: %.4f"%(sum(DChist)/(8784-Toff[2])*100)+"%."

print "EWMA PM: %.4f"%(sum(ewmaDChist)/(8784-Toff[3])*100)+"%."

print "WCMA PM: %.4f"%(sum(wcmaDChist)/(8784-Toff[4])*100)+"%."

##################################################

""" Version 2.1:

Similar to 2.0, slight changes to duty cycle calculation: only changing

the duty cycle once per day (at midnight). This should eliminate

erratic duty cycle changes and stabilize the system power consumption. """

...

## 1.3 CREATING BATTERY SoC - simple duty cycling
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...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

DC_SoC.append(energy)

# DC calculation once per day at 00:00

# dSoC is a calculation for entire day (24h) #

if len(DC_SoC) > 1:

if not index%24:

dSoC = DC_SoC[index] - DC_SoC[index-24]

duty_cycle += dSoC/float(Pwlan*24)

if duty_cycle < Twlan_min/float(Tint):

...

## 1.4 CREATING BATTERY SoC - EWMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

ewma_SoC.append(energy)

# Making energy prediction:

if len(ewma_SoC) > 1:

if not index%24:

dSoC = ewma_SoC[index] - ewma_SoC[index-24]

ewmaEg.append(dSoC + Pbase*24 + Pwlan*duty_cycle*24)

# DC calculation for this time interval

if len(ewmaEg) > N_ewma+1:

if len(ewmaEg)<(20*N_ewma):

Eg_pred = EWMAstep(ewmaEg,N=N_ewma)

# Restricting EWMA calculation to smaller number of samples

else:

Eg_pred = EWMAstep(ewmaEg[index/24-20*N_ewma+1:index/24],N=N_ewma)

if not index%24:

duty_cycle = ((Eg_pred/24)-Pbase)/Pwlan

if duty_cycle < Twlan_min/float(Tint):

...

## 1.5 CREATING BATTERY SoC - WCMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

wcma_SoC.append(energy)

# Making energy prediction:

if len(wcma_SoC) > 1:

if not index%24:

dSoC = wcma_SoC[index] - wccma_SoC[index-24]

wcmaEg.append(dSoC + Pbase*24 + Pwlan*duty_cycle*24)

# DC calculation for entire day

if len(wcmaEg) > N_wcma+1:

Eg_pred = WCMAstep(wcmaEg[index/24-N_wcma-1:index/24],alpha=A_wcma,D=D_wcma,K=K_wcma)

if not index%24:

duty_cycle = ((Eg_pred/24)-Pbase)/Pwlan

# This EWMA part helps the system work for the number of days it

# takes the WCMA to initialize with the ~100 samples (3.5 months!) :/

elif len(wcmaEg) > N_ewma+1:

if len(wcmaEg)<(20*N_ewma):

Eg_pred = EWMAstep(wcmaEg,N=N_ewma)

else:

Eg_pred = EWMAstep(wcmaEg[index/24-20*N_ewma+1:index/24],N=N_ewma)

if not index%24:

duty_cycle = ((Eg_pred/24)-Pbase)/Pwlan

if duty_cycle < Twlan_min/float(Tint):
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...

##################################################

""" Version 2.2:

Same as 2.1, slight changes to duty cycle calculation.

Only changing the duty cycle once per day (at midnight), but also

changing it in no more than 0.25 increments! (even slower dc change).

Terrible idea!

Does almost nothing, but make the stats a little worse than 2.1 does. """

...

Vbat = 12.0 # Voltage in V

max_increment = 0.25 # Maximum increment of change for duty cycle

...

## 1.3 CREATING BATTERY SoC - simple duty cycling

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

DC_SoC.append(energy)

# DC calculation once per day at 00:00

if len(DC_SoC) > 1:

if not index%24:

dSoC = DC_SoC[index] - DC_SoC[index-24]

increment = dSoC/float(Pwlan*24)

if increment > max_increment: increment = max_increment

if increment < -max_increment: increment = -max_increment

duty_cycle += increment

if duty_cycle < Twlan_min/float(Tint):

...

## 1.4 CREATING BATTERY SoC - EWMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

ewma_SoC.append(energy)

# Making energy prediction:

if len(ewma_SoC) > 1:

if not index%24:

dSoC = ewma_SoC[index] - ewma_SoC[index-24]

ewmaEg.append(dSoC + Pbase*24 + Pwlan*duty_cycle*24)

# DC calculation for this time interval

if len(ewmaEg) > N_ewma+1:

if len(ewmaEg)<(20*N_ewma):

Eg_pred = EWMAstep(ewmaEg,N=N_ewma)

# Restricting EWMA calculation to smaller number of samples

else:

Eg_pred = EWMAstep(ewmaEg[index/24-20*N_ewma+1:index/24],N=N_ewma)

if not index%24:

increment = ((Eg_pred/24)-Pbase)/Pwlan - ewmaDChist[index-1]

if increment > max_increment: increment = max_increment

if increment < -max_increment: increment = -max_increment

duty_cycle += increment

if duty_cycle < Twlan_min/float(Tint):

...

## 1.5 CREATING BATTERY SoC - WCMA PM

...

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

wcma_SoC.append(energy)
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# Making energy prediction:

if len(wcma_SoC) > 1:

if not index%24:

dSoC = wcma_SoC[index] - wccma_SoC[index-24]

wcmaEg.append(dSoC + Pbase*24 + Pwlan*duty_cycle*24)

# DC calculation for entire day

if len(wcmaEg) > N_wcma+1:

Eg_pred = WCMAstep(wcmaEg[index/24-N_wcma-1:index/24],alpha=A_wcma,D=D_wcma,K=K_wcma)

if not index%24:

increment = ((Eg_pred/24)-Pbase)/Pwlan - wcmaDChist[index-1]

if increment > max_increment: increment = max_increment

if increment < -max_increment: increment = -max_increment

duty_cycle += increment

# This EWMA part helps the system work for the number of days it

# takes the WCMA to initialize with the ~100 samples (3.5 months!) :(

elif len(wcmaEg) > N_ewma+1:

if len(wcmaEg)<(20*N_ewma):

Eg_pred = EWMAstep(wcmaEg,N=N_ewma)

else:

Eg_pred = EWMAstep(wcmaEg[index/24-20*N_ewma+1:index/24],N=N_ewma)

if not index%24:

increment = ((Eg_pred/24)-Pbase)/Pwlan - wcmaDChist[index-1]

if increment > max_increment: increment = max_increment

if increment < -max_increment: increment = -max_increment

duty_cycle += increment

if duty_cycle < Twlan_min/float(Tint):

...

####################################################################################################

### Power management on augmented system

####################################################################################################

""" Version 2.3:

Similar to 2.1, but having oversized battery, constant DC, 12 years

of PV data... Used to prove a point (panel/battery too small). """

...

Vbat = 12.0 # Voltage in V

Cbat = 34 # Nominal capacity in Ah

Ebat_max = 7500 # To prove that Pbase+Pwlan are too big for PV-module

Pwlan = 0.25*Vbat # Power consumption in W

Pbase = 0.20*Vbat # Power consumption in W

Tint = 1.0 # Time interval between samples in h

Twlan_min = 0.1 # Minimum WLAN on-time

with open(’eH_30W_daily_12x8784x1_scaled.csv’,’r+b’) as file1:

reader = csv.reader(file1, delimiter=’,’)

pv_matrix = list(reader)

pv_list = []

for item in pv_matrix:

tmp = map(float,item)

pv_list.extend(tmp)

pv_list_plus = list(pv_list[i]+100 for i in range(len(pv_list)))

...

## 1.3. CONSTANT DUTY CYCLE = 20%

Toff = [0,0,0,0,0]

power_down = 0

""" The system can handle numpy.mean(pv_list), which is 3.0W of

total consumption, that gives me 20% duty cycle (4h48min per day MAX)."""

duty_cycle = 0.20

DC_SoC = []
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energy = Ebat_max

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

DC_SoC.append(energy)

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

power_down = 0

elif (energy<=Ebat_max*0.05) and not power_down:

power_down = 1

# Energy consumption throughout current time interval

# and until beginning of next time interval (next iteration)

if not power_down:

energy += (Eg - duty_cycle*Pwlan - Pbase)

elif power_down:

energy += Eg

Toff[2] += 1

if energy > Ebat_max:

energy = Ebat_max

elif energy < 0:

energy = 0

## 1.4 CREATING BATTERY SoC - EWMA PM

power_down = 0

duty_cycle = 1.0

ewma_SoC = []

energy = Ebat_max

ewmaDChist = []

ewmaEg = []

N_ewma = 4

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

ewma_SoC.append(energy)

# Making energy prediction:

if len(ewma_SoC) > 1:

if not index%24:

ewmaEg.append(sum(pv_list[index-24-1:index-1]))

# DC calculation for this time interval

# Eg is a forecast for this interval based on EWMA #

if len(ewmaEg) > N_ewma+1:

if len(ewmaEg)<(20*N_ewma):

Eg_pred = EWMAstep(ewmaEg,N=N_ewma)

# Restricting EWMA calculation to smaller number of samples

else:

Eg_pred = EWMAstep(ewmaEg[index/24-20*N_ewma+1:index/24],N=N_ewma)

if not index%24:

duty_cycle = ((Eg_pred/24)-Pbase)/Pwlan

if duty_cycle < Twlan_min/float(Tint):

duty_cycle = Twlan_min/float(Tint)

if index > 720:

pvmean = numpy.mean(pv_list[index-720:index-1])/max(pv_list[index-720:index-1])

if duty_cycle > pvmean:

duty_cycle = pvmean

elif index > 2:

pvmean = numpy.mean(pv_list[:index-1])/max(pv_list[:index-1])

if duty_cycle > pvmean:

duty_cycle = pvmean

# Emergency power-down
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if (energy>Ebat_max*0.6) and power_down:

power_down = 0

elif (energy<=Ebat_max*0.05) and not power_down:

power_down = 1

duty_cycle = 0

# Energy consumption throughout current time interval

# and until beginning of next time interval (next iteration)

if not power_down:

energy += (Eg - Pwlan*duty_cycle - Pbase)

elif power_down:

duty_cycle = 0

energy += Eg

Toff[3] += 1

if energy > Ebat_max:

energy = Ebat_max

elif energy < 0:

energy = 0

ewmaDChist.append(duty_cycle)

## 1.5 CREATING BATTERY SoC - WCMA PM

power_down = 0

duty_cycle = 1.0

wcma_SoC = []

energy = Ebat_max

wcmaDChist = []

wcmaEg = []

A_wcma = 0.7

D_wcma = 4

K_wcma = 3

N_wcma = 24*D_wcma+K_wcma-1

for index, Eg in enumerate(pv_list):

# Energy at beginning of time interval

wcma_SoC.append(energy)

# Making energy prediction:

if len(wcma_SoC) > 1:

if not index%24:

wcmaEg.append(sum(pv_list[index-24-1:index-1]))

# DC calculation for entire day

# Also: restricting WCMA calculation to necessary number of samples

if len(wcmaEg) > N_wcma+1:

Eg_pred = WCMAstep(wcmaEg[index/24-N_wcma-1:index/24],alpha=A_wcma,D=D_wcma,K=K_wcma)

if not index%24:

duty_cycle = ((Eg_pred/24)-Pbase)/Pwlan

# This EWMA part helps the system work for the number of days it

# takes the WCMA to initialize with the ~100 samples (3.5 months!) :(

elif len(wcmaEg) > N_ewma+1:

if len(wcmaEg)<(20*N_ewma):

Eg_pred = EWMAstep(wcmaEg,N=N_ewma)

else:

Eg_pred = EWMAstep(wcmaEg[index/24-20*N_ewma+1:index/24],N=N_ewma)

if not index%24:

duty_cycle = ((Eg_pred/24)-Pbase)/Pwlan

if duty_cycle < Twlan_min/float(Tint):

duty_cycle = Twlan_min/float(Tint)

if index > 720:

pvmean = numpy.mean(pv_list[index-720:index-1])/max(pv_list[index-720:index-1])

if duty_cycle > pvmean:
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duty_cycle = pvmean

elif index > 2:

pvmean = numpy.mean(pv_list[:index-1])/max(pv_list[:index-1])

if duty_cycle > pvmean:

duty_cycle = pvmean

# Emergency power-down

if (energy>Ebat_max*0.6) and power_down:

...




