
Distributed
 Computing

Android Workout

Semester thesis

Adrian Hess

adhess@ee.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Klaus-Tycho Förster, Jara Uitto

Prof. Dr. Roger Wattenhofer

September 18, 2013

Abstract

Today’s smartphone become more and more powerful. They are packed with a
lot of sensors. These sensors can be used to monitor many aspects in people life.
One of the most important aspects is sports, especially working out.

In this thesis we want to use the phone’s sensors to monitor the workouts
of the user. Different to other approaches, this Android

TM
application monitors

stationary workouts like push-ups or crunches. An algorithm was developed
which, with the help of the accelerometer data, is able to count the number of
repetitions during the workout.

Aside of the counting of repetitions an extension was implemented which
helps the user to improve his technique for some selected workouts. The extension
uses the orientation sensor to monitor the user’s posture. With the knowledge
of the posture at the turning points of the workouts, the application is able to
give appropriate hints.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 1

1.3 Goal . 2

2 Application Overview 3

2.1 Workouts . 3

2.2 User Interactions . 4

2.2.1 Basic interactions . 4

2.2.2 Sensorposition . 4

2.2.3 Detection parameters . 5

2.2.4 Give Hints . 5

3 Detection of Workout repetitions 7

3.1 Sensordata . 7

3.2 Sensorevent Handler . 9

3.3 Detection . 9

3.3.1 Peakfinder . 9

3.3.2 Peakfiltering . 11

3.4 Counter . 11

4 Hints for workouts 13

4.1 Sensordata . 13

4.2 Sensorevent Handler . 14

4.3 Data filtering . 15

4.4 Hints output . 15

ii

Contents iii

4.5 Implemented hints . 15

5 Future Work 17

5.1 Possible improvements . 17

5.2 Possible extensions . 17

Bibliography 19

Chapter 1

Introduction

1.1 Motivation

Sports and working out was and still is one of the most important aspects in
many people life. But for some just doing sports is not enough, they would like
to monitor what they are doing. There already exist many equipment to monitor
sports and working out, but this equipment often serves a small range of use or
is rather expensive. Since this equipment is mainly a sensor with a piece of
software behind it, why not use a smartphone to monitor the workout. Today’s
smartphone become more and more powerful. A lot of sensor are getting packed
into a phone and these sensors’ accuracy has improved over the last couple of
years. Also, the number of people who own a smartphone is increasing, so it
would be nice to use the device one already has for monitoring workouts.

So the hardware would be there, but what is still missing is the appropri-
ate software. There are already applications which use the location sensors for
tracking running or similar activities, but there are applications missing for sta-
tionary workouts. With all the internal sensors of smartphones and a new piece
of software it should be possible to monitor also these kind of workouts and even
give hints about one’s technique.

1.2 Related Work

There are already several applications available which tackles the field of work-
outs. These applications can be divided into three categories.

Database applications
Applications of this category contain a database of workouts. There is a
short explanation for each workout how it is done as well as a list of affected
muscles. Additionally to the database, workouts can be added to a training
plan, which keeps track of what workouts with how many repetitions have

1

1. Introduction 2

been executed. The number of repetitions is put in manually by the user.
A good example of such an application is Barbell Gym Tracker.[1]

Personal trainer application
These applications set the rhythm in which the user should execute the
workout with an acoustical signal. These rhythms are specified for only a
few workouts per application. The user can set how many repetitions and
sets he would like to perform. Fitness Flow is an example application of
this group. [2]

GPS-based application
GPS-based applications track the user’s position during workout. This is
usually used for workouts like running and cycling. With the help of the
GPS signal, the application is able to give information about the covered
distance, average speed and many other things and also shows the covered
route on a map. The applications keep track of all finished workouts in a
diary. A popular application of this type is Sportstracker.[3]

1.3 Goal

The goal of this thesis is to create an application, which automatically keeps
track of chosen workouts. Since the chosen workouts are stationary and often
executed indoors, the GPS Sensor is not of any use for detection. Therefore an
algorithm should be developed to recognize the repetitions of the workouts with
the help of the smartphones internal sensors, like accelerometer or orientation
sensor.

Additional to the counting of repetitions, the application should also detect
if a workout is done in a wrong manner. In the case of incorrect execution, the
application should give the user acoustical hints how to improve the execution
of the workout.

The content of this thesis is structured as follows. Chapter 2 gives an overview
of the functionality of the application. This includes which workouts can be cho-
sen as well as the users customization possibilities. In Chapter 3, the algorithm
for detecting repetitions is explained in detail. The process how the application
detects incorrect execution of workouts and giving appropriate hints is discussed
in Chapter 4. At the end is a short discussion on what could be done to improve
the application further.

Chapter 2

Application Overview

This chapter gives a quick overview of the applications functionality. In a first
part, the workouts are introduced for which the application is designated for. In
a second part, all the elements which can be controlled by the user are explained.

2.1 Workouts

For the purpose of this application five workouts are chosen. Figure 2.1 shows
the workout selection menu with the chosen workouts.

Figure 2.1: List of chosen workouts in the workout selection window.

3

2. Application Overview 4

These workouts have three things in common. First, they do not need any
special equipment or any at all. In the case of dumbbell flys and pull-ups several
other things can be used as a replacement for the dumbbells and grip, respec-
tively. Second, these workouts do not require a lot of space, since they are
stationary workouts. Third and the most important commonality, all the work-
outs have a start position, an intermediate position and an end position which is
the same as the start position. This leads to an oscillating motion. The oscillat-
ing characteristic is important for the detection process, which will be explained
in Chapter 3.

Additional to these commonalities, these workouts are very popular. At least
the first three of the chosen workouts are known by almost everyone. This makes
this application useful for a large user base.

2.2 User Interactions

In the following we want to explain what possibilities the user has, when he
selected a workout.

2.2.1 Basic interactions

The purpose of the application is to monitor the workouts, but the application
has yet to be able to detect when the workout starts. Therefore the application
provides a Start/Stop button. When the Start button is pressed, the applications
triggers a countdown of three seconds, which allows the user to get into starting
position. The start of the monitoring is acoustically signaled. After the start, the
same button transforms into the Stop button. With the Reset button the user
can reset the counter to zero. This can be useful if the user wants to do multiple
sets of the same workout. The application also provides detailed instructions
of how the workouts are done. These basic interactions are the same for all
workouts and are shown in Figure 2.2a.

2.2.2 Sensorposition

For every workout the user is able to choose from two predefined sensor positions,
at which he should place the smartphone. The dialog box depicted in Figure 2.2b
can be reached through the menu of the start screen from every workout. The
first position is selected by default and does not have to be chosen before workout.
As soon as the user clicks to change the sensor position, the application sets all
the necessary parameters for detection and hints in the background.

2. Application Overview 5

2.2.3 Detection parameters

Since the motion during the workout is not only dependent from the workout
itself but also from the physical attributes of the user, the detection parame-
ters may not fit properly for everyone. Therefore the user is able to adjust the
parameters. The parameters which can be adjusted are the TimeDiff, which
defines the minimum time between the starting/end position and the interme-
diate position during the workout and the ValDiff, which defines the minimum
difference in acceleration between these positions. The use of these parameters
are explained in Section 3.3.2. With appropriate adjustment of these parameters
it should be possible for every user to detect the repetitions of workout.

The slider for adjustment, as seen in Figure 2.2c, are shown as soon as the
user selects Custom parameters in the menu. The limits for the slider are set to
a reasonable range for every workout.

2.2.4 Give Hints

Finally, the user is able to choose if he wants hints to his execution of workouts. If
the user enables this option, the Hints for workouts process described in Chapter
4 will be activated. As a result the user gets acoustical feedback, if he is doing
the workout wrong.

2. Application Overview 6

(a) Basic interaction possibilities during
workout.

(b) Dialog Box for sensor position selec-
tion.

(c) Slider for custom detection parame-
ters.

Figure 2.2: Screenshots for user interactions.

Chapter 3

Detection of Workout
repetitions

In this chapter, the process of how to detect repetitions of workouts is discussed.
To perform such a detection, multiple tasks have to be performed. Figure 3.1
shows all the tasks that are required for the detection process. In the following
sections, every task is explained in detail.

Figure 3.1: Flowchart of the repetition detection process.

3.1 Sensordata

Today’s smartphones contain several motion sensors. These sensors can monitor
three-dimensional device movement and positioning. Probably the best known
and in this thesis for detection used motion sensor is the accelerometer. The
accelerometer measures the acceleration applied to the device for all three axes.
Figure 3.2 shows the three axes relative to the screen orientation. Since the axes
changes with screen orientation, the application is locked to portrait mode only.
This way the axes are relative to the physical device as shown in Figure 3.2.

7

3. Detection of Workout repetitions 8

The raw data supplied by the accelerometer are packed into a sensor event.
As can be seen in Table 3.1, a sensor event contains the raw sensor data, origin
of the data, timestamp and the accuracy of the data.

Figure 3.2: Coordinate system relative to screen orientation.[4]

Type Variable name Description

float[] values The length and contents of the values array depends
on which sensor type is being monitored

Sensor sensor The sensor that generated this event.

long timestamp The time in nanosecond at which the event happened

int accuracy The accuracy of this event. (Low/Medium/High)

Table 3.1: Overview of a Sensorevent package.[5]

How often a sensor event package is generated by the sensor is an implemen-
tation choice. In our case, the sensor produces at least every 200 milliseconds
such a package. Such a delay is small enough to detect the motion which belongs
to the actual workout, but also high enough to get rid of most of the noise in
the sensor signal.

3. Detection of Workout repetitions 9

3.2 Sensorevent Handler

The sensorevent handler is the first unit to process the data. It picks up the
sensorevent packages as soon as the sensor has put one together. Since the sen-
sorevent package contains more information than needed for the detection, the
sensorevent handler filters out the necessary information. The needed informa-
tion are the raw data in m/s2 as well as the timestamp in milliseconds.

As mentioned in Section 2.1, the chosen workouts show an oscillating motion
in at least one of the three axes. The sensorevent handler therefore only selects
the value of the axis which shows the strongest oscillation. Which axis this is
has been predefined with experiments for each workout and sensor position. The
selected raw data is added to the list of all previous raw data. The same thing
happens to the timestamps. This two lists are forwarded to the detection task
whenever a new value is added to the list. Figure 3.3 shows an illustration of
the described process.

Figure 3.3: Input and output of the sensorevent handler task. In this illustration,
the sensorevent handler chooses the x-axis for the detection task.

3.3 Detection

After the sensorevent handler passed all the necessary data, the actual detection
can begin. The detection itself happens in two stages. The first stage is the
peakfinder. After the peakfinder has done its job the peakfilter filters out the
useful peaks used by the counter.

3.3.1 Peakfinder

The peakfinder algorithm goes through every value of the raw data list provided
by the sensorevent handler and checks whether it is a local minima or maxima
by comparing the value to its neighbors. If so, the value is stored into the new
peak value list. At the same time, the corresponding timestamp is stored in
the new peak timestamp list. All other raw data values and timestamps are

3. Detection of Workout repetitions 10

discarded. Therefore the algorithm produces two lists with peak values and the
corresponding timestamps. The values are in time ascending order and always
alternate from a minima to a maxima. Figure 3.4 shows an illustration what
kind of lists get generated with the peakfinder algorithm. These lists are then
forwarded to the peakfiltering.

Figure 3.5 shows a small example which values gets selected for a given list
of raw data and timestamps.

Figure 3.4: Illustration of the peakfinder task.

Figure 3.5: Example output of the peakfinder task in a graph, where the green
dots are local maxima and the black dots are local minima. These values and
the corresponding timestamps are sent to the next task.

3. Detection of Workout repetitions 11

3.3.2 Peakfiltering

After the peakfinder has found every local minima and maxima, the peakfilter
algorithm filters out all the unwanted peaks in the peak value list. Unwanted
peaks are caused either by the sensor’s signal noise or by body shaking during
the workout. Goal of the filtering is, that for every low and high curve of the
oszilation one peak is detected. To achieve this goal, two sorts of filtering are
used: temporal filtering and acceleration distance filtering.

The temporal filtering compares every two adjacent timestamps in the peak

timestamp list. If the time difference is less than the specified parameter TimeDiff,
then both timestamps are removed from the list. Together with the timestamps,
the corresponding raw data from the peak value list are also removed. For each
workout and sensor position the parameter TimeDiff was predefined after some
experiments, but can also be customized as described in Section 2.2.3. With
the removal of both of the adjacent values, it can be assured that local minima
and maxima are still alternating. After this first filtering the timestamps are no
longer needed.

The acceleration distance filtering compares every two adjacent raw values
from the peak value list. Similar to the temporal filtering, it checks if the
difference between the two values is smaller than the parameter ValDiff. If the
difference is indeed smaller than ValDiff, than both values are removed from
the list. After both filtering algorithms are finished, we have one list with the
usable peaks only. This list is forwarded to the counter.

3.4 Counter

The counter is the final task in the detection process. It gets the filtered peak

value list from the detection task and counts how many elements are in the list.
Since there are still both local minima and maxima in the list, the number of
elements have to be divided by two. Because we don’t want to count the first half
of a repetition, we have to round down the outcome of the division accordingly.
The counter finally updates the number in the UI of the application and gives
an acoustical signal to the user at the end of every repetition.

3. Detection of Workout repetitions 12

Figure 3.6: Example output of the peakfiltering task in a graph, where the red
dots are the values which are sent to the counter. The green and black circles
are filtered out.

Chapter 4

Hints for workouts

Alongside with the detection of repetitions for workouts, the application is able
to give real time hints of how to perform the workouts. As for the detection
process, the process for giving hints consists of multiple tasks. Some of these
tasks run in parallel with the tasks of the detection process. Figure 4.1 shows
the order of tasks which are required to give appropriate hints. Currently, hints
are only implemented for the Push Ups and Crunches.

Figure 4.1: Flowchart of the Hints process.

4.1 Sensordata

In order to give hints, one does not only need to know the motion during the
workout but also the position of the user relative to the starting position of the
workout. Since the chosen workouts have an oscillating motion and the sensor
are put into predefined positions, we have a rotation around one axis. We can
measure this rotation with the help of the orientation sensor, which monitors
the position of the device relative to the earth’s frame of reference. The rotation
axes are shown in Figure 4.2 and are defined as follows: [6]

• Azimuth: Degrees of rotation around the z axis. This is the angle between
magnetic north and the device’s y axis.

• Pitch: Degrees of rotation around the x axis

• Roll: Degrees of rotation around the y axis

13

4. Hints for workouts 14

Figure 4.2: The three rotation axes relative to the device and magnetic north,
respectively.[7]

As with the raw data from the accelerometer in the detection process, the
orientation data are put into a sensorevent package and are produces at least
every 200 milliseconds.

4.2 Sensorevent Handler

As described in Section 3.2, the sensorevent handler has to process all the sen-
sorevent packages from the accelerometer. Additional to these packages it also
have to process all the packages from the orientation sensor if the hints are ac-
tivated. As for the acceleration data, not every information packed into the
sensorevent by the orientation sensor is necessary for further tasks, therefore the
sensorevent handler picks the value of the axis around which the device rotates
during the workout and append this value to an angle list with all the previous
values from the same axis.

Since the accelerometer and the orientation sensor don’t necessarily provide
sensorevent packages as often and at the same time, the sensorevent handler is
also responsible for keeping the lists of the accelerometer and orientation sensor
values at equal size. If one of the lists fall short by more than one value, the

4. Hints for workouts 15

sensorevent packages for the larger list gets dropped until the smaller list picks
up with the larger one. It is crucial for the data filtering task that the two lists
are of equal size.

4.3 Data filtering

The filtering process of the orientation data runs parallel to the filtering process
of the acceleration data. Whenever a data point from the acceleration list is
erased by the peakfinder or peakfiltering task, the data point at the same spot of
the angle list also gets erased. As a result we get an angle of the chosen rotation
axis for every peak in the detection process. Due to this filtering method it
was necessary that the sensorevent handler kept the acceleration data and the
orientation data of equal size. Because this way, it can be assured, that the
acceleration data and the corresponding filtered angles are produced at almost
the same time. Figure 4.3 illustrates how the angles are filter parallel to the
accleration data in the detection process.

4.4 Hints output

The hints output task consist mainly of comparing two consecutive angles from
the filtered angle list. Whenever the application detects a repetition it compares
the last angle with its predecessor. Since the peaks alternate from a minimum
to a maximum, the difference of the angles shows the rotation from starting/end
position of the repetition to the intermediate position. With the help of this
difference the application is able to determine if the user is doing the workout
correctly or not. If the user is doing it right, the application gives the usual
acoustical feedback, else the application will tell what has been done wrong.
Two examples of what kind of hints the application can give with this method
are shown in the next section.

4.5 Implemented hints

Currently there are two hints implemented for two different workouts. One is for
the push-ups and the other one is for the crunches. These two examples explains
the use of the orientation sensor for the purpose of giving hints.

For the push-ups the application is able to detect if the user is going deep
enough, whereas for the crunches it is able to detect if the user is bending too
less or too much. Figure 4.4 shows for both workouts at which point the angles
get into the filtered angle list which is used for the difference measuring.

4. Hints for workouts 16

Figure 4.3: Illustration of the data filtering task.

Figure 4.4: The used angles for hint detection for both crunches and push-
ups.[8][9]

For both workouts the range of angle difference, at which the workout is
executed correctly, has been predefined through experiments. If the measured
difference is outside this range, the corresponding hint is given.

Chapter 5

Future Work

While writing this thesis, several ideas came to mind how to improve or extend
this application. Unfortunately, the time for writing this thesis was limited.
Therefore let us have a short look what could be done in the future.

5.1 Possible improvements

Sensor position independent
Currently there are two sensor positions for each workout which have to be
set manually by the user. It would be a nice feature, if the application au-
tomatically detects the position of the phone. It could go even further that
the application allow any random position of the phone and automatically
sets the corresponding axes and parameters for the position.

Hints recognition improvements
The recognition process for the hints in the current state of the application
is a very simplistic but also not very accurate approach. A more accurate
approach would be needed to give better hints to the user.

5.2 Possible extensions

Hints
Until now there are only hints for two workouts. A possible extension
is to implement more hints. These hints could either be for the other
implemented workouts or additional hints for the workouts which already
have hints.

Workouts
There are many known workouts, but the application is currently only able
to detect five workouts. Therefore other workouts could be included in the
application.

17

5. Future Work 18

History
Since the application is able to detect the number of repetitions, it would
make sense to implement a history function. Which stores all the repeti-
tions in a database. The user can then see when he has done how many
repetitions and how many repetitions he has done in total for each work-
out. The history would also show the percentage of repetitions, which has
been executed correctly.

Workout plan
Similar to the database application described in Section 1.2, a workout
plan could be implemented, where the user can decide when he wants to
do which workout with how many repetitions.

Bibliography

[1] PalvajarviSoft: Barbell gym tracker. http://nosturitarkastus.fi/

software/barbell/ Accessed September, 2013.

[2] Skimble Inc.: Fitness flow. http://www.skimble.com/ Accessed September,
2013.

[3] Sports Tracking Technologies Ltd.: Sportstracker. http://www.

sports-tracker.com/ Accessed September, 2013.

[4] Google Inc.: Android sensor overview. http://developer.android.

com/guide/topics/sensors/sensors_overview.html Accessed Septem-
ber, 2013.

[5] Google Inc.: Android sensorevent. http://developer.android.

com/reference/android/hardware/SensorEvent.html Accessed Septem-
ber, 2013.

[6] Google Inc.: Android position sensors. http://developer.android.

com/reference/android/hardware/SensorEvent.html Accessed Septem-
ber, 2013.

[7] Matlab Central: Rotation axes. http://

www.mathworks.com/matlabcentral/fileexchange/

40858-iphone-and-ipad-sensor-support-from-matlab/content/

sensorgroup/Examples/html/CapturingAzimuthRollPitchExample.html

Accessed September, 2013.

[8] Dispatch Online: Crunches. http://www.dispatch.co.za/losing-it/

crunches/ Accessed September, 2013.

[9] NutriFit4Life: Push-ups. http://nutrifit4life.blogspot.ch/2012/

09/spice-up-push-up-8-variations-to-try.html Accessed September,
2013.

19

http://nosturitarkastus.fi/software/barbell/
http://nosturitarkastus.fi/software/barbell/
http://www.skimble.com/
http://www.sports-tracker.com/
http://www.sports-tracker.com/
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://www.mathworks.com/matlabcentral/fileexchange/40858-iphone-and-ipad-sensor-support-from-matlab/content/sensorgroup/Examples/html/CapturingAzimuthRollPitchExample.html
http://www.mathworks.com/matlabcentral/fileexchange/40858-iphone-and-ipad-sensor-support-from-matlab/content/sensorgroup/Examples/html/CapturingAzimuthRollPitchExample.html
http://www.mathworks.com/matlabcentral/fileexchange/40858-iphone-and-ipad-sensor-support-from-matlab/content/sensorgroup/Examples/html/CapturingAzimuthRollPitchExample.html
http://www.mathworks.com/matlabcentral/fileexchange/40858-iphone-and-ipad-sensor-support-from-matlab/content/sensorgroup/Examples/html/CapturingAzimuthRollPitchExample.html
http://www.dispatch.co.za/losing-it/crunches/
http://www.dispatch.co.za/losing-it/crunches/
http://nutrifit4life.blogspot.ch/2012/09/spice-up-push-up-8-variations-to-try.html
http://nutrifit4life.blogspot.ch/2012/09/spice-up-push-up-8-variations-to-try.html

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Goal

	2 Application Overview
	2.1 Workouts
	2.2 User Interactions
	2.2.1 Basic interactions
	2.2.2 Sensorposition
	2.2.3 Detection parameters
	2.2.4 Give Hints

	3 Detection of Workout repetitions
	3.1 Sensordata
	3.2 Sensorevent Handler
	3.3 Detection
	3.3.1 Peakfinder
	3.3.2 Peakfiltering

	3.4 Counter

	4 Hints for workouts
	4.1 Sensordata
	4.2 Sensorevent Handler
	4.3 Data filtering
	4.4 Hints output
	4.5 Implemented hints

	5 Future Work
	5.1 Possible improvements
	5.2 Possible extensions

	Bibliography

