
Institut für
Technische Informatik und
Kommunikationsnetze

Neil Rajesh Dhruva

Crossing the Deadline: An Automata-
Based Hard Real-Time Guarantee

Semester Thesis
July 2013 to December 2013

Code: BA-2013-17

Supervisors: Pratyush Kumar, Georgia Giannopoulou

Professor: Prof. Dr. Lothar Thiele

1

Abstract

Real-time systems are often guaranteed in terms of schedulability, which verifies whether or not
all jobs meet their deadlines. However, such a guarantee can be insufficient in certain applica-

tions. This thesis presents a method to compute a language-based guarantee, which provides
a more detailed description of the deadline hit and miss patterns of an observed task. The only

requirement of such a method is that the timing behavior of the real-time system be modelled

by a network of timed automata. The language-based guarantee is computed by constructing
an equivalent finite state automaton in an iterative manner, using a counter-example guided

abstraction refinement procedure. The method is further extended to generate a guarantee for

a language of unknown complexity. The method is then illustrated for two different applications:
design of a networked control system, and scheduling in a mixed criticality system. In both

cases, it is shown how the language-based guarantee leads to a more efficient design than the
schedulability guarantee. Finally, several experimental results are presented which explore vari-

ous properties of the language-based guarantee, such as scalability, and the effect of variations

in certain system parameters, like the total utilization of a shared resource.

2

Acknowledgement

This thesis was an incredible learning experience for me. Along with an exposure to fields

like formal verification, and real-time systems, I was able to get my first tangible insight into

independent research.

None of this, however, would have been possible without my mentors, Pratyush Kumar, Georgia
Giannopoulou and Prof. Dr. Lothar Thiele. I would like to thank them for accepting me as a

thesis student at the Computer Engineering and Networks Laboratory at ETH, Zurich. I would

like to thank Pratyush and Georgia for proposing a very unique and interesting topic for my
thesis. However, never having worked in the fields of formal verification and real-time systems

before, I was skeptical whether I will be up to the task. But, the guidance from Pratyush,

Georgia and Prof. Thiele, and their continued support and advice, made it very easy for me to
complete the thesis successfully.

It was indeed a great experience working with the Computer Engineering group at the TIK

Laboratory at ETH, Zurich. I’d like to thank the researchers and staff for making me feel

welcome at the lab. I’d especially like to thank Beat Futterknecht for helping me with my visa,
stay and the administrative work required for the thesis.

Finally, I would like to thank BITS, Pilani University, India, for allowing me the opportunity to
conduct my Bachelor’s thesis at ETH, Zurich.

Contents

1 Introduction 6

2 System Model and Definitions 8
2.1 Real-Time System . 8

2.2 Modelling Real-Time System in UPPAAL . 9
2.2.1 Modelling the Real-Time Tasks . 9

2.2.2 Modelling Multiple Tasks per Core . 12

2.2.3 Modelling the Arbiters . 14
2.3 Guarantee Language LG . 17

2.4 Representing the Language . 17

2.4.1 Language Definition and Properties . 18
2.5 Summary . 19

3 Computation of the Guarantee Automaton 20
3.1 Constructing Ak for a given k . 20

3.1.1 The Observer Automaton . 20

3.1.2 Modelling the Observer in UPPAAL . 22
3.1.3 Iterative Construction . 23

3.1.4 Properties of the Computed LG(k) . 25

3.1.5 Minimizing the Guarantee Automaton . 26
3.2 Constructing the Guarantee Automaton For Unknown k 27

3.2.1 Refining LG(k) by Increasing k . 27

3.2.2 Implementing Iterative Refinement in UPPAAL 28
3.2.3 Terminating Condition . 30

3.3 Summary . 31

4 Applications 33

4.1 Language Inclusion . 33

4.2 Calculating Worst-Case Deadline Miss Rate . 36
4.3 Summary . 37

5 Experiments 38

5.1 Randomized Task-Set Generation . 38
5.1.1 Notations . 39

5.1.2 Algorithm . 39
5.1.3 Comments . 40

5.2 Experimental Results . 40

5.2.1 Variation in Deadline . 40
5.2.2 Variation in Bus (Resource) Utilization . 41

5.2.3 Scalability Experiments . 42

6 Conclusion 44

3

CONTENTS 4

A Appendix A 45

A.1 Code for Inverted Pendulum Example . 45
A.2 The Shell Script . 47

A.3 The verifyta Options . 47

A.4 Outline to the Python scripts . 47

B Appendix B 52

B.1 Experiment Tables . 52
B.1.1 Preliminary Experiments . 52

B.1.2 Test Case: Varying Deadline . 69

B.1.3 Test Case: Varying Bus (Resource) Utilization 70

List of Figures

2.1 Superblock model for one task per core . 11
2.2 Superblock model for multiple tasks per core . 12

2.3 Preemptive Fixed Priority Scheduler on the core. 13

2.4 FCFS with Fixed Access Latency . 14
2.5 FCFS with Variable Access Time . 15

2.6 FP with Fixed Access Latency . 16
2.7 TDMA with Fixed Access Latency . 16

2.8 Representing a Regular Language . 18

3.1 Observer for k = 2 in UPPAAL. 21
3.2 Observer for k = 2 in UPPAAL. 22

3.3 Superblock with hit! and miss! events. 23

3.4 Counter-example trace generated by verifyta. 24
3.5 Modified Observer after first counter-example. 25

3.6 Observer O for k = 2. 26
3.7 Guarantee Automaton A2. 26

3.8 The Guarantee for k = 3. 27

3.9 Corresponding Minimized Guarantee. 27
3.10 Initial Observer for k = 3 from A2. 28

3.11 Guarantee Automaton A3. 28

3.12 Initial Observer for k = 1. 29
3.13 Guarantee Automaton A1. 29

3.14 Modified Observer for k = 2. 29
3.15 Guarantee Automaton A2. 29

3.16 Observer for k = 3 in UPPAAL derived from A2. 30

4.1 Minimized Automaton for LA. 35
4.2 Minimized Automaton for LG. 35

4.3 Automaton representation of Ldiff. 36

5.1 WMR vs Deadline. 41
5.2 Uncertainty Metric vs Deadline. 41

5.3 Time vs Deadline. 41
5.4 WMR vs Bus Utilization. 42

5

List of Tables

2.1 Task model for Example 1 . 9

2.2 Guarantee language LG(2) for Example 1 . 19

3.1 Potential Indices for Stopping Condition. 30

3.2 Uncertainty metric for Example 1 . 31

4.1 Task parameters for the control example . 35

4.2 Mixed criticality task-set . 37

4.3 Mixed criticality results . 37

5.1 Notations . 39

5.2 Scalability for 1 task per core. 43

5.3 Scalability for 2 tasks per core. 43
5.4 Scalability for 3 tasks per core. 43

B.1 . 53

B.2 . 53
B.3 . 53

B.4 . 53
B.5 . 54

B.6 . 54

B.7 . 54
B.8 . 54

B.9 . 54

B.10 . 54
B.11 . 55

B.12 . 55
B.13 . 55

B.14 . 55

B.15 . 55
B.16 . 55

B.17 . 55

B.18 . 56
B.19 . 56

B.20 . 56
B.21 . 56

B.22 . 56

B.23 . 56
B.24 . 56

B.25 . 57

B.26 . 57
B.27 . 57

B.28 . 57
B.29 . 57

B.30 . 57

B.31 . 57
B.32 . 58

6

LIST OF TABLES 7

B.33 . 58

B.34 . 58
B.35 . 58

B.36 . 58

B.37 . 58
B.38 . 58

B.39 . 59
B.40 . 59

B.41 . 59

B.42 . 59
B.43 . 59

B.44 . 59

B.45 . 59
B.46 . 60

B.47 . 60
B.48 . 60

B.49 . 60

B.50 . 60
B.51 . 60

B.52 . 60

B.53 . 61
B.54 . 61

B.55 . 61
B.56 . 61

B.57 . 61

B.58 . 61
B.59 . 61

B.60 . 62

B.61 . 62
B.62 . 62

B.63 . 62
B.64 . 62

B.65 . 62

B.66 . 62
B.67 . 63

B.68 . 63

B.69 . 63
B.70 . 63

B.71 . 63
B.72 . 63

B.73 . 63

B.74 . 64
B.75 . 64

B.76 . 64

B.77 . 64
B.78 . 64

B.79 . 64
B.80 . 64

B.81 . 65

B.82 . 65
B.83 . 65

B.84 . 65

B.85 . 65
B.86 . 65

B.87 . 65
B.88 . 66

B.89 . 66

B.90 . 66

LIST OF TABLES 8

B.91 . 66

B.92 . 66
B.93 . 66

B.94 . 66

B.95 . 67
B.96 . 67

B.97 . 67
B.98 . 67

B.99 . 67

B.100. 67
B.101. 67

B.102. 68

B.103. 68
B.104. 68

B.105. 68
B.106. 68

B.107. 68

B.108. 68
B.109. 69

B.110. 69

B.111. 69
B.112. 69

B.113. 69
B.114. 69

B.115. 70

B.116. 70
B.117. 70

B.118. 70

B.119. 70
B.120. 70

B.121. 71
B.122. 71

B.123. 71

B.124. 71
B.125. 71

B.126. 71

B.127. 71
B.128. 72

B.129. 72
B.130. 72

B.131. 72

B.132. 72
B.133. 72

B.134. 72

B.135. 73
B.136. 73

Chapter 1

Introduction

Real-time systems are designed to meet specific timing constraints in the form of deadlines.
Schedulability analysis of a real-time task-set guarantees whether each task meets its deadline

in every execution of the task-set. Missing the deadline often results in a complete system
failure. In such cases, schedulability analysis would discard such a task-set as non-schedulable,

and no further analysis would be necessary. However, in many applications, such as in control

systems and mixed criticality systems, missing the deadline will not always result in a total
system failure.

Consider the example of a networked control system [1]. The timing properties of the communi-
cation network may be analyzed with real-time schedulability tests which guarantee whether all

jobs meet their deadlines. On the other hand, given the worst-case sensor-to-actuator delay, the
physical plant can be stabilized with a controller design for time delayed feedback systems [2].

A key challenge in the composition of such sub-systems is the provision of tight and compact

guarantees.

The real-time systems community has primarily focused on providing schedulability as a

guarantee. From the perspective of the real-time system, if a task-set is schedulable, i.e., if
all jobs are guaranteed to finish on or before their deadlines, then and only then, will all other

sub-systems perform correctly. A large body of research has investigated methods and tools
to verify such a guarantee under different assumptions of task models, scheduling policies and

resource considerations.

However, schedulability can be insufficient in certain settings. For the networked control system

example, the physical plant may be able to withstand a few missed deadlines. Indeed, in [3], the

authors show that a well-defined class of deadline hit and miss patterns can guarantee stability
of a physical plant. Similarly, consider the case of a dual-criticality system with High (HI) and

Low (LO) criticality tasks. In the high criticality mode, the LO criticality tasks may produce useful
results at regular intervals when the corresponding deadlines are met. Schedulability analysis

of such systems, however, would conclude that the task-set is not schedulable and thus should

be discarded. On the other hand, studying these patterns of deadline hits and misses could
yield useful results. Hence, it is pertinent to look for richer (more detailed) guarantees that

extend beyond schedulability.

Researchers have proposed alternate richer guarantees. In [4], the authors proposed two

metrics on the deadline hit and miss patterns, which they called µ-patterns. A
(

n
m

)

µ-pattern

has at least n deadline hits within m consecutive jobs, and a
〈

n
m

〉

µ-pattern has at least n
consecutive deadline hits within any m consecutive jobs. These patterns can be generalized by

the notion of regular languages as proposed in [3]. A slightly different approach was followed

in [5]. The authors propose a dual guarantee. A nominal guarantee is the typical schedulability
test, while an exceptional guarantee specifies for how long deadlines can be missed after an

exceptional event.

For the above, a major challenge is the computation or verification of the guarantees. The

9

10

µ-patterns approach has been demonstrated for fixed-priority scheduling in [4]. The use of

regular languages has been shown for time-triggered architectures in [6]. In [5], the settling-time
approach is applied when modeling in Real-Time Calculus [7]. It is not clear how to compute

these guarantees in a general setting.

Like in [3], a regular language is used in this thesis to model the patterns of deadlines hits

and misses as a guarantee. However, the main focus lies on computing the guarantee for a
broad class of scheduling algorithms and task models. To this end, the real-time system is

represented by a network of timed automata [8] in the model-checking tool UPPAAL [9]. Then,

the aim is to compute a language-based guarantee by model-checking for different candidate
languages until the one that correctly represents the observed hit and miss patterns is found.

Thus, this approach is limited only by the ability to model a real-time system as a network of

timed automata and by the computational cost of model-checking.

In spite of their generic applicability, a common limitation of model-checking tools is the
state-space explosion and the consequent high computation cost. Being conscious of this, two

specific choices are made in the model-checking process. First, a structured approach is used

to identify candidate languages to model-check. To this end, an iterative procedure is employed
to incrementally compute a language of a given complexity that models the observed deadline

hit and miss patterns. This is similar to the counter-example guided abstraction refinement

(CEGAR) [10] approach proposed for program verification.

Second, the complexity of the language that is used as the guarantee, is gradually increased.
The information gathered from earlier steps is fully re-used while increasing the language

complexity. Here, an uncertainty metric is defined to decide when to terminate the iterative

process of increasing the language complexity. With these two steps a standard approach is
proposed to compute the language-based guarantee.

The method is used for two very different applications of the language-based guarantee. First,
language inclusion is used to demonstrate whether the guaranteed real-time performance

matches the assumed performance by another sub-system. As an example, the controller per-
formance of an inverted pendulum with a Linear Quadratic Regulator is presented. For chosen

system parameters, the controller performance cannot be ascertained by the schedulability

guarantee, but is ascertained by the language-based guarantee. In the second application,
the design of mixed-criticality systems [11] is directed to ‘fairly’ distribute resources among

low-criticality tasks in exceptional cases when high-criticality tasks require more resources than

usual. This is done using a worst-case deadline miss rate metric. Such a design step is not
possible with the schedulability guarantee.

Various different experiments are also presented which test different properties of the guar-

antee generation procedure, like the model-checking time. The task-sets for many of these

experiments are constructed using an algorithm which allows users to vary different task
parameters. Consequently, the effect of changes in parameters, like the total shared resource

utilization, can be studied.

The rest of the thesis is organized as follows. Chapter 2 discusses the model of the real-time

system and formally defines the proposed guarantee. Chapter 3 describes two approaches to
compute the language-based guarantee. In Chapter 4, two applications of the language-based

guarantee are presented and illustrated with numerical examples. Finally, Chapter 5 presents

different experiments conducted using the guarantee generation procedure.

Chapter 2

System Model and Definitions

In order to describe the guarantee generation process, certain preliminary definitions and

illustrations are necessary. The chapter begins with the definition of a model of the Real-Time
System (RTS) that is used as a standard for this thesis. This is the general layout of the system

that various task-sets used for experiments adhere to as well. The model definition is followed

by a discussion of timed-automata [8], and illustrative examples of constructing RTS models
using timed-automata in UPPAAL.

Following the UPPAAL illustrations, the chapter goes on to describe the guarantee that is gen-

erated on the deadline hit and miss patterns of a particular task in a real-time task-set. The aim

is to generate the guarantee in the form of a regular language. As we will see later, a regular
language admits advantages which will be useful in model-checking. Finally, various properties

of the proposed language are presented.

2.1 Real-Time System

The RTS under consideration has a task-set, T = {τ0, τ1, ..., τn}, which runs on a single or
multiple processors with blocking access to shared resources. The language-based guarantee

(which characterizes the deadline hit and miss patterns of the jobs of a task) is computed for a

specific task, say τi ∈ T .

The only requirement of this approach is that the timing behavior of such a system be modeled

by a network of timed automata, which we denote as S (for system). Thus, this approach
is restricted only by the modeling power of timed automata and the computational cost of

model-checking.

The real-time system is modelled in the following manner:

• The tasks are periodic in nature.

• The tasks share a resource (e.g. memory, bus etc.), which is used to read and write data.

• Each task τ ∈ T has three phases: the acquisition phase (read data from shared re-

source), the execution phase (execute on a given core), and the replication phase (write
data back to the resource). Such phased models of tasks have been shown to model many

practical applications in the control and real-time domains [13].

• Access to the shared resource, and hence the representation of the above phases, is in

one of two forms: Fixed Access Latency (FAL) or Varying Access Time (VAT).

• In case of FAL, a given multiple of the time unit, say C, is used to monitor access to the
resource by a given task. After C time units, the arbiter assigns access to the resource to

a different task (or again to the same task) depending on the arbitration policy, and if this

or any other task is still waiting for the resource.

11

2.2 Modelling Real-Time System in UPPAAL 12

• For VAT, the task that gains access to the shared resource completes the entire read or

write before access is granted to another task.

• Access to the shared resource is through an arbiter. The arbitration policies experimented
with in this thesis are non-preemptive First Come First Serve (FCFS), Fixed Priority (FP)

and Time Division Multiple Access (TDMA).

• There are either one or more tasks that execute on a given core.

• For more than one task executing per core, preemptive FP scheduling is used on each

core. Additionally, access to the shared resource is asynchronous. Hence, a lower priority
task can execute on the core when the higher priority task is accessing the resource.

• The deadline of the task under consideration is specified along with the access and exe-

cution ranges while modelling the real-time system.

• Resource contention and non-preemptive access to the shared resource result in the

deadline hit and miss patterns that are expressed through the computed language.

Using the above layout, the real-time system task-sets are modelled in UPPAAL. A particular
task, τi ∈ T , is observed in order to generate the guarantee language for that task.

Example 1. Consider a task-set T with three periodic tasks τ0, τ1, τ2 ∈ T running on three

separate cores and accessing a shared memory. Each task has three distinct phases: read
data from memory, execute on respective cores using the read data, and write modified data

back to memory. The period and the minimum and maximum time units for each phase of each
task are shown in Table 2.1, and correspond to the time used by the task after access to the

resource is granted. Hence, contention time is not mentioned in the table. The arbitration on the

memory follows a non-preemptive first-come-first-serve policy.

Table 2.1: Task model for Example 1

Task Read Execute Write Period

τ0 1-2 1-3 1-2 15

τ1 1-2 10-14 1-2 40

τ1 1-3 12-15 1-3 50

Once such a task-set is established, it is modelled in UPPAAL using timed-automata. In or-
der to model tasks using UPPAAL, a basic understanding of timed-automata, and features of

UPPAAL, is necessary. A detailed description is provided in Section 2.3 of [17]. If one is not

familiar with the concepts of timed-automata and UPPAAL, a reference to this thesis is strongly
recommended before proceeding forward with the next section.

2.2 Modelling Real-Time System in UPPAAL

This section provides a detailed description of modelling real-time task-sets in UPPAAL. The

description begins with the modelling of the tasks on cores, followed by modelling different
arbiters that monitor access to the shared resource.

2.2.1 Modelling the Real-Time Tasks

The task-sets, as mentioned above, follow a general layout with three phases: acquisition, ex-
ecution and replication. A superblock model is used to model suck task-sets in UPPAAL. Such

models have been used previously, for instance, in [15] and [17]. To begin with, certain data
structures are defined in UPPAAL that are necessary for modelling the superblock task struc-

ture. These are included in the Declarations template in UPPAAL, and are provided below:

2.2 Modelling Real-Time System in UPPAAL 13

typedef int[0,Procs-1] p_id;

typedef int[0,MaxDelay] time_t;

typedef int[0,MaxAccesses] acc_t;

typedef struct {

acc_t umin_acq; //Min. read accesses

acc_t umax_acq; //Max. read accesses

acc_t umin_rep; //Min. write accesses

acc_t umax_rep; //Max write accesses

time_t exec_min; //Min. execution time

time_t exec_max; //Max. execution time

time_t total_per; //Period

} hsuperblock_t;

const hsuperblock_t hsuperblock[Procs] = {

{17, 19, 20, 22, 167, 176, 500},

{11, 12, 11, 13, 66, 70, 400},

{16, 18, 19, 21, 108, 114, 400}

};

broadcast chan access[Procs];

urgent chan hurry;

broadcast chan hit, miss; //used for superblock-Observer communication

Here Procs are the number of tasks (which equals the number of cores for a 1 task/core
model), while MaxDelay and MaxAccesses represent the maximum time units and maximum

resource accesses for all tasks, respectively. The struct hsuperblock_t provides the structure

for the superblock. Additionally, the values for three tasks (instances of superblock) are provided
using the hsuperblock array. Finally, different synchronization channels used in the model are

mentioned.

Each task is modelled with one instance of the superblock. Hence, each task has minimum

(and maximum) read (and write) accesses, as well as a range for the execution in time units.
It is useful to note here that read and write ranges will be in the form of number of access for

arbiters using FAL, but will be provided as time units for arbiters using VAT. Such ranges are

provided when the access and execution times for a given job of a task are not fixed (which is
usually the case).

Based on the structure, a model of the superblock in UPPAAL is created using the GUI. An

example is shown in Figure 2.1.

2.2 Modelling Real-Time System in UPPAAL 14

Figure 2.1: Superblock model for one task per core

The Figure 2.1 represents a system with only one task per core. The Acq and Rep locations

are used as read and write locations, respectively. An access request is made to the arbiter

by transitioning to the Acq_wait and Rep_wait locations. The task then waits in these locations
until one read or write access is completed in case of FAL. For VAT, this transition is made only

once. The Exec location is used when the task is in the execution phase.

A particular job of a task that is represented by the superblock above, begins in the Start

location. When the first edge is traversed, m (the counter for number of accesses) and x (the
clock) are set to 0. In UPPAAL, clock variables evaluate to real numbers, and all clocks progress

synchronously. For the explanation here, it is assumed that the arbiter uses FAL, and not VAT.

However, with minor changes in the model, one for VAT can easily be obtained.

After reaching the Acq location, the invariant m <= umax_acq() is checked. This makes sure

that the task has not made more read access requests than the maximum possible. A descrip-
tion of the function that returns the maximum read access requests value is provided below:

acc_t umax_acq(){

return hsuperblock[id].umax_acq;

}

Once the invariant is satisfied, the task makes a resource access request to the arbiter through
the access[id]! synchronization channel, where id is the task ID. This ID is used by the

arbiter to distinguish among requests from different tasks. It is provided to the superblock

instance as a Parameter in this case. Additionally, a Guard is placed on this transition that
checks if m < umax_acq(), to make sure that the new request does not exceed the total

possible number of read accesses of that task.

The task then waits in the Acq_wait location till it has made a successful read access to the

resource. This is done using the access[id]? synchronization channel. When access to the
resource is over, the arbiter provides the access[id]! synchronization and the task then

moves back to the Acq location. Simultaneously, m is increased by 1 to keep count of the

number of accesses.

Once the value of m is between the minimum and maximum read access values, the next
transition can be taken. m is reset to 0 so it can be used for the same procedure while accessing

2.2 Modelling Real-Time System in UPPAAL 15

the resource for writing data. A new clock x_exec is initialized to keep track of the execution

time. The task now enters the Exec location where it executes for a certain amount of time,
between the minimum and maximum possible execution values. The clock x_exec monitors the

time in this phase.

Finally, the task enters the Rep location for writing data back to the resource, and follows a

similar procedure to that of the Acq location. After completing the replication phase, the job of
the task is complete, and the task waits in the Restart location till the period of that particular

job is completed.

Now, in order to initialize the task-set, the System declarations template of the UPPAAL model

has to be modified. An example of the code for initializing the tasks as superblocks is provided

below:

S1 = Superblock2(0);

S2 = Superblock(1);

S3 = Superblock2(2);

Thus, three instances (in line with the values provided in the Declarations template) are

instantiated. These represent the three tasks of the task-set.

2.2.2 Modelling Multiple Tasks per Core

In the case of multiple tasks per core, the superblock model is modified to include an additional

location, Blocked, as shown in Figure 2.2.

Figure 2.2: Superblock model for multiple tasks per core

Additionally, four more synchronization channels are included in the Declarations template as

follows:

2.2 Modelling Real-Time System in UPPAAL 16

broadcast chan stop[CPU];

broadcast chan run[Procs];

broadcast chan done[Procs];

broadcast chan cpu_acc[Procs];

Here, CPU is the number of cores while Procs is the number of tasks. A feature of UPPAAL

called stopwatches is used in order to implement preemptive FP scheduling on the core. The
x_exec’==0 invariant is used to preempt a lower priority task when a high priority task starts

execution on the core. By itself, the invariant stops x_exec from measuring the elapsed time.

The lower priority task is preempted because it received the stop signal. As a result, we use the
invariant so that no time is measured while the task is blocked.

The preemptive FP scheduler for each core is modelled as shown in Figure 2.3.

Figure 2.3: Preemptive Fixed Priority Scheduler on the core.

To explain the model of the scheduler, it would be necessary to use both Figure 2.2 and

Figure 2.3. The scheduler starts in the WaitReq location. When a low priority task finishes

read access to the resource, i.e. the acquisition phase, it is directed to the Exec location for
execution on the core using the read data. During the transition, it sends the cpu_acc[id]!

synchronization to the scheduler. The scheduler receives it in the WaitReq location and adds
the task to the scheduler queue. At this point, the x_exec clock has begun measuring the

elapsed execution time of that task.

Hurry[id]? is an urgent channel that is used to start off the scheduler whenever there is a

task waiting in its queue. Hence, as soon as the queue is !empty(), the scheduler moves on to

the committed location. From here, it immediately transitions to the EnableAcc location, and
simultaneously sends the run[highPR()]! synchronization to the superblocks. The highPR()
function returns the ID of the highest priority task in the scheduler queue (which is also assigned
to the granted variable):

p_id highPR()

{

p_id i=0;

while (i<Procs)

{

if (queue[i]==1)

return i+a;

2.2 Modelling Real-Time System in UPPAAL 17

i++;

}

return 0;

}

However, run is a broadcast channel and hence, in this case as there is only one task in

the queue, this send-action by the scheduler is ineffective. This is because the task, being
the only one seeking access to the core, has not encountered a stop signal from the scheduler.

It is assumed here that the highest priority task is the one with the lowest ID. Hence a binary
array monitors which task is waiting for execution on the core. Now, say a higher priority task

finishes the acquisition phase and enters the Exec location to begin the execution phase. The
scheduler at this point is in the EnableAcc location. The task is added to the scheduler queue

by traversing to the QueueAdd location. The scheduler then signals both processes to stop

execution through the stop[cpu_id]! synchronization send-action. The high priority process
is effectively stopped before it can begin execution. Both the tasks are now in their respective

Blocked locations. In this location, x_exec′ == 0 invariant is set for both tasks. This stops the

x_exec clock from recording the execution time, thus enabling the stopwatch feature on the
x_exec clock.

However, without any delay (due to the committed StopAcc location), the transition back to the

EnableAcc is taken, and through the run[highPR()]! synchronization send-action, the high

priority task begins execution. The high priority task re-enters the Exec location by receiving the
run[id]? synchronization, and begins execution. The x_exec clock at this location resumes

normal functionality of recording the execution time.

When the high priority process finishes the execution phase, it sends a done[id]! synchro-

nization to the scheduler, which traverses back to the WaitReq location. Since the queue is
non-empty, it immediately signals the lower priority task to resume execution. The rest of the

process (acquisition and replication phases) of all tasks are the same as those described for

the 1 task/core model.

Hence, with these two superblock models, any real-time system, complying with the require-

ments stated at the beginning of the section, can be modeled and verified.

2.2.3 Modelling the Arbiters

The three arbitration policies used for experiments in this thesis, as mentioned previously, are
FCFS, FP and TDMA. This section illustrates a few examples of implementing these arbitration

policies in UPPAAL.

• FCFS with Fixed Access Latency: Figure 2.4 provides an example of implementing the

FCFS arbitration policy with a fixed access latency of C time units.

Figure 2.4: FCFS with Fixed Access Latency

2.2 Modelling Real-Time System in UPPAAL 18

For this purpose, a new line of code is added to the Declarations template in the UPPAAL

model of the RTS:

const time_t C=3; //or any other constant value

The arbiter starts in the WaitReq location, and similar to the FP scheduler, accepts an
access request in this location. The task requests access to the resource, as mentioned

in the previous subsection, using the access[id]! synchronization channel. The arbiter
accepts this request using the access[e]? synchronization, where e is assigned the

value of the ID of the task requesting access to the resource.

Next, the task is added to the arbiter queue, and like the FP scheduler, the arbiter uses
the urgent channel hurry? to transition to the EnableAcc location as soon as there is a

task available in its queue. The granted variable is assigned the task at the head of the
queue. Additionally, a clock z is initialized to 0.

At the EnableAcc location, the task accesses the resource for a total of C time units.

Simultaneously, the arbiter tracks any other requests that other tasks may make while
the current task accesses the resource. In that case, the arbiter enqueues the new tasks.

When z == C, the resource access finishes, and the arbiter transitions to the DisableAcc
location. Immediately, it transitions back to the WaitReq location, and signals the task that

the resource access has completed through the access[granted]! synchronization

send-action. The task in-turn transitions form the Acq_wait or Rep_wait location back to
the Acq or Rep location, respectively. The arbiter dequeues that task from it’s queue, and

restarts the procedure with the new task at the head of the queue.

• FCFS with Varying Access Time: In certain implementations, FCFS needs to be imple-

mented such that a given task reads or writes data to the shared resource for an arbitrary
amount of time, at once. Such an implementation cannot use a Fixed Access Latency

model since this might be longer or shorter than the exact amount of time required to
access the resource for the given task. Figure 2.5 shows an FCFS arbiter with Varying

Access Time.

Figure 2.5: FCFS with Variable Access Time

In this case, a rw_time array is defined instead of the latency constant C, in the following
manner:

time_t rw_time[Procs];

2.2 Modelling Real-Time System in UPPAAL 19

Each task is assigned one array element, according to task ID. When the task requests

access to the resource, the corresponding element in the array is first assigned the read or
write time. This is done using a Select statement in the superblock. Read or write time is

non-deterministically selected by UPPAAL within the constraints of the Select statement.

The arbiter in turn checks its clock z against the value of this array element. The task, thus,
reads or writes continuously for a given time period when it gains access to the resource.

• FP with Fixed Access Latency: Figure 2.6 illustrates an implementation of the FP arbitra-
tion policy with a fixed access latency of C time units.

Figure 2.6: FP with Fixed Access Latency

The FP arbiter is very similar to the FCFS arbiter, except the resource access is granted

to the task in the queue with the highest priority, rather than the one at the head of the
queue. Additionally, instead of a queue, a binary array is used to check which task has

requested access to the resource. Again, it is assumed that the highest priority task is the

one with the lowest task ID.

• TDMA with Fixed Access Latency: Figure 2.6 shows an example implementation of the

TDMA arbitration policy with a fixed access latency of C time units. The TDMA policy is
implemented such that each task is assigned a fixed slot. The task can access the re-

source only during its assigned slot. Consequently, each task can be modelled separately,

and this reduces the model checking time to a great extent.

Figure 2.7: TDMA with Fixed Access Latency

Three new functions are introduced here as part of the arbiter:

2.3 Guarantee Language LG 20

// Assign slot to next process

void changeOwner()

{

if(slotOwner<Procs-1)

slotOwner++;

else

slotOwner=0;

}

//Return process that owns the current slot

p_id getOwner() {

return slotOwner;

}

//Check if process to which the current slot belongs is present in the queue

bool ownerPresent(){

return queue[slotOwner] == 1;

}

Additionally, along with the latency constant C, a new constant, SlotLen is added to the

Declarations:

const time_t SlotLen=6; //or some other constant value

The SlotLen constant determines the length of a slot in the arbiter. The arbiter starts in

the Start location, and immediately transitions to the wait location, while setting the clock
c to 0. It waits at the location till an access request is made. In that case, the transition

to AccReq is taken. Depending on whether the current task that requested the resource
owns the present slot, and whether there is enough time remaining for at least one

resource access, the next transition is taken to the EnableAcc location or back to the wait

location. In case of the latter, the task waits till its next slot.

If a slot begins and finishes in the wait location, a transition is made to the SlotOver

location, to check if the task to which the next slot belongs, is available. If so, the task is
granted resource access through the EnableAcc location. The access to the resource is

in the form of discrete accesses with a fixed access latency of C. A task can thus access

the resource a maximum of ⌊SlotLen/C⌋ times once a slot is assigned to it.

Finally, when one access to the resource finishes, the arbiter signals the superblock

through the access[granted]! synchronization send-action. The resource can then
make another resource access request, and it will be granted if the SlotLen can accomo-

date one more access. Otherwise, the task waits for its next slot.

Through the combined use of the arbiters and the superblocks, an RTS can be modelled in
UPPAAL.

2.3 Guarantee Language LG

Having discussed the Real-Time System and modelling in UPPAAL, this section discusses the

guarantee that is generated on the deadline hit and miss patterns of a particular task in the real-
time task-set. The aim is to generate the guarantee in the form of a regular language. As we

will see later, a regular language admits advantages which will be useful in the model-checking.

The section begins by discussing the representation of such a language, and is followed by the
definition and properties of the language.

2.4 Representing the Language

A regular language can be represented in various forms. Four of these are shown in Figure 2.8.

2.4 Representing the Language 21

Figure 2.8: Representing a Regular Language

While all of these forms are equivalent, the one used in this thesis is the Deterministic Finite
Automaton (DFA) representation of the regular language. The main reason is that it is easier to

design a template for the language using a DFA. Additionally, a DFA makes it easier to generate

the regular language using UPPAAL, since UPPAAL uses timed-automata to model-check
real-time systems.

Additionally, it is important to note that a regular language representation is chosen over an

omega-regular language [19]. Even though, in the ideal case, a deadline hit and miss pattern

may be infinite in length, it is still pertinent to represent it using a regular language since a finite
pattern must also be accepted by the language.

2.4.1 Language Definition and Properties

All observed deadline hit and miss patterns of the jobs of a task τ can be thought of as strings

in a language, denoted as LS (for the system language). LS is over the alphabet Σ = {H,M},
where H implies a hit event (i.e., the task meets its deadline), and M implies a miss event (i.e.,

a task misses its deadline). An example string is (MHH)
∗
, which is a periodic pattern with a

deadline miss followed by two deadline hits.

The aim is to identify a guarantee that closely, yet conservatively, approximates LS . To this end,

a regular language [3], denoted LG (for the guarantee language), is computed over the alphabet
Σ = {H,M}. We say LG is a correct guarantee if

LS ⊆ LG. (2.1)

If a property is satisfied for all strings (or no string) of a correct guarantee LG, then it follows
that it is (or is not) satisfied on LS. An example of such a property is: “Every deadline miss is

followed by at least two deadline hits". Additionally, the smaller the difference (LS − LG), the
more accurate is LS.

As shown above, a regular language can be represented by an equivalent DFA. In a DFA,
every state encodes a finite observed history. Let k denote the length of the longest history

encoded by any state of a DFA, then the DFA is represented as Ak. The parameter k controls

the complexity of the corresponding language: a larger k corresponds to a larger automaton
and possibly a more accurate guarantee.

For the Ak accepting the guarantee language, denoted LG(k), the history encoded in the states

is the pattern of deadline hits and misses of the last k jobs of task τ . Then, given a hit and miss

pattern of the last k jobs, Ak can be used to determine if such a pattern can be observed in LS,

2.5 Summary 22

and if so, whether the next job would meet or miss its deadline. This is a Markov interpretation,

where only the last k hits and misses can influence the next job’s deadline hit or miss. Similar
ideas have been proposed in the analysis of cache hits and branch predictions [12]. The idea

of the last k deadline hits and misses influencing the next job’s deadline hit or miss is similar to

that of k-testable languages [20].

Example 2. For the task-set in Example 1, let task τ0 have a deadline of D0 = 10. Contention

and blocking accesses to shared memory lead to variable response times of jobs of τ0 resulting
in the deadline hit and miss patterns. Using the technique described in the next chapter, the

language-based guarantee is derived as shown in Table 2.2. This language corresponds to a

DFA Ak with k = 2, i.e., given the deadline hit and miss pattern of the last two jobs, the language
determines the guarantee for the next job. For instance, if τ0 encounters a deadline hit followed

by a miss, i.e. HM , then the next event can be either a hit or miss. But, for two consecutive

misses, i.e. MM , the next event is guaranteed to be a hit.

Table 2.2: Guarantee language LG(2) for Example 1

Last Two Events HH HM MH MM

Next Event H or M H or M H or M H

2.5 Summary

This chapter introduced the system model and the definitions that will be used throughout the

rest of the thesis. To begin with, a real-time system model was described, which is used to
model various task-sets. The task-sets have three phases: acquisition, execution and replica-

tion. These are modelled using either Fixed Access Latency (FAL) or Varying Access Time

(VAT). The tasks access a shared resource through a resource arbiter. Resource contention
and non-preemptive access to the shared resource result in the deadline hit and miss patterns

that are expressed through the computed language.

The chapter then discussed the modelling of real-time tasks in UPPAAL using one or mote

tasks per core through the superblock model. Additionally, the modelling of arbiters in UPPAAL
was discussed, for various arbitration policies.

Finally, an illustration of the Guarantee Language, LG, was provided. The corresponding section
discussed the regular language representation, along with the definition of the language. The

next chapter discusses the generation of the guarantee language.

Chapter 3

Computation of the Guarantee

Automaton

The language-based guarantee on the deadline hit and miss patterns of a real-time task is
generated in the form of a DFA, called the guarantee automaton. A guarantee generation

toolkit was designed to automate the process of generating the language-based guarantee.
This chapter introduces the two procedures implemented using this toolkit: generating Ak (the

guarantee automaton) for a given value of k, and generating the guarantee automaton for an

unknown k.

As mentioned previously, the general approach of Counterexample Guided Abstraction Refine-

ment (CEGAR) [10] is followed for constructing DFA Ak for a given value of k. The procedure
is carried out such that the equivalent regular language LG(k) conservatively approximates

LS. It involves the use of a specific template for Ak, which can be iteratively modified. At any
given point in the process, the current estimate of Ak, denoted as Ai

k for the ith iteration, is

modelled by an observer timed automaton. Modifications in Ak are mirrored by simultaneous

modifications in the observer.

A property is then verified to check if the estimated guarantee language, i.e. the LG(k)
equivalent to the current estimate of Ak, conservatively approximates LS . If a counter-example
is generated, the observer is modified, or equivalently Ai+1

k is constructed from Ai
k. When no

more counter-examples are generated and the iterative procedure terminates, Ak is obtained
and the properties of the corresponding LG(k) are shown.

For applications in which it is unclear what k should be, we need a method to choose the
right k. This choice should balance between complexity and accuracy: for a large k, LG(k)
can more accurately represent LS , but can be computationally expensive to model-check.

Hence, one of the solutions to this problem is an iterative method that sequentially computes
LG(1), LG(2), The procedure to fully utilize LG(k) when computing LG(k + 1) is discussed

later in this chapter, along with a terminating condition for such a method, and certain scalability
issues are discussed as well.

3.1 Constructing Ak for a given k

This section discusses the computation of the language-based guarantee when the value of k
is given. We begin with an illustrative explanation of the role of the observer automaton.

3.1.1 The Observer Automaton

To begin the procedure, a template for Ak is first defined. The DFA Ak is given by a 5-tuple
(Q,Σ, δ, q0, F), where Q is the set of states, Σ = {H,M} is the alphabet of accepted inputs,

where H represents a hit event, and M represents a miss event. δ is the transition function

23

3.1 Constructing Ak for a given k 24

defined as Q × Σ → Q, q0 ∈ Q is the start state, and F is the set of accepting states. The

following are some properties of Ak.

• Each state q ∈ Q corresponds to a particular string of size up to k over the alphabet Σ.

Thus, there are up to 2k+1 − 1 states.

• We can represent a state q equivalently by its corresponding string denoted s(q). For

example, when the DFA is in a state q with s(q) = (MHH), the previous two jobs have

met their deadlines while the one before them missed its deadline. The oldest information
is the left-most. For the initial state q0, we have s(q0) = φ.

• δ is a partial function, i.e., δ(q, x) does not have to be defined for every state q ∈ Q and
for both x ∈ Σ. If the DFA is in state q and the next input is x where δ(q, x) is not defined,

then the input string is not accepted by Ak, and thus does not belong to LG(k).

• The transition function follows from the string representation of the states. For example,
let qi, qj be two states with s(qi) = (MHH) and s(qj) = (HHM). If δ(qi,M) is defined,

then it is equal to qj , for k = 3.

• F = {q ∈ Q : |s(q)| = k}.

Thus, the template for Ak defines a class of automata that accept any regular language with

strings of length at least k. Any language, which can be represented as shown in Table 2.2, is
accepted by a DFA belonging to this class depending on the transitions defined in the DFA.

Example 3. For the language in Table 2.2, the corresponding Ak with the above template is

shown in Fig. 3.7.

For the template of Ak, we design a specific observer, denoted as O, as a timed automaton [8]

in UPPAAL [9], such that:

• Each state of Ak corresponds to a location of O.

• All possible transitions in Ak are modeled in O. Every location in O has two outgoing

transitions for the two cases of hit and miss events. Transitions not defined in Ak have a
variable update e = 0 (for enable) in O, while the others have a variable update e = 1.

• Each transition in O which corresponds to a transition in Ak that accepts an H (similarly
M) has a synchronization channel receive-event hit? (miss?).

Such a structure can be represented in the form of a binary tree. However, since we deal with
strings of infinite length, all the locations with a history of length k, which also are the leaves of

the binary tree, have loops among them. Consequently, the maximum length of history stored

by any location in the O for Ak is k. An example of the initial O for k = 2, corresponding to A0
2,

is shown in Figure 3.1. Each location is represented as q_y, with y = 0 for the start state and

otherwise equal to the history corresponding to the location. The guarantee is generated using

the O as discussed in the subsequent subsections.

Figure 3.1: Observer for k = 2 in UPPAAL.

3.1 Constructing Ak for a given k 25

3.1.2 Modelling the Observer in UPPAAL

Before beginning the iterative construction of Ak, we need to make a few additions to the
UPPAAL RTS model described in the previous chapter. So far, we have discussed the model for

representing a particular real-time task from the task-set, in the form of a superblock. Addition-

ally, the previous chapter illustrated various arbiters that are used for resource arbitration. We
also discussed various declarations and methods used by the superblock and arbiter models,

such as highPR() to return the highest priority process. Finally, the communication channel

between the superblocks and the arbiter was illustrated using synchronizations in UPPAAL.

In order to generate the guarantee automaton, an observer automaton (O, as stated above) is
required to model the language. This automaton is introduced into the UPPAAL model in the

form of a new UPPAAL template. Instead of using the UPPAAL GUI, the process of generating O
is automated using a Python script (the details of which are available in Appendix A.2. UPPAAL
stores such models in an XML file. Additionally, every location of a particular timed-automaton

has an ID and name (optional) associated with it. For the implementation here, a unique ID,

e.g. id0, id1,. . . , is assigned to each location. This is particularly helpful while studying the
counter-example trace generated during the iterative construction procedure (discussed in the

next subsection).

The process of assigning ID’s to these locations is automated. As stated above, the structure

of the O is similar to that of a binary tree. Hence, every Parent location has two Child locations.
Now, the ID’s are assigned in the following manner:

Child ID =

{

(Parent ID)× 2 + 1 for a hit? edge

(Parent ID)× 2 + 2 for a miss? edge

An example of the O for k = 2, as modelled in UPPAAL, is shown in Figure 3.2. One of the
changes in this figure, as compared to Figure 3.1, is the fact that the variable e is replaced

by e_global. Secondly, the locations are named according to their ID numbers for the purpose

of illustrating the guarantee generation procedure. There were two reasons for using e_global
instead of e. First, since this variable is introduced automatically into the XML file through the

code during implementation, it might be possible that a common variable like e is already present
in the XML. Hence, to avoid syntactic errors in UPPAAL by introducing another variable named

e, we can use the less likely e_global as a variable name. It would, however, be wise to check

beforehand if this variable is present in the XML. Second, e_global signifies that this is a global
variable, even though it may be updated locally in the observer.

Figure 3.2: Observer for k = 2 in UPPAAL.

In order to synchronize O with the superblock model, synchronization channel send-events

(hit! and miss!) are added to the Superblock corresponding to the observed task. These

3.1 Constructing Ak for a given k 26

will thus correspond to the receive-events (hit? and miss?) incorporated in O. The Declara-

tions template in UPPAAL is modified to include the following code:

typedef int[0,1] e_poss;

e_poss e_global = 1;

An example of a Superblock with the send-events is shown in Figure 3.3, where threshold cor-

responds to the deadline. The threshold value is supplied to the superblock as a Parameter

value through the System declarations template. The superblock instance corresponding to the
observed task is modified as follows:

S2 = Superblock(1, 72); //task ID=1; threshold=72

Figure 3.3: Superblock with hit! and miss! events.

The network of TA, S, thus synchronizes with O using synchronization channel send-events
hit! and miss! whenever a job of the observed task τ either meets or misses its deadline,

respectively. Thus, for a particular execution trace, as the jobs of τ meet or miss deadlines,

S and O synchronize over corresponding channels. We have now modelled all the necessary
parts in UPPAAL required for the iterative construction of the guarantee.

3.1.3 Iterative Construction

We initialize O such that the variable update rule on each transition is e = 0 (e and e_global
are used interchangeably in the rest of the illustration). This corresponds to A0

k which has no

defined transitions. Additionally, e is initialized to 1 at the global level. This marks the starting

3.1 Constructing Ak for a given k 27

point for the iterative construction procedure.

Then, (for the extended network of TA,) the following (TCTL) safety property is verified:

∀�e = 1 (or equivalently, A[]e == 1 in UPPAAL). (3.1)

This property asserts that the variable e equals 1 in all states. In terms of our usage of e, the
property asserts that at all times the transitions taken by O are already defined in Ai

k. In other

words, the property asserts that the current estimate of Ak, i.e. Ai
k, most closely approximates

to Ak.

In order to verify the property, a .q (query) file is generated. The following query, with reference
to (3.1) and the variable e replaced by e_global, is then placed in the file.

A[]e_global == 1 (3.2)

Finally, UPPAAL’s command-line tool, verifyta, is executed using the UPPAAL XML and query
files as arguments, along with other options. verifyta provides some freedom to the user to

configure the state space exploration procedure. After experimenting with several combinations

of these options, the best one in terms of reducing the computational effort of model checking
is the breadth-first search option with the ‘some’ trace option. This implies a BFS of the state

space along with returning a random (first encountered) trace every time a counterexample is
encountered. More details of the implementation are discussed in Appendix A.3. verifyta

model-checks the RTS models provided in the UPPAAL XML file against the query. The aim

is to verify if every possible execution of the model satisfies the query. If not, then there is a
particular transition traversed by O that set the global variable e_global = 0. Consequently,

verifyta generates a counter-example, and provides an output in the form of a trace. The last

two Transitions of an example trace are provided in Figure 3.4.

Figure 3.4: Counter-example trace generated by verifyta.

The highlighted portion of the last Transition of the trace, in the figure, provides the ID’s
corresponding to the locations where the counter-example was generated. The XML containing

the UPPAAL model is then modified to reflect this change, such that e_global = 1 is set on that
transition as shown (highlighted) in Figure 3.5. Equivalently, a new transition is defined in (or

added to) Ai
k to generate Ai+1

k .

3.1 Constructing Ak for a given k 28

Figure 3.5: Modified Observer after first counter-example.

The process (of running verifyta, obtaining the trace, and modifying the XML) is then repeated

till no more counter-examples are generated. This signals the end of the procedure, and the

modified O now acts as the Guarantee, Ak, for the given value of k. All the edges with the
variable update e_global = 0 at the end of the procedure are removed. Consequently, there are

various locations in the final O that are unreachable, and are removed as well.

The entire guarantee generation procedure is automated using Python scripts. A detailed de-

scription of different functions used in these scripts is illustrated in Appendix A.4.

3.1.4 Properties of the Computed LG(k)

The iterative process will terminate after a finite number of steps, as in each step a new transition
is defined amongst the finite number of possible transitions of Ak. Upon termination, DFA Ak

and the corresponding LG(k) satisfy the following:

Lemma 1 (Correctness). The language LG(k) corresponding to the DFA Ak satisfies LS ⊆
LG(k).

Lemma 2 (Tightness). If A′

k is obtained by disabling any single transition from Ak, then the
corresponding language L′

G(k) does not satisfy LS ⊆ L′

G(k).

The correctness property follows from the fact that asserting property (3.1) asserts LS ⊆ LG(k).
The tightness follows from the initialization wherein no transition of A0

k is defined. Thus, any

defined transition in Ak is due to an observed pattern of hits and misses in S.

Example 4. Consider the setup from Example 1. For k = 2, the observer O, as mentioned
above, is illustrated in Fig. 3.6. The guarantee automaton, shown in Fig. 3.7, is then generated

using the guarantee generation procedure. The transition M self-loop on q_(MM) is undefined

at the end of the procedure and is thus removed. The computed LG(k) is shown in Table 2.2.

3.1 Constructing Ak for a given k 29

Figure 3.6: Observer O for k = 2. Figure 3.7: Guarantee Automaton A2.

3.1.5 Minimizing the Guarantee Automaton

For certain applications, it is useful to convert a DFA into its minimized version. As we will see
in Section 4.1, this property is useful in checking language inclusion. The DFA minimization is

carried out through the use of equivalence classes, based on the Myhill-Nerode theorem [18].

For the applications considered in this thesis, it is assumed that the strings belonging to LG(k)
are of infinite length. Consequently, the focus is mainly on the final states of Ak representing
the corresponding LG(k). As a result, only the leaves of the corresponding final observer O
are used during the minimization. Thus, every state in the minimized automaton represents a

final state with a history of length k. Given the last k events, the minimized automaton can thus
predict whether the next even will be a hit or a miss.

A rough outline of the algorithm is provided below (assuming that there are no unreachable
locations in O, as these have all been removed):

1. Divide the leaf locations into two sets: final and non-final locations. In our case, each of

these is a final location. However, we include a hypothetical non-reachable location in the
non-final set to which every disabled edge from the locations in the final set points.

2. For each outgoing edge of every location in the final set, check if the target location is in
the same set.

3. If 2 is true, then the procedure is over and the automaton is minimized to a single final

location.

4. Otherwise, create a new set. In this new set, place every location with an outgoing edge

that points to a location in another set.

5. Repeat step 4 for all the sets, including the new set, till condition 2 is satisfied.

6. Once 2 is satisfied, each set forms a new location. All the locations in that set are equiva-
lent, and thus the set is called an equivalence class. Now, take a particular location from

each set and, for each outgoing edge, determine the equivalence class (set) to which its
target location belongs. Check each location of a set till all the edges (in our case the hit

and miss edges) are verified. The sets to which the target locations belong will now act as

new target locations for the corresponding edges from this set.

An example is shown in Figures 3.8 and 3.9. Figure 3.8 is the final modified observer corre-
sponding to an example A3. Here, the variable updates e_global = 1 are removed from the

edges for a clearer illustration. Additionally, all the edges with variable updates e_global = 0 are
removed, and the corresponding non-reachable locations are removed as well before beginning

the minimization procedure. The locations corresponding to the final states of A3 are marked

as fx where x is an index number. Figure 3.9 shows the corresponding minimized guarantee

3.2 Constructing the Guarantee Automaton For Unknown k 30

automaton for the final states of A3. Each location is named according to the location set that it

represents.

Figure 3.8: The Guarantee for k = 3. Figure 3.9: Corresponding Minimized Guaran-

tee.

The application of the minimized version of the guarantee automaton will be discussed in the

next chapter.

3.2 Constructing the Guarantee Automaton For Unknown k

Following from the introduction to this chapter, for applications in which it is unclear what k
should be, we need a method to choose the right k. This section presents an iterative method

that sequentially computes LG(1), LG(2), The following lemma forms the basis of this ap-
proach. It states that the computed language for a smaller k cannot be a tighter approximation

of LS .

Lemma 3 (Inclusion). LG(k + 1) ⊆ LG(k), ∀k > 0.

The argument for the above result is presented in terms of Ak and Ak+1. For every state q in

Ak+1 a parent state p(q) is defined in Ak. Two cases arise based on the string representation
s(q). If |s(q)| < k + 1, then s(p(q)) = s(q). If |s(q)| = k + 1, then s(p(q)) is obtained by dropping

the left-most (oldest) element in s(q). This definition is such that, when processing a common

input, if Ak+1 is in state q, then Ak has to be in state p(q). From the tightness of Ak+1 and the
correctness of Ak, we have: if either or both transition(s) (out of H and M) are disabled in Ak

for state p(q), then the corresponding transitions are also disabled in Ak+1 for state q. Thus, we
cannot have a string that is accepted by Ak+1 and not by Ak.

3.2.1 Refining LG(k) by Increasing k

An iterative refinement approach is proposed for increasing k till a satisfactory LG(k) is
obtained. We start with the initial observer O for k = 1, which is then modified using the

procedure in the previous section to derive A1. Then, we begin the process for A2. However,
we can now use information from A1 to modify the initial O corresponding to A0

2 before iterative

verification with the model-checker. We know that for every state q in A0
2, if the parent state

p(q) in A1 has either or both transition(s) disabled, then the corresponding transitions will also
be disabled in A2. Using this, the initial O, and hence A0

2, is modified by removing certain

transitions and consequently unreachable locations. The modified observer is now used to

obtain A2. This process of constructing Ak+1 by using information from Ak is termed refinement.

3.2 Constructing the Guarantee Automaton For Unknown k 31

Example 5. Consider guarantee automaton A2 shown in Fig. 3.7. Using this the observer for

k = 3 is initialized as shown in Fig. 3.10. Note that certain transitions are removed from the
observer. For instance, the location q with s(q) = (HMM) does not have a δ(q,M) transition.

Also, location q with s(q) = (MMM) is not reachable at all and is thus removed. With this

observer and the procedure of the previous section, the guarantee automaton A3 shown in
Fig. 3.11 is computed.

This process is complete in the sense that any counter-example generated when computing Ak

will not be generated when computing Ak+1. This clearly reduces the model-checking time.

Figure 3.10: Initial Observer for k = 3 from A2. Figure 3.11: Guarantee Automaton A3.

3.2.2 Implementing Iterative Refinement in UPPAAL

This subsection provides a step-wise guide to implement the guarantee generation procedure

for an unknown k. The iterative refinement procedure starts with the observer O for k = 1 as
shown in Figure 3.12. Location ID’s are used as names for explanatory purposes. After the

iterative construction procedure, an example A1 is shown in Figure 3.13. For the purposes
of illustrating the procedure, the guarantee automaton is considered interchangeable with

the final O for the given k. Hence, hit? and H , as well as, miss? and M are equivalent.

Additionally, ID numbers are shown in the guarantee automaton along with their e_global values.

The initial Observer for k + 1 is constructed from Ak in a step-wise manner.

1. Any edge that is missing in Ak, will not be added to the O for k + 1. For instance, the M
self-loop on id2 in A1 was never traversed and hence e_global was never set to 1. It is

thus removed from the final automaton. Consequently, when deriving O for k = 2 from A1,

the M edge from id2 (Parent) to id6 (Child) will be removed.

2. As a result of the missing M self-loop in id2 in A1, any string containing MM is not

accepted by A1. This implies that such strings will not be accepted by A2 as well, following
from (2). Hence, A2 will not accept strings HMM and MMM , and any other strings that

contain these strings. Consequently, the corresponding edges should not be present in O
for k = 2. These two edges correspond to the miss? edges from id4 and id6.

3. Any location in the new O with no incoming edges, is removed. For instance, there are

no incoming edges on location id6, and hence the location is removed as shown in Fig-
ure 3.14.

4. The outgoing edges from all locations with a history of length k − 1, in the O for k, are
updated with e_global = 0. To explain this, let’s take the example of A1 and O for k = 2. In

A1, these edges formed loops in the leaves of the automaton. Consequently, it is unclear
whether a particular edge was traversed on the second H or M event, or any subsequent

event after it. Hence, in the O for k = 2, these edges are checked again to verify if they are

traversed during the course of the model-checking process. In A2, each of these edges

3.2 Constructing the Guarantee Automaton For Unknown k 32

would exist only if the corresponding event (H or M) occurs during the second job of any

execution of the task under consideration.

Figure 3.12: Initial Observer for k = 1. Figure 3.13: Guarantee Automaton

A1.

Figure 3.14: Modified Observer for k = 2. Figure 3.15: Guarantee Automaton

A2.

During the actual implementation in UPPAAL, all the potential locations are added to the
new O. Now, before adding edges to the non-leaf locations of the new O (for k + 1), they

are cross-checked with the guarantee automaton (for k). If they are absent from the automa-

ton, they are not added to O. The implementation is done using ID numbers, since the ID’s
of all the non-leaf locations in O for k+1 are the same as that in the final O corresponding to Ak.

For the next step, two ID numbers are taken as reference. The example of generating the initial
O for k = 2 (Figure 3.14) from A1 (Figure 3.13) is taken to illustrate this step. The first reference

R1 is the first ID (the top-most for a left-right tree structure, that corresponds to all hits) in the
leaves of Ak (Figure 3.13). This corresponds to id1. The second reference R2 is the first ID

from the leaves of the O for k = 2 (Figure 3.14). Hence R2 corresponds to id3.

Now, a hit? or H corresponds to 0, while a miss? or M corresponds to 1. Hence, id3

corresponds to a history of HH or 00. The next location is HM or 01. This binary sequence (or

its integer equivalent) is added to 3 which gives the next ID as id4. Hence, id4 corresponds
to HM if calculated the other way around.

Next, using the two reference numbers, certain edges are removed. For instance, when

checking if a miss? edge should be present on id4, the corresponding location in A1, i.e. the

location with a history of M , is checked. By using R1, it is easy to see that this location is id2.
id2 has the miss? edge missing, and hence it should not be present in id4 either.

Another example is that of id8 in the O for k = 3 ((Figure 3.16)). This locations corresponds
to a history of HHM . The reference ID’s in this case would be id3 (R1) and id7 (R2). The

corresponding location with a history of length k− 1 is the location with history HM . Using id3,

3.2 Constructing the Guarantee Automaton For Unknown k 33

the ID of this location is derived to be id4. Since id4 has a miss? edge missing, this edge

is removed from id8 as well. Hence, by going through each location, the outgoing edges that
should be present in each location can be determined.

Finally, all the locations with no incoming edges (unreachable locations) are removed, and
e_global is re-assigned the value of 0 as mentioned previously. This is also done using the

ID number on the O for k + 1 that correspond to the leaf locations of Ak. The O for k = 3
generated from an example A2 (Figure 3.15) is shown in Figure 3.16.

Figure 3.16: Observer for k = 3 in UPPAAL derived from A2.

Once the new O is computed for k + 1 from Ak, the iterative construction procedure described
in the previous section is carried out on the new O to obtain Ak+1. This process of increasing k
is continued till the pre-determined stopping condition, discussed in the next subsection, is met.
The entire code is run automatically using Python scripts discussed in Appendix A.4.

3.2.3 Terminating Condition

Several indices were considered to act as a stopping condition for the iterative refinement pro-
cedure to find the right k. There are described in the table below:

Name Description

Total Degree Index Take every leaf state of Ak that has an out-degree equal to 2.

For every such state, take the two states from Ak+1 that have the
same history for the k event before the last one. Hence, these

states will have their left-most k events the same as the leaf state
from Ak. Take the average of the out-degrees of the two states.

If one or both of the two states are missing, then the out-degree

for each missing state is 0. Now, subtract this from 2 to obtain
the degree difference between the Ak state, and the average for

the Ak+1 states. Take the sum of all such differences for all the

states considered from Ak. Finally, divide the sum by the maxi-
mum number of possible leaf states in Ak, which equals 2k.

Partial Degree Index Same as the Total Degree Index, except, in the last step, divide

the sum by the number leaf states of Ak with an out-degree of 2.

Uncertainty Metric Take the outgoing edges from all states of Ak, divide it by the
total possible number of out-going edges from Ak, and subtract

the result from 1.

Partial Uncertainty Metric Same as the Uncertainty Metric, except, only out-going edges
(present and possible) from the leaf states are considered.

Table 3.1: Potential Indices for Stopping Condition.

3.3 Summary 34

Table 3.2: Uncertainty metric for Example 1

k 1 2 3 4 5 6 7 8

U(k) 1.000 0.929 0.733 0.500 0.317 0.197 0.120 0.072

Iterative 0.949 2.219 4.335 6.798 9.695 13.901 19.401 27.635
Non-iterative 0.948 2.276 4.750 7.800 11.824 18.438 29.786 53.339

The ideal scenario in providing a guarantee for a system is that there is minimal uncertainty in

the system. This way, a more accurate guarantee can be provided. Of all the four indices, the
Uncertainty Metric provides the best insight into the amount of uncertainty in the system. The

main reason is the fact that it considers all states of Ak, and hence all possible string sequences.

Hence, the Uncertainty Metric, denoted U(k), is chosen to define the terminating condition for
the iterative process of increasing k.

U(k) =
epr
epo

, (3.3)

where epr is the number of transitions present in Ak, and epo = 2k+2, the total number of

transitions possible in Ak. The metric, as mentioned above, conveys the level of uncertainty in
Ak with respect to the predictions at each state, and is similar to the statistical metric of entropy.

U(k) varies between 0 and 1. U(k) = 1 implies that every state in Ak has two outgoing
transitions. Thus, irrespective of the previous sequence of hits and misses, the next event can

either be a hit or miss. A lower value of U(k) implies that there is lesser uncertainty, because

there are states with either one or no outgoing transitions.

From Lemma 3, it is clear that Ak+1 will have a maximum of twice the number of transitions
as Ak. epo increases to twice the value for each increase in k. Hence, the ratio either remains

constant or decreases with an increase in k, i.e.,

Lemma 4. U(k + 1) ≤ U(k).

Using the above property, we can decide to terminate the iterative process if U(k) reaches

a value close to 0. However, for some settings, uncertainty may be inevitable. For instance,
if every job of τ can either hit or miss its deadline, then U(k) = 1 irrespective of k. Thus,

in addition to the absolute terminating condition, we also have a relative condition, such as

U(k + 1)/U(k) is a value close to 1.

Example 6. For the running example, the uncertainty metric for different values of k is shown in

Table 3.2. Row 3 shows time (in s) required to compute each Ak using the iterative refinement

approach (Subsection 3.2.2). Row 4 shows time (in s) required if each Ak is computed non-
iteratively, i.e., without using the iterative refinement procedure. These readings are computed

on an Intel® Core™2 Quad CPU Q6600@ 2.40GHz×4 machine with 4GiB RAM. With increase in
k, the iterative approach shows a significant performance gain over the non-iterative approach.

3.3 Summary

The focus of this chapter lay in the illustration of the Guarantee generation procedure. The

chapter was divided into two main sections: generating the Guarantee automaton Ak for a

known k, and Guarantee generation for an unknown k.

The first section introduced the observer automaton O which is an integral part of the Guarantee

generation procedure. The observer is undergoes iterative construction to generate Ak. The
section also described the modelling of the observer in UPPAAL, followed by a detailed account

of the iterative construction procedure. The guarantee generation process for a given k uses

3.3 Summary 35

the observer modelled for that k and verifies a query using the verifyta command (UPPAAL’s

command-line substitute). The section also presented certain properties of the computed LG(k)
such as Correctness and Tightness. Finally, an algorithm to minimize the Guarantee automaton

was illustrated using an example.

The second section described the Guarantee generation procedure for an unknown k. The

procedure followed in this case is referred to as refinement. The main idea is to begin with an
automaton for k = 1, construct the guarantee using the iterative construction procedure, and

then use A1 to generate the observer for k = 2. The process then continues for higher values

of k. The section also explained the implementation of the refinement procedure in UPPAAL
in great detail. Finally, a terminating condition was introduced to determine when to stop the

refinement procedure.

Having successfully generated the guarantee, the next chapter discusses two different applica-

tions of such the guarantee language.

Chapter 4

Applications

This chapter illustrates two important applications of the language-based guarantee. First, a

language inclusion test is presented, which is used to verify a controller’s performance require-
ment. The second application compares scheduling algorithms for mixed-criticality systems by

computing worst-case deadline miss rates for low-criticality tasks.

4.1 Language Inclusion

In model-based design, a standard step is to check that all assumptions are satisfied by the
guarantee. Let LA denote the language of hit and miss patterns which meet given performance

constraints. Then, the real-time system S satisfies this assumption if LS ⊆ LA. It is sufficient to

show that LG ⊆ LA, under the correctness property (Lemma 1).

Language inclusion for the design of a networked control system [1] is illustrated with the

following example. Consider an inverted pendulum on a moving cart. Let the mass of the
cart be 0.5kg, the mass, inertia and length of the pendulum be 0.2kg, 0.006 kg.m2 and 0.3m,

respectively. Let the coefficient of friction of the cart be 0.1N/m/s. The state of this control plant
is given by z = [x ẋ θ θ̇], where x is the displacement of the cart, θ the angular displacement of

the pendulum, and derivatives are denoted with a dot on top. With period P = 0.6s, the state is

sensed and a feedback control is computed to change ẋ and θ̇.

Assuming a sensor-to-actuator delay of exactly one period, a Linear Quadratic Regulator (LQR)

[14] is now designed. Whenever the delay is larger than a period, the controller output is not
actuated and the plant is in an open-loop configuration. Thus, we have a switched linear time-

invariant system. As shown in [3], the plant and controller state can be collated at the nth

sampling time by X [n] with the following dynamics

X [n+ 1] = AclX [n], if d[n] ≤ P,

X [n+ 1] = AolX [n], otherwise,

where Acl and Aol are the system matrices for closed-loop and open-loop, respectively, d[n]
is the sensor-to-actuator delay for the nth period, and P is the sampling period. For the

computed LQR controller, the obtained Acl and Aol are shown below. We have ‖Acl‖ = 0.82,
and ‖Aol‖ = 28.2.

36

4.1 Language Inclusion 37

Acl =































1.00 0.56 1.11 0.16 0.01 0.06 −3.08 −0.55

0 0.82 6.58 1.11 0.04 0.27 −13.3 −2.39

0 −0.2 14.2 2.54 0.04 0.29 −14.2 −2.56

0 −1.2 78.6 14.2 0.25 1.73 −84.4 −15.2

0.42 0 2.32 0 0.59 0.62 −4.29 −0.39

0.85 0 13.1 0 −0.81 1.1 −19.7 −1.29

1.72 0 28 0 −1.68 0.1 −28.0 −0.02

9.6 0 155.9 0 −9.35 0.61 −161.7 −1.06































Aol =

































1.00 0.56 1.11 0.16 0.01 0.06 −3.08 −0.55

0 0.82 6.58 1.11 0.04 0.27 −13.3 −2.39

0 −0.2 14.2 2.54 0.04 0.29 −14.2 −2.56

0 −1.2 78.6 14.2 0.25 1.73 −84.4 −15.2

0 0 0 0 1.01 0.62 −1.97 −0.39

0 0 0 0 0.04 1.1 −6.69 −1.29

0 0 0 0 0.04 0.1 −0.02 −0.02

0 0 0 0 0.25 0.61 −5.83 −1.06

































Let the given performance requirement be: the augmented state variable X must be exponen-
tially stable such that

‖X [n+ 6]‖

‖X [n]‖
< 0.5, ∀ n > 0, X [n]. (4.1)

This condition specifies that the energy in the vector X must at least halve in every 6 periods.
This is a stronger condition than asymptotic stability. This condition may be satisfied for

different deadline hit and miss patterns of 6 consecutive control signals. Let a such a pattern

by represented as σ = (σ1, . . . , σ6), where σi ∈ {H,M}. For a given pattern, there is a
corresponding matrix Aσ = Πi=1,...,6Ai, where Ai = Acl if σi = H and Ai = Aol if σi = M .

As shown in [3], condition of (4.1) is satisfied for a pattern σ if the corresponding matrix Aσ

has an eigenvalue less than 0.5. All patterns satisfying this condition are specified as a regular

language LA. The MATLAB code to generate these patterns for the specifications mentioned

above is given in Appendix A.1. The automaton corresponding to LA for the computed matrices
Acl and Aol is computed using these patterns. It is then minimized for the purpose of checking

the language inclusion property and this minimized automaton is shown in Fig. 4.1. Every state

in this automaton has a history of the last 5 events, since the condition specifies that the energy
must at least halve in every 6 periods.

The controller is implemented in a distributed real-time system: (a) sensed data is sent via a

shared bus to the controller, (b) control output is computed on a dedicated processing unit, (c)

control outputs are sent via the same shared bus back to the plant. There are two other tasks
which also read data via the bus, compute and write data back through the bus. The arbitration

policy on the bus is non-preemptive first-come-first-serve. Thus, the bus is a shared resource

which can increase the sensor-to-actuator delay. The minimum and maximum time (in s), for
each phase of each task is shown in Table 4.1. Contention time before read or write is not

included. τ0 is the controller task for the inverted pendulum with a period of 0.6s.

4.1 Language Inclusion 38

Figure 4.1: Minimized Automaton for LA. Figure 4.2: Minimized Automaton for LG.

Table 4.1: Task parameters for the control example

Task Read Range Exec Range Write Range Period

τ0 0.06-0.18 0.06-0.12 0.06-0.12 0.6

τ1 0.9-1.02 0.06-0.12 0.06-0.12 2.4

τ2 1.38-1.5 0.06-0.12 0.06-0.18 3.6

Applying the method of [15], the worst-case response time of τ0 is 0.72s > P . Using the

schedulability guarantee, the plant can never be guaranteed to be in the closed-loop mode, and

thus is not guaranteed to meet the requirement of (4.1). Further, no amount of speed-up of the
processor executing τ0 can meet the controller requirement. One would have to speed up the

bus by at least 37.5% to satisfy the requirement.

Since the given LA accepts strings of size 6, LG for k = 5 is computed. Fig. 4.2 shows the

corresponding minimized automaton, where every state has a history of length k, i.e., 5. We
then compute Ldiff = LG ∩ ¬LA, where ¬LA is the language complement. Figure 4.3 shows

the automaton representing this difference. The automaton was found to have no accepting

state and hence, it was verified that Ldiff = φ, and thus LG ⊆ LA. This shows that the
real-time system can meet the controller constraint of (4.1), contrary to the conclusion from the

schedulability guarantee.

4.2 Calculating Worst-Case Deadline Miss Rate 39

Figure 4.3: Automaton representation of Ldiff.

4.2 Calculating Worst-Case Deadline Miss Rate

While the language-based guarantee is very detailed, it can be used to compute specific metrics.
An example of this is the worst-case deadline miss rate. Let w be an infinite length string of

deadline hits and misses, where the ith element wi ∈ {H,M}. The worst-case deadline miss

rate WMR is given as

WMR = max
w∈LS

|{i : wi = M}|

|w|
. (4.2)

From the correctness property (Lemma 1), computing the WMR with LG, instead of LS , is a safe

over-approximation.

Given Ak corresponding to LG, WMR is computed as follows:

• A graph G′ = (V ′, E′, ρ), is constructed, where the vertices V ′ correspond to the states

in Ak, the edges E′ are the defined transitions in Ak, and weights ρ : E → {−1, 1} is -1
(similarly 1) on edges if the corresponding transition accepts M (H).

• The, the minimum cycle mean of G′, denoted MCM, is computed with the Minimum Cycle

Mean algorithm [16].

• Finally, WMR =
1− MCM

2
.

WMR is used to compare scheduling algorithms for mixed-criticality systems [11]. In mixed-
criticality systems, every task τi has a defined criticality level say χi, and at any given time, t,
there is a global criticality level say χg(t). If χg(t) > χi then most existing scheduling policies

decide to drop task τi from t onwards. In other words, when the global criticality level rises
due to certain exceptional run-time events, low criticality tasks are no more scheduled. This

abrupt dropping of tasks is due to the limitation of the schedulability guarantee. Instead,the
low criticality tasks may still be run under reduced performance guarantees, in particular with

higher WMR.

4.3 Summary 40

Consider a dual-criticality (HI, LO) task-set with three tasks executing on independent process-

ing cores, but interfering on a shared bus which follows a non-preemptive fixed-priority arbitra-
tion policy. Tasks read data via the bus, compute using the read data and write data back via

the bus. Read and write is done through individual accesses, each requiring 1 time unit once

access to the bus is granted. The ranges of read-write access requests and execution times (in
time units) for the different tasks, when the global criticality level is HI, are shown in Table 4.2.

In this case, tasks τ1 and τ2 may not be guaranteed to meet all their deadlines. But we can
guarantee a certain WMR for each.

Table 4.2: Mixed criticality task-set

τi χi Read Write Exec Period Deadline

τ0 HI 5-7 6-9 7-8 80 80

τ1 LO 4-6 7-8 5-6 50 30

τ2 LO 3-5 7-9 6-7 60 30

We consider two priority assignments, PA1 = τ0 > τ1 > τ2 and PA2 = τ0 > τ2 > τ1. For
both, the language-based guarantee for τ1 and τ2 is computed. Because of the absence of

a pre-defined k, the iterative refinement procedure is used to increase k with the terminating
condition: U(k) < 0.1 or Uk+1/Uk > 0.9. WMR is then computed for each task of both priority

assignments. The results in Table 4.3 are interpreted as follows:

• Fairness amongst LO-criticality tasks: The absolute value of the difference between WMR

of τ1 and τ2 is smaller for PA2.

• Responsiveness of LO-criticality tasks: The sum of the WMR of τ1 and τ2 is higher for PA2.

Table 4.3: Mixed criticality results

PA1 PA2

τ1 τ2 τ1 τ2
k 9 12 15 8

WMR 0.3125 0.75 0.5415 0.25

Hence, PA2 is clearly a better priority assignment. However, when using only the schedulability
guarantee, the two priority assignments are indistinguishable in the HI-criticality mode, and both

τ1 and τ2 will be dropped in either case. We can similarly compare two different scheduling
policies using the language-based guarantee.

4.3 Summary

After the introduction of the guarantee generation procedure in the last chapter, this chapter

illustrated two applications of the guarantee language.

The first application explains the specific case of an inverted pendulum on a moving cart. Using

the schedulability guarantee, the plant can never be guaranteed to be in the closed-loop mode,
and thus is not guaranteed to meet the controller constraint. This was successfully disproved

with the help of the language inclusion property of the guarantee language.

The second application demonstrated the worst-case miss-rate (WMR) property of the guaran-

tee language. Using the example of a mixed-criticality system, it can be shown that LO-criticality
tasks need not always be dropped in the HI-criticality mode. Additionally, priority assignments

and scheduling policies can be compared for such tasks in the HI-criticality mode using WMR.

Such a design step would not be possible with the schedulability guarantee.

In conclusion, both these applications show the superiority of the language-based guarantee

over the schedulability guarantee. The next chapter discusses various experiments that were
conducted to study various properties of the guarantee generation procedure.

Chapter 5

Experiments

Apart from the applications of the regular language, as discussed in the previous chapter, it is

essential to study different aspects of the procedure. For instance, it would be useful to study
the effects of change in different parameters such as the utilization of the shared resource, the

relative deadline of the task, number of cores per task-set etc. This chapter focuses on different

experiments conducted to measure such effects.

Additionally, when using model-checking, it is pertinent to check for the scalability of the method.
It is important to test for the model-checking time for different test cases. The chapter begins

by putting forward an algorithm used to generate random task-sets, followed by various experi-

ments which conclude with certain remarks about the scalability of the procedure.

5.1 Randomized Task-Set Generation

To study the the effects of changes in different variables (e.g. read-write time, execution time,
number of cores, etc.), the following algorithm was used to generate random task-sets. The goal

of the algorithm is to facilitate changes to the values of the input variables and study the effect
of such changes on certain output variables such as verification time.

41

5.1 Randomized Task-Set Generation 42

5.1.1 Notations

Notation Meaning

N Number of cores with one task per core

T Task-set

τi Task i ∈ T
a Time taken for each access

Pset 1: Same period for each task; 2: harmonic periods;

3: random periods.

Pi Period of task τi
Ubus Total utilization of the bus

U i
bus Utilization of the bus by τi such that

Ubus =

N−1
∑

i=0

U i
bus

Ri,worst;Ri,best Worst and best case number of resource accesses
during read phase by τi

Wi,worst;Wi,best Worst and best case number of resource accesses

during write phase by τi
νi Total access time of τi such that

νi = a ∗ (Ri +Wi)

µi Ratio of read to write access times of τi
Ei,worst;Ei,best Worst and best case execution time of τi
Z1 Ratio of Best to Worst Case Execution Time

Z2 Ratio of Best to Worst Case Access Times

Di,min Minimum deadline of task τi which equal it’s mini-

mum finish time

Table 5.1: Notations

5.1.2 Algorithm

Ubus ← random_float(0.7, 0.9)
N ← random_int(2, 4)
a← random_int(1, 5)
Pset ← random_int(1, 3)
sum← 0
Z1 ← random_float(0.8, 1.0)
Z2 ← random_float(0.7, 1.0)
for i← 0, N − 1 do

Pi ← Period based on Pset value

U i
bus ← random_float(0.2, 0.8)

sum← sum+ U i
bus

end for

for i← 0, N − 1 do
U i
bus ← U i

bus/sum
νi ← U i

bus ∗ Pi

Ei,worst ← (Pi − νi) ∗ random_float(0.2, 0.5)
µi ← random_float(0.45, 0.55)
Ri,worst ← ⌊νi ∗ µi/a⌋
Wi,worst ← ⌊νi/a⌋ −Ri

Ei,best ← ⌊Ei,worst ∗ Z1⌋

5.2 Experimental Results 43

Ri,best ← ⌊Ri,worst ∗ Z2⌋
Wi,best ← ⌊Wi,worst ∗ Z2⌋
Di,min ← ⌊(Ri,best +Wi,best) ∗ a+ Ei,best⌋

end for

5.1.3 Comments

• Here, the shared resource is assumed to be a bus.

• U i
bus ∈ [0.2, 0.8] so that for more processes, each process gets at least some bus access.

• Ei,worst ∈ [0.2, 0.4] of the time remaining in Pi after access time is deducted from it. Values

higher than 0.4 may lead to the WCRT of τi going beyond Pi.

• µi ∈ [0.45, 0.55], but the range can be extended.

• Similarly, ranges for Z1 and Z2 can be varied to generate different sets of results.

5.2 Experimental Results

The algorithm was used to generate various test cases to verify different properties of the guar-

antee generation procedure. However, it is difficult to find a particular pattern for different vari-
ables from this data due to the combined effect of changes in parameters such as relative

deadline, number of cores etc. Nonetheless, this data, along with certain conclusions that can
be drawn from it, is provided in Appendix B.1.1. Thus, only certain peculiar cases that follow

from general trends seen in the data, and those which are primarily affected by variation in a

single parameter, are illustrated in this chapter.

5.2.1 Variation in Deadline

The first set of experiments tested the effect of variation in the relative deadline of the task on
the Worst-Case Miss Rate metric, the Uncertainty Metric and the guarantee generation time.

The details of the particular test case, follow by the results, are provided below:

• The best and worst case response times were initially calculated using UPPAAL. BCRT is

162 while WCRT is 232.

• The Deadline is varied from 160 to 162 and then in steps of 14 time units.

• The effect of this Deadline variation on the verification time, WMR and U(k) is then mea-
sured.

• The task-set uses 3 cores with 1 task/core and FCFS arbitration policy.

• k varies from 1 to 10 for each deadline.

The specific task-set used for this experiment and the results are listed in Appendix B.1.2. The
results are shown in Figures 5.1, 5.2 and 5.3.

5.2 Experimental Results 44

Figure 5.1: WMR vs Deadline.

Figure 5.2: Uncertainty Metric vs Deadline. Figure 5.3: Time vs Deadline.

When the deadline is close to the best case response time, there is a high probability of

the number of misses being more than the number of hits. Similarly, close to the worst case
response time, it is the other way around. However, as can be seen from the graph, highest

uncertainty occurs when the deadline is close to the half way mark between BCRT and WCRT.

Consequently, the number of edges in the guarantee automaton are higher when the deadline
is half way between BCRT and WCRT. This increases the verification time, as well as the

overall uncertainty in the system. The graph provides a good picture of this intuitive explanation.

Additionally, the WMR decreases as the deadline increases because the total number of misses
encountered decreases as well.

However, such a trend can be seen in the data in Appendix B.1.1, and is not a one-off occur-

rence. Hence, in general, there is more uncertainty in the system, and consequently a higher

model-checking time is observed, when the deadline is half way between BCRT and WCRT.

5.2.2 Variation in Bus (Resource) Utilization

Due to blocking access to shared resource, as the overall resource utilization and hence re-
source contention increases, the response time of the tasks tends to increase as well. This

would result in more deadline misses. The following example verifies this property. The details

of a particular test case, followed by the results, are provided below:

• The task-set uses 3 cores with 1 task/core and FCFS arbitration policy.

5.2 Experimental Results 45

• k varies from 1 to 10 for each run of the procedure.

• Deadline=(BCRT + WCRT)/2, where BCRT and WCRT are calculated for the task-set

with 50% bus utilization.

• Bus utilization changes from 0% to 100% in steps of 10%.

The specific task-sets used for this experiment and the results are listed in Appendix B.1.3.

Figure 5.4: WMR vs Bus Utilization.

Hence, the behavior of the system is as predicted: with increase in bus utilization, the resource

contention increases and consequently the WMR increases as well.

5.2.3 Scalability Experiments

Finally, various experiments to test the scalability of the guarantee generation procedure were

conducted. These experiments were conducted for varying number of cores, with one or more
tasks per core, and for different arbitration policies. For each of the experiments below, the

worst-case scenario was tested. This worst-case scenario was, to a great extent, derived from
the experiments conducted using the random task-set generation algorithm, and illustrated in

Appendix B.1.1. Such a scenario has the following properties:

1. Deadline is half-way between best and worst case response times.

2. The access and execution ranges are large.

3. Resource utilization is relatively high.

4. The value of k is increases from 1 to 6, which is a relatively high value for the stopping
condition.

As discussed previously, it was observed that when the deadline is near the half-way mark
between BCRT and WCRT, there is more uncertainty in the system. With large access and

execution ranges, the state space increases during the model-checking process. Additionally,
a higher resource utilization causes more resource contention. And finally, a higher value of k
implies a bigger observer automaton with a larger state space and more transitions. All of these

significantly increase the model-checking time in UPPAAL. Hence, it provides a worst-case
measure of the scalability of the guarantee generation method.

The results of these experiments are illustrated in Tables 5.2 and 5.3. The columns are the
number of cores while the rows are the arbitration policies. A computational budget of 18 hours

was set to complete the guarantee generation for the given values of k. The tables show the
number of task-sets for which the guarantee generation procedure could be completed within

the given time frame. (Specific task-sets for these experiments have not been mentioned or

listed in this thesis.)

5.2 Experimental Results 46

1. For the first set, FCFS, FP and TDMA were checked against increasing number of cores

with 1 task per core.

2 3 4 5 6
FCFS > 60% > 60% < 20% < 20% < 20%
FP > 60% > 60% 20− 60% < 20% < 20%
TDMA > 60% > 60% > 60% > 60% > 60%

Table 5.2: Scalability for 1 task per core.

2. For the second set, FCFS, FP and TDMA were checked against increasing number of

cores, but with more than 1 task per core. Stopwatches in UPPAAL were used to model

more than 1 task per core with the FP scheduling policy on each core. This further
increased the guarantee generation time significantly.

For 2 tasks per core:

2 3
FCFS 20− 60% < 20%
FP 20− 60% < 20%
TDMA > 60% > 60%

Table 5.3: Scalability for 2 tasks per core.

For 3 tasks per core:

2 3
FCFS < 20% < 20%
FP < 20% < 20%
TDMA > 60% > 60%

Table 5.4: Scalability for 3 tasks per core.

To conclude, the method proposed in this thesis for generating a language-based guarantee

is scalable for different arbitration policies, even in the worst-case scenario. The method
performs extremely well for TDMA since the task under consideration can be isolated and

checked. However, for FCFS and FP policies, such a design step is not possible. Hence, the

performance in case of both these policies cannot match that achieved for TDMA. Additionally,
a computational budget of 18 hours is not always sufficient when formal verification is involved.

However, given better conditions such as a deadline equal to the WCRT, or lower k values,

ideally between 3 to 5, as stopping condition, there is a high possibility that the guarantee

generation procedure completes within a realistic computational budget.

Chapter 6

Conclusion

The language-based guarantee details the deadline hit and miss patterns of the jobs of a task.
A method to compute such a guarantee of a given complexity was proposed in this thesis. A

method to solve the same problem for a language of unknown complexity was also put forward.
Two applications were then presented in order to describe the applicability of such a guarantee

language. The applications illustrated the superiority of the language-based guarantee over the

schedulability guarantee.

With a wide scope of application, the only limitation of this method is the inevitable cost

of model-checking. To address this, and to check other properties of the language, various
experiments were conducted and the results have been included in this thesis. From these

experiments, it could be concluded that the method scales for any number of cores with TDMA,
but to a limited number of cores (a maximum of 4) with FCFS and FP, in the worst case scenario.

The inevitable model-checking costs, though, were greatly reduced by using a suitable observer
template and the corresponding modification procedure, as well as the iterative refinement

approach that reuses information from one iteration to the next.

In conclusion, the language-based guarantee is a viable option for the design and analysis of

real-time task-sets. It provides a more advanced alternative to the schedulability guarantee, and
it would be fascinating to explore other applications of this method in the future.

47

Appendix A

Appendix A

A.1 Code for Inverted Pendulum Example

%% inverted pendulum example

% with current set up:

% MMM is allowed

% MMM => H

% MMMHM => HH

clear;

VERBOSE = 'm'; % (l)ow - (m)ed - (h)igh

%% useful functions

max_eig = @(A) (max(abs(real(eig(A)))));

%% inputs

M = 0.5;

m = 0.2;

b = 0.1;

I = 0.006;

g = 9.8;

l = 0.3;

p = I*(M+m)+M*m*l^2; % denominator for the A and B matrices

%% compute state space model

% x(t + 1) = Ax(t) + Bu(t)

% y(t) = Cx(t) + Du(t)

A = [0 1 0 0;

0 -(I+m*l^2)*b/p (m^2*g*l^2)/p 0;

0 0 0 1;

0 -(m*l*b)/p m*g*l*(M+m)/p 0];

B = [0;

(I+m*l^2)/p;

0;

m*l/p];

C = [1 0 0 0;

0 0 1 0];

D = [0;

0];

%% construct matlab system model

sys = ss(A, B, C, D);

%% discretize the system model and extract state space model

Ts = .6; % was .6

48

A.1 Code for Inverted Pendulum Example 49

sysd = c2d(sys, Ts);

A_p = sysd.a;

B_p = sysd.b;

C_p = sysd.c;

%% weight matrices

rho = 10; phi = 1;

% rho/phi controls sparsity of control

QXU = diag([rho rho rho rho phi]);

rho = .01; phi = 1;

QWV = diag([rho rho rho rho phi phi]);

%% compute the filter and regulator

KLOQ = lqg(sysd, QXU, QWV);

A_c = KLOQ.a;

B_c = KLOQ.b;

C_c = KLOQ.c;

%% compute system matrices for open and closed loop

A_cl = [A_p B_p*C_c; B_c*C_p A_c];

A_ol = [A_p B_p*C_c; zeros(4) A_p+B_p*C_c];

%% obtained eigenvalues

fprintf('Closed loop max gain = %g\n', max_eig(A_cl));

fprintf('Open loop max gain = %g\n', max_eig(A_ol));

%% compute allowed strings

len = 6; % was 10

threshold = 0.5; % was 0.5

flag = zeros(2^len, 1);

for i = 0 : 2^len - 1

k = i;

A_prod = eye(8);

seq = '';

for j = 1 : len

if (mod(k, 2) == 1)

A_prod = A_prod * A_cl;

seq = strcat(seq, 'H');

else

A_prod = A_prod * A_ol;

seq = strcat(seq, 'M');

end

k = floor(k/2);

end

if (VERBOSE == 'h')

fprintf('%g: %g\n', i, max_eig(A_prod));

end

if (max_eig(A_prod) < threshold)

flag(i + 1) = 1;

if (VERBOSE == 'm')

disp(seq);

end

end

end

fprintf('Found %g strings out of %g\n', sum(flag), 2^len);

A.2 The Shell Script 50

A.2 The Shell Script

The code to generate the guarantee language is written using Python. However, to automate
the process of executing the script, a separate shell script is run. An example of this is provided

below:

python path_to_main.py path_to_model.xml path_to_query.q Template_name k_1 k_2 path_to_verifyta

Here, main.py is the Python script that calls the procedures that generate the guarantee, while

the Template_name is the name of the UPPAAL template where the Observer will be modelled.

k_1 and k_2 are first and last k values till which the procedure will execute. However, for more
complex stopping conditions, the Python script can be altered.

A.3 The verifyta Options

verifyta is UPPAAL’s command-line tool used for model-checking. The general syntax of the

command is as follows:

verifyta model.xml query.q -options

Here, model.xml is the XML file containing the UPPAAL models of the Real-Time System.

query.q is the file containing the query. Some of the options that were tested are given below.

1. State Space reduction: S0, was used whenever enough memory was available; S1 is the

conservative option, and was used when less memory was available.

2. Search order: o0 (breadth first) was faster than o1 (depth first) and o2 (random depth first).

3. Diagnostic trace: t0 (some trace) was faster than t1 (fastest trace) and t2 (shortest trace).

Hence, the ideal combination was found to be: S0, o0 and t0, along with the T option to reuse
state space when possible.

A.4 Outline to the Python scripts

The entire guarantee generation process, for a given as well as unknown k, is automated using

Python scripts. This section provides an outline for this code, and a brief summary of what each
function in the different files does. The code is separated into different files, and the functions in

each file are illustrated below.

Filename: main.py
It serves as the starting point for the execution of the process. It calls all the other functions

involved in the guarantee generation process, and contains only the main function which takes

the following arguments:

• filename – name of the XML file that contains the XML code for the model

• query_file – name of the query file that will contain the query

• template_name – base name of the template in which the user wants the observer to be
placed. It might be appended based on the value of k.

• k1 – value of k required to build the first observer automaton

• k2 – value of k required to build the last observer automaton

• verifyta_path – path to the verifyta command on the local machine

Filename: auto_generator.py

It contains the functions used in the generation of the observer and guarantee automaton for a

given value of k. The functions and corresponding arguments are described below:

A.4 Outline to the Python scripts 51

1. parse_xml(filename, template_name, k): Parses the XML file (containing the RTS model)

and inserts the custom node ’template_name’ which acts as the observer. Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – name of the template that holds the observer.

• k – value of k required to build the observer automaton

2. change_declaration(text): Adds the global variable ’e_global’ to the XML file’s Declarations

template. Arguments:

• text – the text that is to be appended

Returns:

• text – the modified text

3. add_transitions(k, newNode): Adds the transitions between locations by modifying the

XML file containing the RTS model. Arguments:

• k – value of k required to build the observer automaton

• newNode – the XML ElementTree node that acts as the ’observer’ template

Returns:

• newNode – modified newNode

4. transition_generator(source, target, hit_miss, newNode, nail, e_global): Simplifies the

repetitive addition of transitions to the XML file. Arguments:

• src – source location of the transition

• tar – target location of the transition

• hit_miss – string representing hit? or miss?

• newNode – the XML ElementTree node that acts as the ’observer’ template

• nail – location where a nail attribute (related to UPPAAL GUI) should be placed in the
new transition

• e_global – initial value of e_global on that edge

Returns:

• newNode – modified newNode

5. pretty_xml(newNode): Makes the XML in the XLM file look pretty. Arguments:

• newNode – the XML ElementTree node that acts as the ’observer’ template

Returns:

• root – root element of the modified XML tree (which is nothing but the modified newN-
ode)

Filename: query_generator.py

It is used to generate the query file.

1. generate(query_file): Generates the query file and writes the query to it. Arguments:

• query_file – name of the query file that will contain the query

Filename: verifier.py
It is used to run the verifyta command, generate and examine the counter example trace,

and make changes to the observer automaton by altering the XML file.

1. verify(filename, query_file, template_name, verifyta_path): Checks which edges can pos-

sibly be traversed by the k-automaton and updates the XML to give the final k-automaton.

Arguments:

A.4 Outline to the Python scripts 52

• filename – name of the XML file that contains the XML code for the model

• query_file – name of the query file that will contain the query

• template_name – name of the template that holds the observer

• verifyta_path – path to the verifyta command on the local machine

2. generate_trace(filename, query_file, verifyta_path): Executes the verifyta command and
produces the output and error for the given files (i.e., the XML and query files). The error

contains the counter-example trace generated by verifyta. The options for verifyta are
discussed in Appendix A.2. Arguments:

• filename – name of the XML file that contains the XML code for the model

• query_file – name of the query file that will contain the query

• verifyta_path – path to the verifyta command on the local machine

Returns:

• out – output of the verifyta command

• err – error generated by the verifyta command

3. find_ids(err, template_name): Examines the counter-example trace generated by verifyta

and finds the ID’s of the locations where the trace registered an error. Actually, the tran-
sition between these locations is the one that caused the counter-example trace, but it is

identified using the locaiton ID’s. Arguments:

• err – error generated by the verifyta command

• template_name – name of the template that holds the observer

Returns:

• id1 – source location of the error edge

• id2 – target location of the error edge

4. correct_xml(filename, template_name, id1, id2): Corrects the e_global value on the error
edge, i.e., assigns it a value 1 by modifying the XML file. The location ID’s are search as

source and target in the XML file to find the node corresponding to the edge (transition)

responsible for the trace. Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – name of the template that holds the observer

• id1 – source location of the error edge

• id2 – target location of the error edge

5. auto_prune(filename, template_name): Prunes the final observer automaton (for k), i.e.,

removes all the edges and locations not part of Ak. This is done by identifying the edges

where the e_global value is 0 after no more counter-example traces are generated. Then,
all the locations with no incoming transitions are removed as well. Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – name of the template that the user wants the observer to be placed

in

Filename: auto_extender.py
The functions here are used to extend the guarantee automaton (final observer automaton) for

k to the initial observer for k + 1. This step corresponds to the method discussed in Section 3.2

of the thesis.

1. extend(filename, template_name, k1, k2): Extends the observer automaton from k1 to k2

(k1<k2). This means that the function uses the observer for k = k1 to construct the initial

observer for k = k2. Arguments:

A.4 Outline to the Python scripts 53

• filename – name of the XML file that contains the XML code for the model

• template_name – base name of the template to be inserted. It might be appended
based on the value of k.

• k1 – value of k of the existing observer automaton

• k2 – value of k for the next automaton

2. final_prune(filename, template_name): Removes the e_global = 1 assignment from the

edges in the automaton, to make it look neater in the UPPAAL GUI. Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – name of the template that is to be pruned

Filename: minimizer.py

It is used to minimize the entire final observer automaton using Equivalence classes.

1. minimize(filename, template_name): Minimizes the guarantee automaton (final observer).
The minimizaiton procedure is divided into three parts and this function calls each one

separately. Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – name of the template that holds the observer to be minimized

2. generate_adjlist(filename, template_name): Generates the adjacency list from a given
DFA graph (i.e., the final observer). Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – name of the template that holds the observer to be minimized

Returns:

• adj_list – adjacency list in Python dictionary form

3. generate_classes(adj_list): Generates the equivalence classes from a given DFA. Argu-

ments:

• adj_list – adjacency list in Python dictionary form

Returns:

• final – list of equivalence classes

4. file_DFA(filename, classes, adj_list, template_name): Generates the reduced DFA using

the Equivalence classes. Arguments:

• filename – name of the XML file that contains the XML code for the model

• classes – list of equivalence classes

• adj_list – adjacency list in Python dictionary form

• template_name – name of the template that holds the observer to be minimized

5. add_transitions(newNode, adj_list, i, dict_list): Adds transitions in the minimized DFA. Ar-

guments:

• newNode – the XML ElementTree node that acts as the observer template

• adj_list – adjacency list in Python dictionary form

• i – index of element in dict_list

• dict_list – list of equivalence classes

Returns:

• newNode – modified newNode with transitions inserted

A.4 Outline to the Python scripts 54

Filename: last_minimizer

The purpose of this file, including the functions are the same as that of minimizer.py, except in
this case, only the leaf locations are used in the minimization process.

Filename: degree_generator.py

It is used to generate the various metrics mentioned in Section 3.2.3. Additionally, it also com-
putes the Worst-Case Miss-Rate Metric mentioned in the Applications chapter.

1. deg_1_2(filename, template_name, k1, k2): Calculates the Total Degree Index and the
Partial Degree Index for the finals observers corresponding to k and k + 1. Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – base name of the template that holds the observer. This is ap-

pended later depending on the value of k.

• k1 – corresponds to k

• k2 – corresponds to k + 1

2. deg_3(filename, template_name, k1, k2): Calculates the Uncertainty Metric for all final
observers from k = k1 to k = k2 (k1 < k2). Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – base name of the template that holds the observer. This is ap-

pended later depending on the value of k.

• k1 – corresponds to the initial k

• k2 – corresponds to the final k

3. deg_4(filename, template_name, k1, k2): Calculates the Worst-Case Miss-Rate Metric for

all final observers from k = k1 to k = k2 (k1 < k2). Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – base name of the template that holds the observer. This is ap-

pended later depending on the value of k.

• k1 – corresponds to the initial k

• k2 – corresponds to the final k

4. deg_5(filename, template_name, k1, k2): Conveys the maximum misses before one or

more guaranteed hits, for e.g., MMM=>HH for all final observers from k = k1 to k = k2
(k1 < k2). Arguments:

• filename – name of the XML file that contains the XML code for the model

• template_name – base name of the template that holds the observer. This is ap-

pended later depending on the value of k.

• k1 – corresponds to the initial k

• k2 – corresponds to the final k

Appendix B

Appendix B

B.1 Experiment Tables

This sections consists of various experiments that were conducted during the thesis. The first
subsection with preliminary experiments consists of task-sets generated by the random task-set

generation algorithm presented in Section 5.1.2. Each of these task-sets was executed using

the FCFS arbitration policy for a shared resource. This data was mainly used to derive certain
generic results like the worst-case scenario described in Section 5.2.

The second and third subsections presents data for specific experiments (designed to test spe-
cific properties of the guarantee generation) discussed in Chapter 5. We begin with the prelimi-

nary experiments below.

B.1.1 Preliminary Experiments

The task-sets for this set of experiments were generated using the random task generation

algorithm. The highest value of k for each experiment was set to 6. The stopping conditions
used were the same as those mentioned in Section 3.2.3 of the thesis. However, even if there

was no change in U(k), the relative stopping condition was not applied till k = 6. This provided
a better perspective to judge the model-checking time in cases where there was maximum

uncertainty in the system.

The Access Latency of the resource (C) as well as the total bus (shared resource) utilization

are mentioned at the top of every data-set. Rmin - Rmax, Wmin - Wmax, and Emin - Emax are

the read, write and execution ranges, respectively. P is the period of each task while Dcalc is
the minimum deadline of the given task when there is no resource contention. U i

bus provides

the bus utilization of every task, while Dmin and Dmax are the best and worst case response
times, respectively. Every task-set is followed by the k value when the process stopped, the

total guarantee generation time and the U(k) value when the process was terminated.

Since these task-sets were generated using a random task generation algorithm, and due to

the fact that several parameters like access and execution ranges, relative deadline etc. had

wide possible ranges, the data is not easy to interpret and deriving conclusions is difficult. How-
ever, several examples can be discussed which highlight certain properties of the guarantee

generation procedure.

When the deadline is close to the BCRT or WCRT, the guarantee generation time is less, and

the U(k) values for the final k are small. This can be seen in Tables 1, 9, 18, 25, 37 and 55.
However, there are a few cases where this is not true, for example, Tables 3, 4, 12, 32, 53.

Thus, a deadline close to BCRT or WCRT would not always imply a smaller U(k) or a smaller

guarantee generation time because the system can still be highly uncertain in such cases. It is
also worth noting that in most of these examples, the guarantee generation time is significantly

high for higher number of cores (4).

55

B.1 Experiment Tables 56

In contrast, when the deadline is close to half-way between BCRT and WCRT, there is high

uncertainty in the system which is reflected by a high U(k) and a greater guarantee generation
time. This can be seen in Tables 22, 33, 35, 38, 48, 50, 51, and 52. It can also be seen,

again, that as the number of cores increases, the guarantee generation time increases as

well. However, this is a case specific to FCFS arbitration policy, and can also be seen in FP
arbitration policy, but may not apply to TDMA since in that case, each core can be isolated

and checked. Additionally, there are only a few examples where U(k) is low, even though the
deadline is close to half-way between BCRT and WCRT. One such example can be seen in

Table 21. However, the guarantee generation time is still quite large.

Apart form the number of cores and relative deadline, the width of the access and execution

ranges also has an effect on the guarantee generation time. For instance, it is easy to see

from Tables 10,13, 16, and 42, that even though the deadline is not close to half of BCRT and
WCRT, the guarantee generation time is high.

As previously mentioned, since there are a lot of factors that simultaneously affect the guar-

antee generation time, U(k) and other parameters, drawing conclusions from these tables is

not straightforward. Additionally, such extensive experiments have only been conducted for the
FCFS arbitration policy for one task per core. It would be interesting to devise techniques to

‘learn’ from this data, and to derive results for other arbitration policies, with more than one

task per core in order to gain further insight into the performance of the guarantee generation
procedure.

1. C= 3, Ubus= 0.895

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 5 6 5 6 10 13 100 40 0.521 52 82 82

τ1 7 8 7 8 12 16 100 54 0.374 73 91 -

Table B.1

k T ime(s) U(k)
5 1.027 0.0806451612903

Table B.2

2. C= 5, Ubus= 0.703

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 4 2 4 18 22 100 38 0.253 38 82 51

τ1 2 4 3 5 59 72 200 84 0.45 89 145 -

Table B.3

k T ime(s) U(k)
6 89.108 1.0

Table B.4

3. C= 1, Ubus= 0.773

B.1 Experiment Tables 57

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 34 40 39 46 105 106 400 178 0.232 210 312 -

τ1 16 19 18 22 84 85 300 118 0.218 136 185 184

τ2 6 8 7 9 34 35 100 47 0.139 57 94 -

τ3 8 10 10 12 27 28 100 45 0.183 52 99 -

Table B.5

k T ime(s) U(k)
6 295560.657 0.373015873016

Table B.6

4. C= 2, Ubus= 0.877

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 22 26 100 30 0.267 30 70 32

τ1 6 8 6 8 64 74 200 88 0.148 92 180 -

τ2 24 29 23 28 112 128 400 206 0.172 244 384 -

τ3 46 54 44 52 252 288 800 432 0.289 576 760 -

Table B.7

k T ime(s) U(k)
6 85814.971 0.349206349206

Table B.8

5. C= 5, Ubus= 0.872

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 0 1 0 1 18 22 100 18 0.188 18 60 -

τ1 3 4 3 4 29 34 200 59 0.15 59 170 70

τ2 9 11 9 11 95 111 400 185 0.245 200 346 -

τ3 12 15 11 14 244 285 800 359 0.289 479 585 -

Table B.9

k T ime(s) U(k)
6 798.886 0.222222222222

Table B.10

6. C= 4, Ubus= 0.865

B.1 Experiment Tables 58

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 11 12 10 11 37 47 300 121 0.532 141 228 -

τ1 31 34 28 31 41 51 500 277 0.333 337 467 451

Table B.11

k T ime(s) U(k)
6 29.136 0.190476190476

Table B.12

7. C= 1, Ubus= 0.833

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 21 22 24 25 20 24 100 65 0.345 80 93 84

τ1 31 32 35 36 50 61 200 116 0.488 156 168 -

Table B.13

k T ime(s) U(k)
6 29.897 0.222222222222

Table B.14

8. C= 4, Ubus= 0.717

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 1 2 21 23 100 29 0.147 29 71 -

τ1 1 2 1 2 29 32 100 37 0.185 37 76 -

τ2 1 2 1 2 34 37 100 42 0.169 42 76 -

τ3 0 1 0 1 26 29 100 26 0.217 26 61 51

Table B.15

k T ime(s) U(k)
6 4911.589 1.0

Table B.16

9. C= 2, Ubus= 0.852

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 7 8 8 10 18 21 100 48 0.482 62 88 66

τ1 18 21 23 26 41 48 200 123 0.37 153 188 -

Table B.17

B.1 Experiment Tables 59

k T ime(s) U(k)
6 126.411 0.634920634921

Table B.18

10. C= 4, Ubus= 0.78

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 0 1 16 19 100 20 0.209 20 64 -

τ1 4 5 3 4 52 62 200 80 0.166 84 168 -

τ2 9 10 8 9 104 124 400 172 0.204 192 280 223

τ3 20 22 18 19 233 277 800 385 0.201 521 577 -

Table B.19

k T ime(s) U(k)
6 1974.684 0.222222222222

Table B.20

11. C= 1, Ubus= 0.814

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 19 22 22 26 11 13 100 52 0.328 70 83 -

τ1 25 29 30 35 56 64 200 111 0.486 149 175 159

Table B.21

k T ime(s) U(k)
6 1955.142 1.0

Table B.22

12. C= 3, Ubus= 0.805

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 3 4 3 4 14 15 100 32 0.157 44 81 -

τ1 3 4 2 3 27 29 100 42 0.258 54 81 80

τ2 1 2 1 2 37 40 100 43 0.246 43 78 -

τ3 1 2 1 2 16 18 100 22 0.144 27 54 -

Table B.23

k T ime(s) U(k)
6 5771.843 1.0

Table B.24

B.1 Experiment Tables 60

13. C= 4, Ubus= 0.802

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 1 2 34 38 100 42 0.263 42 84 -

τ1 7 8 6 7 33 37 200 85 0.209 91 149 -

τ2 12 13 11 12 74 83 400 166 0.33 202 271 255

Table B.25

k T ime(s) U(k)
6 1430.977 1.0

Table B.26

14. C= 4, Ubus= 0.718

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 27 30 100 43 0.244 43 88 77

τ1 3 4 3 4 73 81 200 97 0.293 109 165 -

τ2 9 12 8 11 60 67 400 128 0.181 160 214 -

Table B.27

k T ime(s) U(k)
6 14.289 0.166666666667

Table B.28

15. C= 2, Ubus= 0.784

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 6 8 8 10 17 19 100 45 0.388 55 71 69

τ1 14 17 17 21 37 41 200 99 0.396 121 153 -

Table B.29

k T ime(s) U(k)
6 224.125 1.0

Table B.30

16. C= 2, Ubus= 0.888

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 51 59 41 48 96 109 500 280 0.456 296 494 -

τ1 43 50 34 40 56 64 400 210 0.432 236 398 251

Table B.31

B.1 Experiment Tables 61

k T ime(s) U(k)
6 3308.18 0.420634920635

Table B.32

17. C= 4, Ubus= 0.725

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 2 3 19 20 100 31 0.258 31 72 66

τ1 4 5 5 6 74 75 200 110 0.235 122 163 -

τ2 9 11 10 13 128 129 400 204 0.232 260 292 -

Table B.33

k T ime(s) U(k)
6 26.851 0.277777777778

Table B.34

18. C= 1, Ubus= 0.713

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 19 20 16 17 12 14 100 47 0.331 63 72 63

τ1 33 35 28 30 49 56 200 110 0.382 147 164 -

Table B.35

k T ime(s) U(k)
6 29.251 0.222222222222

Table B.36

19. C= 5, Ubus= 0.712

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 0 1 29 33 100 34 0.216 34 74 -

τ1 2 3 1 2 30 34 100 45 0.202 55 79 59

τ2 1 2 0 1 30 34 100 35 0.294 35 74 -

Table B.37

k T ime(s) U(k)
6 282.056 1.0

Table B.38

20. C= 3, Ubus= 0.726

B.1 Experiment Tables 62

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 3 4 3 4 12 15 100 30 0.21 30 78 42

τ1 6 7 6 7 32 38 200 68 0.289 83 131 -

τ2 12 14 11 13 101 119 400 170 0.227 212 290 -

Table B.39

k T ime(s) U(k)
6 196.406 0.52380952381

Table B.40

21. C= 2, Ubus= 0.734

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 3 4 4 5 31 39 100 45 0.153 45 100 -

τ1 9 10 9 10 43 53 200 79 0.198 85 164 -

τ2 14 16 15 17 121 149 400 179 0.214 207 343 286

τ3 27 30 28 31 142 175 800 252 0.169 344 439 -

Table B.41

k T ime(s) U(k)
6 29436.214 0.277777777778

Table B.42

22. C= 5, Ubus= 0.713

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 26 29 100 46 0.36 46 79 -

τ1 6 7 6 7 24 27 200 84 0.353 94 122 107

Table B.43

k T ime(s) U(k)
6 112.159 1.0

Table B.44

23. C= 3, Ubus= 0.875

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 6 8 6 8 15 19 100 51 0.372 56 94 -

τ1 9 12 8 11 36 45 200 87 0.502 108 157 121

Table B.45

B.1 Experiment Tables 63

k T ime(s) U(k)
6 290.249 1.0

Table B.46

24. C= 5, Ubus= 0.788

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 0 1 17 20 100 22 0.381 22 60 -

τ1 3 4 3 4 55 64 200 85 0.198 90 145 -

τ2 12 15 11 14 103 118 400 218 0.21 258 348 295

Table B.47

k T ime(s) U(k)
6 2575.869 1.0

Table B.48

25. C= 3, Ubus= 0.837

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 6 7 5 6 14 16 100 47 0.405 60 81 61

τ1 12 14 10 12 29 34 200 95 0.432 125 166 -

Table B.49

k T ime(s) U(k)
6 10.797 0.222222222222

Table B.50

26. C= 5, Ubus= 0.82

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 17 21 100 37 0.439 42 81 57

τ1 3 4 3 4 11 14 100 41 0.381 51 84 -

Table B.51

k T ime(s) U(k)
6 105.253 1.0

Table B.52

27. C= 3, Ubus= 0.74

B.1 Experiment Tables 64

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 1 2 38 41 100 44 0.238 44 85 49

τ1 1 2 1 2 28 31 100 34 0.147 34 79 -

τ2 2 3 2 3 27 30 100 39 0.157 48 87 -

τ3 2 3 3 4 25 27 100 40 0.199 49 88 -

Table B.53

k T ime(s) U(k)
6 14924.569 1.0

Table B.54

28. C= 4, Ubus= 0.889

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 1 2 20 22 100 28 0.339 32 62 -

τ1 3 4 3 4 28 31 100 52 0.198 66 88 -

τ2 3 4 3 4 14 16 100 38 0.352 50 84 57

Table B.55

k T ime(s) U(k)
6 402.738 1.0

Table B.56

29. C= 3, Ubus= 0.726

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 4 5 5 6 25 26 100 52 0.393 64 92 68

τ1 5 6 6 7 25 26 100 58 0.334 79 95 -

Table B.57

k T ime(s) U(k)
6 165.69 1.0

Table B.58

30. C= 1, Ubus= 0.848

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 23 29 19 25 14 18 100 56 0.3 71 94 85

τ1 12 16 10 13 19 24 100 41 0.548 52 82 -

Table B.59

B.1 Experiment Tables 65

k T ime(s) U(k)
6 2142.46 1.0

Table B.60

31. C= 2, Ubus= 0.821

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 6 7 7 8 17 19 100 43 0.235 63 95 -

τ1 5 6 6 7 28 32 100 50 0.316 81 97 -

τ2 4 5 5 6 28 32 100 46 0.27 62 96 73

Table B.61

k T ime(s) U(k)
6 3154.296 1.0

Table B.62

32. C= 2, Ubus= 0.871

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 7 8 8 9 27 31 100 57 0.505 69 83 -

τ1 23 24 24 25 25 29 200 119 0.366 147 171 147

Table B.63

k T ime(s) U(k)
6 548.336 1.0

Table B.64

33. C= 4, Ubus= 0.784

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 1 2 31 32 100 39 0.288 39 78 62

τ1 2 3 2 3 33 34 100 49 0.222 57 88 -

τ2 2 3 2 3 29 30 100 45 0.274 53 88 -

Table B.65

k T ime(s) U(k)
6 485.631 1.0

Table B.66

34. C= 1, Ubus= 0.867

B.1 Experiment Tables 66

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 17 20 15 18 20 25 100 52 0.484 66 88 -

τ1 43 50 39 46 35 44 200 117 0.383 151 189 170

Table B.67

k T ime(s) U(k)
6 8054.32 1.0

Table B.68

35. C= 5, Ubus= 0.771

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 1 2 30 34 100 40 0.202 40 85 -

τ1 0 1 0 1 32 37 100 32 0.23 32 70 -

τ2 3 4 3 4 64 73 300 94 0.191 99 168 130

τ3 6 7 7 8 140 159 400 205 0.148 215 309 -

Table B.69

k T ime(s) U(k)
6 19926.437 1.0

Table B.70

36. C= 3, Ubus= 0.793

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 4 6 4 7 18 23 100 42 0.362 51 91 -

τ1 3 5 4 6 18 22 100 39 0.431 45 88 53

Table B.71

k T ime(s) U(k)
6 365.787 1.0

Table B.72

37. C= 3, Ubus= 0.746

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 23 24 19 20 74 75 300 200 0.291 251 279 268

τ1 29 31 25 26 120 121 600 282 0.455 399 427 -

Table B.73

B.1 Experiment Tables 67

k T ime(s) U(k)
6 181.463 0.746031746032

Table B.74

38. C= 3, Ubus= 0.863

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 3 4 4 5 18 19 100 39 0.28 51 99 -

τ1 3 4 4 5 22 23 100 43 0.299 55 99 -

τ2 3 4 4 5 23 24 100 44 0.284 59 98 86

Table B.75

k T ime(s) U(k)
6 1792.222 1.0

Table B.76

39. C= 3, Ubus= 0.879

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 27 29 100 39 0.242 48 97 -

τ1 2 4 2 3 31 33 100 43 0.194 52 100 -

τ2 2 3 2 3 33 35 100 45 0.246 54 98 97

τ3 2 4 2 3 21 22 100 33 0.198 42 97 -

Table B.77

k T ime(s) U(k)
6 66963.204 1.0

Table B.78

40. C= 3, Ubus= 0.829

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 19 23 100 31 0.198 31 84 39

τ1 4 5 4 5 45 54 200 69 0.217 75 159 -

τ2 13 16 13 16 110 133 400 188 0.169 227 397 -

τ3 21 26 21 26 135 162 800 261 0.245 354 515 -

Table B.79

k T ime(s) U(k)
6 13256.895 0.5

Table B.80

B.1 Experiment Tables 68

41. C= 2, Ubus= 0.863

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 11 12 10 11 10 12 100 52 0.389 80 94 -

τ1 8 9 8 9 19 22 100 51 0.474 77 94 83

Table B.81

k T ime(s) U(k)
6 205.586 1.0

Table B.82

42. C= 1, Ubus= 0.83

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 64 78 75 91 46 56 400 185 0.404 185 358 224

τ1 92 112 107 130 110 134 600 309 0.426 371 546 -

Table B.83

k T ime(s) U(k)
6 4650.181 0.166666666667

Table B.84

43. C= 5, Ubus= 0.873

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 15 16 15 16 135 149 600 285 0.229 375 549 -

τ1 7 8 7 8 67 74 400 137 0.272 175 330 182

τ2 3 4 3 4 66 73 300 96 0.213 120 220 -

τ3 5 6 5 6 44 49 300 94 0.16 146 235 -

Table B.85

k T ime(s) U(k)
6 600.123 0.142857142857

Table B.86

44. C= 4, Ubus= 0.805

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 1 2 24 25 100 36 0.165 44 79 -

τ1 2 3 1 2 26 27 100 38 0.252 46 77 -

τ2 0 1 0 1 27 28 100 27 0.256 27 54 -

τ3 1 2 0 1 37 38 100 41 0.132 41 78 76

Table B.87

B.1 Experiment Tables 69

k T ime(s) U(k)
6 2061.485 1.0

Table B.88

45. C= 5, Ubus= 0.831

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 6 8 5 6 140 154 400 195 0.194 225 385 -

τ1 4 5 3 4 44 49 200 79 0.182 79 195 -

τ2 12 14 9 11 158 173 600 263 0.232 300 508 -

τ3 8 10 6 8 135 148 500 205 0.223 205 403 323

Table B.89

k T ime(s) U(k)
6 70479.364 0.753968253968

Table B.90

46. C= 1, Ubus= 0.828

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 20 22 21 23 17 18 100 58 0.374 71 90 78

τ1 33 36 35 38 25 27 200 93 0.453 125 145 -

Table B.91

k T ime(s) U(k)
6 412.791 1.0

Table B.92

47. C= 2, Ubus= 0.776

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 4 6 3 5 29 32 100 43 0.238 55 98 -

τ1 5 7 4 6 25 28 100 43 0.257 59 98 -

τ2 4 6 3 5 32 36 100 46 0.281 58 98 65

Table B.93

k T ime(s) U(k)
6 4399.824 1.0

Table B.94

B.1 Experiment Tables 70

48. C= 4, Ubus= 0.744

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 4 2 4 21 27 100 37 0.406 41 91 -

τ1 3 5 3 5 22 28 100 46 0.338 54 95 78

Table B.95

k T ime(s) U(k)
6 219.128 1.0

Table B.96

49. C= 2, Ubus= 0.741

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 10 11 9 10 11 14 100 49 0.307 69 82 73

τ1 6 7 6 7 17 20 100 41 0.433 53 76 -

Table B.97

k T ime(s) U(k)
6 188.091 1.0

Table B.98

50. C= 4, Ubus= 0.833

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 1 2 0 1 14 17 100 18 0.233 18 61 -

τ1 1 2 1 2 23 27 100 31 0.171 31 81 -

τ2 2 3 1 2 28 33 100 40 0.208 52 85 72

τ3 2 3 1 2 27 32 100 39 0.222 51 85 -

Table B.99

k T ime(s) U(k)
6 5251.133 1.0

Table B.100

51. C= 2, Ubus= 0.759

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 5 6 4 5 14 16 100 32 0.317 48 77 -

τ1 4 5 3 4 14 17 100 28 0.245 40 70 -

τ2 6 8 5 7 15 18 100 37 0.197 58 79 67

Table B.101

B.1 Experiment Tables 71

k T ime(s) U(k)
6 1783.613 1.0

Table B.102

52. C= 4, Ubus= 0.746

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 0 1 0 1 20 21 100 20 0.199 20 52 39

τ1 4 5 4 5 74 77 200 106 0.132 106 172 -

τ2 7 9 8 10 140 145 400 200 0.214 240 285 -

τ3 16 19 17 20 262 270 800 394 0.201 482 572 -

Table B.103

k T ime(s) U(k)
6 6261.409 0.738095238095

Table B.104

53. C= 4, Ubus= 0.707

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 3 4 3 4 26 31 100 50 0.353 50 87 -

τ1 7 8 7 9 26 31 200 82 0.354 94 127 94

Table B.105

k T ime(s) U(k)
6 129.371 1.0

Table B.106

54. C= 5, Ubus= 0.747

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 0 1 0 1 37 38 100 37 0.153 37 70 53

τ1 2 3 2 3 52 53 200 72 0.178 72 145 -

τ2 8 9 7 8 141 144 400 216 0.189 236 333 -

τ3 10 12 10 11 207 211 800 307 0.227 367 451 -

Table B.107

k T ime(s) U(k)
6 1220.487 0.968253968254

Table B.108

B.1 Experiment Tables 72

55. C= 1, Ubus= 0.774

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 12 14 13 15 24 27 100 49 0.469 60 77 76

τ1 39 45 42 48 29 33 200 110 0.305 134 173 -

Table B.109

k T ime(s) U(k)
6 68.609 0.222222222222

Table B.110

56. C= 5, Ubus= 0.754

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 15 19 100 35 0.438 35 70 41

τ1 6 8 6 8 21 27 200 81 0.316 91 162 -

Table B.111

k T ime(s) U(k)
6 7.865 0.222222222222

Table B.112

B.1.2 Test Case: Varying Deadline

This first test case illustrates the tables for the figures in Section 5.2.1. The experiment consists
of 3 tasks, with 1 task per core and an FCFS arbiter. Table B.114 shows the results for the

different deadlines for the same task-set.

C= 3, Ubus= 0.739

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax

τ0 17 19 20 22 167 176 500 278 0.298 284 389

τ1 11 12 11 13 66 70 400 132 0.248 162 232

τ2 16 18 19 21 108 114 400 213 0.194 246 333

Table B.113

Deadline k T ime(s) Degree MissRate
160 5 10.088 0.0806451612903 -1

162 7 97.342 0.0787401574803 -1

176 9 1254.913 0.073385518591 -1

190 10 253217.933 0.514173998045 -1

204 10 27040.606 0.174486803519 -0.2

218 7 94.705 0.0708661417323 0.6

232 5 9.909 0.0806451612903 1

Table B.114

B.1 Experiment Tables 73

B.1.3 Test Case: Varying Bus (Resource) Utilization

This experiment illustrates the results for the effects of varying bus utilization illustrated in
Section 5.2.2. The Ubus on top of each table shows the total bus utilization for that task-set.

Each task-set consists of 3 tasks with FCFS arbitration.

C= 1, Ubus= 0.0

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 0 0 0 0 5 6 100 5 0.0 -1 -1 -

τ1 0 0 0 0 12 13 200 12 0.0 -1 -1 85

τ2 0 0 0 0 24 26 400 24 0.0 -1 -1 -

Table B.115

k T ime(s) Degree MissRate
10 1.549 0.00488758553275 1

Table B.116

C= 1, Ubus= 0.1

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 0 1 0 1 5 6 100 5 0.033 -1 -1 -

τ1 2 3 2 3 12 13 200 16 0.033 -1 -1 85

τ2 5 6 5 6 24 26 400 34 0.033 -1 -1 -

Table B.117

k T ime(s) Degree MissRate
10 2.654 0.00488758553275 1

Table B.118

C= 1, Ubus= 0.2

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 2 3 2 3 5 6 100 9 0.067 -1 -1 -

τ1 5 6 5 6 12 13 200 22 0.067 -1 -1 85

τ2 11 12 12 13 24 26 400 47 0.067 -1 -1 -

Table B.119

k T ime(s) Degree MissRate
10 4.538 0.00488758553275 1

Table B.120

C= 1, Ubus= 0.3

B.1 Experiment Tables 74

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 3 4 4 5 5 6 100 12 0.1 -1 -1 -

τ1 8 9 9 10 12 13 200 29 0.1 -1 -1 85

τ2 18 19 19 20 24 26 400 61 0.1 -1 -1 -

Table B.121

k T ime(s) Degree MissRate
10 6.258 0.00488758553275 1

Table B.122

C= 1, Ubus= 0.4

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 5 6 5 6 5 6 100 15 0.133 -1 -1 -

τ1 11 12 12 13 12 13 200 35 0.133 -1 -1 85

τ2 23 25 25 27 24 26 400 72 0.133 -1 -1 -

Table B.123

k T ime(s) Degree MissRate
10 7.906 0.00488758553275 1

Table B.124

C= 1, Ubus= 0.5

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 6 7 7 8 5 6 100 18 0.167 -1 -1 -

τ1 14 15 16 17 12 13 200 42 0.167 -1 -1 85

τ2 29 31 32 34 24 26 400 85 0.167 -1 -1 -

Table B.125

k T ime(s) Degree MissRate
10 14.51 0.00488758553275 1

Table B.126

C= 1, Ubus= 0.6

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 8 9 9 10 5 6 100 22 0.2 -1 -1 -

τ1 18 19 19 20 12 13 200 49 0.2 -1 -1 85

τ2 36 38 38 41 24 26 400 98 0.2 -1 -1 -

Table B.127

B.1 Experiment Tables 75

k T ime(s) Degree MissRate
10 19.943 0.00537634408602 0.0

Table B.128

C= 1, Ubus= 0.7

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 10 11 11 12 5 6 100 26 0.233 -1 -1 -

τ1 20 22 22 24 12 13 200 54 0.233 -1 -1 85

τ2 41 44 45 48 24 26 400 110 0.233 -1 -1 -

Table B.129

k T ime(s) Degree MissRate
10 42.17 0.00537634408602 0.0

Table B.130

C= 1, Ubus= 0.8

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 11 12 12 13 5 6 100 28 0.267 -1 -1 -

τ1 23 25 25 27 12 13 200 60 0.267 -1 -1 85

τ2 48 51 52 55 24 26 400 124 0.267 -1 -1 -

Table B.131

k T ime(s) Degree MissRate
10 6277.505 0.0606060606061 -1

Table B.132

C= 1, Ubus= 0.9

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 13 14 14 15 5 6 100 32 0.3 -1 -1 -

τ1 26 28 29 31 12 13 200 67 0.3 -1 -1 85

τ2 54 57 58 62 24 26 400 136 0.3 -1 -1 -

Table B.133

k T ime(s) Degree MissRate
10 109.62 0.00488758553275 -1

Table B.134

C= 1, Ubus= 1.0

B.1 Experiment Tables 76

Task Rmin Rmax Wmin Wmax Emin Emax P Dcalc U i
bus Dmin Dmax DL

τ0 14 15 16 17 5 6 100 35 0.333 -1 -1 -

τ1 29 31 32 34 12 13 200 73 0.333 -1 -1 85

τ2 59 63 65 69 24 26 400 148 0.333 -1 -1 -

Table B.135

k T ime(s) Degree MissRate
10 255.304 0.00488758553275 -1

Table B.136

Bibliography

[1] A. Bemporad, M. Heemels, and M. Johansson, Networked control systems. Springer, 2010,
vol. 406.

[2] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, "A survey of recent results in networked control

systems," Proceedings of the IEEE, vol. 95, no. 1, pp. 138-162, 2007.

[3] R. Alur and G. Weiss, "Regular specifications of resource requirements for embedded

control software," in Real-Time and Embedded Technology and Applications Symposium,
2008. RTAS’08. IEEE. IEEE, 2008, pp. 159-168.

[4] G. Bernat, A. Burns, and A. Llamosi, "Weakly hard real-time systems," IEEE Trans. Com-

puters, vol. 50, no. 4, pp. 308-321, 2001.

[5] P. Kumar and L. Thiele, "Quantifying the effect of rare timing events with settling-time and

overshoot," in RTSS. IEEE Computer Society, 2012, pp. 149-160.

[6] A. D’Innocenzo, G. Weiss, R. Alur, A. J. Isaksson, K. H. Johansson, and G. J. Pappas,
"Scalable scheduling algorithms for wireless networked control systems," in Automation

Science and Engineering, 2009. CASE 2009. IEEE International Conference on. IEEE,
2009, pp. 409-414.

[7] L. Thiele, S. Chakraborty, and M. Naedele, "Real-time calculus for scheduling hard real-
time systems," in Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The

2000 IEEE International Symposium on, vol. 4. IEEE, 2000, pp. 101-104.

[8] R. Alur and D. L. Dill, "A theory of timed automata," Theoretical Computer Science, vol.
126, pp. 183-235, 1994.

[9] K. G. Larsen, P. Pettersson, and W. Yi, "Uppaal in a nutshell," International Journal on

Software Tools for Technology Transfer (STTT), vol. 1, no. 1, pp. 134-152, 1997.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, "Counterexample-guided abstraction

refinement," in Computer aided verification. Springer, 2000, pp. 154-169.

[11] S. Baruah, H. Li, and L. Stougie, "Towards the design of certifiable mixed-criticality sys-
tems," in Real-Time and Embedded Technology and Applications Symposium (RTAS),

2010 16th IEEE. IEEE, 2010, pp.13-22.

[12] I. Hur and C. Lin, "Adaptive history-based memory schedulers," in Proceedings of the 37th

annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
2004, pp. 343-354.

[13] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley, "A pre-

dictable execution model for cots-based embedded systems," in Real-Time and Embed-

ded Technology and Applications Symposium (RTAS), 2011 17th IEEE. IEEE, 2011, pp.
269-279.

[14] J. Hespanha, "Lecture notes on lqr/lqg controller design." [Online]. Available:

http://www.uz.zgora.pl/ wpaszke/materialy/kss/lqrnotes.pdf

77

BIBLIOGRAPHY 78

[15] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, "Timed model checking with

abstractions: Towards worst-case response time analysis in resource-sharing manycore
systems," in Proc. International Conference on Embedded Software (EMSOFT). Tampere,

Finland: ACM, Oct 2012, pp. 63-72.

[16] R. M. Karp, "A characterization of the minimum cycle mean in a digraph,"

Discrete Mathematics, vol. 23, no. 3, pp. 309-311, 1978. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0012365X78900110

[17] G. Giannopoulou, "A Framework for the State-based Real-time Analysis of Resource Con-

tention Scenarios in Multicore Architectures," Master Thesis, ETH Zurich, 2011. [Online].
Available: ftp://ftp.tik.ee.ethz.ch/pub/people/ggeorgia/MasterThesis.pdf

[18] A. Nerode. Linear automaton transformations. In Proc. of the American Mathematical So-
ciety 9, pages 541-544, 1958.

[19] Wolfgang Thomas. 1991. Automata on infinite objects. In Handbook of theoretical computer

science (vol. B), Jan van Leeuwen (Ed.). MIT Press, Cambridge, MA, USA 133-191.

[20] García, P.; Vidal, E., "Inference of k-testable languages in the strict sense and application

to syntactic pattern recognition," Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on , vol.12, no.9, pp.920,925, Sep 1990

