
Institut für
Technische Informatik und
Kommunikationsnetze

Master Thesis
at the Department of Information Technology

and Electrical Engineering

Powerful Software

AS 2013

Etienne Geiser

Advisors: Pratyush Kumar
Lars Schor

Professor: Prof. Dr. Lothar Thiele

Zurich
21st February 2014

Abstract

Attempting to contribute to the ever increasing energy efficiency discussion,
this master thesis proposes a software-based method to approximate energy
consumption on battery-powered devices. The only inputs it depends on
are the battery voltage and the battery capacity. For power discussions,
time measurements are additionally needed. In a calibration step, we create
a battery voltage to charge mapping, the so-called discharge curve. The
discharge curve and the voltage at the beginning and at the end of the
interval of interest is then used to calculate the energy consumption during
that interval.

Further, we derive error boundaries for the different stages of our energy
approximation. In the error analysis we focus on errors originating from the
inaccuracy of the voltage measurement and the usage of a discrete discharge
curve.

After implementing our method on an Android device, we evaluate its ef-
fectiveness in various case studies. For the evaluation we wrote an applica-
tion, which periodically measures the energy consumption. We then use our
application to evaluate general-purpose and specific applications for their
energy consumption. In particular, we compare various sorting algorithms
against each other and concluded which are the more energy efficient ones.

— II —

Acknowledgements

I would like to express my gratitude to my supervisors, Lars Schor and
Pratyush Kumar for their time, ideas, constructive remarks and engagement
throughout the learning process of this master thesis. Furthermore, I thank
Prof. Dr. Lothar Thiele for giving master students the opportunity to
conduct research within the realms of the research group. Last, but not
least, a big thank you goes to my family, for their unfaltering support.

— III —

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 1
1.3 Contribution . 2
1.4 Overview . 2

2 Approach 3
2.1 Flow of Approach . 3

2.1.1 Reading the Voltage File 4
2.1.2 Discharge Curve . 4
2.1.3 Energy Calculation . 5
2.1.4 Linear Interpolation 6

2.2 Accuracy . 8
2.2.1 Measurements . 8
2.2.2 Interpolation . 8
2.2.3 Discharge Curve . 9
2.2.4 Charge Approximation 10
2.2.5 Energy Estimation . 11

3 Evaluation 13
3.1 Measurement Setup . 13
3.2 Evaluation . 15

3.2.1 Power Evaluation . 15
3.2.2 Discharge Curve . 17
3.2.3 Charge Estimation . 18
3.2.4 Differentiating Components 20
3.2.5 Comparison of Different Sorting Algorithms 21
3.2.6 Evaluation of Common Applications 23

4 Conclusion and Outlook 26
4.1 Conclusion . 26

— IV —

4.2 Outlook . 27

A Examples of Sorting Algorithms 30

B Algorithm Code 33
B.0.1 Support Functions . 33
B.0.2 Bubble Sort . 33
B.0.3 Insertion Sort . 34
B.0.4 Quick Sort . 35

C Data Tables for Sorting Algorithms 39

D Presentation Slides 41

— V —

List of Figures

2.1 Flow Discharge Curve . 4
2.2 Charge Difference Approximation 6
2.3 Interpolation Overview . 7
2.4 Interpolation Worst Cases . 9
2.5 Accuracy of Charge Approximation 11
2.6 Minimal and Maximal Charge Difference 12

3.1 Wire-Bridge . 15
3.2 Voltage over Multimeter . 16
3.3 Voltage over Multimeter Averaged 17
3.4 Discharge Curve . 18
3.5 Merged Discharge Curve . 19
3.6 Effect of Discharge Curve Slope 19
3.7 Charge Estimation . 20
3.8 Insertion versus Screen . 21
3.9 Bubble Sort and Insertion Sort Evaluation 23
3.10 Merge Sort and Quick Sort Evaluation 23
3.11 Comparison of Common Applications 24
3.12 Youtube Movie Voltage . 25

— VI —

1
Introduction

1.1 Motivation

Energy efficiency is given more attention than ever before. Not only in
terms of green thinking for saving our environment, or in terms of profit
as less energy used means more money earned, but also simply in terms of
user comfort. Who does not own a mobile electrical device today? For a
mobile device less energy consumption means longer independence of the
need to recharge the battery. With higher energy efficiency new features
can be added to our device, features which we could not add previously
because their power consumption was too high, draining the battery too
fast. How can the energy consumption be decreased? Both the hardware
and the software can be improved. While a programmer generally cannot
take much influence on the hardware, he can aim to write his code in such a
fashion that it consumes as little power as possible.

This thesis presents a tool for programmers to analyse the energy consump-
tion of their programs, and subsequently to optimize them.

1.2 Background

As a target platform for this thesis, we choose Android smart phones due to
being a common mobile device with an open source operating system. There
are already applications, which give an estimate of the power consumption

— 1 —

1.3. CONTRIBUTION

of applications running on a device. We would particularly like to mention
PowerTutor [1]. At the outset of the thesis we initially attempted to use
it to measure the power consumption. However, realized that PowerTutor
estimates the consumption by dividing the phone into hardware components.
It then measures the time that an application uses these components and
multiplies each time with a component specific coefficient. The drawback
of this approach is that it is necessary to know the components and their
specific coefficients, making it hardware dependent, which greatly reduces
the flexibility. For calculating these component coefficients one would need
to be able to measure the power the components consume. Therefore, we
decided to develop our own software-based method.

1.3 Contribution

In this thesis we prove that it is possible to create a tool capable of giving
an estimation of the power consumed without the need of knowing hardware
specific consumption coefficients. This is done by proposing a software-based
method to measure the energy consumption for battery-powered devices.
Further we derive error boundaries for our energy approximations, addressing
inaccuracies. After implementing the method on an Android device, we
evaluate the effectiveness of the method in various case studies.

1.4 Overview

Following on the introduction, Chapter 2 explains in the first part our ap-
proach and presents thereafter in the second part an analysis of the error
estimation. The third chapter focuses on putting our approach to test in
case studies.

— 2 —

2
Approach

This chapter discusses our approach of obtaining the amount of energy con-
sumed in an Android device. In the first part, we present the approach, in
the second part, we discuss the accuracy of our method.

2.1 Flow of Approach

On Android devices a common approach to estimate the power consump-
tion is to measure the time during which a component (e.g. CPU, GPU,
...) is used. An example of a tool based on this approach would be Power-
Tutor. This approach has the drawback, that it requires knowledge about
all the components and their power consumption. As the components and
their consumptions often vary, a list of all components and their specific
consumption for each phone type and version is required. Our aim though
was to have a tool, which can be applied independent of the device. Thus
we looked for a more general, software-based approach and settled for the
following: At the centre of our testing stage lies the voltage measured across
the battery. In the batteries used today, the battery voltage decreases with
decreasing charge. This voltage to charge relation over the whole charge
range is called the discharge curve. The discharge curve allows us to calcu-
late the charge remaining in the battery, using the voltage measured over the
battery. For our purpose we assume that the discharge curve changes only
little over time, which means we can neglect the so-called ageing process, al-
leviating the need to regularly update the discharge curve used for converting

— 3 —

2.1. FLOW OF APPROACH

voltage/charge values. With the ability to estimate the charge from voltage
and therefore knowing how much energy is stored in the battery, we are
then able to estimate the energy used between two voltage measurements.
The energy consumed is the difference between the charges we calculated
from the voltages, multiplied by the total battery capacity. In the following
subsections we introduce the different stages of our method.

2.1.1 Reading the Voltage File

The voltage is acquired by reading the system-provided file found at the
path /sys/class/power_supply/battery/voltage_now. It contains the battery
voltage measured in µV. The smallest voltage difference between two meas-
urements we observed is 1250µV, indicating that this is the granularity of
the voltage meter. Our measurements also indicate, that this file is updated
about every 50 seconds. This has the drawback, that measuring the voltage
on a shorter time interval often returns the same voltage, and with no voltage
difference we can not calculate the energy consumption.

2.1.2 Discharge Curve

Once the process of obtaining the current voltage is established, our next
step is to create a discharge curve. A discharge curve can be generated by
draining the battery at a constant rate from 100% charge to 0% charge. Due
to the constant power consumption, we know that after 60% of the total
time it took for the complete discharge, we have consumed 60% of the total
battery capacity. This behaviour allows us to label the time axis as a relative
charge used axis.

voltage measurements

voltage measurements

voltage measurements

voltage measurements

voltage

voltage

voltage

voltage

raw curve

raw curve

normalizing

normalizing

normalized curve

normalized curve

averaging

merged discharge curve

constant power

constant power

Figure 2.1: Flow Discharge Curve
Above we see the flow of creating a merged discharge curve

In order to reduce noise and improve accuracy, we use multiple discharge
curves, normalize them and then merge them into a single discharge curve.

— 4 —

2.1. FLOW OF APPROACH

Figure 2.1 outlines the flow of the creation of such a merged discharge curve.
Looking at the measurement files we observe that the first and last voltages
are not the same for different measurements taken. This is mainly due to the
fact that the battery is not charged to a constant value, but rather charged
to a specific value and then the charging is suspended until the voltage
drops below a certain level. Therefore it is possible to start measuring at
different voltage levels, even after “fully” charging the battery. Also, the
time between unplugging the charger and starting the measurement was not
strictly controlled. Due to varying starting voltages and the fact that we
used various measurement periods the last voltage read may differ.

To avoid those issues, we normalize the individual curves relative to a specific
voltage interval (3.6-4.05 V). In the interval we sample the voltage at every
1

500% charge step.

A point or sample (C,V) in the discharge curve is given by a charge used
(C) and the voltage (V). Such a point describes the voltage after a certain
relative amount of battery charge has been consumed. Now, we average the
voltages at these points over all counterparts of the different curves, resulting
in the points of our averaged (or merged) discharge curve. Points outside the
voltage interval are processed similarly, adding them up and then dividing
them by the number of curves contributing to that point. Due to being
discrete, the individual curves often do not have the exact values for the
desired relative charge, thus the voltages for the desired charge are linearly
interpolated values.

2.1.3 Energy Calculation

For an estimation of the energy consumed over a certain time interval, we
log the voltage at the beginning (vs) and at the end(ve). Then we use our
discharge curve to obtain the relative charges (cs,ce) for the two voltages.
Refer to Figure 2.2. Because our discharge curve is a discrete curve, we usu-
ally have to use linear interpolation for voltage values between two discharge
curve values. The difference between the two relative charges (∆c) repres-
ents the percentage which was used in comparison to the total capacity of
the battery. Figure 2.2 shows an example of how the discharge curve is
applied for calculating the charge difference. To get the amount of energy
consumed (e), we multiply the charge difference with the total amount of
energy (E) the battery provides during a single full discharge. Written as a
formula:

e = (ce − cs) ∗ E = ∆c ∗ E (2.1)

— 5 —

2.1. FLOW OF APPROACH

Charge Used

Voltage

Discharge Curve

vs

cs

ve

ce

∆c

Figure 2.2: Charge Difference Approximation
The input voltages are converted to charges using the discharge curve.

Afterwards the difference of the charges are calculated

2.1.4 Linear Interpolation

This subsection elucidates the linear interpolation we use for estimating val-
ues, which our discrete discharge curve does not provide. Interpolation is re-
quired because our discharge curve consists only of an array of voltage-charge
pair samples. Therefore we need an approximation for values in between two
such samples. We assume that the discharge curve is monotonically falling,
since a voltage increase would mean an increase in battery charge. This
would contradict our assumption of a constant energy decrease during the
creation of our discharge curve. The interpolation is used for approximating
both, voltage and charge.

If we have the voltage v and want to approximate c from it, we choose the two
samples (C1,V1),(C2,V2) from the discharge curve. The samples are chosen
such that their voltages V1 and V2 encase our voltage v. See Figure 2.3 for
a visualisation. V1 is the next higher and V2 the next smaller voltage found
in the discharge curve.

At the base of the interpolation lies the Intercept Theorem [2, p. 16], which
is in our case formulated as:

Intercept Theorem:

vx
cx

=
∆V

∆C
(2.2)

— 6 —

2.1. FLOW OF APPROACH

Charge Used

Voltage

Sample 1

Sample 2

Interpolated PointV1

V2

C2

v

cC1

Cx

vx

∆V

∆C

Figure 2.3: Interpolation Overview
Visualisation of an interpolation

Where we use the following notation:

vx = V1 − v (2.3)
cx = C1 − c (2.4)

∆V = V1 − V2 (2.5)
∆C = C1 − C2 (2.6)

Figure 2.3 puts them graphically into relation.

Used Charge Interpolation

For obtaining the formula for a charge approximation we first solve (2.4) to
c.

c = C1 + cx

Then we apply (2.2) to cx, which results in:

c = C1 + ∆C
vx

∆V

Finally we substitute vx, ∆V , ∆C with (2.3),(2.5),(2.6), giving us the inter-
polation formula for c:

c = C1 + (C2 − C1)
V1 − v

V1 − V2
(2.7)

— 7 —

2.2. ACCURACY

Voltage Interpolation

To obtain the formula for (v) we follow similar steps as we did for c:

v = V1 − vx = V1 − ∆V
cx

∆C

v = V1 − (V1 − V2)
c− C1

C2 − C1
(2.8)

2.2 Accuracy

In the following section we discuss the accuracy of our approach. Beginning
with the measurements, we derive lower and upper error bounds for the
different stages of our method.

2.2.1 Measurements

The reading of the voltage files returns values which have the smallest step
size of 1250 µV, meaning that the exact value of v would be between v −
1250µV

2 and v + 1250µV
2 . Thus we define our lower and upper bound for our

voltage measurements as followed:

vmin = v − 625µV (2.9)
vmax = v + 625µV (2.10)

2.2.2 Interpolation

To reach a voltage higher than V1, voltage v would need to increase after the
first sample. For a voltage lower than V2 v would need to increase from that
lower value to V2. Both these cases contradict our assumption of a monotonic
falling discharge curve, so we can assume the voltage to be bounded by V1
and V2.

Figure 2.4 illustrates the two cases where the linear approximation returns
the worst results.

These are when the voltage of the discharge curve between sample 1 and
sample 2 immediately drops from V1 to V2 or stays at V1 almost until C2

is reached. Linearly approximating the voltage in Worst Case 1 at c = C1

would return V1, however the true voltage would be V2. Or approximating
the charge used at v = V1 in Worst Case 2, would return C1 instead of C2.

— 8 —

2.2. ACCURACY

Charge Used

Voltage

v1

v2

c2c1

Linear Interpolation

Worst Case 2

Worst Case 1

Sample 1

Sample 2

Figure 2.4: Interpolation Worst Cases
The dotted lines represent the two cases where the interpolation returns

the worst results

We can conclude that:

V2 < v < V1

C1 < c < C2

Therefore, we can define the bounds for the linear interpolation as:

vmin = V2 (2.11)
vmax = V1 (2.12)
cmin = C1 (2.13)
cmax = C2 (2.14)

2.2.3 Discharge Curve

The formula for a voltage point (vd) on the normalized and merged discharge
curve is the following:

vd =

∑M
n=1 vn
M

Where vn is the normalized point of the n-th curve used for creating our
discharge curve. M represents the amount of different discharge curves over
which vd is averaged. Because the normalized point is an interpolation of

— 9 —

2.2. ACCURACY

a voltage measurement, we use the previously derived bounds for meas-
urements and linear interpolation for obtaining the bounding values of a
discharge curve point.

This way we can define the lower bound of a discharge curve point as:

vdmin
=

∑M
n=1 vnmin

M
=

∑M
n=1 Vn2

M
=

∑M
n=1(Vn2 − 625µV)

M

=

∑M
n=1 Vn2

M
− 625µV (2.15)

We first substitute vnmin with the lower bound of its interpolation using
(2.11). Then we apply the lower bound of measurements (2.9) to Vn2 .

The upper bound can be derived similarly to the lower bound:

vdmax =

∑M
n=1 Vn1

M
+ 625µV (2.16)

From these bounds it can be observed, that each point of the discharge curve
has a different accuracy interval, making it impossible to give an accuracy
formula for the entire discharge curve. Thus we save an additional curve for
each the upper and the lower bounding points. This allows us to estimate
an error bound during the usage of the discharge curve.

2.2.4 Charge Approximation

Approximating the used charge depends on two inputs with an inaccuracy.
The first one is the voltage (v), which we want to convert into a charge (c).
The second is the discharge curve we use to estimate the charge.

Figure 2.5 shows a graph with the upper (Maximal Discharge Curve) and
lower (Minimal Discharge Curve) bound of the discharge curve, intersected
by the upper (vmax) and lower (vmin) bound of the voltage.

We derive from Figure 2.5 the combinations of inputs which give a maximal
(cmax) or minimal (cmin) charge used:

• cmax : Approximation with vmin using theMaximal Discharge Curve

• cmin : Approximation with vmax using theMinimal Discharge Curve

Due to the discrete discharge curve, the charge value is approximated by an
interpolation, adding an additional inaccuracy. Using the bound for charge
interpolation which we derived earlier, we can define upper and lower bounds
for charge approximations:

— 10 —

2.2. ACCURACY

Charge Used

Voltage

Maximal Discharge Curve

Discharge Curve

Minimal Discharge Curve

vs
vsmin

cs

csmax

vsmax

ve
vemin

cemin
ce cemax

vemax

csmin

Figure 2.5: Accuracy of Charge Approximation
We can see which combinations of voltages and discharge curves result in

the biggest (cxmax) or smallest (cxmin) respective charges

• cmax = C of the (C, V) pair of theMaximal Discharge Curve, which
has the biggest voltage smaller than vmin

• cmin = C of the (C, V) pair of the Minimal Discharge Curve, which
has the smallest voltage bigger than vmax

Figure 2.6 shows the additional inaccuracies which come from the interpol-
ation.

2.2.5 Energy Estimation

In the formula for energy estimation (2.1) we see, that the energy depends
on two charges.

Applying the bounds for charge approximation derived in Section 2.2.4 to
those two relative charges, we can specify:

• cemax = C of the (C, V) pair of theMaximal Discharge Curve, which
has the biggest voltage smaller than vemin

• csmin = C of the (C, V) pair of the Minimal Discharge Curve, which
has the smallest voltage bigger than vsmax

• cemin = C of the (C, V) pair of the Minimal Discharge Curve, which
has the smallest voltage bigger than vemax

— 11 —

2.2. ACCURACY

• csmax = C of the (C, V) pair of theMaximal Discharge Curve, which
has the biggest voltage smaller than vsmin

The maximal energy is reached when for the starting the smallest charge
used value is subtracted from the biggest charge used at the end.
emax = (cemax − csmin) ∗ E = ∆cmax ∗ E

Where it is the opposite for the minimal energy:
emin = (cemin − csmax) ∗ E = ∆cmin ∗ E

Charge Used

Voltage

Maximal Discharge Curve

Discharge Curve

Minimal Discharge Curve

vs
vsmin

cs

csmax

vsmax

ve
vemin

cemin
ce cemax

vemax

csmin

∆cmin

∆cmax
∆c

Figure 2.6: Minimal and Maximal Charge Difference
We can see the case when the charge difference reaches the maximal and

when it reaches the minimal values

— 12 —

3
Evaluation

In the preceding chapter we laid down the theoretical foundation and de-
veloped our method. This chapter focuses on testing the practical usage of
the method. The first section elaborates on the setup for our measurements,
including the devices and tools used. The second section discusses different
case studies we have conducted.

3.1 Measurement Setup

We wanted the device on which we conduct our experiments to be a standard,
commercially sold smart phone, as they represent a common, yet widely
varying platform to which many people have access. Because it is one of
the most used open-source OS, Android was chosen. The Galaxy Nexus was
used as test device.

Galaxy Nexus

Android OS: 4.2.2
Kernel: 3.0.31-g9f818de
A factory reset was executed at the beginning of the tests, providing a clean
installation. Throughout most of the measurements the phone was running
in airplane mode, with the exception of one case as mentioned in a later
section. To reduce the amount of tasks running during our measurements

— 13 —

3.1. MEASUREMENT SETUP

we used an application terminator, called Advanced Task Killer1. Previous
to each measurement Advanced Task Killer was executed.

While most of the measurements were taken with the phone only, for some
verification we used an oscilloscope and a multimeter. Due to the lack of a
current meter with the ability to log measurements, we placed a resistance
between the negative pole of the battery and the phone, and then logged the
voltage-drop over the resistance. In a first attempt, we plugged a PCboard
with a resistor between the phone and the battery. With the oscilloscope
we measured the voltage over the battery and the voltage over the resistor.
Choosing the smallest resistance (1 mΩ) we had available in the laboratory,
we took our first measurements. However, the analysis showed that the noise
in the measurements over the resistor was too big to allow useful conclusions
to be drawn. Consequentially, in a next test, we used a bigger resistance (5
mΩ), but the signal to noise ratio was still too low. Also the repeated moving
of the phone deformed the phone contacts that the board was connected
to. In a second attempt, we glued two flat wires together, removing the
insulation on the opposite sides. We were then able to plug in this wire-
bridge between the phone and the battery while inserting the battery into
the phone in a normal fashion, effectively removing the stress on the phone
contacts. This wire-bridge is shown in Figure 3.1. Coming out of the wire-
bride were three uninsulated wires, one for the plus pole of the battery, one
for the negative pole of the battery and one for the phone contact, where the
negative battery pole would be connected to. The open end of the negative
battery pole and the phone contact were then bridged by the multimeter.
Unfortunately, the multimeter was not capable of logging the measurements,
so it served as a meter for sporadic current readings and as shunt-resistor
over which we logged the voltage-drop with the oscilloscope. Thus we logged
two different voltages with the oscilloscope, one over the battery and one
over the multimeter.

For the evaluation we wrote two applications. The CodeSampler periodically
measures, logs the data and plots the energy consumption of the device
during an interval. The CodeTester executes the codes that we want to
compare for their energy consumption and logs measurements after each
code iteration. Both applications have a GUI, where a few settings can be
adjusted, but their main duty is run in the background.

For evaluating the log files we used MATLAB2.
1https://play.google.com/store/apps/details?id=com.rechild.advancedtaskkiller
2http://www.mathworks.com/products/matlab

— 14 —

3.2. EVALUATION

Figure 3.1: Wire-Bridge
Construction to reduce the stress on the phone contacts

3.2 Evaluation

In this section we present various case studies we conducted.

3.2.1 Power Evaluation

In order to create discharge curves we need to be able to drain power at
a constant rate. We chose to implement a number of different sorting al-
gorithms for draining power, as we could later compare them against each
other for their power consumption. For more information on the compar-
ison of the sorting algorithms, please refer to Section 3.2.5. The validity of
our method to drain a constant amount of power is evaluated by using an
oscilloscope, the setup is as explained in the previous section. Figure 3.2 de-
picts the voltage measurement over the multimeter of a complete discharge.
During the measurement we ran an Insertion Sort algorithm with an array
of 100’000 integers. Besides having a few anomalies, no obvious trend of
increasing or decreasing voltage could be observed.

To reduce the noise we took 500 samples and calculated their mean value,

— 15 —

3.2. EVALUATION

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time [h]

V
o

lt
a

g
e

 [
V

]

Figure 3.2: Voltage over Multimeter
The voltage measured over the multimeter with the oscilloscope during a

full battery discharge

each value representing a new point in Figure 3.3. As can be seen in Figure
3.3, the voltage over the multimeter increases with time, meaning that the
current increases during a discharge. This makes perfect sense as the voltage
over the phone decreases and power (P) is the product of voltage (V) and
current (I).

P = Vphone ∗ I = Vphone ∗
Vmeter
Rmeter

To verify that the power during the discharge is constant, we compared the
values at the beginning and the end of the discharge. We took the average of
the first and last 2’500 samples for this calculation, the samples were taken
at a constant 2.5 samples per second:

Pstart ≈ Pend

Vphonestart ∗
Vmeterstart
Rmeter

≈ Vphoneend
∗ Vmeterend

Rmeter
4.085V ∗ 0.0259V ≈ 3.623V ∗ 0.0278V

0.1057 ≈ 0.1008

— 16 —

3.2. EVALUATION

This resulted in a divergence of about 5% for the power values. The assump-
tion that the power consumption is constant seems reasonable.

0 2 4 6 8 10 12
0.025

0.0255

0.026

0.0265

0.027

0.0275

0.028

0.0285

Time [h]

V
o

lt
a

g
e

 [
V

]

Figure 3.3: Voltage over Multimeter Averaged
The voltage measured with the samples averaged

3.2.2 Discharge Curve

Possessing a way to drain a constant amount of power, the next step is to
verify our assumption that the discharge curves are monotonically falling.
To achieve that we repeatedly executed sorting algorithms, while using our
application to log the battery voltage.

Figure 3.4 shows the curve of a complete discharge, using the Quick Sort
algorithm on a 1’500’000 integer array. We can see a lot of noise in the
measurement. This noise in fact is bigger than the granularity of the in-
ternal voltage meter in the phone. This introduces an error we did not
account for in the error analysis. To counter this additional error we used
MATLAB ’s smoothing function on the curves before creating our merged
discharge curve, effectively removing any spiking voltage excursions. In Fig-
ure 3.5 our resulting merged discharge curve is depicted.

Note that we recommend to use the steep parts of the discharge curve for
charge approximations. As we can see in Figure 3.6, when a voltage has

— 17 —

3.2. EVALUATION

Figure 3.4: Discharge Curve
A complete discharge curve measured with the oscilloscope

a certain error range a flat discharge curve amplifies the error range of the
estimated charge. In the case of our merged discharge curve it is advisable
to use the first (steeper) part of the discharge curve.

3.2.3 Charge Estimation

This subsection focuses on comparing our charge estimation against the bat-
tery level provided by the Android OS. Also, we compare both approx-
imations against the straight line that we would expect a constant power
drain to produce. The OS values are read from the OS intent service In-
tent.ACTION_BATTERY_CHANGED. From this intent we can read the
extra BatteryManager.EXTRA_LEVEL for the current battery level scaled
by another extra BatteryManager.EXTRA_SCALE. The level values are an
integer field and for our phone the scale is 100, leaving us with a step size of
1%.

Figure 3.7 shows the approximated charges for our method and the OS during
a discharge of the Quick Sort algorithm on a 5’000’000 integer array. We can
see that the region under 50% charge has more fluctuations, this is expected
as the discharge curve is flat in this region and thus amplifies inaccuracy.

— 18 —

3.2. EVALUATION

0 20 40 60 80 100
3.4

3.6

3.8

4

4.2

Charge Used [%]

V
o

lt
a

g
e

 [
V

]

Figure 3.5: Merged Discharge Curve
Resulting merged discharge curve

Charge Used

Voltage

v1

v2

c1 c2

Figure 3.6: Effect of Discharge Curve Slope
Effect of the slope of the discharge curve on the range of the estimated

charge

— 19 —

3.2. EVALUATION

Figure 3.7: Charge Estimation
Charge estimation over a complete discharge

So we recommend to perform measurements above 50% charge for better
accuracy.

3.2.4 Differentiating Components

We were also interested whether we would be able to differentiate hardware
components in their energy consumption. Thus we logged the executing
Insertion Sort on a 100’000 integer array with the screen of the Galaxy
Nexus turned on. After a while we then stopped the execution of the code
and only left the screen on. Figure 3.8 depicts the power consumption of
this measurement.

The difference in their consumption is so big, that there is no overlapping
of the error boundaries. Hence we can conclude that our method can easily
and clearly distinguish the two mentioned cases.

— 20 —

3.2. EVALUATION

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Time [h]

P
o

w
e

r
[W

]

Average Power

Min Power

Max Power

Figure 3.8: Insertion versus Screen
In the first part we have an Insertion Sort algorithm with turned on Screen,

in the second part only the screen is active

3.2.5 Comparison of Different Sorting Algorithms

An important feature we wanted our application to have, was the ability to
compare different ways of implementing a solution. For illustration, we chose
sorting algorithms, as they are used in many programs. See Appendix A for
a few examples of sorting algorithms. To create a comparison we picked the
following four sorting algorithms:

• Bubble Sort

• Insertion Sort

• Quick Sort

• Merge Sort

The sorting algorithms were implemented in a Java Android application, see
Appendix B for the source code of the algorithms. No multitasking was used
in the implemented versions. Sorting algorithms can be applied to many

— 21 —

3.2. EVALUATION

different types (bytes, integers, etc.), in the following examples we limited
ourself to integer as the type to be sorted.

Standard Java random generator (java.util.Random) is used for populating
the sorting array, the generator seed can be change in the settings of the
application, the seed used was 123456.

Before and after a sorting algorithm has finished sorting an array, the voltages
and the timestamps are logged.

After running each type of sorting algorithm, we observed that Merge Sort
and Quick Sort are executed much faster than Bubble Sort and Insertion
Sort. This was to be expected as their (timing) performance, executed on
an array sized n, is O(nlog(n)) in comparison to Bubble Sort and Insertion
Sort (n2).

The respective execution times for applying the four sorting algorithms to a
set of 150’000 integers were:

Name Merge Sort Quick Sort Bubble Sort Insertion Sort
Runtime[ms] 251.5 224 1’149’357 746’235

We see a significant difference between Merge Sort/Quick Sort and Bubble
Sort/Insertion Sort. Note that the runtime of the Merge Sort and Quick
Sort is far below the update interval of the voltage file (50s), which often
results in having the same voltage at the beginning and ending of a sorting
iteration. Thus we decided to increase the array sizes we use for those two
algorithms.

Figure 3.9 depicts the energy consumption and the time used for sorting of
different sized arrays by Bubble Sort and Insertion Sort. Merge Sort’s and
Quick Sort’s energy consumption and time used are shown in Figure 3.10.
More detailed information can be found in the Appendix C.

Between the different algorithms we have big variations in the energy con-
sumption and runtime, however variations in the power consumption is small
in comparison to those of the energy and runtime. This implies that for these
sorting algorithms, the energy consumption seems to be almost proportional
to the runtime. With increasing array size, as expected, the energy consump-
tion and the runtime increases. Similar to the difference in runtime between
Quick/Merge Sort and Bubble/Insertion Sort we mentioned earlier, we can
observe a difference in energy consumption, as Quick/Merge Sort consume
less energy even with the much bigger arrays. Quick Sort both runs the
fastest and consumes the least energy per sorting iteration, followed in both
categories by Merge Sort. This clearly leads to the conclusion, that if you
have to implement an integer sorting algorithm on an Android device, out
of the examined algorithms, Quick Sort would be the recommended one.

— 22 —

3.2. EVALUATION

Figure 3.9: Bubble Sort and Insertion Sort Evaluation
On the left side we see the energy used by the Bubble Sort and Insertion

Sort algorithms, the right side shows the time used

Figure 3.10: Merge Sort and Quick Sort Evaluation
On the left side we see the energy used by the Merge Sort and Quick Sort

algorithms, the right side shows the time used

3.2.6 Evaluation of Common Applications

In this section we present a few examples of commonly used applications on
the Android device. Figure 3.11 shows the different power consumptions of
listening to music, watching a movie on Youtube3 and playing Angrybirds4.
We can see that even though the movie was streamed over WiFi, which is
considered a big power consumer for mobile devices, Angrybirds still con-
sumes more power. As expected listening to music consumed far less power

3https://www.youtube.com/watch?v=od3pZzaLP8A
4http://www.angrybirds.com/

— 23 —

3.2. EVALUATION

than multimedia or gaming, as they both feature music as integral part.

Figure 3.11: Comparison of Common Applications
Comparison of the power consumption of playing music, watching a movie

on Youtube and playing Angrybirds

Youtube Movie over WiFi

We used the built-in Youtube application on our Galaxy Nexus to watch the
movie Last Man Standing. In order to connect to the Internet we started
the WiFi, so we had to deactivate the phone’s airplane mode. Figure 3.12
depicts the voltage curve logged during the movie.

A steep drop of the voltage can be observed in the first part of the curve.
At around 1.6 h the movie ended and the voltage no longer decreases as
fast as before. The curve is not monotonically falling, over the entire curve
we measured 15 voltage increases. This implies that energy predictions over
short times can be very inaccurate, as these variations are rather large in
comparison to the overall voltage drop. If the energy consumption is cal-
culated over the whole movie the energy estimation is considerably more
accurate and no negative energy is calculated. Thus in this case our method
requires a big enough time interval for approximating the energy accurately,
but fundamentally still works. The causes of these big voltage decreases and
increases need to be further investigated. They possibly result from changes
in the power draw from the battery, during high consumption periods.

— 24 —

3.2. EVALUATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3.85

3.9

3.95

4

4.05

4.1
x 10

6

Time [h]

V
o
lt
a
g
e
 [
m

V
]

Figure 3.12: Youtube Movie Voltage
This figure shows the voltage curve during the playing of a movie on

Youtube

— 25 —

4
Conclusion and Outlook

4.1 Conclusion

This master thesis proposed a software-based method to approximate energy
consumption on battery-powered devices. The only inputs the method de-
pends on are the battery capacity, the instantaneous voltage and, for power
estimations, the time. Discharge curves play a pivotal role in our method, as
they are used to convert the measured voltage to the relative charge state of
the battery. Further, we derived error boundaries for the different stages of
our energy approximation. After implementing our method on an Android
device, we evaluated it in various case studies for its effectiveness. Looking
at the approximated charge after a constant discharge cycle, we were able
to see the expected linear decrease, suggesting the usefulness of our method.
One important finding is that the steepness of the discharge curve affects
the accuracy of the results, as flatter discharge curve regions amplify the
inaccuracy of the battery charge approximation.

We have been able to make a contribution to the energy efficiency discussion,
as we can show that our method is capable of differentiating various applic-
ations with regard to their energy consumption. In particular, we compared
various sorting algorithms against each other and concluded which are the
more energy efficient ones. Our evaluation of the sorting algorithms lead to
the conclusion that from Bubble Sort, Insertion Sort, Merge Sort and Quick
Sort, this last one is both the fastest and the most energy efficient algorithm.

— 26 —

4.2. OUTLOOK

4.2 Outlook

Our method depends heavily on the accuracy of the voltage measurements.
Any further development to obtain more precise, frequent or consistent meas-
urements would improve the overall accuracy of our approach. For example
a deeper knowledge of how the voltage file is updated by the system driver
might prove very useful.

While reviewing our logged voltages we observed cases where the battery
voltage increased significantly without charging the battery. This might
come from the battery’s internal discharge behaviour under high power con-
sumption. Further research into such behaviour could also improve the ac-
curacy of the method.

We use the battery capacity written on the battery, but due to different influ-
ences (e.g. battery age) the effective capacity might change. An integrated
estimation of the effective battery capacity could result in more accurate
energy approximations.

— 27 —

4.2. OUTLOOK

— 28 —

Bibliography

[1] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” Proc. Int.
Conf. Hardware/Software Codesign and System Synthesis, pp. 105–114,
2007.

[2] A. Ilka and F. Thomas, Elementary Geometry. AMS, Aug. 2008.

— 29 —

A
Examples of Sorting Algorithms

The following table was created with information found on Wikipedia1;

1http://en.wikipedia.org/wiki/Sorting_algorithm

— 30 —

Best
case

Average
case

Worst
case

Allows
parallelization

Description

Bubble sort O(n) О(n2) О(n2) No Repeatedly stepping through the list to be sorted, comparing each pair of
adjacent items and swapping them if they are in the wrong order. The pass
through the list is repeated until no swaps are needed, which indicates that
the list is sorted.

Quick sort O(n logn) O(n logn) O(n2) Yes, the two
sublists can be
sorted separately

Quick sort is a divide and conquer algorithm. Quick sort first divides a large
list into two smaller sub-lists: the low elements and the high elements. Quick
sort can then recursively sort the sub-lists.

The steps are:

1. Pick an element, called a pivot, from the list.
2. Reorder the list so that all elements with values less than the pivot

come before the pivot, while all elements with values greater than the
pivot come after it (equal values can go either way). After this
partitioning, the pivot is in its final position. This is called the
partition operation.

3. Recursively apply the above steps to the sub-list of elements with
smaller values and separately the sub-list of elements with greater
values.

The base case of the recursion are lists of size zero or one, which never need
to be sorted.

Merge sort O(n log n) O(n log n) O(n log n) Limited, sublists
can be sorted
separately but then
need to be merged
together

1. Divide the unsorted list into n sublists, each containing 1 element (a
list of 1 element is considered sorted).

2. Repeatedly merge sublists to produce new sublists until there is only
1 sublist remaining. This will be the sorted list.

Insertion sort O(n) O(n2) O(n2) No In each repetition this sorting algorithm removes one element from the
unsorted input and adds it at the correct place in the sorted array.

Timsort O(n) O(n log n) O(n log n) No Derived from merge and insertion sort.

—
31

—

1. Divides data into subsets of size 32-64, and insert sorts those.

2. Then these subsets are merged together.

Heap sort O(n log n) O(n log n) O(n log n) No 1. Heap (tree structure) of the input data is made.

2. Repeatedly the largest element of the heap is added to the sorted
array.

Smooth sort n O(n log n) O(n log n) No Heap sort variant, instead of binary head it uses a Leonardo number1 based
heap.

Source: Wikipedia

1 http://en.wikipedia.org/wiki/Leonardo_numbers

—
32

—

B
Algorithm Code

Below you find the source code of the sorting algorithms used in the thesis
is listed. Only the integer variant is shown, as the others simply replace the
type (double, byte).

B.0.1 Support Functions

This section contains functions which are used by multiple sorting algorithms.

/∗∗
∗ swaps two va l u e s in an i n t array
∗ @param intData
∗ @param index1
∗ @param index2
∗/

f ina l stat ic void intSwap (int index1 , int
index2) {

int tmp = intData [index1] ;
intData [index1] = intData [index2] ;
intData [index2] = tmp ;

}

B.0.2 Bubble Sort

/∗∗

— 33 —

∗ uses bubb l e s o r t to s o r t data
∗ (a l gor i thm from wik i p ed i a h t t p :// en .

w i k i p ed i a . org / w ik i /Bubble_sort)
∗ @param intData
∗/

stat ic private void intBubbleSort () {
int n = intData . l ength ;
do{

int newn = 1 ;
for (int i =0; i<n−1; ++i) {

i f (intData [i] >
intData [i +1]) {

intSwap (i , i +1)
;

newn = i +1;
}

}
n = newn ;

} while (n > 1) ;
}

B.0.3 Insertion Sort

/∗∗
∗ i n s e r t i o n s o r t
∗ a l gor i thm from wik i p ed i a h t t p :// en . w i k i p ed i a

. org / w ik i / In se r t i on_sor t
∗ @param intData
∗/

stat ic private void i n t I n s e r t S o r t () {
int i n s e r tVa lue ;
int cu r r en tPo s i t i on ;
for (int i = 0 ; i < intData . l ength ; i

++){
in s e r tVa lue = intData [i] ;
c u r r en tPo s i t i on = i ;
while (cu r r en tPo s i t i on > 0 &&

inse r tVa lue < intData [
cu r r en tPos i t i on −1]) {

intSwap (cur r en tPos i t i on
, cu r r en tPo s i t i on −
1) ;

cu r r en tPos i t i on −−;
}

— 34 —

}
}

B.0.4 Quick Sort

/∗∗
∗ from h t t p ://www. v o g e l l a . com/ a r t i c l e s /

JavaAlgor i thmsQuicksor t / a r t i c l e . html
∗ Copyr ight © 2009 −2010 Lars Vogel
∗ Ec l i p s e Pub l i c License − v 1.0
∗ @param low
∗ @param high
∗/

stat ic private void i n tQu i ck so r t (int low , int
high) {

int i = low , j = high ;
// Get the p i v o t e lement from the

middle o f the l i s t
int pivot = intData [low + (high−low)

/ 2] ;
//TODO wik i mentiones d i f f e r e n t cho i c e s

// Divide in t o two l i s t s
while (i <= j) {

// I f the curren t va lue from
the l e f t l i s t i s sma l l e r
then the p i v o t

// element then ge t the next
e lement from the l e f t l i s t

while (intData [i] < p ivot) {
i++;

}
// I f the curren t va lue from

the r i g h t l i s t i s l a r g e r
then the p i v o t

// element then ge t the next
e lement from the r i g h t l i s t

while (intData [j] > p ivot) {
j−−;

}

// I f we have found a va l u e s in
the l e f t l i s t which i s

l a r g e r then

— 35 —

// the p i v o t e lement and i f we
have found a va lue in the
r i g h t l i s t

// which i s sma l l e r then the
p i v o t e lement then we
exchange the

// va l u e s .
// As we are done we can

inc rea se i and decrease j
i f (i <= j) {

intSwap (i , j) ;
i++;
j−−;

}
}
// Recursion
i f (low < j)

in tQu i ck so r t (low , j) ;
i f (i < high)

in tQu i ck so r t (i , high) ;
}

\end{verbatim}

\ subse c t i on {Merge Sort }
%\begin {verbatim}
\begin { l s t l i s t i n g }
/∗∗
∗ from h t t p ://www. v o g e l l a . com/ a r t i c l e s /

JavaAlgor i thmsQuicksor t / a r t i c l e . html
∗ Copyr ight © 2009 −2010 Lars Vogel
∗ Ec l i p s e Pub l i c License − v 1.0
∗ @param low
∗ @param high
∗/
private stat ic void in tMergesor t (int low , int high) {

// check i f low i s sma l l e r then high , i f not
then the array i s s o r t ed

i f (low < high) {
// Get the index o f the e lement which

i s in the middle
int middle = low + (high − low) / 2 ;
// Sort the l e f t s i d e o f the array
in tMergesor t (low , middle) ;

— 36 —

// Sort the r i g h t s i d e o f the array
in tMergesor t (middle + 1 , high) ;
// Combine them both
intMerge (low , middle , high) ;

}
}

/∗∗
∗ from h t t p ://www. v o g e l l a . com/ a r t i c l e s /

JavaAlgor i thmsQuicksor t / a r t i c l e . html
∗ Copyr ight © 2009 −2010 Lars Vogel
∗ Ec l i p s e Pub l i c License − v 1.0
∗ @param low
∗ @param middle
∗ @param high
∗/
private stat ic void intMerge (int low , int middle , int

high) {

// Copy both par t s i n t o the he l p e r array
for (int i = low ; i <= high ; i++) {

in tHe lpe r [i] = intData [i] ;
}

int i = low ;
int j = middle + 1 ;
int k = low ;
// Copy the sma l l e s t v a l u e s from e i t h e r the

l e f t or the r i g h t s i d e back
// to the o r i g i n a l array
while (i <= middle && j <= high) {

i f (in tHe lpe r [i] <= intHe lpe r [j]) {
intData [k] = intHe lpe r [i] ;
i++;

} else {
intData [k] = intHe lpe r [j] ;
j++;

}
k++;

}
// Copy the r e s t o f the l e f t s i d e o f the array

in t o the t a r g e t array
while (i <= middle) {

intData [k] = intHe lpe r [i] ;

— 37 —

k++;
i++;

}

}

— 38 —

C
Data Tables for Sorting Algorithms

Below are the tables with the measurements for the comparison of the four
sorting algorithms. We use the following notation:
(x*y) after the algorithm name means that the estimation was made over x
iterations and y times. The single values are the averaged values for a single
algorithm execution, followed by the standard derivation in the brackets.

Bubble Sort and Insertion sorting is done over an array with size 75’000:

Name Bubble Sort (5*9) Insertion Sort (5*10)
Energy[mJ] 1.746083e+05 (7.441121e+04) 1.501189e+05 (6.001624e+04)
MinEnergy[mJ] 1.485683e+05 (7.663911e+04) 1.192043e+05 (6.160573e+04)
MaxEnergy[mJ] 2.044124e+05 (7.586935e+04) 1.812223e+05 (6.203937e+04)
Runtime[ms] 2.881365e+05 (1.986272e+02) 1.858828e+05 (4.480509e+02)
Power[W] 6.059449e-01 (2.581284e-01) 8.077267e-01 (3.237800e-01)

Bubble Sort and Insertion sorting is done over an array with size 100’000:
Name Bubble Sort (5*6) Insertion Sort (5*10)
Energy[mJ] 2.445118e+05 (1.693586e+04) 1.639335e+05 (1.678342e+04)
MinEnergy[mJ] 2.188978e+05 (1.839798e+04) 1.356985e+05 (1.796839e+04)
MaxEnergy[mJ] 2.727432e+05 (1.810825e+04) 1.907434e+05 (1.604059e+04)
Runtime[ms] 5.135351e+05 (1.787054e+02) 3.314993e+05 (3.587402e+02)
Power[W] 4.761408e-01 (3.307094e-02) 4.945610e-01 (5.101710e-02)

Bubble Sort and Insertion sorting is done over an array with size 125’000:

— 39 —

Name Bubble Sort (5*3) Insertion Sort (5*5)
Energy[mJ] 4.407592e+05 (1.390886e+05) 2.562188e+05 (2.008448e+04)
MinEnergy[mJ] 4.015737e+05 (1.420630e+05) 2.216062e+05 (2.394022e+04)
MaxEnergy[mJ] 4.747745e+05 (1.296781e+05) 2.926452e+05 (1.931217e+04)
Time[ms] 7.922645e+05 (9.472554e+02) 5.176117e+05 (9.971855e+02)
Power[W] 5.562410e-01 (1.751759e-01) 4.950718e-01 (3.974052e-02)

Merge Sort and Quick Sort sorting an 1’500’000 integer array:

Name Merge Sort (50*61) Quick Sort (50*74)
Energy[mJ] 3.484381e+03 (1.898158e+03) 2.923804e+03 (1.877250e+03)
MinEnergy[mJ] 4.775286e+02 (2.135912e+03) 2.500141e+01 (1.964343e+03)
MaxEnergy[mJ] 6.454100e+03 (2.063662e+03) 5.839028e+03 (2.082196e+03)
Time[ms] 3.757775e+03 (1.732961e+00) 2.542361e+03 (1.435738e+00)
Power[W] 9.272826e-01 (5.052609e-01) 1.150122e+00 (7.385461e-01)

Merge Sort and Quick Sort sorting an 3’000’000 integer array:

Name Merge Sort (50*29) Quick Sort (50*32)
Energy[mJ] 6.206304e+03 (3.529190e+03) 3.554989e+03 (2.025836e+03)
MinEnergy[mJ] 3.102067e+03 (3.605517e+03 5.317715e+02 (2.194348e+03)
MaxEnergy[mJ] 9.288555e+03 (3.881317e+03) 6.555087e+03 (2.452027e+03
Time[ms] 7.860513e+03 (3.510509e+00) 5.440458e+03 (3.392596e+00)
Power[W] 7.895626e-01 (4.489304e-01) 6.533858e-01 (3.720311e-01)

Merge Sort and Quick Sort sorting an 5’000’000 integer array:

Name Merge Sort (50*18) Quick Sort (50*26)
Energy[mJ] 9.494990e+03 (3.176252e+03) 6.068519e+03 (2.500759e+03)
MinEnergy[mJ] 6.647479e+03 (3.308081e+03) 3.030633e+03 (2.716858e+03)
MaxEnergy[mJ] 1.224803e+04 (3.525544e+03) 9.104578e+03 (2.519000e+03)
Time[ms] 1.343516e+04 (4.175853e+01) 9.092024e+03 (8.875988e+00)
Power[W] 7.067369e-01 (2.362242e-01) 6.674883e-01 (2.750918e-01)

— 40 —

D
Presentation Slides

— 41 —

Powerful Software

Master Thesis by Etienne Geiser

Advisers: Pratyush Kumar and Lars Schor

2Etienne Geiser21. Feb 2014

http://www.geek.com/wp-content/uploads/2012/06/low-battery.jpg
http://coloradopeakpolitics.com/wp-content/uploads/2013/08/Money-II-300x270.jpg

http://www.freegreatpicture.com/files/39/1609-tree.jpg

Energy
Efficiency

3Etienne Geiser21. Feb 2014

Overview

 Goal and Contribution
 Related Work
 Approach

 Energy Calculation
 Error Analysis
 Implementation

 Evaluation
 Conclusion

4Etienne Geiser21. Feb 2014

Goal

Energy = Y

Energy = X

Code Measurement Comparison
Bub

ble

Sor
t

Algo
rit

hm

In
se

rti
on

Sor

t
Algo

rit
hm

—
42

—

5Etienne Geiser21. Feb 2014

Goal

Code Measurement Comparison

Energy = Y

Energy = X

Bub
ble

Sor

t
Algo

rit
hm

In
se

rti
on

Sor

t
Algo

rit
hm

6Etienne Geiser21. Feb 2014

Contribution of this Thesis

 We propose a software-based method to measure
the energy consumption of battery-powered devices

 We derive error boundaries for energy consumption
addressing inaccurate measurements

 We implement this method on an Android device
and evaluate the effectiveness in various case
studies

7Etienne Geiser21. Feb 2014

Overview

 Goal and Contribution
 Related Work
 Approach

 Energy Calculation
 Error Analysis
 Implementation

 Evaluation
 Conclusion

8Etienne Geiser21. Feb 2014

 Developed at the University of
Michigan

 Existing power monitor for
Android-based mobile platforms

 Issue:
Knowledge of device
components and their specific
coefficients required

http://ziyang.eecs.umich.edu/projects/powertutor/

PowerTutor

—
43

—

9Etienne Geiser21. Feb 2014

Overview

 Goal and Contribution
 Related Work
 Approach

 Energy Calculation
 Error Analysis
 Implementation

 Evaluation
 Conclusion

10Etienne Geiser21. Feb 2014

Approach

Start Voltage End Voltage

Energy
Calculator

Energy

Battery
Characterization

Each measurementOnce for a battery

11Etienne Geiser21. Feb 2014

Battery Characterization

 Battery capacity

 Discharge curve
 Battery voltage

vs. battery charge
 Drain full battery

at constant rate

12Etienne Geiser21. Feb 2014

Energy Calculator

e=Δ c∗E
e: energy used
E: battery capacity
Δc: charge difference

—
44

—

13Etienne Geiser21. Feb 2014

Error Sources

Inaccuracy of voltage measurements

Battery characteristics
 Ageing of battery leads to diverging

discharge curves over time
 Environment affects discharge behaviour

(e.g. temperature)

Inaccuracy of
voltage to charge
conversion

14Etienne Geiser21. Feb 2014

Examples of “Full” Discharges

 Different starting voltages
after full charging

15Etienne Geiser21. Feb 2014

Merged Discharge Curve

 Multiple curves are standardized and then averaged

 In order to be able to give an error bound we create
three merged discharge curves:
 Upper bound: Maximal merged discharge curve
 Average merged discharge curve
 Lower bound: Minimal merged discharge curve

16Etienne Geiser21. Feb 2014

Energy Approximation with Inaccuracies

Discharge Band

—
45

—

17Etienne Geiser21. Feb 2014

Voltage Bands

Due to inaccurate voltage
measurements we have
voltage bands

Energy Approximation with Inaccuracies

18Etienne Geiser21. Feb 2014

Energy Approximation with Inaccuracies

Voltage to charge conversion

Using the discharge band to
convert voltage to charge

19Etienne Geiser21. Feb 2014

Energy Approximation with Inaccuracies

Applying conversion inaccuracy

Approximations during the
voltage to charge conversion
lead to additional inaccuracy

20Etienne Geiser21. Feb 2014

Energy Approximation with Inaccuracies

e =Δ c∗E
emax=Δ cmax∗E

emin=Δ cmin∗E

—
46

—

21Etienne Geiser21. Feb 2014

http://ameisenberg.com/wp-content/uploads/2012/12/samsung-android.jpg
http://www.mathworks.com/products/matlab

Implementation

 Android application for evaluation implemented

 Standard Android device: Galaxy Nexus

 CodeSampler application properties
 Runs in background
 Periodically reads measurements
 Plots energy consumption graph on phone
 Writes measured values into CSV file

 MATLAB used for in-depth evaluation

22Etienne Geiser21. Feb 2014

Overview

 Goal and Contribution
 Related Work
 Approach

 Energy Calculation
 Error Analysis
 Implementation

 Evaluation
 Conclusion

23Etienne Geiser21. Feb 2014

Evaluation Setup

 Factory reset

 Flight-mode active

 Running applications stopped with Advanced Task
Killer

 Measurements taken at room temperature

http://rechild.mobi/

24Etienne Geiser21. Feb 2014

Case Study 1: Thesis vs OS Charge

—
47

—

25Etienne Geiser21. Feb 2014

Case Study 2: Different Components

Insertion Sort & Screen

Screen Only

26Etienne Geiser21. Feb 2014

Case Study 3: Algorithm Comparison

 Sorting algorithms used
 Bubble Sort
 Insertion Sort

 Runtimes on an
integer array of
150'000 elements

 Quick Sort
 Merge Sort

1

10

100

1000

10000

100000

1000000

10000000

Bubble Sort
Insertion Sort
Quick Sort
Merge Sort

R
u

n
tim

e
 [

m
s]
27Etienne Geiser21. Feb 2014

Case Study 3: Algorithm Comparison

75 100 125
0

50
100
150
200
250
300
350
400
450
500

Bubble Sort Energy
Insertion Sort Energy

Array Size [10³]

E
ne

rg
y

[J
]

75 100 125
0

100
200
300
400
500
600
700
800
900

Bubble Sort Time
Insertion Sort Time

Array Size [10³]

T
im

e
[s

]

Bubble Sort vs. Insertion Sort

28Etienne Geiser21. Feb 2014

Case Study 3: Algorithm Comparison

75 100 125
0

50
100
150
200
250
300
350
400
450
500

Bubble Sort Energy
Insertion Sort Energy

Array Size [10³]

E
ne

rg
y

[J
]

75 100 125
0

100
200
300
400
500
600
700
800
900

Bubble Sort Time
Insertion Sort Time

Array Size [10³]

T
im

e
[s

]

Bubble Sort vs. Insertion Sort

—
48

—

29Etienne Geiser21. Feb 2014

Case Study 3: Algorithm Comparison

1.5 3 5
0

2

4

6

8

10

12

14

16

Merge Sort Time
Quick Sort Time

Array Size [10]⁶

T
im

e
[s

]

1.5 3 5
0
1
2
3
4
5
6
7
8
9

10

Merge Sort Energy
Quick Sort Energy

Array Size [10]⁶

E
ne

rg
y

[J
]

Merge Sort vs. Quick Sort

30Etienne Geiser21. Feb 2014

Case Study 4: Common Applications

https://www.youtube.com/watch?v=od3pZzaLP8A
http://www.angrybirds.com/

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Music
Youtube
Angry Birds

P
ow

er
 [

W
]

31Etienne Geiser21. Feb 2014

Conclusion

 Developing a software-based power
estimation method

 Implementing on Android

 Evaluating the usefulness in
various cases

Contribution to energy efficiency discussion by:

—
49

—

	Introduction
	Motivation
	Background
	Contribution
	Overview

	Approach
	Flow of Approach
	Reading the Voltage File
	Discharge Curve
	Energy Calculation
	Linear Interpolation

	Accuracy
	Measurements
	Interpolation
	Discharge Curve
	Charge Approximation
	Energy Estimation

	Evaluation
	Measurement Setup
	Evaluation
	Power Evaluation
	Discharge Curve
	Charge Estimation
	Differentiating Components
	Comparison of Different Sorting Algorithms
	Evaluation of Common Applications

	Conclusion and Outlook
	Conclusion
	Outlook

	Examples of Sorting Algorithms
	Algorithm Code
	Support Functions
	Bubble Sort
	Insertion Sort
	Quick Sort

	Data Tables for Sorting Algorithms
	Presentation Slides

