m Institut fiir
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Adrian Friedli

Policy-based Injection of Private
Traffic into a Public SDN Testbed

Master Thesis MA-2013-12

Advisors: Dr. Bernhard Ager, Vasileios Kotronis
Supervisor: Prof. Dr. Bernhard Plattner

Acknowledgements
| would like to thank my advisors Dr. Bernhard Ager and
Vasileios Kotronis for their help and great support during
carrying out my thesis and Prof. Dr. Bernhard Plattner for
giving me the opportunity to write this thesis in the Commu-
nication Systems Group. Also | would like to thank Hildur
Olafsdéttir for helping me with some debugging.

Special thanks go to my parents, my roommate and her
boyfriend for always giving me good advice and support.

Contents

1__Introductionl 9
[2__Environment| 11
.. 11
2.2 OFELIAl e 11
2.3 PALl e 11
[23.1 PALproxy|. 12

2.3.2 FlowVisor e 12

2.4 Mininetl 12
[3__Goals and Challenges| 15
3.1 Goals of the PAL 15
[3.2 Design and Build of the Arbitrator] 15
3.3 Performance Measurements 15

4 rrectn Evaluationl 16

19
BA_Design of (e ATDIIAION . « . -« o oo oo e e e e e e 19
Zﬁﬁm 19

T2 FIOWSl oo e 19

4.1.3 Polici n rantees|. 20

4.1.4 Forwarding flows to experiments| 20

A15 Handing of NeW MIOWS| - - - - - .« o oo oo e 20

416 Flowtablel. o o 20

[4.1.7 Arbitrating between experiments| oL 23

.2 anges made In the [0 23

4.2.1_Reserve flow space In LUTS and request original header] 23
422 Intorsecting flow space workaround, . . - . . - . .« . ..ot 24
4.2.3 Handle error messages and releced i0les]. 24
424 TNpULPOTLIS PArt O HOW SPACE| . - - - « v e v oo e oo 24

4.2. €0 edulern 25
[4.3 Intertace between PAL proxy and Arbitrator] L. 25
4.31 Requestflowinjection] 26
4.32 Requestoriginalheader 26
4.3.3 Inform roxy about deletionofaflow| 26
4.3.4 Request Arbitrator to shortcutflow| 27
[435 Tmplementafionchoices| 27
B4 Tnsights] 27
[4.41 TInsightsin OpenFlow]. 27
[F42 TnsightsinFlowVisor 27

5 Evaluation 29
.1 _Environmentl e 29
.2 Arbiterbench| 30
31

31

31

6 CONTENTS

34

34

37

37

39
6.1 Possible improvements to the Arbitrator], 39
....................... 39
6.3 Deployment in S island| oo 40

41

List of Figures

[2.1 Privacy and Availability Layer before introduction of the Arbitrator. As presented |

[by Kotronis et al |’§|| 12
3.1 Privacy and Avalilability Layer atter introduction of the Arbitrator|. 16
4.1 Flow chart for handling new flows entering the testbed.|. 21
4.2 Flow chart for handling new flows feaving thetestbed] 22
[5.1 Schematic depiction of the tlows traversing the testbed.| 30

. Ime delay between packet-in and packet-out for the first event of each bi-flow
traversing the testbed. The blue curve shows an overload of the Arbitrator. The
peaks result from time needed reorganizing the internal data structure.|. 32

5.3 Time delay between packet-in and packet-out summed up on all events of a bi-
flow traversing the testbed. Again, the blue curve shows the overload of the Arbi-

trator and the peaks from reorganizing the internal data structure are visible.| . . 32
[6.4 Time delay between packet-in and packet-out for the first event of each bi-flow

traversing the testbed. We look at fewer flows and the overload-creating tlow rate
has been omitted in this plot. We see higher delays with lower flow rates, we ruled

out the most obvious causes for them and didn’t further evaluate it in order to not

Wi moretime. e e e e 33
5.5 Time delay between packet-in and packet-out summed up on all events of a bi-

flow traversing the testbed. Also here we look at fewer flows and we omitted the

overload-creating flow rate. The higher delays with the lower flow rates are also

visible herel e e e 33
[5.6 ECDFs for the time delays between packet-in and packet-out for the first event of

each bi-flow traversing the testbed. For the high flow rate 90% of the delays are
[_____below 10ms. Some modes are visible for the fower flow rates]. 34
[5.7 ECDFs for the summed up time delays between packet-in and packet-out for all
[events of each bi-flow traversing the testbed. For the high flow rate 90% of the |

delaysarebelow 25ms.] 35
[5.8 Time delays between packet-in and packet-out for the first event of each bi-flow

for several high flow rates. A clear separation between 460 "2*= and 470 2= is

visible. We assume this Is about the maximum flow rate the Arbitrator Is able to
| handle] e 35
5.9 Time delays between packet-in and packet-out for the first event of each bi-flow

for high rates. The yellow curve shows, at that flow rate the backlog created by

reorganizing the internal data structures cannot be completely worked oft.| 36
.10 Distribution of delays between packet-in and packet-out for the first event of eac

[5.11 Flow rate at the TIK network for different time scales. (Plots provided by Bernhard Ager)] 38

LIST OF FIGURES

Chapter 1

Introduction

Software Defined Networking (SDN) is an emerging technology. New exciting networking proto-
cols can easily be be experimented with using this technology. Also new routing algorithms may
be deployed using SDN enabled switches without having to replace the switch’s hard- or soft-
ware. SDN enabled switches also find application in large virtualization environments. Some
large corporations e.g. Google already started deploying SDN enabled switches in their data
centers.

For this upcoming technology, we see the need for testing environments. In general, many
testing environments exist for SDN applications. But none of these testbeds allow testing with
real user traffic. Testing with real user traffic is needed, because modelling real user traffic
means just making a simplification of reality. Feedback is only available, when real traffic is
involved and the user experiences additional delays and outages of his Internet connection due
to the insertion of experimental SDN applications.

But why is it difficult to use real user traffic? User traffic is sensitive, using it in a testbed may
cause privacy issues, furthermore the user may have some requirements on availability of his
Internet connection. Thus we need to guarantee privacy and availability. Even when privacy
and availability are guaranteed, the user still has no incentive to donate traffic to the testbed.
Therefore a marketplace is needed. As introduced by Kotronis et al [3] a PAL proxy is available
with an important part missing, a traffic Arbitrator, this Arbitrator we wanted to build.

The task of this thesis is to design, implement and evaluate the Arbitrator. Tasks of the Arbitrator
are to forward user traffic to the testbed, arbitrate between experiments and shortcut traffic on
policy violations. Users should be able to state guarantees for their traffic and experimenters
should be able to make requirements to the traffic.

Evaluation consists of a performance analysis, including a comparison with the nature of traffic
of a real network and a correctness evaluation.

We have seen that our implemented Arbitrator would be able to handle traffic coming from a
typical /23 network such as the TIK network. Moreover we learned some insights about the
OpenFlow protocol and that it is a sub-optimal choice to be used in a privacy layer. We had to
reimplement some of FlowVisor's behaviour inside the PAL proxy such as it is feasible now to
build the PAL proxy inside or around FlowVisor.

Chapter[2|describes technologies used in the thesis, Chapter[3|states the goals and challenges.
The design of the implemented Arbitrator is explained in Chapter 4] performance and correct-
ness of the Arbitrator get evaluated in Chapter[5] Chapter [6| presents possible future work and
Chapter [7]concludes the thesis with a summary.

10

CHAPTER 1. INTRODUCTION

Chapter 2

Environment

In this chapter we describe technologies used in this thesis. The OpenFlow protocol, which
controllers use to communicate with the switches, is described in Section A testing facility
for OpenFlow is OFELIA which we describe in Section[2.2] In Section[2.3|we present a extension
to OFELIA, the PAL. A different test suite for SDN applications is described in Section

2.1 OpenFlow

Openflow is a protocol to control hardware switches. The OpenFlow standard is managed by the
Open Networking Foundation and it is called being an enabler for Software Defined Networks.
We used OpenFlow version 1.0 [2], but our techniques should be adaptable to newer versions
of the protocol.

OpenFlow switches are simple and fast packet forwarding devices, the logic has been moved
to an external controller. The switches have a flow table with rules matching flows and each
rule may apply a list of actions to the packets of the flow. A rule can match eleven header
fields with either an explicit value or a wildcard. A subnet mask can also be used to match the
two header fields source and destination IP address. The actions can rewrite header fields and
output packets on a specified port.

The switch is connected with the OpenFlow protocol to an OpenFlow controller. If no rule
matches a packet the switch forwards the packet to the OpenFlow controller. The controller
may then decide what to do with the packet, apply actions to the packet and output it on a
specified port, it also may install rules in the switch for matching further packets of the flow.

2.2 OFELIA

OFELIA" is an experimental facility based on OpenFlow. There exist several interconnected
OFELIA islands at European universities. These islands typically consist of several OpenFlow
enabled switches and hosts providing virtual machines.

The physical network provided by the switches is split into slices by FlowVisor. FlowVisor is a
tool speaking OpenFlow and can be put between OpenFlow enabled switches and controllers.
Thus allowing different controllers to control the switches, each having its own slice. OFELIA
uses VLAN-ID for slicing, each experiment has its own VLAN-ID.

2.3 PAL

The goal of the Privacy and Availability Layer (PAL) is to enable experimenters to test SDN
applications with real user traffic. And guaranteeing the users privacy and availability for the
traffic.

The PAL has been introduced by Kotronis et al [3] and consists of several parts. We have
FlowVisor as part of the OFELIA island. Then there is the PAL proxy which we will explain in

TOFELIA website: http: //www.fp7-ofelia.eu/

11

http://www.fp7-ofelia.eu/

12 CHAPTER 2. ENVIRONMENT

Experimenter's Experimenter's
controller controller |
LN 7
N 7 []
Privacy and availability layer —
\ /
N &% Gatekeeper | User
S switch
PAL proxy //
I
1 Z
FlowVisor

Figure 2.1: Privacy and Availability Layer before introduction of the Arbitrator. As presented by
Kotronis et al [3].

Section And there is a gatekeeper switch?. Figure[2.1]shows an example testbed with the
PAL, the PAL proxy and a gatekeeper switch.

2.3.1 PAL proxy

The PAL proxy is the entity between FlowVisor and the experimenters. All OpenFlow commands
sent by the experimenters to hardware switches get checked by the PAL proxy. The PAL proxy
maintains internal flow tables, replicating the flow tables of the switches. The PAL proxy reserves
user related flows traversing the testbed. After a successful reservation, the PAL proxy will
disallow commands from experimenters, which violate a flow’s privacy guarantees. The PAL
proxy uses Lookup Tables (LUTs) for the reservation of user flows. We will further describe the

LUTs in Section4.2.1P.

2.3.2 FlowVisor

In order to separate each experiment from each other and to have multiple controller connec-
tions to each switch, we installed FlowVisor between the PAL proxy and the testbed switches.
Each experiment has its own controller connection per switch, its own slice and thus its own
VLAN-ID assigned.

2.4 Mininet

Mininet* is a framework for testing SDN applications. It emulates a network and lets you define
a custom network topology consisting of virtual hosts, switches and links.

Mininet isolates hosts through network namespaces provided by the Linux kernel. Whereas
all processes of the different hosts run on the same operating system, only with just different
virtual network interfaces attached to them and with them having assigned different network
addresses. This lightweight virtualization allows Mininet to scale to run thousands of hosts on a
modest computer.

2Depending on the setup there may be a single gatekeeper switch or two separate switches, one for the user side
and one for the Internet side. Our implemented solution supports both setups.

3A more detailed description of the PAL proxy is available in [4]

4Mininet website:|http: //mininet.org/

http://mininet.org/

2.4 Mininet 13

Switches are set up using Open vSwitch. Open vSwitch is a production ready virtual switch
for Linux and supports among others the OpenFlow protocol. This kernel module based switch
allows fast switching with a rate of more than 2 GB/s. Although switching performance does not
matter for our correctness evaluation tests.

Mininet allows the user to launch processes on its hosts, which allows easy testing of the topol-
ogy and the attached controllers. Mininet provides an interactive console which allows a user to
control the Mininet environment and launch programs on its virtual hosts. With this mechanism
a user can easily run ping, netcat or iperf to send traffic from a virtual host through the virtual
network to another virtual host and use tcpdump at any virtual host or switch to inspect the
communication path.

14

CHAPTER 2. ENVIRONMENT

Chapter 3

Goals and Challenges

In this chapter we will describe the different goals of the thesis. The main goal is to design and
implement a traffic Arbitrator (Section [3.2). In order to do that we first had a look at the goals
of the whole PAL (Section and at last decided how to integrate it in the PAL. Furthermore
the Arbitrator needed some testing. We tested two different aspects, which are a performance
analysis with its goals described in Section and a correctness evaluation with its goals
described in Section

3.1 Goals of the PAL

The goal of PAL as a whole is to enable experimenters to experiment with real user traffic
without being able to violate policies which each user states for one’s traffic. The PAL consists
of several parts, one part of it is the PAL proxy. The PAL proxy was already available before
the start of this thesis, but it needed some improvements. The PAL proxy’s job is to check the
OpenFlow commands sent by experimenters to the real hardware switches in the testbed for
policy violations. The PAL proxy is just one part of the PAL and we needed an entity forwarding
user traffic to the OpenFlow enabled switches in the testbed. For this job we have a gatekeeper
switch, which has access to real user traffic. This gatekeeper switch is also OpenFlow enabled
and needs a controller. This controller we wanted to build.

3.2 Design and Build of the Arbitrator

The Arbitrator is the controller for the gatekeeper switches. Figure shows how the PAL
should be extended with the Arbitrator. It has the job to instruct the gatekeeper to forward user
flows to the testbed. Each user may define some required guarantees for one’s flows. And each
experiment may define some requirements on the traffic. The Arbitrator must then chose an
experiment to forward the flow to regarding the guarantee and the requirements. It may also
chose to shortcut the flow if no other option is available.

The Arbitrator needs to be integrated into PAL. It needs to control the Gatekeeper switch us-
ing the OpenFlow protocol and it needs to communicate with the PAL proxy about flows, their
policies and possible violations.

3.3 Performance Measurements

High delays makes websites load sluggishly and users notice quickly, especially at university
networks where users are used to an Internet connection with round-trip times to a lot of servers
with only a few milliseconds.

Google showed, that increasing the delay of loading a website by 500 ms causes them 20%
traffic loss and amazon showed that increasing the delay of loading their website caused them

15

16 CHAPTER 3. GOALS AND CHALLENGES

Experimenter's Experimenter's
controller controller |
T Z
1 - I
Privacy and availability layer —
| &Zap Gatekeeper User
S switch
PAL proxy Arbitrator //
N
= Z
FlowVisor

Figure 3.1: Privacy and Availability Layer after introduction of the Arbitrator.

aloss in 1% of sales’ 2.

With todays ubiquitous presence of the world wide web, a lot of effort is made by many Internet
companies to improve the experience for users surfing the web. With large content distribution
networks these companies try to bring the content as “near” to the user as possible, all in
order to make the web “faster”. By reducing the geographical distance and the number of hops
between the servers and the user’s PC one is able to lower the latency. Not only many content
distribution networks get deployed to reduce latency, but also new protocols are researched on
with that goal. For example SPDY [1] by Google. Delay is important, for a regular web browsing
session delay will have a large impact on the user experience.

Therefore it is an important goal of this thesis to evaluate how the insertion of an OpenFlow
testbed into the user’s Internet connection would impact the user experience, due to the addi-
tional delay created by the Arbitrator.

Delay is important for each single user, independent of how many users are participating and
thus donating traffic to the testbed. However it does not tell how many users can be handled
simultaneously. To better understand how many users can be handled we further study the flow
arrival rate as well as the total amount of flows the Arbitrator can handle.

3.4 Correctness Evaluation

There are many threats in the Internet. Computer crime is long not anymore just committed by
individuals for personal interests. Organized groups perform criminal actions in the Internet due
to commercial interest. Be it to steal confidential information from unencrypted communication
for industrial espionage or personal data for committing identity thefts or be it to install malicious
software on a user’s computer to gather confidential data from the computers storage, gather
access to one’s online banking account or misuse one’s computer to act as a source for further
attacks or just for sending unsolicited commercial e-mail.

If an attacker is able to observe or even control a user’s Internet connection, he would be able to
perform several attacks. For instance, if an attacker is able to change content of a user’s Internet
connection, i.e. if one can inject traffic, an attacker can redirect users to malicious websites and
trick them into downloading malicious software, which eventually gets executed by the users
computer to install a back-door. If an attacker is able to just observe the user’s Internet traffic,
one may be able to steal confidential information from unencrypted communication. Also some
form of traffic injection is still possible from other places, even when the attacker can’t manipulate

Thttp://glinden.blogspot.ch/2006/11/marissa-mayer—-at-web-20.html
2http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden—-Amazoncom

http://glinden.blogspot.ch/2006/11/marissa-mayer-at-web-20.html
http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazoncom

3.4 Correctness Evaluation 17

traffic at the observing location. Even when an attacker only has access to connection data but
not to content, one may still be able to misuse gatherings from this data to perform criminal
actions. For example, with such data an attacker is able to learn which websites a user visits,
this knowledge may be used for blackmailing, if a user consumes inappropriate content.

In general, researchers are just nosy and we would not expect them doing any harm with user
traffic they experiment with. But since we only have limited control over who might run experi-
ments in our testbed, we have to assume anyone in the Internet can register and run potentially
malicious experiments.

Because of the presence of such threats in the Internet, it is important for the Arbitrator to work
as specified and not to compromise a users privacy and security, when untrusted third-party
experimenters should be allowed to perform their experiments in a public testbed. Therefore it
is a goal of this thesis to evaluate correctness of the Arbitrator.

18

CHAPTER 3. GOALS AND CHALLENGES

Chapter 4

Software Design

Because the gatekeeper switch needs an entity controlling them, we needed to build the Arbi-
trator. We will discuss the design of the Arbitrator in Section 4.1

The Arbitrator could either be built into the PAL proxy, or as a separate application. We chose
to build it as a separate application (we will motivate that in Section [4.1.1). Therefore the PAL
proxy needed to be aware of an external Arbitrator and needed to be extended in that way (we
will discuss that in Section [4.2). Furthermore we needed to design an interface between the
Arbitrator and the PAL proxy (this will be explained in Section [4.3).

Furthermore we discuss some insights especially about the OpenFlow protocol learned during
design in Section 4.4

4.1 Design of the Arbitrator

In this section we explain the design of the Arbitrator and discuss the decisions taken.

4.1.1 Integration with PAL

There was a design decision we had do to at first. We had two options, should the Arbitrator
be integrated into the PAL proxy or should we build it as a separate application? Integrating the
Arbitrator into the PAL proxy would certainly be easier, because then there wouldn’t be the need
for a communication interface. Building it as a separate application on the other hand would
simplify testing. Also future refactoring of the PAL proxy would be made easier with a separate
application. Therefore we decided to build the Arbitrator as a separate application.

4.1.2 Flows

We define a flow as all packets having the 5-tuple (source IP address, destination IP address,
transport protocol, source port, destination port) in common. This definition corresponds to the
packets in one direction of a TCP connection. Also UDP streams are caught by this requirement.
We also stated a requirement for the time between two sequent packets, which we’ll discuss
later.

Flows are unidirectional, but most communication patterns are bi-directional. When there is a
flow in the backwards direction of another flow and it belongs in some means of their protocol
to that flow, we call it the reverse-flow of that flow. In case of TCP or UDP the flow and its
corresponding reverse-flow have the same value in the transport protocol header field and the
two values in the IP address header fields and the two values in the port header fields are
swapped, respectively. The ICMP protocol may be used by routers to inform the sender of a
flow about errors, care should be taken to handle these error messages under the same policy
as the flow they belong to.

Both flows, a flow and its corresponding reverse-flow, together constitute a so-called bi-flow, in
the case of TCP this is equivalent to a connection. Because we must keep information about a
bi-flow in the Arbitrator as long as the last rule of a flow belonging to the bi-flow has expired and
removed from the gatekeeper switch, we state as an additional requirement for a flow, that in

19

20 CHAPTER 4. SOFTWARE DESIGN

a bi-flow the maximum time interval between the arrival of two sequent packets must be lower
than a specified value.

4.1.3 Policies and Guarantees

A user donating traffic to the testbed may require guarantees for his traffic or parts thereof.
Currently we support the following guarantees: “direct”, “no-sniff” and “allow”. The “direct” guar-
antee means not to deliver this part of the traffic to the testbed at all, a shortcut rule will be
installed as flows appear in the testbed. The “allow” guarantee does not warrant for anything
and the “no-sniff” guarantee protects the content of the traffic. Another requirement of the user
may be, not to allow the testbed to do header space rewriting. A policy includes a statement for
matching a flow, a guarantee the PAL proxy must warrant for and whether the testbed is allowed

to rewrite the header space.

4.1.4 Forwarding flows to experiments

When the Arbitrator installs a flow mod rule to the gatekeeper switch for forwarding a flow to
the testbed, it adds two actions to that rule, the first action is to add a VLAN-ID to the packet,
the second action is to output the packet on the port facing the testbed. The Arbitrator installs
an opposite rule for flows leaving the testbed, also with two actions, the first is to remove the
VLAN-ID and the second is to output the packet to the outside port.

4.1.5 Handling of new flows

The Arbitrator works purely event based. All its actions are triggered from events from the out-
side. Events it will react upon may either come from the gatekeeper switch or from the PAL proxy.
The interface to the PAL proxy with the events that the Arbitrator will handle will be described in
Section

There are two possible events from the gatekeeper switch, the Arbitrator has to react to. First,
there is a packet-in event, whenever a new flow traverses the gatekeeper switch, and second
there is a flow removed event when an installed flow rule was removed due to its idle timeout.
A new flow has to be handled, whenever the Arbitrator receives an OpenFlow packet-in event
packet from the gatekeeper switch.

When the flow is leaving the testbed, a request (requests will be explained in Section is
sent to the PAL proxy to get to know the original header space of the flow before header space
rewriting might have changed the flow’s header space in the testbed.

Then the Arbitrator uses the header space of the flow to look it up in its internal flow table. If no
entry was found a new one is created and for flows entering the testbed, an experiment has to
be chosen to send the traffic to (arbitrating between experiments is described in Section (4.1.7).
For flows leaving the testbed, the experiment is already known from the VLAN-ID in the packet
header.

For flows entering the testbed the Arbitrator looks up the policy of that flow and asks the PAL
proxy if forwarding the flow to the testbed would violate the given policy. If its conforming to
policy, the action for that flow will be forwarding to the testbed, else the action would be to
shortcut the given flow. Flows leaving the testbed are always forwarded to the outside.

The Arbitrator then outputs the packet received by the packet-in event according to the chosen
action and installs a flow mod rule in the switch, for forwarding future packets of that flow. In
every case, the Arbitrator updates its internal flow table, with header space information, cho-
sen experiment, action taken, and which rule is already installed in the switch. Figure 4.7] and
Figure show the sequence of operation in handling new flows with more details.

4.1.6 Flow table

When a flow is forwarded to an experiment in the testbed, the corresponding reverse flow should
also be forwarded to the same experiment. The Arbitrator needs to be able to find an existing
flow, when its reverse flow traverses the gatekeeper switch. In order to do that, we introduced

4.1 Design of the Arbitrator

21

v

store
header space
in flow table

¥

release lock
on flow table

\

inform PAL proxy about new
flow with VLAN ID and ask if it
is policy conformant to forward
this flow to the testbed

v

get lock on
flow table

prepare
shortcut rule

v

output packet
according to rule

is ref counter
>17?

update actions/rules
in flow table

new flow at gatekeeper switch N get packet get lock on
from user side or internet side (or buffer id) —> flow table
decide which
create new flow table VLAN/experiment
entry with VLAN ID and [i1is flow should no
ref counter = 1 go to

is ref counter

>17?

is a matching flow
or reverse flow
in the flow table?
(get entry)

increment ref
counter in flow
table

yes

store packet

release lock
on flow table

is it policy
conformant?

yes

prepare forwarding rule with
adding VLAN ID and
forwarding to testbed

—>

no

is rule already
installed on
switch?

yes

output packet
according to rule

y

release lock
on flow table

output all stored packets according to rule
and decrement ref counter accordingly

install rule on switch

—>

decrement ref
counter in flow
table

release lock
on flow table

Figure 4.1: Flow chart for handling new flows entering the testbed.

22

CHAPTER 4. SOFTWARE DESIGN

ask PAL proxy

about original get lock on
header > flow table

is a matching flow

new flow at
get packet
gatekeeper > (or buffer id)
switch from testbed
create new flow table
entry with VLAN ID and —
ref counter = 1

v

store
header space
in flow table

is ref counter
>17

or reverse flow
in the flow table?
(get entry)

increment ref
counter in flow
table

does
VLAN ID
match?

store packet

prepare forwarding rule with
removing VLAN ID and forwarding
to the outside on switch

output packet
according to rule

>17?

is ref counter

release lock
on flow table

is rule already
installed on
switch?

drop packet and
log a warning

release lock
on flow table

output packet
according to rule

yes

output all stored packets according to rule
and decrement ref counter accordingly

. release lock
i ; counter in flow |——»
install rule on switch |———> on flow table

decrement ref

table

Figure 4.2: Flow chart for handling new flows leaving the testbed.

4.2 Changes made in the PAL proxy 23

| experiment [guarantee | hs rewriting | information for flow « [information for reverse flow « |

(a) Information stored for each bi-flow.

= | action for flow | information for part entering testbed e | information for part leaving testbed e |

(b) Information stored for each flow, twice for each bi-flow.

o [hs of flow part | rule is installed | refcount [packet store |

(c) Information stored for each part of a flow, four times for each bi-flow.

Table 4.1: Information stored in a flow table entry.

an internal flow table. The flow table consists of flow table entries, for each bi-flow traversing the
gatekeeper switch, a flow table entry is created.

Table [4.1]shows the information stored in a flow table entry. It consists of the experiment (VLAN-
ID), the guarantee and if header space rewriting is allowed, actions taken for the flows in each
direction, header space when entering the testbed and leaving the testbed for each flow. For
each part of a flow, it is stored in the flow-table if a corresponding rule is already installed in
the gatekeeper switch. More information stored for each part of a flow are a reference count
for handling concurrency issues, and a reference to a list of stored packets also for handling
concurrency issues.

4.1.7 Arbitrating between experiments

Each experiment has requirements to the policies of flows sent to it. One may require a max-
imum guarantee, be it to be able to access all the payload of each packet of the flow or the
header may be enough. Or one may need to rewrite header space. Whenever an experiment
has to be chosen to send the flow to, we create a list of experiments the guarantee and the
ability to rewrite header space is usable to and take a random experiment from that list.

4.2 Changes made in the PAL proxy

This section explains the changes needed in the PAL proxy to integrate the Arbitrator into the
PAL and gives an overview over important bugs found and fixed or worked around in the PAL

Proxy.

4.2.1 Reserve flow space in LUTs and request original header

For implementing the requests to reserve flow space in the PAL proxy and to get the original
header space of a flow, not much had to be done in the PAL proxy, most of it was already there.
The PAL proxy has a topology of nodes. Every node in the topology has a corresponding switch
and contains a flow table and a LUT. The flow tables in the PAL proxy’s nodes resemble the flow
tables in the corresponding switches. The LUT entries track user related flows as they traverse
the testbed and reserve their flow spaces. They contain references to previous and next LUT
entries, current header space of the flow when it enters the node and the original header space
of the flow.

In order to reserve a flow, we create a LUT entry in the first node and perform a path validation.
The flow space is then propagated through the virtual topology and linked LUT entries are
created accordingly.

Because the last switch’s header space rewriting was not recorded in any LUT, we had to extend
the topology and include the gatekeeper switch. The gatekeeper node doesn’t need a flow table.
Looking up a flows original header space now involved just looking up the flow in the gatekeeper
node’s LUT.

24 CHAPTER 4. SOFTWARE DESIGN

4.2.2 Intersecting flow space workaround

We installed FlowVisor between the PAL proxy and the testbed switches, thus rules sent by
an experimenter first pass the PAL proxy and then pass FlowVisor until they reach the switch.
FlowVisor enforces each experimenter to use its own header space, which is called a slice.
OpenFlow rules sent to the switch contain a match and a list of actions. FlowVisor intersects
the header space of the match and the slice, if the result is the empty header space, the rule is
rejected, otherwise the result is used as the new match. If an action would rewrite header space
to be not part of the slice, the rule is rejected’.

There was a design error in the PAL proxy, FlowVisor changes matches before it passes them
to the switches, this was not considered in the PAL proxy. We used the VLAN-ID field for slicing
rules from the experimenter. When an experimenter sends a rule with a wildcard in the VLAN-ID
field in the match, the PAL proxy would accept it, update its internal flow table accordingly and
forward it to FlowVisor. FlowVisor will then accept it and change the VLAN-ID field in the match
to the experimenter’'s VLAN-ID. If another experimenter sends a rule with the same match with
the wildcard in the VLAN-ID field, the PAL proxy will update its internal flow table and modify
the first experimenter’s entry and passes it to FlowVisor. FlowVisor will then accept this rule too
and change the VLAN-ID field in the match to the second experimenter’'s VLAN-ID.

This gives us two problems. First the internal flow table of the PAL proxy is not in sync with the
flow table in the switch, because FlowVisor changes rules and these changes are not consid-
ered in the PAL proxy. Second, entries in the internal flow table of the PAL don’t hold associa-
tions to the experimenter who created them, thus allowing an experimenter to change another
experimenter’s flow table entries.

To work around these problems we enforced VLAN-IDs in rules from the experimenters in the
PAL proxy. Matches in rules containing a wildcarded VLAN-ID were changed to contain the
experimenter's VLAN-ID, rules with matches already containing the experimenter's VLAN-ID
were accepted as such and rules with matches containing another VLAN-ID were rejected. This
workaround solves both problems, rules wont get changed anymore in the FlowVisor and each
flow table entry is assigned to an experiment due to the value in its VLAN-ID field.

This workaround limits the possibilities of experiments to run. We are only able to assign one
VLAN-ID per experiment and experiments can’t share VLAN-IDs. Both are possible in OFELIA
but rarely used.

4.2.3 Handle error messages and rejected rules

The OpenFlow protocol specifies, that a switch should send no response, when a flow mod
message succeeded, only in the case of an error it should send an error message. Flow mod
messages from experimenters cause the PAL proxy to immediately update its internal flow table.
Later error messages generated by unsuccessful flow mod messages get ignored by the PAL
proxy itself, and just forwarded to the experimenter. Such that the flow table in the switch and
the one in the PAL proxy get out of sync.

An OpenFlow barrier request sent to a switch, makes the switch to process all so far un-
processed messages and then respond with a barrier reply. Thus making all error messages
caused by unsuccessful flow mod messages sent before the barrier request being sent before
the barrier reply.

We used OpenFlow barrier request to fix this problem. After each flow mod message, we send
a barrier request and wait for the barrier reply. In between, the change to the flow table is in a
transaction state, it gets rolled back, when an error message is received, and it gets committed,
when the barrier reply is received. Because other messages should not operate on inconsistent
flow table entries, all other requests get queued.

4.2.4 Input port is part of flow space

In order to do policy violation checking, the PAL proxy emulates an OpenFlow enabled switch
and maintains a copy of the switch’s flow table. OpenFlow matches, as part of a switch’s flow
table, are designed to match twelve fields?. Eleven of those twelve fields match fields in the

T At least with FlowVisor version 1.0 and newer.
20penFlow Switch Specification 1.0 [2] in Table 2 on page 3.

4.3 Interface between PAL proxy and Arbitrator 25

Ethernet frame, as sent through the network. The other field is to match the physical input port
a packet enters the switch. Flow space in the PAL proxy is also represented by these twelve
fields.

The PAL proxy maintains LUTs to reserve user flow spaces, it does this by inserting a LUT entry
for a switch, then checks flow table entries of that switch to find the next switch in the path of
that flow. This is done recursively until a gatekeeper switch is reached.

The PAL proxy didn’t consider to update the input port in the LUT’s flow space as the flow travels
through the testbed. This caused matches in the flow tables without wildcards in the input port
field to behave incorrectly.

We fixed this by updating the input port field in the LUT entries on each hop.

4.2.5 Timeout scheduler

Because rules in the PAL proxy may expire due to an idle timeout and may cause a policy viola-
tion when they get removed, the PAL proxy needs to watch the timeout of the rules. OpenFlow
switches collect statistics about flows, these flow statistics contain a time value to idle before
expiration.

The PAL proxy schedules an action to get statistics of a rule some seconds before its idle
timeout, and reschedules if needed. If the rule would expire soon, it does a path validation, if
that fails, it tells the Arbitrator to install a shortcut rule matching the flow®.

In the original version of the PAL proxy this was planned, but the implementation was not fin-
ished. Scheduling was implemented, but retrieving statistics from the switch was missing. One
did not consider the slicing of FlowVisor, each experimenter can only get statistics about rules
in the slice he has access to. In order to not have to find out the correct experiment for each rule
and omit the need to filter out statistic responses to the experimenters we introduced an admin
slice in FlowVisor. The admin slice consists of the all wildcarded flow space, thus it has access
to all rules in the switches. The PAL proxy then uses the admin slice’s connection to retrieve
statistics about the rules.

4.3 Interface between PAL proxy and Arbitrator

Because we chose the Arbitrator to be a separate application which is not included in the PAL
proxy (we did discuss that in Section [4.1.1), but they still depend on each other and need to
exchange information at some point, we needed to design a communication interface between
the two.

We want to be able to handle new events from the gatekeeper switch while having requests from
the Arbitrator to the PAL proxy from earlier events still pending. In the case when some requests
are pending, new events not needing communication with the PAL proxy should get handled
immediately by the Arbitrator, i.e. the Arbitrator should not block while waiting for requests to
complete. Therefore we chose an asynchronous request and response communication model
for the communication between the Arbitrator and the PAL proxy.

In order not to let the PAL proxy idle wait for a new request after a response has been sent and
therefore enable it to quickly work off requests, we chose to use pipelining. Even when there
are pending requests from the Arbitrator to the PAL proxy, new events needing communication
with the PAL proxy will cause the Arbitrator to send requests, which then need to get queued at
the PAL proxy.

We wanted a future PAL proxy with a multi-threaded design to be able to handle requests out
of order. Thus we had to make sure, the Arbitrator will handle responses correctly, when they
arrive at a different order as their corresponding requests. On the requesting part, each request
is assigned an incrementing request id. This request id is then included in the request data
which is sent to the responding part. On the requesting part the request id is then used as a key
for storing the request data in a pending requests lookup table. Together with the request data
itself a handler function is stored in this table. When the requested action has been performed
and there is a response, it is sent to the requesting part and always includes the request id.
When a response is received by the requesting part it takes the request id and looks up the

3More on that can be found in [3].

26 CHAPTER 4. SOFTWARE DESIGN

entry in the pending requests lookup table and calls the handler function included in the entry
with the response payload as an argument.

There are three different types of requests performed by the Arbitrator to the PAL proxy. Request
to inject a flow into the testbed, requesting the original header of a flow leaving the testbed, and
informing the PAL proxy about removal of a flow. In addition one type of request is performed by
the PAL proxy to the Arbitrator, namely requesting the Arbitrator to shortcut a flow.

The rest of this section describes the details of the four types of requests and the choices we
made for the implementation.

4.3.1 Request flow injection

Whenever there is a new flow to be injected to the testbed, the Arbitrator needs to ask the PAL
proxy if injecting the flow into the chosen experiment causes a policy violation. “Flow injection”
we named this request type. The response to such a request states if it's either policy violating
or not.

The payload of this request type contains the VLAN-ID of the experiment we want this flow
to be injected, the 5-tuple header, the source where this flow is coming from, either “user” or
“Internet”, and the guarantee, we want this flow to be warranted for.

The response to such a request is either the “forward” statement or the “shortcut” statement.
The “forward” statement tells the Arbitrator that the PAL proxy successfully reserved this flow
space in its lookup tables and it is now safe to forward this flow to the testbed, the PAL proxy now
also expects to be informed about removal of this flow to be able to release system resources.
The “shortcut” statement tells the Arbitrator that the PAL proxy was not able to reserve this flow
space in its lookup tables, meaning that forwarding this flow would cause a policy violation and
that the Arbitrator should shortcut this flow instead of forwarding it to the testbed.

4.3.2 Request original header

Whenever a new flow is leaving the testbed, the Arbitrator needs to look it up in its flow table. If
the experiment handling this flow is allowed to do header space rewriting, the Arbitrator needs to
know the header space of the flow before it entered the testbed. The PAL proxy reserves each
user flow and keeps track of header space rewriting actions within its LUTs. All the information
about original header spaces is stored in the PAL proxy. The Arbitrator can use the request type
named “original header” to retrieve this information from the PAL proxy.

The payload of this request type contains the VLAN-ID, the 5-tuple header and the destination,
where the flow is headed to, either “user” or “Internet”.

The response to such a request contains the VLAN-ID and the 5-tuple header of the flow when
it entered the testbed.

4.3.3 Inform PAL proxy about deletion of a flow

The PAL proxy uses system resources for reserving flow space in its LUTs. Each LUT entry
uses some memory, additionally policy checks demand computation time depending on the
number of LUT entries installed. In order to not exhaust system memory we want to release
these system resources as soon as possible. The gatekeeper switch informs the Arbitrator as
soon as a flow rule expired due to the idle timeout and was removed from the switch’s table. The
Arbitrator then updates its internal flow table. If a rule just removed belongs to a flow traversing
the testbed the Arbitrator sends a request of the type “flow remove” to the PAL proxy to inform it
to give up the flow space reservation of that flow and free used system resources.

Because no response is needed by the Arbitrator for this type of request, the PAL proxy does not
send responses to such requests. Therefore these requests are not put in the pending requests
lookup table.

The payload of the request contains the VLAN-ID, the 5-tuple header and the source where the
flow originally was coming from, either “user” or “Internet”.

4.4 Insights 27

4.3.4 Request Arbitrator to shortcut flow

When the PAL proxy encounters a policy violation for an existing flow space reservation, it has
to be able to inform the Arbitrator that it is not safe anymore to forward this flow to the testbed.
This can happen when a rule times out on the switch and gets caught by the timeout scheduler.
The PAL proxy then sends a request type named “shortcut” to the Arbitrator to inform it about
such a policy violation.

Because no response is needed by the PAL proxy for this type of request, the Arbitrator does not
send responses to such requests. Therefore these requests are not put in the pending requests
lookup table. And because this is the single request type performed by the PAL proxy, we could
omit the implementation of a pending requests table on the PAL proxy side.

The payload of the request contains the VLAN-ID, the 5-tuple header and the source, where the
flow is originating from, either “user” or “Internet”.

4.3.5 Implementation choices

Because we were already using the POX library at both ends, we chose to use POX’ messen-
ger component. The messenger component provides bi-directional channels. Because of our
request and response communication model, we chose to use two channels, a request and a
response channel. Requests are sent to the request channel and if there is a response to a
request, the other part sends the response to the response channel.

The POX’ messenger component is built using a TCP connection and sends JSON encoded
data. For the time being only the server part was implemented. Therefore on the PAL proxy side
we had to extend the messenger component to act as a client and connect to a server.

4.4 Insights

As we have seen in the previous Sections, the OpenFlow protocol is a sub-optimal choice for
the purpose of a privacy layer, its design makes it difficult to handle every case correctly. Fur-
thermore we had to rebuild parts of FlowVisor in the PAL proxy. In this Section we discuss more
insights learned while designing the Arbitrator and debugging the PAL proxy.

4.4.1 Insights in OpenFlow

As we have seen in Section the OpenFlow protocol has no support to acknowledgement
flow mod messages a controller sends to the switch. In order to be able to keep the flow tables
in the switches and in the PAL proxy in sync, a mechanism for acknowledging these flow mod
messages was needed. We had to use barrier requests for that purpose, which certainly has an
impact on performance.

As discussed in Section handling of idle timeouts as defined in the OpenFlow protocol
is very limiting for our purpose. There is some kind of asymmetry in handling of idle timeouts
of rules in the OpenFlow protocol. Rules are installed by the controller, but get removed by the
switch as soon a timeout occurs and the controller is notified after the removal of the rule. This
issue was already known from the previous version of the PAL proxy, but the proposed solution
did not consider slicing of the FlowVisor.

4.4.2 Insights in FlowVisor

As seen in Section FlowVisor does make changes to rules sent from the experimenters’
controllers to the switches. We had to resemble these changes in the PAL proxy and therefore
duplicating behaviour of FlowVisor inside the PAL proxy. The main use of FlowVisor how it is
used currently in the PAL, is to multiply a controller connection to different experimenters.

28

CHAPTER 4. SOFTWARE DESIGN

Chapter 5

Evaluation

Latency is an important factor in the user experience of one’s Internet connection, as we have
discussed in Section One goal of our performance analysis is to measure the delay added
by inserting the Arbitrator to one’s Internet connection, so we will be able to estimate the impact
on the user experience.

In order to minimize measurement artifacts, we needed a controlled environment for measuring
performance. It needs to be adjustable and it needs to be able to create a specific load. Deploy-
ing the PAL setup in ETHZ’'s OFELIA testbed would have been possible but would have created
too much effort to generate load and measure performance.

Additionally there is no standard tool readily available for our purpose to generate a specific
load on an OpenFlow controller and to measure its performance. Therefore we decided to build
such a tool by our own. The tool generates OpenFlow packet-in events and handles responses
accordingly. This Arbitrator benchmarking tool is fast enough not to interfere with the measuring
results. Thus testing the tool itself for its performance was required.

Additionally we evaluated the correctness of the implemented Arbitrator, which is discussed in
Section[5.5

All the Performance tests were done on a Lenovo Thinkpad T410 with an Intel Core i7 CPU run-
ning at 2.67 GHz and 4 GB of Memory. Furthermore to get a stable and predictable environment
we disabled hyper-threading in the system’s BIOS to make sure not to encounter scheduling
interferences. We also did configure the CPU not to enter lower C-States and used the perfor-
mance CPU governor in the Linux kernel. Both techniques would reduce power usage of the
system when idling, but could fudge our test results. The Operating System used was Ubuntu
Linux 12.04 LTS. The Linux kernel was version 3.2.0 and the installed Python version was 2.7.3.

5.1 Environment

We wanted to measure the performance of the Arbitrator. Therefore we had to figure out, how
we could take the Arbitrator out of its intended environment and put it into a benchmark environ-
ment. Since the Arbitrator is a standalone application, which was designed as a modular part
of the PAL from the beginning, with only a few connections to other parts of the PAL. These
connections are the best points to measure performance at because measuring at these points
includes measuring communication overhead and it is not required to instrument the Arbitrator.

We had a closer look at the outside connections of the Arbitrator and discovered, the only rel-
evant in- and outputs of the Arbitrator is the connection to the gatekeeper switch (Figure
shows a simplified version of the Arbitrator and the gatekeeper switch in their intended envi-
ronment). There is also a connection from the Arbitrator to the PAL proxy (not depicted in the
Figure) and we will discuss its impact in Section Because of this single relevant connection,
where OpenFlow is used, it is sufficient to replace the gatekeeper switch by a benchmarking
tool which we call Arbiterbench.

29

30 CHAPTER 5. EVALUATION

Arbitrator [-., -

Testbed

Gatekeep€

Figure 5.1: Schematic depiction of the flows traversing the testbed.

5.2 Arbiterbench

We had to figure out, which OpenFlow packets the gatekeeper switch sends to the Arbitrator,
therefore we looked at the flows traversing the testbed. When a bi-flow is sent through the
testbed it traverses the gatekeeper switch four times in total. First a flow initiated by the user
traverses the gatekeeper switch when it enters the testbed and traverses the gatekeeper switch
a second time as it leaves the testbed. When the destination host in the Internet responds, it
will generate a second flow, a so called reverse-flow with IP source and destination addresses
swapped and, if applicable, source and destination ports swapped. This reverse-flow traverses
the gatekeeper switch as it enters the testbed and again as it leaves the testbed. The red arrows
in Figure [5.7) represent these flows.

In the Arbitrator’s intended environment the arrival of the first packet of each flow at the gate-
keeper switch causes the switch to send an OpenFlow packet-in event packet, which makes it
two for each flow and four for each bi-flow. All future packets of a flow will not cause new packet-
in events, as flow-mod rules will then be installed in the gatekeeper switches and all packets of
that flow will be forwarded accordingly.

The four packet-in events are a worst-case scenario. This can actually be reduced by half, if
we not only install the flow-mod rule matching the flow just encountered but also we would pre-
install a flow-mod rule for the corresponding reverse-flow on the gatekeeper switch, because the
headers for matching the reverse-flow are already known at this point. It can even be reduced
to a quarter, in the case where no header space rewriting is done inside the testbed' where we
will be able to install all four required flow-mod rules at once, but one may not forget to request
insertion of the reverse-flow to the testbed at the PAL proxy if applicable.

Our Arbiterbench simulates this behaviour and generates an OpenFlow packet-in event packet,
as a new flow initiated by the user entering the testbed at the gatekeeper switch would do,
and sends it to the Arbitrator. The Arbitrator then will handle this simulated new flow event and
will respond to the benchmarking tool accordingly with a OpenFlow packet-out and a flow-mod
command packet. The benchmarking tool will then measure the time delay between the packet-
in event and the packet-out command. For each packet-out command received, the Arbiterbench
will generate a new OpenFlow packet-in event packet representing the bi-flow’s next traversal
of the gatekeeper. This is done for every packet-out except for the one representing the fourth
traversal of a bi-flow.

The Arbiterbench generates the first OpenFlow packet-in event packets with a constant rate.
Additionally it will generate packet-in events after receiving a packet-out command from the
Arbitrator, if required to. So for each packet it generates with a constant rate, it will generate
three others in addition, sequentially.

The Arbiterbench sends an OpenFlow packet-in event packet, calculates the time interval be-
tween sending time of this and the next such packet and sleeps this amount of time. In the
meantime another thread handles incoming packet-out and flow-mod commands, measures
time delays and generates new packet-in events accordingly.

It is designed as a standalone application. Because we had experience with the POX library and
estimated it is fast enough for that purpose we used the same patched version of the POX library
as the PAL proxy was using to build the Arbiterbench. In a later point we showed it is indeed

"The experiment’s traffic requirements tell if header space rewriting is performed in the testbed.

5.3 Connection to the PAL proxy 31

fast enough for our purpose. In addition we re-used some code of the PAL proxy, especially for
doing the northbound communication, the part which is responsible for the communication with
an OpenFlow controller.

In the hope to reduce CPU usage and make it possible to test higher flow rates, we also tested
sending in batches of ten packets, meaning sending ten packets and then wait an equivalent
longer time interval until the next ten packet-in events should be sent. Testing with batches
showed artifacts, the delay showed a mode at about 65 ms either produced by the benchmarking
tool itself or by the Arbitrator. Thus, it was for our measurement purposes not usable and we
deactivated it.

We have verified that the performance of the Arbiterbench is sufficient and it's measurement
results are not influenced by some co-processing issues on the computer. We have seen that
our benchmarking tool generates packets fast enough, because it always caused considerably
less CPU usage than the Arbitrator. The Arbiterbench and Arbitrator are only able to use one
CPU at a time and the setup was running on a dual-core system.

5.3 Connection to the PAL proxy

We wanted to test both the delays inside the Arbitrator and it's communication delays, the ones
between the gatekeeper switch and the Arbitrator as well as the ones between the Arbitrator
and the PAL proxy. We didn’t require the PAL proxy to be fully functional for the tests. Having
a running PAL proxy would have required us to create a model for testing the PAL proxy’s
internal structures and test results would strongly depend on that. Therefore we built a dummy
PAL proxy for the performance analysis task. This dummy PAL proxy responds to every flow
insertion request with the “forward” statement, which means every flow should be forwarded to
the testbed. And it responds to every original header space request with the header space the
request was associated with, such as no flow is subject to header space rewriting in the testbed.

5.4 Performance Evaluation Results

5.4.1 Time delay

Figure shows the time between the generation of the first packet-in event and the reception
of the corresponding packet-out event for different flow rates. The peaks in time delay which
are visible in all the curves stem from the internal data structure of the Arbitrator, because we
used a Python dictionary, which gets resized every now and then. This could be avoided with
“warming up” the data structure before use.

The curve at the top shows that 500 @ create an overload on the Arbitrator. The Arbitrator
is not fast enough to handle this rate and the backlog is increasing and with it the total delay.
Even in the time intervals between higher delays due to dictionary resizing the delay is rising,
from this we conclude even a “warmed up” data structure would create an overload with this
flow rate.

The plots of the other three packet-in/packet-out delays of each bi-flow look similar, the first
packet-in/packet-out delay is only a bit higher than the other, thus we omitted them for brevity.
Because we wanted to know the total delay added by the Arbitrator to a bi-flow, we summed up
the 4 measured delays and plotted it in Figure Because the peaks are shifted in time for
the different packet-in events of a bi-flow, the top curve showing the overload case looks much
flatter here.

Figure shows a zoomed version of Figure [5.2 which shows the time delay of handling the
first packet-in in a bi-flow, where we only include the lower rates and look only at the first 5000
flows. The cyan line with a rate of 50 % shows the most delay, and the green one with a higher
rate of 200 @ shows the lowest delay. We expected these to be about equal. We turned off
power saving features of the CPU as described in Section therefore we assume it has to do
with either scheduling of the Linux kernel or other power saving features, which can’t be turned
off.

Figure [5.5] shows a zoomed version of Figure [5.3] which shows the total time delay of handling
a bi-flow, also here we omit the high flow rate and only look at the first 5000 flows.

32 CHAPTER 5. EVALUATION

9 T T T T
flows
o 5 flows
flows
|| — 100
flows
| — w0t
> 500 flows
[0}
©
o 4F .
E
3 = -
2t i
1t " .
O e . | l I " l l I | I 3 l AL} L .
0 20000 40000 60000 80000 100000

bi-flows

Figure 5.2: Time delay between packet-in and packet-out for the first event of each bi-flow
traversing the testbed. The blue curve shows an overload of the Arbitrator. The peaks result
from time needed reorganizing the internal data structure.

30 1 1 I I
flows
50 =57
25 | flows |
__ 100 flow
200 flows
2 | °
= — 500 fows
)
3 15 1
(0]
E
10 F -
5 _
0 PRV W BN W ! 1 L L " L u L Au
0 20000 40000 60000 80000 100000

bi-flows

Figure 5.3: Time delay between packet-in and packet-out summed up on all events of a bi-flow
traversing the testbed. Again, the blue curve shows the overload of the Arbitrator and the peaks
from reorganizing the internal data structure are visible.

5.4 Performance Evaluation Results 33

O.].6 | | | |
flows
50 752

0.14

100 flows
0.12

200 fows

0.10

0.08

time delay (s)

0.06

0.04

0.02

0.00

0 1000 2000 3000 4000 5000
bi-flows

Figure 5.4: Time delay between packet-in and packet-out for the first event of each bi-flow
traversing the testbed. We look at fewer flows and the overload-creating flow rate has been
omitted in this plot. We see higher delays with lower flow rates, we ruled out the most obvious
causes for them and didn’t further evaluate it in order to not waste more time.

0.25 :]] |
fl
50 foe
fl
0.20 b| — 100 == |
fl
200 fovs
= 015 I
>
©
[}
©
[0}
E 010F
| \ il
UL
0.0 | il ! | ‘,
M'll’J A " lJ ‘I\'le,l“_““ »glli l\ I“ | LI*'I l‘
0.00 L |] |
0 1000 2000 3000 4000 5000
bi-flows

Figure 5.5: Time delay between packet-in and packet-out summed up on all events of a bi-flow
traversing the testbed. Also here we look at fewer flows and we omitted the overload-creating
flow rate. The higher delays with the lower flow rates are also visible here.

34 CHAPTER 5. EVALUATION

>
B
©
o]
o
o _
200 flows
[OE==O) s
flows |
m—a 10077
flows
A—A 50 s

0.0 | | | | | | |
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

time delay (s)

Figure 5.6: ECDFs for the time delays between packet-in and packet-out for the first event of
each bi-flow traversing the testbed. For the high flow rate 90% of the delays are below 10 ms.
Some modes are visible for the lower flow rates.

5.4.2 Distribution of the time delays

Figure[5.6|shows ECDFs for the three lower rates of the first 5000 flows each for the delay of the
first packet-in event. The highest rate with 200 <%= shows about 90% of the delays are below
10ms. The rate with 100 82** shows modes at 10 ms, 20 ms and 35ms. The rate with 50 fos
shows modes at 20 ms, 35 ms, 65 ms and 85ms.

Figure[5.7|shows the ECDFs for the three lower rates of the first 5000 flows each for the summed
up delays of all the packet-in events in a bi-flow. At a flow rate of 200 22 about 90% of the delays
are below 25 ms. There are no clear modes visible for all the rates.

5.4.3 Maximum handleable flow rate

In order to find the maximum flow rate, the Arbitrator is able to handle, we measured time delays
with different flow rates around the expected maximum. Figure[5.8|shows again the time delay of
handling the first packet-in event in a bi-flow for different rates between 400 22*= up to 500 o=,
One can clearly see a split between the rates 460 2= and 470 8% At a rate of 460 2= the
Arbitrator can not work off the whole backlog created by the peak times created by reordering
the internal data structure, but in the intervals between the peaks, one can see, the delay is
decreasing, thus we assume, with a “warmed up” data structure the Arbitrator would be just
able to handle 460 %. In contrast to that at a rate of 470 % the delay is even increasing in
the time intervals between the peaks, thus the Arbitrator is not able to handle that flow rate.
Figure shows only the first 5000 flows and only the rates between 400 % and 450 %.
With the highest of that rates the Arbitrator is building a small backlog over time, as can be seen
in the plot the curve is not getting near zero after a while in comparison to the other curves.
But the Arbitrator would, as seen before, also be able to handle this rate with a “warmed up”
dictionary. 440 1°*= is always getting near zero, thus it is about the highest rate the Arbitrator
can handle without a “warmed up” data structure.

Figure[5.10]shows the ECDFs of the tests with high rates. As expected the higher rates typically
show a higher delay.

5.4 Performance Evaluation Results 35

T LB 4 T X
A
A
A
> i
E
©
o]
o
o _
200 flows
H s
flows |
flows
A—A 50 s
| |
0.15 0.20 0.25

time delay (s)

Figure 5.7: ECDFs for the summed up time delays between packet-in and packet-out for all
events of each bi-flow traversing the testbed. For the high flow rate 90% of the delays are below
25ms.

12 T T T T
400 fews 460 fows
10 410 fows 470 fows
— 420fews 0 4g(flows
8_ -
2 430l 490 flow
>
3 6f — 4dofers 500 fov i
£ 450 flows
4t] .
2 ‘ AOAA .
L L L
i

,,v";" e A A l“ ‘ll oy ' - oo : Mw
0 Y ” T O N N VU B b N
0 20000 40000 60000 80000 100000
bi-flows

Figure 5.8: Time delays between packet-in and packet-out for the first event of each bi-flow for
several high flow rates. A clear separation between 460 22 and 470 ¥ s visible. We assume
this is about the maximum flow rate the Arbitrator is able to handle.

36 CHAPTER 5. EVALUATION

0.20 T T T T
flows
400 flows
410 flows
s
0].5 B flows .
_ 420 flows
= 430 fows
>
o flows
g 010 — 440T .
Qo flows l
£ 450 flows
0.05 ‘
O.OOM‘ ki [T N
0 1000 2000 3000 4000 5000
bi-flows

Figure 5.9: Time delays between packet-in and packet-out for the first event of each bi-flow for
high rates. The yellow curve shows, at that flow rate the backlog created by reorganizing the
internal data structures cannot be completely worked off.

1.0

0.8

> 06 o o 4508 |
g mm 440 fous
S 04 aa 430 fous
vy 420 fous
0.2 wog 410820 7
o—¢ 4008w
98 00 0.10 015 0.20

time delay (s)

Figure 5.10: Distribution of delays between packet-in and packet-out for the first event of each
bi-flow for high rates. As expected, higher flow rates typically show a higher delay.

5.5 Correctness Evaluation 37

5.4.4 Comparison with flow arrivals at the TIK network

We compared the flow arrival rate at the TIK network with the capability of our setup. As can
be seen on Figure the TIK network?® shows on a regular Thursday during the semester
a baseline of about 10 and about twice that much during working hours. When looking at
a bin size of 1 second we have peaks up to 210 % With a bin size of 0.1 seconds we see
peaks up to 1200 % The 1200 % during 0.1 seconds correspond to 120 flows. Assuming
our system can handle 460 % the backlog of 120 flows will be worked off in about 260 ms.
Thus we assume our system can handle the traffic of the nature of the TIK network with intro-
ducing small delays.

5.5 Correctness Evaluation

In order to test the Arbitrator and the PAL proxy a testbed was set up in the very beginning of
the work. The goal of the testbed is to evaluate the correctness of the Arbitrator in combination
with the PAL proxy. It was also an important aid during development and debugging to find
programming errors. The testbed was built using the Mininet framework.

In the beginning testing was done manually, by starting each component by itself and using
Mininet’s interactive console to send traffic through the virtual testbed, but this is a tedious task.
To overcome this, a simple test script has been written. The test script takes care of setting up
the Mininet testbed and launches all the needed components which are the Arbitrator, the PAL
proxy and some experimenters’ controller. It then uses tcpdump on some links to capture traffic
for later analysis.

For testing, we configured some static policies in the Arbitrator. We configured policies to allow
some traffic being forwarded to the testbed and others to shortcut the traffic and not let it be
forwarded to the testbed.

The test script then sends packets through the virtual network and uses captured traffic by
tcpdump to evaluate the path the traffic took. If it matches the statically configured policy then
the test passes, otherwise it fails.

The manually performed as well as the automatically performed tests were successful and the
implemented program behaves as specified.

2Two high traffic hosts have been omitted from the measurement.

38

CHAPTER 5. EVALUATION

Flows arrivals per second
600 800 1000 1200

400

o
o
(aV}
o
o
o
Al
3

T <

(o]

[&]

(0]

(7]

—

(0]

o

%)

©c O

2z o

_ T

S

©

2]

2

S

L
o
Y]
o

Figure 5.11:

= binsize 0.1s

O binsize 1s

O binsize 1m
binsize 1h

: oo S o o
Bl c 0o 0 0o 0000000000 O0O0O0OOO0OO0OO0

0 6 12 18 24
Time of day
O binsize 1s <]
O binsize 1m
binsize 1h
o

Time of day

Flow rate at the TIK network for different time scales. (Plots provided by Bernhard Ager)

Chapter 6

Future Work

In the following sections we describe possible improvements to the Arbitrator and the PAL in
general.

6.1 Possible improvements to the Arbitrator

A future improvement of the Arbitrator would be a user interface, where users can configure
flows, state guarantees for their flows and select experiments, they want to donate traffic to.

This user interface then would have to be backed by a database for permanent storage. It has to
be evaluated if the Arbitrator looking up guarantees in the database is fast enough, or whether
a copy of the database’s content is needed in the Arbitrator itself.

Furthermore to motivate the user to donate traffic, a marketplace should be created. Experi-
menters should be able to trade something with users for the donated traffic. A trade value can
come from the experimental service itself, like a transparent BitTorrent cache or an anonymizing
proxy, or credits to access restricted web services or simple money could be a trade value.

6.2 Possible improvements to the PAL proxy

The PAL proxy needs some refactoring or a redesign. In order to benefit from future POX im-
provements and to keep the maintenance overhead low the PAL proxy should be written as a
POX module.

As we have seen in Section keeping the flow tables in sync is not a trivial task. The part of
the PAL proxy which is responsible for maintaining a copy of the switches’ flow tables could be
refactored to a separate library. Separation would allow independent and more extensive testing
and would possibly enable other project to benefit from it.

We have also seen in Section the PAL proxy heavily depends on the FlowVisor and we
had to implement a work around for a problem resulting from them being separate applications.
This leads us to other possible improvements. The PAL proxy should use more communication
channels with FlowVisor to learn how rules get handled. Other options would be to build the PAL
proxy into FlowVisor, or at least implement a subset of FlowVisor in the PAL proxy.

Assuming experiments are perfectly isolated by FlowVisor, each experiment could be assigned
it's own PAL proxy. This would allow us to scale the PAL proxy to multiple CPUs and even
multiple hosts, at almost no development effort.

Performance evaluation of the PAL proxy was out of scope of this thesis. In order to evaluate
the performance of the of the PAL proxy one would have to design a testing environment with
different experimenters.

The impact of the introduced barrier requests as described in Section[4.2.3|should be evaluated.
Possible improvements would be to send the barrier requests in batches.

39

40 CHAPTER 6. FUTURE WORK

6.3 Deployment in ETHZ’s OFELIA island

Deploying PAL in ETHZ's OFELIA island is another pending task. This task can be performed as
soon as outstanding issues with the PAL proxy have been resolved. More insights are expected
from this task.

Chapter 7

Summary

In this thesis we have designed and implemented a traffic Arbitrator for a public SDN testbed.
It has been integrated in the already existing PAL. The integration of the Arbitrator in the PAL
consisted of designing and implementing a communication interface to the already existing PAL
proxy and extending the PAL proxy to fulfill our needs.

Also some bugs and design errors in the PAL proxy were discovered and fixed or had to be
circumvented during this thesis. Furthermore we learned some more insights into the OpenFlow
protocol and the use of FlowVisor in the PAL.

We learned that OpenFlow is a sub-optimal choice for a privacy layer. It was already known, that
handling idle timeouts is an issue, but the presented solution was not complete. An issue we
learned was that the lack of acknowledgement messages to flow mod messages complicates
our task. We circumvented that with barrier requests.

In order to work around a design error in the PAL proxy we had to reimplement parts of FlowVi-
sor’s behaviour into the PAL proxy. We have seen the PAL proxy within FlowVisor is now more
feasible than before.

Furthermore we have evaluated the performance and the correctness of the Arbitrator. We com-
pared the performance with the nature of the traffic in the TIK network. We could show the
Arbitrator is typically fast enough to handle a network of this size and deployment would be
possible.

41

42

CHAPTER 7. SUMMARY

Bibliography

[1] SPDY: An experimental protocol for a faster web,
http://www.chromium.orqg/spdy/spdy—-whitepaper,
last visit: 2014-02-11

[2] OpenFlow Switch Specification,
Version 1.0.0 (Wire Protocol 0x01), December 31, 2009

[3] On Bringing Private Traffic into Public SDN Testbeds,
V. Kotronis, D. Schatzmann, B. Ager, ETH Zurich, 2013

[4] Supporting Header Field Re-writing for Policy-bound Flows in a Software Defined Network,
Hildur Olafsdéttir, Semester thesis at ETH Zurich, 2013

43

http://www.chromium.org/spdy/spdy-whitepaper

