
High-Speed
Data-Acquisition for

FlockLab

Master Thesis

Benjamin Dissler

April 10, 2014

Advisors: Roman Lim, Christoph Walser
Supervisor: Prof. Dr. Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich

Abstract

In this Thesis we present an enhancement to the wireless sensor node network
testbed FlockLab, the data acquisition unit (DAQ). The DAQ is placed between
the monitored target node and the monitoring embedded computer. The DAQ
detects events at a higher rate (10 MHz) and applies precise timestamp to an
event, with a resolution of 500ns. This permits to trace function calls of a target
node, which was not possible accurately with the former rate of 12.5 kHz.

Further, we synchronize the internal time more tightly than with the NTP
protocol by using an GPS PPS signal as reference. A timing error as low as 30ns
allows to trace time critical network protocols, running on different targets. We
implement the DAQ on a FPGA to ensure high detection rate and be able to
simultaneously adjust time to the PPS signal.

Acknowledgments

I would like to thank my advisor Roman Lim for his support to realize my
Master Thesis and the freedom he gave me during my work.

Further I appreciated all the inputs of my co-advisor Christoph Walser and
his helpful instructions for the more practical tasks.

I would like to express my gratitude to Prof. Dr. Lothar Thiele for the
opportunity to contribute to a project of the Computer Engineering group.

Then I would like to thank my fellow students Markus Frei, Etienne Geiser
and Balz Maag for the great time we had, sharing the same office.

Contents

1 Introduction 3

2 Related Work 6

3 Design 8
3.1 Requirements . 8

3.1.1 ADC SPI Interface (ADC to DAQ) 9
3.1.2 Data Rates . 10
3.1.3 Time Accuracy . 11
3.1.4 Input Commands . 11

3.2 Consequences of the Requirements 12
3.2.1 Interfaces DAQ - Gumstix 12
3.2.2 Output Packets . 13
3.2.3 Core Unit . 14

4 Implementation 16
4.1 FPGA/VHDL modules . 17

4.1.1 Time Calibration . 18
4.1.2 Tracing . 20
4.1.3 ADC packaging . 22
4.1.4 SRAM and FIFOs . 22
4.1.5 Gumstix SPI . 23
4.1.6 Actuation and ADC-Callback 24
4.1.7 Controlling . 25

4.2 Packet definition . 26
4.2.1 SPI packet definitions . 26
4.2.2 UART packet definitions 27

4.3 Adapted Gumstix Software (ads1271 driver) 27
4.4 Setup the DAQ Prototype . 29

5 Evaluation 31
5.1 Time Precision . 31

5.1.1 Time offset after one second 32
5.1.2 Time Drift after losing PPS signal 33

5.2 Throughput . 34
5.3 Actuation events . 35
5.4 Testcase . 36
5.5 Final FPGA chip . 38

1

6 Conclusion and Outlook 39
6.1 Conclusion . 39
6.2 Outlook . 39

A Additional Tables 40
A.1 SD card write speed test . 40
A.2 UART packet payload definition 41
A.3 60pin Connector . 41
A.4 Compare FPGA Developer Boards 43

B Task Description 44

Bibliography 48

2

Chapter 1

Introduction

To evaluate and debug wireless sensor node (WSN) networks, before rolling
them out in the field, a testbed is needed. Further, expensive changes in the
field, due to bugs, can be omitted by testing a WSN network in a realistic
environment before application.

FlockLab [1] is a testbed for wireless sensor nodes. It monitors in a least
intrusive way, by tracing GPIO pins, up to 30 distributed sensor nodes. A
monitored WSN is called a target, and is located on an observer. An observer
consists of a small embedded computer, the Gumstix, and the FlockBoard. The
FlockBoard connects the Gumstix to the target nodes. On a FlockBoard up
to 4 target nodes can be located, but only one monitored. The Gumstix can
influence a target, collects data, attaches a timestamp to the data and sends it
to a central server per Ethernet or Wi-Fi.

FlockLab is the complete composition of targets on a observer, connected to
a central server, including the software to control the installation and run tests.
FlockLab features 4 major services:

• Tracing: capture signal changes (GPIO events) of up to 5 output pins
of a target. Where the timestamp allows to relate events on different
observers.

• Actuation: set up to 3 input signals of a target, e.g. to initiate a proce-
dure on multiple WSN simultaneously.

• Power profiling: measure the current drawn of a target with an ADC
(analog digital converter). The power profiling can be started and stopped
at arbitrary times.

• Callback: allow a target node to start/stop power profiling trough setting
one of its output (tracing) pins.

• Serial logging: read or inject data over the target’s serial port.

The core is a Gumstix embedded computer. The Gumstix sets pins, collects
power samples over SPI and captures and timestamps tracing events. The
tracing signals generate an interrupt in the Linux OS on the Gumstix when
changed. By handling the interrupt the Gumstix attaches a timestamp to the
event, before storing the sample on a SD card.

3

Current limitations The time needed for the interrupt handling on the
Gumstix limits the rate of events that can be detected. Table 3 of the pa-
per [1] shows that consecutive events of a single signal need to be 290µs apart
to be detected correctly. This value decreases to 80µs, if events happen inter-
leaved on different signals. Further the delay between an event triggering an
interrupt and the handling of the interrupt is non deterministic. Hence it adds
an error to the timestamp precision. The timestamps applied to an event are
synchronized with the NTP protocol over all observers. As stated in Table 2
in paper [1], this leads to pairwise timing errors of different observers of up to
1170µs, when Wi-Fi connected observers are involved. The error decreases to
394µs if just Ethernet connected observers are considered and in average it is
below 40µs. This is sufficient for many tests.

Motivation Improvements are needed for example function call tracing using
GPIO events. Therefore, tracing pins could be set by entering a function, and
the functions can be encoded by using sequences of the 5 tracing pins. A target
node running the Opal platform could generate such sequences at a rate of
96MHz. Hence, bursts of high data rates need to be handled.

With a more tightly synchronized time over the observers, events could be
correlated more precisely to monitor time critical behavior of network protocols.
For example the Glossy [2], a protocol that uses synchronously sent packets.
Then to decode the packets at the receiver, they need to be received virtually at
the same time. Thus to trace the parallelism of Glossy, the pairwise time error
of observers should be in the sub-microsecond range. Further a high resolution
and precise timestamp is needed. Preferably with sub-microsecond accuracy,
too.

Challenges The main challenges are to provide a high data detection rate
and simultaneously ensure high precision in timestamping. Additionally, a more
precise approach than the NTP protocol is needed, to synchronize the internal
time of the different observers. Due to integration into an existing environment
certain requirements are given, and options therefore are limited.

Our contribution We improve the FlockLab by introducing a data acquisi-
tion unit (DAQ). The DAQ is placed in between the Gumstix and the target
node, and traces events of a target at up to 10MHz over a short time period.
Then the DAQ buffers the data locally before forwarding it to the Gumstix.
The maximum continuous rate to not exceed the buffers of the DAQ is 285000
events/second, i.e. in average one event every 3.5µs. The power profiling sam-
ples are captured too and merged into the same buffer mechanism. Therefore,
all data besides the serial logging is transmitted to the Gumstix over one link.
Further, a highly precise pulse per second (PPS) signal, e.g. from a GPS re-
ceiver, is used as reference to synchronize the time of the DAQs of different
observers. Our implementation can apply timestamps to an event with a reso-
lution of 500ns. At the same resolution actuations can be set. The time drift, in
respect to the reference signal, after one second is around 10ns, with a standard
deviation of 10.8ns.

4

Outline We start in Chapter 3, by defining the requirements the DAQ has
to meet. Further we determine the hardware and interfaces to implement the
DAQ with.

Then in Chapter 4, we give a detail description of the implemented proto-
type. How an accurate internal time is released and how the DAQ handles high
event rates. We describe all in- and outputs, and specify the communication
packets between the DAQ and the Gumstix.

Further in Chapter 5 we evaluate the prototype in terms of time accuracy,
and measure the maximum event rates and data throughput the DAQ can han-
dle. Additionally we provide a testcase, monitoring a target node. The collected
data is presented and compared to the system without the DAQ.

We conclude in Chapter 6 recapitulating the major achievements and give
an outlook of future work.

5

Chapter 2

Related Work

For related work, we look into another FPGA based pin tracing environment
and its throughput. Then in terms of accurate clock adjustment, we provide
two related papers. One adjusts an oscillator to a GPS PPS signal. The other
shows a completely degital cirquit, implemented on a FPGA, to reduce the jitter
of a GPS PPS signal.

A similar project in order to realize signal tracing is shown in [3], a Logic An-
alyzer. Their setup on an Altera Cyclone III developer board features a FPGA
with 25k logic elements as core unit. The logic analyzer is a stand alone de-
vice, which implements the tracing of 8 signals It combines the pin levels with
a timestamp into a sample then buffers and stores the samples before finally
sending the results over Ethernet to the workstation of a tester. Three stages
of hierarchical memory is used: From a fast onboard FIFO over slower SSRAM
to large but even slower DDR SRAM memory. We use a similar buffer mem-
ory hierarchy, however only with two stages. The Logic Analyzer implements
data capturing and buffering in a fast clock domain with 150MHz. The data
storing in DDR SRAM and communication with a workstation over Ethernet
is handled by a soft core CPU synthesized in a slower clock domain. The Logic
Analyzer of [3] shows a sample rate of 150MHz, but with an uncalibrated times-
tamp. Our implementation of the DAQ works with a 100MHz sampling rate
and a timestamp resolution of 500ns. But in contrary to the Logic analyzer
the timestamp is highly accurate over distributed nodes. Additionally we add
actuation capabilities and other data streams in our implementation.

A possibility to adjust the clock of multiple distributed devices to a GPS
PPS signal is shown in [4], where time and the phase is synchronized. They
use a ultrastable local oscillator (USO) to generate a 10MHz GPS-disciplined
clock signal. To lock the USO to the PPS signal a direct digital synthesizer
(DDS) driven phase locked loop (PLL) synthesizer is implemented. Basically
the signal of a very precise oscillator and a PPS signal are modulated and
filtered (using digital-analog and analog-digital converters) to generate a stable
and phase aligned output signal. Results are theoretically validated without
experimental evaluation. Therefore no measurements are available to compare
our results with. They assume “somewhat idealized conditions; hence there
may be some variations in actual systems”. Our implementation provides a
complete digital circuit on a FPGA to adjust a time representation to a PPS
signal, with a much simpler approach. Additionally requiring only the FPGAs

6

default oscillator as additional hardware.
A digital circuit, implemented on a Spartan-3 FPGA, to reduce jitter of a

GPS PPS signal is shown in [5]. The circuit is clocked by a 100MHz crystal
oscillator, and runs a Proportional and Integral (PI) digital controller, similar
to a digital PLL. The PI controller takes the GPS PPS as input and generates
a PPS signal, with less jitter, as output. The start value for the PI controller
is the average GPS PPS period in clock cycles, measured over multiple periods.
Then the output PPS is continuously adjusted, by measuring the delay between
input and output PPS signal in clock cycles. With this approach the jitter of a
Ublox LEA-4T GPS device could be reduced by more than 60%.

Our implementation on the DAQ is very similar. The average PPS period
in clock cycles is used as base, and the delay between the estimated and actual
PPS signal adjusts our time calibration. In contrary to the circuit in [5] we use
the PPS as reference signal instead of stabilizing the signal.

7

Chapter 3

Design

In Section 3.1 we will explore which requirements the DAQ has to meet in
terms of hardware connections, as well as the expected data rates that need to
be handled. We define the time accuracy to reach and how the DAQ can be
configured from the Gumstix.

With the gathered requirements we will select, in Section 3.2, appropriate
interfaces and the main processing unit. The interfaces are used for communi-
cation and data transfer between the DAQ and the Gumstix.

3.1 Requirements

The Data Acquisition Unit (DAQ) is a hardware unit placed in between the
Gumstix embedded computer and the rest of the FlockLab board, connected
through a 60 pin connector, as shown in Figure 3.1. The DAQ needs to serve and
timestamp 3 services: tracing, actuation, callback and power profiling. Those
events are captured and the state of the pins or the power profiling sample
including a timestamp is saved in local memory. Since the power profiling unit
sends samples at a constant rate, not every single sample needs a timestamp,
this can be interpolated later. Concurrently the already saved data is forwarded
to the Gumstix.

Additional to the services, the DAQ has to implement a precise clock, which
is tightly synchronized with other boards. Synchronization is achieved through
a time pulse, in our case a pulse per second (PPS) from a GPS device. Serial
logging is not affected by the DAQ.

The DAQ is an extension for the FlockLab, using the current signals and
interfaces available. Hence most in- and outputs are predefined, as seen in Figure
3.1. This section lists the most important preconditions in terms of hardware
for the DAQ: The serial peripheral interface (SPI) of the ADC unit (Section
3.1.1); the data rates that have to be handled (Section 3.1.2); the time accuracy
needed (Section 3.1.3); and we define a set of commands to configure the DAQ
(Section 3.1.4).

8

Figure 3.1: The new DAQ component integrated into the existing system

3.1.1 ADC SPI Interface (ADC to DAQ)

An serial peripheral interface (SPI), is used to transmit data between two de-
vices. One device is the master on the interface, it defines the transmission rate,
by providing the clock signal. The other device is in slave mode. Further the
master device defines when a transmission is initiated or nothing is transmitted.

The analog digital converter (ADC) on the FlockBoard converts an analog
power measurement into an digital sample. The clock signal (CLK) of the ADC
unit is generated by a 14 MHz quartz. The CLK signal is further divided by 4
by a Flip-Flop to generate the SPI clock rate (SCLK). There are two sampling
modes: a 28 kHz high-resolution mode or a 56 kHz high-speed mode, each
with 24 bit samples, i.e. 672 kbit/s or 1344 kbit/s of data is generated. The
resolution (high/low) is set by a jumper on the FlockBoard, and can not be
changed in software. In the current setting, shown in Figure 3.2, the ADC unit
sets ADC nRDY shortly to low, when a new frame starts. This implies that the
SPI interface on the DAQ needs to be in slave mode, i.e. the DAQ SPI clock
rate, frame indication and data-in signals are all input signals. The ADC nCS
signal is used to turn the ADC on and off.

The waveforms of the SPI signals are shown in Figure 3.2, and the connec-
tions of the ADC signals to the Gumstix signals are shown in Table 3.1.

ADC pin name Board name remark
CLK ADC CLK 14 MHz
DRDY ADC nRDY former RTC nINT
SCLK SPI SCLK ADC CLK · 14 or · 12
DOUT ADC DOUT = SPI MISO one clock cycle delayed
DIN - not used

Table 3.1: ADC SPI interface signals

9

Figure 3.2: SPI timing characteristics of the ADS1271 from [6]

3.1.2 Data Rates

We want to support a high event detection rate with the DAQ. By attaching
a timestamp to each event a lot of data traffic is generated. In this section we
analyze the event rates triggered by the different target platforms. Hence we
can derive the data rate the DAQ will need to handle.

Data is produced by two different services: power profiling and tracing. The
ADC sends power profiling samples (24 bit) at a rate of 28 kHz or 56 kHz (e.g.
0.7 or 1.4 Mbit/s). Hence there will be at most a ADC sample every 17.9µs.
The power profiling sample rate is independent of the target platform.

In terms of data traffic, generated by the tracing service, two rates are inves-
tigated: a long term continuous rate and a short term burst rate. We estimate
that in the long run, up to 2 percent of all instructions executed on a target
node set traced GPIO pins. Since a target node will execute some productive
code and not just constantly toggle a pin. Further typical wireless sensor nodes
(WSN) are battery powered and often switch in a power saving mode to extend
the battery life. In power saving mode the clock is slowed down or no code is
executed at all, hence it also decreases the event rate.

platform continuous burst
event rate event rate

Tmote Sky 16kHz 0.8MHz
Tinynode 48kHz 2.4MHz
IRIS 80kHz 1.6MHz
Opal 384kHz 19.2MHz

Table 3.2: estimated GPIO event rates per platform, continuous and bursts

Table 3.2 shows the continuous and burst event rates expected at different
target platforms. Time differences of two consecutive events range from 2.6µs
on a Opal, up to 62.5µs on a Tmote Sky. By assume a event packet size of 32
bit, continuous data rates can reach from 512 kbit/s to 12 Mbit/s.

The DAQ should be able to trace bursts of events at much higher rates,

10

generated for example when setting a sequence of pins. The maximal event
rate a target can generate is dependent on the clock speed and cycles needed to
execute a command to set a GPIO pin. The rates shown in Table 3.2 correspond
to time differences of two events of 52ns up to 1250ns, again the Opal is the
fastest and the Tmote Sky the slowest target platform.

To properly detect a sequence of events triggered by the Opal platform, the
DAQ at needs to oversample the Opals burst event rate of 19.2MHz.

3.1.3 Time Accuracy

To relate time critical events of multiple FlockBoards, the DAQ needs an highly
accurate time. Wi-Fi connected observers have an average time error of 166µs,
with the currently used NTP protocol to synchronize the time. As mentioned
before to monitor time critical behavior of network protocols, we need an accu-
racy in the sub-microseconds.

We propose to use a pulse per second (PPS) signal from a GPS receiver, as
a a reference signal. A PPS signal can have as little jitter as 6.7ns (sampling
deviation from [7]). And we measured pairwise time differences of different
GPS receivers of below 40ns. The DAQ will therefore adjust its internal time
continuously to a PPS signal.

The internal time can be a relative time, for example relative to the start
second of a test run. And the relative timestamp can later be converted into an
absolute time by the Gumstix or server.

Further to utilize the accuracy of the internal time, the timestamps applied
to events need sub-microsecond resolution, too. However, to get the order of a
sequence of events is enough for tracing function calls. The timestamp therefore
does not need to be as precise as the maximum event rate, as long as the events
are detected and their order is determined.

3.1.4 Input Commands

We define a set of commands to control the DAQ, to set up a test run and
configure the needed services. The commands include:

• reset the DAQ to an initial state [on,off]

• route signals directly to the FlockBoard [on,off]

• start and stop a test run [on,off]

• tracing service: specify pins to trace

• actuation service: specify pins and the time to set the pins

• power profiling service: start and stop

• power profiling service: specify the sample divider

• callback service: specify a tracing pin as callback pin

To be able to reset the whole DAQ including the interface which receives
and handles the other commands, as reset signal a GPIO pin of the Gumstix is
selected. The rest of the commands is received over a serial interface, when the

11

DAQ is not in reset state. Routing all signals directly through implies that no
test is running, or at least without the DAQ.

Then before starting a test run some of the commands have to be configured:
The pins to trace and the sampling divider of the power profiling service will not
change during the test; The callback service, when turned on, does not change
either.

The actuation service and the starting/stopping of the power profiling ser-
vice can be combined, since the ADC unit is controlled by one single signal
(ADC nCS). Therefore the ADC nCS signal can be handled as the other actu-
ation signals. The actuation information (pin and time) will be sent to the DAQ
shortly before the actuation event. The time needs to be specified to transmit
and process actuation commands, depending on the final control interface of the
DAQ. Hence the DAQ continuously receives actuation information and requires
a little buffer to store them before their execution time.

The standard setting for tracing pins and setting pins are all inactive and all
low respectively. Further the ADC needs to start/stop depending on a target
output pin (ADC callback).

3.2 Consequences of the Requirements

Given the requirements from the previous section, we define further details of
the DAQ. First in Section 3.2.1, we select a communication interface between
the DAQ and the Gumstix, based on the expected data rates. In Section 3.2.2
we give a overview of data packets sent from the DAQ to the Gumstix. Then
in Section 3.2.3 we compare micro processors and FPGAs as possible core unit
for the DAQ.

3.2.1 Interfaces DAQ - Gumstix

Multiple Interfaces could be used as communication link between the DAQ and
the Gumstix. As seen in the previous sections, the DAQ will have high data
throughput of 12 Mbit/s continuously or even higher rate burst. Therefore
interfaces like I2S, I2C, MSL and Multimedia Card are ruled out, because of
slow transfer rates (I2S: 3 Mbit/s, I2C: 300 kbit/s) or because of missing pin
outputs (MSL, SD/MultiMediaCard) on the 60 pin connector. Which left us
with two feasible Interfaces: SPI and USB.

SPI

• Baud rate: 6.3 kbit/s - 13 Mbit/s

• sample size (frame): 4-32 bit

• Interrupt on specific FIFO buffer level

• FIFO: 16x 32bit (space for 16 samples)

• DMA possible

12

USB

• Bit rate: 12 Mbit/s

• shared with other services (serial input, WLAN)

• DMA possible and has 4 kbytes of endpoint memory

The SPI can transmit data at the highest rate and the Gumstix can process
the data through DMA. The USB interface on the other hand can not guarantee
the full bandwidth for transmitting data,. Since USB is a shared bus and other
services, as serial logging, use it to. Therefore to connect USB to the DAQ a
hub is needed to provide the existing link from Gumstix to the FlockBoard and
a new link from Gumstix to the DAQ.

We will use the two interfaces in a combined manner. SPI is used to transfer
continuously data from the DAQ to the Gumstix, and USB for commands from
Gumstix to DAQ. Hence the SPI handles the high data rates and provides the
full bandwidth, and the USB transmits the sporadic commands, therefore a
shared bus is not an issue. Further USB can be used as debug connection for
further components on the DAQ, without influencing the detection rate.

When we compare the throughput rate of the SPI (12 Mbit/s), with the
event rates from Section 3.1.2, we see the SPI is too slow to handle bursts of
events. Therefore we need to buffer the burst of events. We solve this with a fast
memory block on the DAQ, e.g. SRAM, where the events and their timestamps
are stored before transmitted over SPI to the Gumstix.

3.2.2 Output Packets

The DAQ sends continuously the acquired data in packets to the Gumstix. To
reduce data traffic, the packet size should be as small as possible. To simplify
packet decoding, the following information have to fit into the same packet size
each:

• tracing service: level of the 5 signals, plus a timestamp

• actuation service: level of the 3 signals, plus a timestamp

• power profiling service: timestamp for the first, last and every 100th ADC
sample

• power profiling service: ADC sample (24 bit)

The actuation of signals are traced and sent back to the Gumstix, like the
other tracing signals. Hence the 8 signal levels can be handled and represented
in the same packet. Every time one of the 8 signals changes all 8 levels of the
signals are captured and timestamped as one tracing packet. If multiple signals
change at the same time, only one tracing packet is generated.

The power profiling service on the DAQ produces two kinds of packets: One
containing the ADC samples and the other containing a timestamp after every
100th ADC sample. The ADC unit has a constant sampling rate, timestamps
of a single ADC sample can therefore be interpolated later on the server. This
saves roughly half the bandwidth compared to a scenario sending a timestamp
packet along with every ADC sample packet.

13

Most of the packets contain a timestamp. Therefore the larger a timestamp is
the more data throughput is generated. For example if the timestamp resolution
is 500ns and a test runs no longer than a day, then 38 bits are needed to represent
all the 500ns timeslots of the day. Hence every packet would contain a 28 bit
timestamp. To reduce the payload of the packets we introduce a smaller time
frame combined with an overflow counter. A test runs consists of multiple time
frames, distinguished by the overflow counter. At the beginning of every time
frame a packet with the overflow counter is generated. Then each timestamp of
an event would represent a part of a time frame, and can be related to the last
generated overflow packet.

We will set the time frame to one second, because it simplifies computation
and corresponds to the reference PPS signal. Using 21 bit for the timestamp,
allows us to implement a time resolution of 500ns. Without changing the size
a timestamp could be further improved, by selecting a smaller time frame.

The timestamp size of 21bit is a tradeoff between packet size and time pre-
cision. The packet size with a 21bit timeslot, 8 bit for pin levels and 3 more bits
for a header, is therefore 32 bit.

3.2.3 Core Unit

In this section we discuss the selection of a suitable processing unit. The pro-
cessing unit has to handle different task concurrently, as tracing high event rates
and adjusting the internal time. Hence high parallelism is asked. For accurate
timestamps deterministic delays between event detection and event timestamp-
ing is needed. The DAQ will be deployed in a later step on 30 FlockBoards,
therefore the cost of a single processing unit matters.

We compare two different device families: Micro controllers (MCU), and
field programmable gate arrays (FPGA).

Micro controller MCUs process their task sequentially, therefore interrupts
are used to detect events. The interrupts are then processed later, depending
on the load of the MCU and the occurrence of other interrupts, for example of
another tracing signal. Interrupts therefore add delays between the event and
the timestamping of the event. This is similar to the current implementation
with a CPU on the Gumstix, which has non deterministic delays and limits the
maximal detection rate, as mentioned before.

Most MCUs come with a set of standard interfaces, which can reduce the
workload of the core. For example SPI or UART, and also USB is simpler to
connect than to a FPGA. Those interfaces are configurable on a MCU with
little effort. The price range of a MCU is around 5$ to 20$ 1, which can be
much cheaper than a FPGA, where prices start at 10$ but can rise up to 150$
2. And if little space is available on the final implementation board, a MCU is
the better choice.

FPGA The main advantage of a FPGA, with the most effect on the DAQ, is
the capability of executing different tasks in parallel. For example time calibra-

1For example the STM32F2xx or LPC182x
2For example the Spartan-6 LX4 to LX150

14

tion can be implemented without influencing the detection rate of events. At
the same time ADC samples can be received over SPI and pins can be actuated.

An FPGA can guarantee the detection of an event in every clock cycle,
by implementing a small interface just to detect an event and buffering the
event before further processing. This ensures the feasibility of an exact clock
cycle count between two PPS signals, needed to calibrate the internal time.
Additionally a delay between detection and timestamping of an event would be
deterministic.

While interfaces as SPI or UART have to be implemented from scratch (or
imported from an other source), they are therefore highly customizable and not
as inflexible as MCU interfaces. And USB can be converted on an external chip
into an UART device, accessible from the FPGA, depending on the FPGA the
same connection could also be used to program the FPGA. But an external chip
means additional hardware and costs.

FPGA: later multiple devices: price relevant. Space requirements difficult
to estimate, without experience. Therefor a large FPGA is needed to ensure
space. But can later be transferred to smallest fitting FPGA of family.

Space requirements of a FPGA difficult to estimate, whiteout experience.
Therefore a large enough FPGA has to be selected, to ensure the number of
logic elements meets the requirements of the final code. A large FPGA implies
high cost (> 50$)3, and the cost difference to a MCU is multiplies by 30, when
later deployed on all FlockBoards.

However most of the device families have a broad range of chip sizes. For
example an average Spartan-6 chip from Xilinx with 43600 logic cells (LX45)
costs 60$, but the smallest Spartan-6 FPGA chip with 3800 logic cells (LX4)
only costs 10$. Therefore a system like the DAQ can be developed on a more
expensive chip, but the final implementation then transferred to the smallest
(and cheapest) FPGA chip of the same family, which meets the requirements of
the implementation in I/O ports and Logic elements needed.

And finally a FPGA can implement a small MCU if need be.

Conclusion To meet the requirements to detect high event rates of up to 19.2
MHz and simultaneously applying accurate timestaps, we decided to implement
the DAQ with a FPGA. Although the implementation might also work on a
MCU, it adds a complexity, due to uncertainties in delays and interrupt han-
dling, as well as processing virtually simultaneously events sequentially. There-
fore an implementation on a FPGA is simpler, and certain detection rates can
be guaranteed.

3For example the Spartan-6 LX45

15

Chapter 4

Implementation

To develop a prototype of the Data Acquisition unit (DAQ) we choose an FPGA
developer board from Digilent. The Anvyl Developer Board features as main
component a Spartan-6 LX45 FPGA. The LX45 has 218 user I/O pins and
43661 logic cells, which is most likely over sized, but therefor prevents us from
running out of space/options. In a later step (Section 5.5) we explore which
is the smallest FPGA of the Spartan-6 family capable of implementing our
code/design.

Other components of the Anvyl board used to implement the DAQ are a
100 MHz oscillator, which is used as clock source; 2 MByte of SRAM, where 1
MByte is used to buffer the data flow; and a USB interface, which is needed to
program the FPGA and connect the DAQ through UART to a PC.

As reset signal (DAQ RESET), one of the ’0-1’-switches on the Anvyl board
is used. During the implementation a lot of the available switches, LEDs and
user I/O pins were used to debug and evaluate the code on the FPGA.

In Table A.4 in the Appendix a range of boards is compared. We choose the
Anvyl Developer Board, because of the existing SRAM and DDR RAM, as two
possible buffers. As well as the availability and reasonable cost of the smaller
Spartan-6 chips.

And as reference time, to calibrate and synchronize time over multiple Flock-
Boards, a pulse per second (PPS) signal from a u-blox LEA-6T GPS device is
connected. The ‘T’-line of the u-blox GPS devices supports precision GPS tim-
ing.

In the development setup, as seen in the overview in Figure 4.1, the developer
board is placed between the Gumstix PC and the FlockBoard and captures 12 of
the 60 GPIO pins connecting the two devices. The rest of the pins are connected
regularly and are not affected by the DAQ.

On the FlockBoard side 4 of those pins are used to turn the ADC unit on
and off (adc off) and to receive the ADC samples per SPI protocol (clk, nfrm
and rx). The next 5 pins carry the tracing events generated by a target node.
And the remaining 3 pins are actuation signals to generate input signals for the
target node.

On the Gumstix side mainly the 4 SPI pins are used. This interface transmits
all the data collected and timestamped by the DAQ, from the DAQ to the
Gumstix, which then forwards the data to a PC over Ethernet. Three of these
signals implement the SPI interface (clk, nfrm and rx) and one is set by the

16

Anvyl
Developer Board

USB
PROG

UART

FPGA
Spartan-6

LX45

RST

SRAM

1MB

Gumstix

G
P

IO

LAN

PC

LAN

U
SB

100 MHz

adc_off

FlockBoard

G
PI

O

ADC SPI

tracing pins

actuation
pins

gum_nrdy

GPS receiver
ublox LEA-6T

Figure 4.1: DAQ develop setup Overview

Gumstix when it is ready to receive data (gum nrdy).
The other 8 captured pins between the Gumstix and the DAQ are the original

tracing and actuation pins. The DAQ is implemented in such a way, that
(trough UART command) all captured signals can be routed trough directly
(direct trough mode). In that mode the Gumstix and the FlockBoard can
communicate with each other as if there is no DAQ in their middle.

The DAQ and its services can be configured by the PC through the USB-
UART connection. The configuration options include for example, which pins
are to trace, when which pins to actuate and as mentioned before, putting the
DAQ in direct trough mode.

The idea of the final and integrated DAQ is to control the DAQ from the
Gumstix, without the need of a PC or manual switches. Which means that the
DAQ RST signal would be another GPIO pin and the USB-PROG and USB-
UART Interfaces are connected direct to the Gumstix. This can be solved by
using the already existing USB signals between the Gumstix and the Flock-
Board, intercept those and put a USB hub on the DAQ.

4.1 FPGA/VHDL modules

In the previous section the outer signals to/from the FPGA are described. This
section shows more detailed software modules and their functions inside the
FPGA. All the code for the FPGA is written in VHDL and some common
blocks, as for example the FIFOs, are generated code by the software suite. For
Coding, Syntax checking, simulating, compiling and programming the FPGA

17

the Xilinx ISE 14.7 suite was used. It combines the complete tool set needed to
develop on a FPGA in one software suite.

The basic FPGA Layout is shown in Figure 4.2. An internal time represen-
tation is calibrated, with an external pulse per second (PPS) signal. A tracing
module detects a signal change as event, and generates a packet with the signal
levels and a timestap. A power profiling module receives ADC samples, gen-
erates packets with the samples and periodically generates timestamp packets.
The tracing and power profiling module each put the generated packets in a
FIFO, which acts as a fast buffer. The two packet streams are merged in a
SRAM memory module, this is a larger and still fast buffer, but slower than
a FPGA FIFO. Through another FIFO the SRAM module than forwards the
packets to a SPI interface, which sends the data packets to the Gumstix. The
main purpose of the FIFOs and SRAM module is to capture burst of events, i.e.
packets, which the SPI interface can not transmit fast enough. The mentioned
modules are explained in more detail through the Sections 4.1.1 to 4.1.5.

G
u

m
st

ix

tracing

power
profiling

SRAM SPI

FIFO

FIFO

G
P

IO
e

ve
n

ts
A

D
C

sa
m

p
le

s
P

P
S

Figure 4.2: Dataflow

Then in Section 4.1.6 the module setting actuations and managing the call-
back is described. Finally in Section 4.1.7 follows the Control module. Essential
to configure and run tests with the DAQ integrated into the FlockBoard.

4.1.1 Time Calibration

An important input for the tracing and ADC packaging modules is an accurate
internal time, needed for proper timestamping. The internal time as timestamp
in form of a seconds counter and a timeslot counter is provided by the Time
Calibration module (Figure 4.3).

The seconds counter is 17 bit wide and counts from 0 to 86400 (one day in
seconds). It starts to count the seconds passed in a test run when the test starts,
therefore the internal time represents a relative time in respect to the absolute
start time of the test run. The timeslot counter is 21 bit wide and allows a
sub-second resolution of 500ns. The internal time representation is computed
on the basis of the 100MHz oscillator and a pulse per second (PPS) signal.

In the following paragraph we discern two units, a clock cycle of the oscillator
of 10ns, with which most of the FPGA is clocked, and a timeslot of 500ns to
represent the sub-seconds of the internal time.

18

Time
Calibration

ts_cnt

sec_cnt

full_sec

hard_rst

PPS

start

clk_100 rst

Clock
Generator

clk_24

clk_20

clk

clk_100

Figure 4.3: Time Calibration module

The Time Calibration module has multiple counters inside. The timeslot
counter is increased every 50 cycles (i.e. 500ns), therefore a cycle counter with
overflow at 50 is used. When the timeslot counter reaches 2M (i.e. 1s), a second
is full and full sec is emitted. Further the seconds counter is increased and the
timeslot counter starts with 0 again.

Since the oscillator is not ideal one second has not exactly 100M cycles.
Hence the module has to add or omit single cycles in the cycle counter. To
measure the cycle difference of the oscillator to an ideal 100MHz signal, the
highly accurate pulse per second (PPS) signal from a u-blox LEA-6T GPS re-
ceiver with a standard deviation of 6.7ns [7] is used. The module takes the
average cycle difference over the last 8 seconds to estimate the cycle difference
of the new period.

PPS

1 2 100M
100M

+ 1
100M
+ 180

100M
+ 181

100M
+ 182

1

PPSfull_second1 clock
cycle

ideal Oscillator (100M cycles/s)

offset = 2

difference = 182

Figure 4.4: Cycle offset and cycle difference

19

Additionally to the cycle difference the module has to compensate an offset
too. At every PPS signal the cycle offset between the PPS signal and the esti-
mated full sec is measured. The offset error is a combination of the oscillator
clock drift, e.g. due to temperature change, and a sampling error. In Figure
4.4 the cycle difference and cycle offset is illustrated. Finally the module has to
compensate during every second the cycle offset and the average cycle difference.
Therefore the module omits or adds up to one cycle to the cycle counter per
timeslot. Those compensations are evenly spread over all timeslots of a second.
By spreading the compensations the error of single timeslots are minimized, and
the timestamp does not jump.

For example every 100′000′182 cycles a PPS signal is measured. The aver-
age cycle difference is accordingly 182 cycles. One second has 2M timeslots,
therefore every 2M

182 = 11k timeslots the cycle counter overflows at 51 instead of
50. Hence within a second the difference is compensated.

To make the module more robust, a new cycle difference is calculated, even
when a PPS signal should be lost, due to bad GPS reception for example. The
module counts the cycles between two PPS signals and detects if up to 20 PPS
signals are missing and computes an average cycle difference accordingly. To
count for more than 19 seconds clock cycles, would exceed the 32 bit cycle
counter.

The Time Calibration module, shown in Figure 4.3, has 4 outputs, the 3
regular ones are: the timeslot counter to represent the current sub-second, the
seconds counter, which counts the seconds since the start of the test run; and a
full sec signal is emitted every time the timeslot counter overflows (starts at 0
again), it represents the estimated (full) second.

The 4th signal is an error signal: hard rst. It is emitted when the cycle offset
between the PPS signal and the estimated full sec is to large to be compensated
in one single second. The threshold is 2M , due to the modules maximum
compensation of one cycle per timeslot. When the threshold is exceeded the
sub-second is at least 2% off. In case of a hard rst the timestamp counter is set
back to 0, to align the counter with the PPS signal. By outputting the hard rst
signal other modules, as for example the Tracing module, are informed that the
time representation made a significant jump.

The input signal start tells the Time Calibration module a test run is started
and the second counter starts to count too. Therefore the time representation is
always relative to the test runs absolute starting time. The rest of the module
runs already before the start signal is applied, to calibrate the internal clock to
the PPS signal.

The DAQ RESET signal totally stops the whole module and puts the out-
puts to a default initial value. This reset behavior is the same for all modules.

4.1.2 Tracing

The Tracing module (see Figure 4.5) basically checks every cycle if at least one
of the traced pins has changed, i.e. an event occurred. If so it puts all 8 pin
levels and the current timeslot counter in a packet and writes it to the tracing
FIFO. To relate tracing packets to the correct second, at every full sec event
the current seconds counter is packed instead of the timeslot counter (which
would be 0 by definition). Because the tracing packets will be transmitted to

20

the Gumstix strictly chronologically, every event in a timeslot packet can be
related to the previous sent full-second packet.

The module is able to detect an event, compute a packet and write it to
the tracing FIFO every cycle. This means there could be more than one event
during the same timeslot. Maximal, if an event occurs every 10ns, up to 50
events can be detected and packaged. Therefore when multiple packets have
the same timestamp, it is not possible to tell when during the 500ns-timeslot
they happened, but in which order they did.

Tracing

ts_cnt

tracing FIFO
32bit x 1024

16bit out

sec_cnt

tr_conf

full_sec

hard_rst

tracing_sig

actuation_sig

start
clk_100

rst

tr_pkg

ADC
packaging

ts_cnt

adc FIFO
32bit x 1024

16bit out

sec_cnt

ADC SPI
(clk, nfrm, rx)

clk_20

adc_pkg

clock
cross

domain

adc_off_delayed

SRAM
handler

adc_pkg

tr_pkg

clk_100

rst

rst

sr
am

_
ad

d
re

ss

sr
am

_d
at

a

SPI FIFO
16bit x 2048

32bit out
adc/tr_pkg

adc/tr_pkg

SPI
(clk, nfrm, rx)

SPI

to Gumstix

clk_24 rst

: multiple bit signal

: internal signal

: (external) input signal

: (external) output signal

clk_X: X MHz clock signal

Figure 4.5: Data Flow from the tracing signals and adc samples to the SPI-
Gumstix interface in detail.

In the header of a tracing packet the payload is specified: it can be distin-
guished between a regular tracing packet containing pin levels and timeslot and
a full second packet containing pin levels and a full seconds count. Further the
header specifies following events: if a hard rst occurred and if the FIFO was
full.

When the tracing FIFO is full and the module tries to write, the packet
is lost. The header of the next successfully written packet will then specify
fifo full. This means when the Gumstix receives a fifo full header, there
could be lost any number of packets between the fifo full packet and the
last regular tracing packet. However packets with a regular header, following a
fifo full packet, can then be properly interpreted again. If the last full sec

21

packet was lost too, the timestamp can be related to the next full sec packet.
A problem remains if there are multiple fifo full periods and multiple full sec
packet were lost. Then it is not possible to recover, in which fifo full periods
the full sec packets were lost. And just the regular packets before or after all
fifo full periods can be related correctly to a second.

More details to the packet definitions can be found in Section 4.2.

4.1.3 ADC packaging

The ADC packaging module (see Figure 4.5) receives ADC samples from the
ADC unit on the FlockBoard per SPI and puts them into an ADC packet. Fur-
ther, the module generates packets with timestamps to relate the ADC samples
to a time.

When the ADC unit on the FlockBoard is turned on, it sends the measured
samples as 24 bit frames over SPI, as SPI master. The ADC packaging module
implements an SPI slave interface (based on [8] 1) to receive the ADC samples,
shown in Figure 4.5. The ADC packaging module runs with a 20MHz clock,
and over samples the 7MHz clock.

The received ADC samples are put into 32 bit packets with a header and
written into the ADC FIFO. Before the first sample a packet with the current
timeslot and a packet with the current seconds count are written to the FIFO.
This is used as start time of the first sample. Then after every 100th sample
the current timeslot count is sent in a packet again. That way we are able to
interpolate a timestamp for all the ADC sample packets sent in between two
ADC timeslot packets. Note that the ADC has a constant sampling rate. The
timestamp always corresponds to the transmission start time of a sample, i.e.
when the SPI signal nfrm is set to low.

To reduce the data sent to the Gumstix a test user can specify which part
of the samples is actually forwarded in ADC packets. Configured by the input
sample divider as a 11 bit wide integer. For example if sample divider = 1
every sample is forwarded, if sample divider = 4 every forth sample is forwarded
and the other three discarded.

A last feature of the ADC packaging module, the signal to start/stop the
ADC unit on the FlockBoard runs through the module. It does not affect the
signal starting the ADC unit, but delays the stopping to ensure the last ADC
sample is fully received and not cut off.

More details to the exact packet definitions can be found in Section 4.2.

4.1.4 SRAM and FIFOs

As seen in Figure 4.5 the Tracing and ADC packaging modules put their cap-
tured data as 32 bit packets in the correspondent FIFO. Those FIFOs are 1024
slots deep and 32 bit wide, and they have a read and write access time of one
cycle per packet. The FIFOs are therefore really fast buffers. The next stage is
the 1 MByte SRAM: It can store up to 250′000 32 bit packets. The SRAM is
larger than the FIFO but slower in access time: 16 cycles are needed to write
or read from the SRAM.

1We based our SPI slave implementation on the examples in [8]. The examples, written in
Verilog, were translated into VHDL and adapted to our system.

22

Those two buffers (FIFO fast/small and SRAM slower/large) are used to
relieve the last module, the SPI-Gumstix interface, which sends all the cap-
tured data to the Gumstix and which is, with 12 Mbit/s or 353k packets/sec
respectively, the slowest module in the data flow path.

The two modules ADC packaging and SPI to Gumstix run with a different
clock speed than the rest of the FPGA. Therefore we have to ensure a proper
clock domain crossing of data between modules with different clocks, e.g. the
SRAM and SPI module. For this purpose the FIFOs are used. All the FIFOs
are generated with the ISE software suite and can have a two clock interface,
therefore data can be written and read with a different clock signal and speed
each.

The preference to read or write to the SRAM unit are as follows: In terms
of writing the ADC FIFO is preferred over the tracing FIFO, since the tracing
module could generate much higher throughput than the ADC packaging mod-
ule. And the constant maximum throughput of the ADC packaging module still
leaves spare time to handle the tracing FIFO between two ADC sample packets.
For example, at the maximum setting the ADC produces 56000 samples/sec,
which is roughly 1

5 of the SPI bandwidth or 1% of the SRAM write bandwidth.
If there is no data to write or the SRAM unit is full, the SRAM module

reads data and puts it into the SPI FIFO, unless the SPI FIFO is full, too.
In the worst case the Tracing and ADC packaging modules generate so much

throughput over a certain time period, that the SPI module is not able to
transmit at the same rate, and therefore the SRAM unit and FIFOs exceed
their capacity one after each other. Note that the threshold of the continuous
transmission rate is higher than in the FlockLab without the DAQ. Before events
could be detected with a rate of up to 50k events/sec, which determined also the
minimal time difference, of 20µs, between two events to be detected. With the
implementation of the DAQ a continuous rate of up to 350k events/sec can be
reached, furthermore due to the buffer capabilities the minimal time difference
could be decreased to 10ns (i.e. a 100MHz rate).

The SRAM module reads the data in the same order as it has written them
(first in first out). It is ensured that, after leaving the SRAM, the tracing packets
are still ordered chronologically and that ADC packets are still ordered chrono-
logically. The two packets streams however are not merged in any particular
order. But all the packets can be distinguished by their header.

4.1.5 Gumstix SPI

The SPI to Gumstix module implements an SPI master interface with a 12 MHz
SPI clock signal (spi clk), specified to communicate with the SPI setup of the
Gumstix. The characteristics are given in Figure 4.6, where the FPGA signals
spi clk and spi tx correspond to SSPSCLK and SSPRXD, respectively. Further
spi nfrm is the inversion of the signal SSPSFRM. The SPI interface transmits
32 bit data frames. The spi nfrm signal is set to ’low’ for one cycle, one cycle
before the first data bit is sent. The bits are valid to read on the falling edge.
The module runs with a 24 MHz clock, i.e. the double spi clk speed.

When the Gumstix indicates to be ready by the gum nrdy signal and if there
is data in the SPI FIFO, the module transmits the 32 bit data packet. With a
12 MHz SPI clock, the maximum throughput of this interface is 12 Mbaud/s or
353k packets per second.

23

Figure 4.6: SPI timing characteristics of Gumstix from [9].

4.1.6 Actuation and ADC-Callback

The main task of the Actuation module is to actuate the 3 target signals (tg sig1,
tg sig2, tg rst) at user specified times. Further it has to start/stop the ADC
unit with the adc off act signal, this signal is handled like the other actuation
signals. To actuate a signal a packet from the actuation FIFO is read. Such a
packet contains the pin(s), pin level(s) and time (seconds count and timeslot) to
actuate. In each cycle the Actuation module compares the current internal time
with the time from the packet. If the times match the corresponding pin(s) are
actuated, and the packet removed from the FIFO. If a timestamp of a packet is
more than 6 hours away, the packet is discarded. It is interpreted as a wrongly
placed packet.

actuation FIFO
46bit x 128

Actuation
& Callback

start rst

ts_cnt

sec_cnt

tg_sig1

callback_conf

tracing_sig

co
m

p
a

re

tg_rst

adc_off_act

ac
tu

a
ti

o
n

_
si

g

clk_100

Figure 4.7: Actuation and Callback module

A second task of the module is the callback service. When the callback ser-
vice is configured, a target node can start/stop the ADC unit by itself. Therefore
the module listens to a specified tracing pin and sets the adc off act accordingly.
The ADC unit is started immediately when the traced pin goes low, but the
module waits, when the traced pin goes high, for a pre-configured number of

24

ADC samples before it turns the ADC unit off. By delaying the stop signal it
is ensured that the ADC samples, sampled at the turn off time, arrive at the
DAQ before the ADC shuts down.

The adc off act stays low (ADC unit on), if either the callback service or
the actuation service started the ADC unit. Both need to stop the ADC unit
before the ADC unit actually stops.

4.1.7 Controlling

Control

tr_conf

sample_divider

start_conf

direct_conf

clk_100 rst

on
full_sec

start

UART_rx

UART_tx
callback_conf

act_data

full_sec

Figure 4.8: Control Interface module

The last but no less important module is the Control module. Over this
module all the services implemented in the other modules can be configured.

The Control module implements a UART interface with a baud rate of 1M
and a frame size of 8 bit, plus one stop and one start bit. The UART interface
is an imported VHDL core from [10]2.

The Control module receives the configuration commands over UART. An
acknowledgement is sent back over UART if a complete command is successfully
received. The following commands and their payload can be sent:

• conf tracing: specifies the tracing and actuation signals to be traced.

• conf actuation: specifies pin and level to actuate, including a timestamp.

• conf callback: specifies the callback pin or none; and the packet delay.

• conf sampling divider: specifies how many ADC samples to skip/send.

• conf direct through: routing all Gumstix signals direct trough to the
FlockBoard or not.

2The main file ‘uart.vhd’ of [10] is deployed unchanged, the handling files ‘loopback.vhd’
and ‘top.vhd’ were integrated and adapted into the files ‘loopbackplus.vhd’ and ‘control-
ling.vhd’, respectively.

25

• conf start: start and stop a test run.

To run a test with the DAQ the option conf direct through needs to be ‘off’.
All other configuration commands, except actuations, need to be set before
the start of a test run. Actuation commands need to be sent chronologically,
because they are processed one after each other. The actuation FIFO has 128
slots, therefore up to 128 conf actuation commands can be sent prior to the
actual actuations. The UART interface needs 70µs to transmit a full actuation
command, hence an actuation needs to be sent at least those 70µs before the
actual actuation.

By sending the command conf start ‘on’, the test run is started on the next
full second.

4.2 Packet definition

This section gives an overview over all the packets and their bit definitions sent
over the two interfaces SPI to Gumstix and USB-UART.

4.2.1 SPI packet definitions

There are two basic packet types received over SPI: tracing packets and ADC
packets. The first 3 bits serve as header: all ADC packets start with three ones
as header, the other 7 header configurations specify different tracing events
and/or different packets. As shown in Table 4.1 and Figure 4.9.(a-b), a regular
tracing packet has as payload consisting of the pin levels and the timeslot of
an event. And a full second packet contains the seconds count instead of the
timeslot. Further the header encodes if certain errors happened on the DAQ:
if the Time Calibration module had to hard reset the timeslot counter; if the
tracing FIFO was full and events might be missing; or a combination there off
occurred.

The first 3 bits (header) of an ADC packet are ones, the next 3 bits (sub
header) specify the payload: a 21 bit timeslot counter; a 17 bit seconds counter;
or an 24 bit sample, see Figure 4.9.(c-e) and Table 4.1. Further the sub header
specifies whether the ADC time packet is the first, last or an intermediate packet
in the stream of ADC sample packets.

Tracing packets ADC packets

Header Type Payload Header Type Payload

000 regular tracing a 111 000 first sample c
001 full second b 111 001 last sample c
010 hard rst a 111 010 interval time c
011 hard rst + full second a 111 011 second counter d
100 fifo was full a 111 100 sample e
101 fifo was full + full second a 111 101 - -
110 fifo was full +hard rst a 111 110 - -
111 ADC packets - 111 111 Gumstix driver error

Table 4.1: SPI packet headers and the corresponding payloads layouts, further
specified in Figure 4.9

26

An exception is one header, specifying neither an ADC nor a tracing packet:
When the SPI driver on the Gumstix no data has to return to a reading process,
an empty packet is returned with 6 ones as header.

31
MSB LSB

030 1

Header 3bit pin levels 8bittimeslot 21bit

Header 3bit pin levels 8bitseconds count 17bit000

Header 3+3bit 00000timeslot 21bit

Header 3+3bit 000000000seconds count 17bit

Header 3+3bit 00ADC sample 24bit

(a)

(b)

(c)

(d)

(e)

bit

Figure 4.9: SPI packet layout

4.2.2 UART packet definitions

A configuration command can consist out of multiple 8 bit UART packets. The
first of those packets carries the header and defines the payload, i.e. if more
packets are needed to complete the command. The MSB of a header packet is
always 0, the MSB of a plain data packet always 1. This ensures that after an
incomplete command the next correct command will be detected. In the header
3 more bit are used to specify the payload. The actual remaining payload size
in a header packet is 4 bit, in a data packet 7 bit. Table 4.2 shows which
header is used for which command and which payload layout from Figure 4.10 a
command has. The payload of the command packets is specified in more detail
in the Appendix in Table A.2.

An acknowledgement is an 8 bit packet with a 3 bit header. The acknowl-
edgement header contains the same header bits as the successfully received com-
mand and the remaining 5 bits are zeros. Further when an actuation command
is successfully received, but the actuation FIFO is full, the remaining 5 bits are
set to ones, and the command is discarded. When an error occurs all 8 bits are
ones.

4.3 Adapted Gumstix Software (ads1271 driver)

The SPI driver on the Gumstix was originally not designed for high data rates.
Therefore packets get lost, when the DAQ sends continuously data at the full
rate. We modified the driver to process higher data rates more stable. To
handle the data a DMA transfer, from the SPI interface to two memory buffers,
was initialized. Every time a buffer was full and the DMA stopped, the kernel
module set up a new DMA transfer to the other buffer and an users process

27

UART packets

Header Command Payload

000 direct through k
001 tracing f
010 actuation g
011 sample divider j
100 start k
101 callback h
110 -
111 ack error l

Table 4.2: UART packet headers and the corresponding payloads layouts, fur-
ther specified in Figure 4.10

header packet data packet

7
MSB LSB

bit 6 5 4 3 2 1 0

Header 3bit pin 4bit0 1 pin 4bit 000

Header 3bit pin 4bit0 1 level 4bit seconds 3bit

1 seconds 7bit

1 timeslot 7bit

+2x

+3x

Header 3bit pin 4bit0 1 adc off delay 7bit

Header 3bit sample divider 4bit0 1 sample divider 7bit

Header 3bit on/off 4bit0

(f)

(g)

(h)

(j)

(k)

Header 3bit ack/fifo full 5bit(l)

Figure 4.10: UART payload definition

28

could read out the previous full buffer. One throughput limiting problem was
the time needed to swap those two buffers, which was done by the kernel module.

Our solution set the DMA with a linked descriptor list up, so the DMA
would swap the buffers and initiate a new DMA by itself. The descriptor list
contains just two elements pointing to one another as next element. Such a
list element contains source and destination (buffer) address, configuration flags
and the address of the next list element.

With the new kernel module the next problem came up. The process reading
out the data from the memory is to slow on the highest possible throughput.
The data actually is received properly by the Gumstix and written into the
memory buffers without losing any packets. But then the buffers were swapped
faster than they could be read. Note that forwarding the data over Ethernet is
faster than writing it locally on a SD card, see Table A.1 in the Appendix for
SD card speeds.

With all the optimization receiving the SPI data works best by slowing down
the SPI interface on the DAQ by 150ns per packet transmission, as further
explained in Section 5.2.

In either case all the data produced by the DAQ is successfully sent over
SPI to the Gumstix and written into a memory buffer. The bottleneck then is
the reading process on the Gumstix.

4.4 Setup the DAQ Prototype

This section shows step by step how to run a test including the DAQ with the
development environment and a single FlockBoard. The test is executed from a
Linux PC, which initializes the Gumstix through ssh and configures the FPGA
through a USB to UART connection (see Figure 4.1). The test data received
by the Gumstix is forwarded per ssh to the PC.

Its assumed the Gumstix is turned on and connected to the FlockLab in-
tranet, as well as the modified ads1271 driver is installed. The Anvyl developer
board is programmed with the DAQ code (v1.3) and DAQ RESET is on high.
Further the developer board needs to be connected to the tracing, actuation
and SPI signals of the Gumstix and FlockBoard, as shown in the Table A.3 in
the Appendix.

A test run is carried out with the following steps:

1. DAQ RESET is on high, which implies that the signals are routed directly
through (direct through on) and no test is running (start is off). The FIFOs
and the SRAM is cleared and all modules set their outputs to the initial
state. In this step the target node can be configured.

2. DAQ RESET is turned low, direct through and start remain unchanged.
At this point the Time Calibration module starts running, the internal
time is calibrated to the PPS signal. The Control module is turned on
and ready to receive commands for the next steps.

3. Send the UART command to turn direct through off (start remains un-
changed). Now the FIFOs, SRAM and the SPI to Gumstix are turned on
and could forward data packets to the Gumstix. But the modules Trac-
ing, ADC packaging, Actuation and Callback are still turned off and no
packets are produced.

29

4. In this state send further UART commands to configure the services: trac-
ing, actuations of up to 128 signals, callback and sample divider.

5. Now the Gumstix needs to be configured to receive packets from the DAQ.
Therefore the driver for the SPI is initialized:

$ ssh root@f lock lab−observerXXX modprobe ads1271

This command can only be executed when no other module is accessing
the ads1271 device. Dependent modules can be removed with ”modprobe
-r module name”.

6. Then the SPI device is turned on and received packets forwarded to the
local PC3

$ ssh −F ˜/ . ssh / c o n f i g root@f lock lab−observerXXX
dd bs=8188 i f =/dev/ads1271−2 > some . f i l e

Replace ‘XXX’ with the correct observer number (e.g. 029) and specify
the file to save the received data (some.file).

7. By sending the UART command ‘start on’ the test is started. Now all
the modules are running: as configured signals are traced, ADC samples
received, actuations set. The produced data packets are sent over the
Gumstix SPI through ssh to the PC.

8. The test can be stopped by sending the UART command ‘start off’. The
FIFOs, SRAM and SPI to Gumstix are still running, hence the remaining
of the acquired data is sent to the Gumstix.

9. Now the ads1271 device needs to be stopped on the Gumstix, by canceling
the command in step 6. For a next test the ads1271 does not have to be
removed, but can with ”modprobe -r ads1271”.

10. Before a next test run is performed, it is best to clear the FIFOs and
SRAM, by turning direct through on through UART. Optionally to reset
the whole DAQ, DAQ RESET can be turned on high.

3The ssh config file contains the parameters: Compression: no; Ciphers: arcfour,blowfish-
cbc; Cipher: blowfish. The file specifies encryption algorithms with low computation time, to
speed up the transmission.

30

Chapter 5

Evaluation

We performed tests and evaluated them for different properties of the DAQ,
mainly concentrating on the time precision and event/data throughput. Con-
cerning time precision we looked into two properties:

• The offset of the estimated full second and the actual PPS signal.

• The drift of the estimated time, when there is no PPS signal over a long
period of time.

In terms of throughput we evaluated:

• The burst size/time on maximum event rates, until the tracing FIFO is
full.

• The burst size/time and rate, until the SRAM is full.

• The maximum constant throughput, in terms of bytes/s and tracing events
per second.

Further we look into burst sizes and constant rates of actuation events. We
perform a testcase, where we monitored a blinking Tmote Sky node, and provide
the tracing data and power profile of the target.

5.1 Time Precision

To measure time offset and drift a debug option was added to the DAQ. When
activated the DAQ sends after each PPS signal several timing messages to the
PC over UART, instead of sending acknowledgments from the Control module.
These timing messages contain properties such as: the actual cycle count be-
tween two PPS signals; the current seconds count; the cycle offset; and the new
and average cycle difference of the PPS signals.

To be able to filter weak PPS signals and its influences on the test, status
messages of the GPS unit were continuously logged. A GPS status message
contains mainly information about the current coordinates and time and more
importantly as filter criteria: the number of available GPS satellites; a value for
signal quality (hdop: horizontal dilution of precision); and the GPS fix status.
The status message could also be empty or not received at all, due to weak GPS

31

−60−50 −40 −30−20 −10 0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

offset error [ns]

O
cc

ur
en

ce
 [%

] o
f a

ll
ev

en
ts

 (
19

70
2)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

absolute offset error [ns]

cd
f

Figure 5.1: Left: distribution of the time offset after one second, total: 19702
data points. Right: the same data set in an empirical cumulative distribution
function (cdf)

signals. The GPS unit is configured to send a PPS signal only if it runs in GPS
time locking mode. Therefore longer periods without any PPS signal can occur
during a test.

5.1.1 Time offset after one second

To determine the precision of our Time Calibration module, i.e. internal clock
precision, we measure the offset between the estimated full second and the actual
PPS signal.

For the offset measurements the PPS signal was applied to the Time Cali-
bration module as it comes from the GPS unit. The test run for 8 hours during
the day and the timing messages were collected. The raw data contained 24547
test points with time offsets in cycles.

Due to weak GPS reception of the test antenna (behind a window, indoors),
test points after weak or no GPS/PPS signals had to be removed. The signal
is considered weak if: (a) the GPS status message was received empty or not
at all; (b) the PPS signal was lost for more than 3 seconds; (c) the GPS unit
had less than 6 satellites in range; or (d) if the hdop < 3. Because the DAQ
needs multiple cycles to adjusts the internal time to a new or changing reference
signal, 9 test points after a weak signal were removed. The cleaned test set had
19702 test points left.

The distribution of the time offsets is shown in Figure 5.1. In the bar chart
on the left can be seen that in 40% of the cases an offset of 1 cycle, i.e. 10 ns,
occurred. The average is +1.0493 cycles , and the standard deviation is 1.08
cycles. The chart on the right shows the corresponding empirical cumulative
distribution (cdf), computed with the absolute offset values. It shows that 90%
of the offsets have an absolute value ≤ 30 ns, and 99% are ≤ 40 ns.

This means the accuracy of the DAQs internal time relative to a high preci-
sion PPS signal is well below 100 ns.

A minimum error could be expected, due to jitter on the PPS signal and to
the sampling error of the PPS signal. The PPS signal of the u-blox LEA-6T
module, has a standard deviation of 6.7ns [7], average is zero, since it is the
reference signal. Additionally there is a sampling error. By sampling the PPS
signal once per 10ns interval, the measured difference of two PPS signals can

32

have an error of ±1 cycle, i.e. ±10ns. Our evaluation reaches a similar error
deviation with 1.07 cycles, but the average is shifted one cycle.

In the previous FlockLab implementation different observers had a pairwise
timing error in average of 166µs and maximal of 1179µs, considering observers
connected by Wi-Fi. We derive the pairwise error of our implementation without
measurements, due to the availability of just a single prototype to test. We
assume the pairwise error is (maximal) twice the offset error. In our setup with
a good GPS PPS signal, the average pairwise error is therefore below 30ns and
the maximum, considering the results of the measurements, is below 120ns.
This is a improvement by 4 magnitudes, providing every observer node has an
accurate PPS signal input.

5.1.2 Time Drift after losing PPS signal

To measure the time drift, the PPS signal from the GPS unit was cut off in-
tentionally after the Time Calibration module calibrated the internal time. We
implemented a clock drift routine on the FPGA, which would apply the PPS
signal for 120 seconds and then cut it off for 180 seconds. To the debug unit,
however, still used the PPS signal to measure the drift. Therefore the debug
unit continuously sends timing messages containing the offset between the esti-
mated full second and the PPS signal. The test run for 22 hours and logged 316
periods of PPS signal cut offs. Those were filtered for incomplete periods, due
to PPS signal and therefore timing message losses. The test set we investigate
finally contains 309 periods. The distribution of the offsets after 1 − 9 cycles
of losing the reference signal are shown in the left empirical cdf plot in Figure
5.2. On the right the distributions of the offsets after 10, 20, . . . , 100 cycles are
plotted.

As expected the drift of the internal time, in respect to the PPS signal,
increases the longer the reference signal is lost. The distributions show that
after x seconds without a reference signal at least 90% of the offsets are within
20x nano seconds. For example after 100 s in at least 90% of the cases the clock
drift is less than (20× 100)ns, i.e. less than 2µs.

This results show, that even after losing the reference signal for multiple
seconds, the pairwise timing error of different observers should be still below

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

clock drift [ns]

cd
f

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

clock drift [ns]

cd
f

1
2
3
4
5
6
7
8
9

10
20
30
40
50
60
70
80
90
100

Figure 5.2: CDF of the time drift after 1-100 seconds without a reference signal.

33

1µs. Which is an improvement, compared to the average pairwise timing error
of 166µs in a setup without the DAQ and with continuous time synchronization
(over NTP).

5.2 Throughput

In this section we look into the actual throughput rates of the DAQ, and compare
it to the requirements from Chapter 3.

To evaluate the throughput of the DAQ, we implemented an event generator
module. With this module we toggle internally the tracing pins and generate
thereby tracing events. This feature allows to fully control the events generated
and it is easy to compare them to the received packets at the Gumstix.

The drawback of this approach is the alignment of the generated events with
the same clock source as the DAQ runs with, and are therefore optimally aligned
to detect. In later operation the target clock might not be aligned with the DAQ
clock, and side effects influencing the detection accuracy could result. But for
throughput test the setup is adequate.

Maximum FIFO rate In the first throughput test we evaluate how many
events can be successfully traced before the tracing FIFO is full. We gener-
ated an event per cycle, which is the maximum resolution in detection. The
theoretical limit are the 1024 slots of the FIFO plus the amount of packets the
SRAM module can read out of the FIFO in the meantime. The SRAM module
needs 16 cycles to write a packet to the memory, so it can read 64 packets from
the tracing FIFO in the 1024 cycles. The measured maximal burst size with-
out exceeding the FIFOs slots is 1070 packets, which is within 2% of what we
expected.

Maximum SRAM rate The second throughput test evaluates the maximal
burst size before the SRAM exceeds its space. Every 16 cycles an event is
generated, which corresponds to the write time of the SRAM module. The
SRAM can store 262144 packets and write theoretically up to 6.25M packets
per second, at that rate the SRAM is full within 40ms. We measured that
actually 270000 events can be detected, one every 16 cycles, before first the
SRAM and then the tracing FIFO is full and has to reject packets. There is
more space measured, because additionally to the SRAM the FIFOs get filled
up too.

Maximum continuous rate The third throughput test investigates the max-
imum continuous event rate, at which neither the FIFO nor the SRAM will
exceed their capacity. The bottleneck on the DAQ is the SPI connection to the
Gumstix. With a baud rate of 12M baud

s and a packet size of 34 baud (32 bit
data + 1 frame + 1 setup), theoretically every 2.8µs a packet can be sent, i.e.
353k packets per second. The theoretical maximum can be reached and the data
is actually sent from the DAQ over SPI to the Gumstix. With the new driver
the Gumstix is able to receive the packets and write them through DMA into
memory buffers. However the process which reads those buffers is too slow so
far to handle the throughput, and packets get lost (i.e. buffers are overwritten
again before read). Therefore a delay of a 15 cycles was introduced between

34

cycles between two events max. burst size

1 (10ns) 1070

16 (160ns) 270000

350 (3.5µs) continuous

Table 5.1: measured throughput burst sizes and maximum continuous rate

two SPI packets. A user process on the Gumstix reads the data from SPI and
forwards it over Ethernet to the PC. We measured 285k packets per second as
the maximum stable throughput rate, which corresponds to 3.5µs per packet.
The throughput measurements are summarized in Table 5.1.

With a continuous throughput of 285k packets per second, the DAQ is able
to satisfy the required rates of 3 out of 4 target platforms (see Table 3.2 from
Chapter 3). However we miss to comply with the rates needed by the Opal
platform by 1

4 .
In terms of burst rate we meet the requirements off all target platforms. The

DAQ is able to detect events at 100MHz, which includes 19.2MHz burst of the
Opal platform.

Adding power profiling data By running the power profile service at the
same time, the maximum event rate is decreased, however the through put
in data (ADC packets and tracing packets combined) remains the same. At
high-speed mode the ADC unit generates 56000 samples per second. Which is
roughly 1

5 of the maximum SPI bandwidth. Therefore by running the ADC unit
too, the maximum continuous event detection rate changes to 229k events per
second. At the default configuration at the moment, though, power profiling
runs in high-resolution mode and the sample divider is set to 2. In this case the
power profiling service needs 1

20 of the bandwidth.

5.3 Actuation events

As seen in Section 4.1.7 an actuation command transmission takes 70µs. Then
some cycles are needed to execute the command, which is insignificant compared
to the transmission time. This means that in theory 14285 signals per second
could be actuated. It is hard to actually reach that rate,because an actuation
command contains the time when to set a signal. Therefore host system sending
the commands would need to send exactly every 70µs an actuation containing
the previous time + 70µs. If it sends actuation faster the actuation FIFO will
be full at some point. Is it slightly slower, then the commands will arrive after
their due time.

In a simple and imprecise setup we managed to send 2340 actuations one
every 70µs before the commands arrived too late.

But the actuation service can set the signals much faster than every 70µs
over a short period. One actuation can be executed every 500ns at beginning of
a timeslot, up to 130 after each other due to the actuation FIFO. The timings
can be improved by enlarging the actuation FIFO.

35

5.4 Testcase

In this section we present the results of an actual test run on the FlockLab
with the DAQ unit integrated. A Tmote Sky node is the target node on the
FlockBoard. It runs a simple program (Blink), implementing a 3 bit counter on
3 onboard LEDs and on the 3 tracing signals LED1-3. The DAQ is set up to
trace the 3 LED signals and to turn on power profiling 20 seconds after start.
Figure 5.3 shows the acquired data plotted on a time line: The levels of the
signals LED1-3 on the 3 bottom graphs (∈ [0, 1]); the sum off all LEDs with
level 1 (∈ [0, 1, 2, 3]); and the power profiling data in [mA]. The scale of the
y-axis only applies to the power profile data.

As expected the state of an LED influences the current drawn by the target
node, the more LEDs burning the more current is needed. It can also be observed
that not all LEDs need the same amount of power, due to different colors of the
LEDs. Further there are peaks in the LED count graph at every second LED
toggle. This is correct, because one LED is turned off before the next is turned
on, with a time difference of up to 200µs. This becomes visible by zooming into
the data set as in Figure 5.4. The figure shows a time period when all LEDs
are turned of and we notice that one LED is turned off after each other.

To compare the measuring accuracy to the FlockLab without the DAQ,
we measured the time differences between the rising edges of LED 1. The
distribution of the different times measured either with or without the DAQ
is shown in Figure 5.5. Over 90% of the measurements with the DAQ are
within the same 8µs time period. Whereas the measurements without the DAQ
are spread over roughly 200µs. The wider distribution without the DAQ, is
due to the variating delays of interrupts handling. With the DAQ still some
distribution is measured. Which might be, because the program running on the
target is not as precise either.

19 19.5 20 20.5 21 21.5 22 22.5 23

10

12

14

16

18

20

22

24

26

28

30

Time [s]

C
ur

re
nt

 [m
A

]

power
LED count
LED 1
LED 2
LED 3

Figure 5.3: Results of the Blink testcase. The LED count correlates with the
power profile.

36

2.9968 2.9969 2.997 2.9971 2.9972 2.9973 2.9974
Time [s]

LED count
LED 1
LED 2
LED 3

Figure 5.4: Zoom into the Blink testcase, where all LEDs turn off at ‘the same
time’. Shows the delays due to execution time and sequence on the target node.

488.15 488.2 488.25 488.3 488.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆(time) [ms]

O
cc
u
re
n
ce

[%
]

488.15 488.2 488.25 488.3 488.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

∆(time) [ms]

O
cc
u
re
n
ce

[%
]

Figure 5.5: Measured time differences between the rising edges of LED1 in the
Blink Testcase. Left side: FlockLab with DAQ, right side: without DAQ

37

5.5 Final FPGA chip

After finishing the implementation of the DAQ on the Anvyl Developer Board
with an Spartan-6 LX45 FPGA, we investigated on which of the Spartan-6
FPGAs we could transfer our project. The smallest chip of the family, the LX4,
has not enough logic cells to implement our design. But the next larger LX9
meets our requirements. The Spartan-6 LX9 FPGA has 144 pins thereof 120
user I/Os, 9152 logic cells and costs around 15-20. A detailed logic utilization
is given in Table 5.6, as well as a power estimation computed by the Xilinx
XPower Analyzer with standard values.

On-Chip Power[W] Used Available Utilization[%]

Clocks 0.027 1 - -
Logic 0.014 3160 5720 55
Signals 0.014 5127 - -
BRAMs(8K, 16K) 0.004 4, 6 64, 32 6, 19
DSPs 0 2 16 13
PLLs 0.087 1 2 50
IOs 0.071 86 102 84
Leakage 0.017

Total 0.235

Figure 5.6: Logic Utilization and estimated power (by Xilinx XPower Analyzer).

38

Chapter 6

Conclusion and Outlook

6.1 Conclusion

With the introduction of the data acquisition unit (DAQ), we improved the ex-
isting FlockLab in terms of time synchronization and event detection rate. The
pairwise timing error has been reduced from 166µs to 30ns, with an accurate
pulse per second (PPS) signal as reference. The event detection rate could be
increased from 12.5 kHz up to 10MHz. Moreover, each reported event contains a
timestamp with a resolution of 500ns (2MHz), which can be further improved to
actually utilize the low timing error. Those enhancements improve all services
of the FlockLab: The tracing signals can be timestamped more precisely and
at a higher rate. The actuation signals can be set more accurately, at a higher
rate and with a smaller pairwise time error over different observers. Further,
the continuous data rate of the power profiling services slows the other services
no longer down.

6.2 Outlook

With the capabilities of a FPGA more can be achieved. A major improvement
could be to reduce the timeslots of now 500ns. This can be implemented without
changing the size of the 21 bit timestamp, by relating the timestamp not to a
packet sent every second, but more often. In terms of ADC samples, the sample
divider could instead of discarding the surplus of samples return an average over
multiple samples.

Then on the Gumstix the SPI driver can be improved, to handle the full
12 Mbit/s data stream without loosing buffers and to support reading trailing
bytes from the DMA buffer.

But the next step certainly is to transfer our prototype from the Developer
Board to a custom PCB, which can actually be placed on the FlockBoard.
Therefore a concept is required to provide the DAQs on all the observers with
a accurate PPS signal and avoiding the need of a GPS device on all observers.
Furthermore a software integration of the DAQ is needed. The FlockLab test
management has to be adapted to the DAQs control options and data handling
on the server needs to be adjusted to the new data format.

39

Appendix A

Additional Tables

A.1 SD card write speed test

We tested SD card write speed with (Table A.1):
dd count=X bs=Y if=/dev/zero of=/media/card/root/flocklab/test/test.file
Read speed tested with hdparm -t /dev/mmcblk0 results in 2.1 MB/sec.

count/bs 1M 500k 10k 512
10 17 6.1-17 12 2.2
100 0.89 0.84 15 5.4
1000 0.52 0.55 14 6.3

Table A.1: SD card write speeds [MB/sec]. bs: bytes per block; count: no. of
blocks. (FlockBoard 029)

40

A.2 UART packet payload definition

tracing pins
bit 7 6 5 4 3 2 1 bit 0
LED1 LED2 LED3 INT1 INT2 SIG1 SIG2 RST

actuation pins and levels
bit 3 2 1 bit 0
SIG1 SIG2 RST ADC

callback pin or off
0XXX 1000 1001 1010 1011 1100

off LED1 LED2 LED3 INT1 INT2

other
on/error off/ack sample divider adc off delay

1111 0000 [1− 2047] 11bit [1− 127] 7bit

Table A.2: UART payload bitwise definition

A.3 60pin Connector

The DAQ unit will be connected through an existing 60 pin connector to the
Gumstix and the target nodes (FlockBoard). Therefore the DAQ is placed
between the existing 60 pin connection of the Gumstix to the FlockBoard. Not
all 60 pins are required, the DAQ captures those needed and connects the other
pins directly through. Further a mechanism is required to connect all 60 pins
directly from the Gumstix to the FlockBoard, hence to omit the DAQ at all.
This is used to initialize the FlockBoard from the Gumstix. An overview of all
captured pins is given in Table A.3.

On the FlockBoard side the DAQ uses 4 different interfaces with multiple
pins each to monitor the targets. Those are connected from the board to the
DAQ and include: 3 Target Inputs (nr: 13,16,41), 5 Target Outputs (pins:
8,9,10,22,49), 4 ADC SPI pins (nr: 21,44,45,50) and 3 USB pins (nr: 11,58,59).
Further all GND and all VCC pins are connected.

To communicate with the Gumstix the DAQ can use the SPI and/or the
USB interface. If USB is used, the DAQ needs to provide a hub, so the other
USB devices on the board are still connected to the Gumstix (USB master).
Additionally to the already occupied pins a reset signal (DAQ RESET) is needed
to put the DAQ into an initial state, therefore an unused pin from the Gumstix
is needed. In the DAQ prototype the DAQ RESET is a hardware switch on the
Anvyl developer board.

41

S
er

v
ic

e
F

P
G

A
P

in
N

r.
G

u
m

st
ix

P
in

N
r.

G
u

m
st

ix
n

a
m

e
B

o
a
rd

n
a
m

e
F

B
G

u
m

tr
ac

in
g

J
B

7
J
E

7
8

G
P

IO
7
1

T
A

R
G

E
T

L
E

D
1

tr
ac

in
g

J
B

4
J
E

4
9

G
P

IO
7
0

T
A

R
G

E
T

L
E

D
2

tr
ac

in
g

J
B

3
J
E

3
1
0

G
P

IO
6
9

T
A

R
G

E
T

L
E

D
3

tr
ac

in
g

J
B

2
J
E

2
4
9

G
P

IO
1
1
3

W
T

A
R

G
E

T
IN

T
1

tr
ac

in
g

J
B

1
J
E

1
2
2

G
P

IO
8
7

T
A

R
G

E
T

IN
T

2
ac

tu
at

io
n

J
D

1
J
D

7
1
3

G
P

IO
6
0

T
A

R
G

E
T

R
S

T
ac

tu
at

io
n

J
D

3
J
D

9
1
6

G
P

IO
7
5

T
A

R
G

E
T

S
IG

1
ac

tu
at

io
n

J
D

2
J
D

8
4
1

G
P

IO
7
4

T
A

R
G

E
T

S
IG

2
S

P
I

J
A

1
J
A

7
2
1

G
P

IO
1
9

S
S

P
S

C
L

K
2

S
P

I
S

C
L

K
S

P
I

-
-

2
3

G
P

IO
1
3

S
S

P
T

D
X

2
W

-
S

P
I

J
A

2
J
A

8
4
4

G
P

IO
1
4

S
S

P
S

F
R

M
2

W
R

T
C

n
IN

T
S

P
I

J
A

3
J
A

9
4
5

G
P

IO
1
1

S
S

P
R

D
X

2
W

S
P

I
M

IS
O

S
P

I
J
A

4
J
A

10
5
0

G
P

IO
5
9

A
D

C
n

C
S

U
S

B
-

-
5
8

G
P

IO
2
8

U
S

B
H

U
B

n
R

E
S

E
T

U
S

B
-

-
5
9

U
S

B
H

N
1

U
S

B
H

U
B

U
P

L
IN

K
N

U
S

B
-

-
1
1

U
S

B
H

P
1

U
S

B
H

U
B

U
P

L
IN

K
P

D
A

Q
R

E
S

E
T

sw
it

ch
0

-
-

-
-

G
N

D
1
,7

,3
1,

42
,6

0
G

N
D

G
N

D
-

-
-

2
8,

29
,3

0
V

B
A

T
T

V
C

C
5
.0

Table A.3: Important Gumstix 60pin assignments

42

A.4 Compare FPGA Developer Boards

Device Cyclone III Cyclone III Cyclone IV Igloo nano Cyclone IV
DE0 Starter Dev DE0nano DE2-115

Manufactor Terasic Altera Terasic Microsemi Altera
LEs 15K 24K 22K 6K 114K
Memory 8MB SDRAM 256Mb DDR 32Mb SDRAM - 2MB SRAM

4MB Flash 1MB SRAM 2Kb EEPROM 128MB SDRAM
SD slot 16MB Flash Flash, EEPROM

I/O Board 72+8 HSMC: 84 72+8 68 54+172 HSMC
I/O FPGA 346 215 153 68 528
Serial Config $ 4-50 (EPCS) 4-50 (EPCS) 4-50 (EPCS) - ’SPI’
Board Cost $ 119 (79) 200 79 (59) 116 600 (300)
FPGA Cost $ 30 40-70 44-66 10-20
Ausstattung 0 + 0 0 ++
Oszillator (MHz) 50 50 50 20 3x50
Pin level board 3.3V 1.5-3.3V
Pin Level FPGA 1.5-3.3V 1.5-3.3V
SW (at ITET) Quartus Web Edition, 10k lines (100 Licences) Quartus
FPGA int Mem 590 Kb 3800 Kb
USB (inerfaces) Y
Configuration ’SPI’/schematics
Availability unclear

Device Igloo2 Spartan 3 Spartan 6 Artix 7 Spartan 6
Board Nexys 3 Nexys 4 Anvyl

Manufactor Microsemi Digilent Digilent Digilent Digilent
LEs 12K 4K/17K 14K 15K 44K
Memory 64Mb Flash 216 Kb RAM 3x 16MB 16MB C.RAM 2MB SRAM

512MB DDR 2Mb Flash 128MB DDR2
1MB SRAM Flash

I/O Board 64 96 48 48 56+10
I/O FPGA 169-377 60-170 100-570 170-500 100-570
Serial Config $ - Y Y Y Y
Board Cost $ 400 (99) 150 230 (120) 300 (160) 540 (350)
FPGA Cost $ 20-50 10-50 30 (10-130) 115-160 10-130
Ausstattung ++ + ++ ++ ++
Oszillator 50 50 100 100 100
Pin level board -3.3V
Pin Level FPGA -3.3V
SW (at ITET) ISE Web Pack, 50k lines (50 licences)
FPGA int Mem 2 Mb
USB (inerfaces)
configuration SPI/schematics
Availability Yes

Table A.4: FPGA Developer Boards comparison

43

Appendix B

Task Description

44

Herbstsemester 2013

MASTERARBEIT

für
Benjamin Dissler

Betreuer: Roman Lim
Stellvertreter: Christoph Walser

Ausgabe: 30. September 2013
Abgabe: 11. April 2014

High-Speed Data-Acquisition for FlockLab

Einleitung

FlockLab [1] ist ein Testbed für drahtlose Sensornetzwerke. Darunter versteht man eine Installation die es
erlaubt Programme direkt auf den physikalischen Knoten des Netzwerks zu testen. Typische Dienstleis-
tungen (Services) eines Testbeds sind das Programmieren der Knoten, ein Kommunikationskanal (Serielle
Schnittstelle) und das Messen des Stromverbrauchs. Zusätzlich kann mit FlockLab der Zustand von GPIO-
Pins erfasst und auch gesetzt werden (GPIO tracing/actuation). In FlockLab wird jeder Sensorknoten von
einem Beobachterknoten (Observer) überwacht. Auf diesen Knoten wird ein eingebettetes Linux-System
verwendet um Testabläufe zu verwalten und Messdaten zu sammeln.

Da die Daten der Tests verteilt gesammelt werden, müssen sie miteinander synchronisiert werden um
sie in einen globalen Kontext zu bringen. Dazu wird zur Zeit das Network Time Protocol benutzt, welches
eine Zeitsynchronisation innerhalb von einigen 100 µS erlaubt. Das Linux-System ist verantwortlich um die
gemessenen Daten mit einem Zeitstempel zu versehen. Da darauf aber mehrere Prozesse gleichzeitig aktiv
sein können kommt es zu nicht-deterministischen Verzögerungen, was die Ungenauigkeit weiter erhöht.

Die beiden GPIO Services können sehr hohe Datenraten generieren. Damit ist es sehr leicht möglich an die
Grenzen des Observers zu kommen und somit unvollständige Messungen zu generieren.

Das Ziel dieser Masterarbeit ist es den Beobachterknoten zu erweitern um die beiden erwähnten Nachteile
zu beseitigen. Konkret soll eine Platine gebaut werden mit einem dedizierten Datenverarbeitungselement.
Diese Platine soll sich, wie in Abbildung 1 gezeigt, in die bestehende Architektur einbetten und ein exaktes
Zeitsignal (z.B. GPS) als Referenz benutzen.

Aufgabenstellung

1. Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl zeitlich wie auch thematisch fest.
Insbesondere soll genügend Zeit für die Schlusspräsentation und den Bericht eingeplant werden.

45

Target slot 4
Target slot 3

Target slot 2
Target slot 1USB hub

Embedded
Computer

Ethernet

Wi-Fi

1.8 .. 3.3 V A

SD card

USB hub

Vo
lta

ge
 le

ve
l t

ra
ns

la
tio

n GPIO
tracing

GPIO
actuation

Target
power

UART

Reset/Prog

ID
USB

Ta
rg

et
 s

lo
t

se
le

ct
io

n

Humidity/
temperature

sensor

5..56V 5V 5V 3.3V

24 bit ADC

Time pulse

High precision
timestamping

High
throughput
data acquisition

Abbildung 1: Überblick des FlockLab-Observers: Der eingebettete Computer steuert den Testablauf und
sammelt verschiedene Daten (Stromverbrauch, GPIO Zustände und serielle Kommunikation). Gestrichelt
dargestellt ist das neue Datenverarbeitungselement.

2. Verschaffen Sie sich einen Überblick über die Architektur von FlockLab und dessen Komponenten und
Services.

3. Machen Sie sich mit den relevanten Arbeiten im Bereich Testbeds, Zeitsynchronisation und Messsys-
teme vertraut. Führen Sie eine Literaturrecherche durch. Suchen Sie gezielt nach relevanten Publika-
tionen. Prüfen Sie welche Ideen/Konzepte Sie aus diesen Lösungen verwenden können.

4. Erstellen Sie eine Übersicht der Anforderungen an das Datenverarbeitungselement für FlockLab.

5. Entwerfen Sie einen lauffähigen Prototyp und implementieren Sie diesen.

6. Testen Sie den Prototyp.

7. Evaluieren Sie die Leistung des Prototyps.

8. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag sowie mit einem Schlussbericht.

Durchführung der Masterarbeit

Allgemeines

• Der Verlauf der Masterarbeit soll laufend anhand des Projektplanes und der Meilensteine evaluiert
werden. Unvorhergesehene Probleme beim eingeschlagenen Lösungsweg können Änderungen am
Projektplan erforderlich machen. Diese sollen dokumentiert werden.

• Sie verfügen über einen PC mit Linux/Windows für Softwareentwicklung und Test. Für die Einhal-
tung der geltenden Sicherheitsrichtlinien der ETH Zürich sind Sie selbst verantwortlich. Falls damit
Probleme auftauchen wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Masterarbeit in einem Kurzvortrag (maximal 5 Minuten) vor und
präsentieren Sie die erarbeiteten Resultate am Schluss im Rahmen des Institutskolloquiums (maxi-
mal 20 Minuten).

2
46

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern. Verfassen Sie dazu auch einen kurzen
wöchentlichen Statusbericht (email).

• Weiterführende Angaben finden Sie in [2].

Abgabe

• Geben Sie zwei unterschriebene Exemplare des Berichtes sowie alle relevanten Source-, Object und
Konfigurationsfiles bis spätestens am 11. April 2014 dem betreuenden Assistenten oder seinem Stel-
lvertreter ab. Diese Aufgabenstellung soll im Bericht eingefügt werden, genauso wie das unter-
schriebene Unterschriftenblatt Plagiat des Rektorats. Die entsprechenden Richtlinien des Rektorats
sind einzuhalten.

• Die Arbeit wird benotet anhand der Kriterien beschrieben in [3].

• Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die relevanten Source- und Object-
files, Konfigurationsfiles, benötigten Directorystrukturen usw. bestehen bleiben. Der Programmcode
sowie die Filestruktur soll ausreichen dokumentiert sein. Eine spätere Anschlussarbeit soll auf dem
hinterlassenen Stand aufbauen können.

Literatur

[1] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel, “Flocklab: a testbed for distributed,
synchronized tracing and profiling of wireless embedded systems,” in Proc. of the 12th Intl. Conf. on
Information processing in sensor networks (IPSN), 2013.

[2] TIK, “Studien- und Masterarbeiten: Merkblatt für Studenten und Betreuer.” Computer Engineering and
Networks Lab, ETH Zürich, Switzerland, Apr. 2009.

[3] TIK, “Notengebung bei Studien- und Diplomarbeiten.” Computer Engineering and Networks Lab, ETH
Zürich, Switzerland, May 1998.

3
47

Bibliography

[1] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser,
Philipp Sommer, and Jan Beutel. Flocklab: a testbed for distributed,
synchronized tracing and profiling of wireless embedded systems. In Pro-
ceedings of the 12th international conference on Information processing in
sensor networks, IPSN ’13, pages 153–166, New York, NY, USA, 2013.
ACM.

[2] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Ef-
ficient Network Flooding and Time Synchronization with Glossy. In Pro-
ceedings of the 10th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pages 73–84, Chicago, IL, USA,
April 2011. Best paper award.

[3] Niels Penneman, Luc Perneel, Martin Timmerman, and Bjorn Sutter. An
fpga-based real-time event sampler. In Phaophak Sirisuk, Fearghal Morgan,
Tarek El-Ghazawi, and Hideharu Amano, editors, Reconfigurable Comput-
ing: Architectures, Tools and Applications, volume 5992 of Lecture Notes
in Computer Science, pages 364–371. Springer Berlin Heidelberg, 2010.

[4] Wen-Qin Wang. Gps-based time phase synchronization processing for dis-
tributed sar. Aerospace and Electronic Systems, IEEE Transactions on,
45(3):1040–1051, July 2009.

[5] L. Gasparini, O. Zadedyurina, G. Fontana, D. Macii, A. Boni, and Y. Ofek.
A digital circuit for jitter reduction of gps-disciplined 1-pps synchronization
signals. In Advanced Methods for Uncertainty Estimation in Measurement,
2007 IEEE International Workshop on, pages 84–88, July 2007.

[6] Texas Instruments. 24 bit, wide bandwidth analog to digital converter
(sbas306f). Technical report, Texas Instruments Incorporated, October
2007.

[7] ublox. Gps-based timing - considerations with u-blox 6 gps receivers
(gps.g6-x-11007). Technical report, u-blox AG, March 2011.

[8] Jean P. Nicolle. Spi - a simple implementation. http://www.fpga4fun.

com/SPI2.html. Accessed: 2014-04-04.

[9] Intel. Intel pxa27x processor family, developers manual. Technical report,
Intel Corporation, October 2004.

48

http://www.fpga4fun.com/SPI2.html
http://www.fpga4fun.com/SPI2.html

[10] Peter Bennett. Vhdl uart. https://github.com/pabennett/uart. Ac-
cessed: 2014-04-04.

49

https://github.com/pabennett/uart

	1 Introduction
	2 Related Work
	3 Design
	3.1 Requirements
	3.1.1 ADC SPI Interface (ADC to DAQ)
	3.1.2 Data Rates
	3.1.3 Time Accuracy
	3.1.4 Input Commands

	3.2 Consequences of the Requirements
	3.2.1 Interfaces DAQ - Gumstix
	3.2.2 Output Packets
	3.2.3 Core Unit

	4 Implementation
	4.1 FPGA/VHDL modules
	4.1.1 Time Calibration
	4.1.2 Tracing
	4.1.3 ADC packaging
	4.1.4 SRAM and FIFOs
	4.1.5 Gumstix SPI
	4.1.6 Actuation and ADC-Callback
	4.1.7 Controlling

	4.2 Packet definition
	4.2.1 SPI packet definitions
	4.2.2 UART packet definitions

	4.3 Adapted Gumstix Software (ads1271 driver)
	4.4 Setup the DAQ Prototype

	5 Evaluation
	5.1 Time Precision
	5.1.1 Time offset after one second
	5.1.2 Time Drift after losing PPS signal

	5.2 Throughput
	5.3 Actuation events
	5.4 Testcase
	5.5 Final FPGA chip

	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Outlook

	A Additional Tables
	A.1 SD card write speed test
	A.2 UART packet payload definition
	A.3 60pin Connector
	A.4 Compare FPGA Developer Boards

	B Task Description
	Bibliography

