ETH st o
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Dimitrios Gkounis
dgkounis@gmail.com

Cross-domain DoS link-flooding attack
detection and mitigation using SDN prin-
ciples

Master Thesis MA-2013-18
October 14, 2013 to April 13, 2014

Advisors: Vasileios Kotronis, Dr. Xenofontas Dimitropoulos
Supervisor: Prof. Bernhard Plattner

Abstract

The Denial of Service (DoS) attacks pose a major threat to Internet users and services. Since the
network security ecosystem is expanding over the years, new types of DoS attacks emerge. The
DoS link-flooding attacks target to severely congest certain network links disrupting Internet
accessibility to certain geographical areas and services passing through these links. Since crucial
services like financial and government services depend on real-time Internet availability, the con-
sequences of DoS link-flooding attacks become detrimental. Among the diverse DoS link-flooding
attacks, the Crossfire attack is worthwhile to focus on when designing a DoS link-flooding attack
countermeasure due to its effectiveness while it remains undetected. In this master thesis, we
propose a detection and mitigation technique by combining Software Defined Networking (SDN)
and network security principles. Since current defence solutions and techniques are unable to
deal with the Crossfire attack, we use SDN features, such as flow rerouting, flow-level manage-
ment and control and monitoring centralization, which provide by definition higher flexibility in
defeating such complex DoS attacks. We design an online traffic engineering mechanism based
on a strategy that enables both mitigation and detection of the Crossfire attack. A working pro-
totype is implemented based on the proposed technique and evaluated on an emulated pure SDN
environment.

Acknowledgements

I would like to thank Professor Bernhard Plattner who gave me the opportunity to conduct my
Master Thesis at the Communications Systems Group of the ETH Zurich. I am very glad that
I had the chance to explore the fascinating areas of Software Defined Networking and Network
Security during the past six months. I am also grateful to Dr. Xenofontas Dimitropoulos and PhD
candidate Vasileios Kotronis for their valuable help and feedback and for the fruitful discussions
we had throughout this thesis. Without their support, the completion of this thesis would not
have been possible.

Finally, I would like to express my gratitude to my family for their unconditional love and support
and their encouragement to make my dreams come true all these years.

Contents

1 Introduction

1.1 Motivation L e
1.2 Related Worko
1.2.1 DoS Attack Detection and Mitigation using SDN
1.2.2 DoS Link-Flooding Attack Countermeasures

1.3 The Task
1.4 Overview

2 Background

2.1 The Crossfire Attack
2.1.1 Link Map Construction,
2.1.2 Attack Setup
2.1.3 Bot Coordination

2.2 Software Defined Networking
221 OpenFlow

Attacker and Defender Model

3.1 Attacker Model: Launching a Reactive Crossfire Attack

3.2 Defender

5.5 Insights
6 Future Work

7 Summary

Model: Detection and Mitigation Approach

4 Attacker and Defender Implementation
4.1 Attacker: Launching a Reactive Crossfire Attack
4.1.1 Link-Map Construction and Monitoring
4.1.2 Flow Density Computation - Target Link Selection
4.1.3 Bot Assignment Strategy
4.1.4 Attack Traffic Generation
4.2 Defender: Detection and Mitigation Approach
4.2.1 Monitoring e
4.2.2 Routing e
4.2.3 Inter-controller Communication
4.3 Auxiliary Components
4.3.1 Flow Routing Management
4.3.2 Enabling Traceroute Capability in POX and OpenFlow
5 Experimental Evaluation
5.1 Setup
5.2 Reaction Times e
5.2.1 Reaction Time of Attacker
5.2.2 Reaction Time of Defender
5.3 Attack Cost Increase
5.4 Sourcesof Error

11
11
12
12
12
13
13

15
15
15
16
16
17
17

19
19
20

25
25
25
25
26
27
28
28
30
32
33
33
34

35
35
36
37
40
40
42
42

43

45

CONTENTS

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Link Map Construction [4] L 15
Attack Setup [4] 16
Bot Coordination [4] 16
OpenFlow-based Switch-Controller Communication [16] 17
Attacker Model 20
Defender Components Interaction 20
Defender Model o 21
Local Rerouting Example o 22
Local Rerouting Example - cont. L. 23
Inter-Domain Rerouting Example 24
Target Link Selection Algorithm [4] 26
Bot Assignment Strategy 27
Link Congestion Monitoring 29
Example of our Classification Mechanism 29
Rerouting Monitoring Lo oo 30
Congested Flows Rerouting 31
Inter-Controller Communication Interface 32
Theoretical Topology 36
Attacker’s and Defender’s Event Sequence Diagram 37
Attack Setup Time 38
Attack Success Time 39
Attacker’s Reaction Time L L 39
Defender’s Reaction Time L 40
Attack Cost Increase 41

LIST OF FIGURES

List of Tables

5.1 Default Experimental Configuration

10

LIST OF TABLES

Chapter 1

Introduction

A Denial of Service (DoS) attack is defined as an attempt by an attacker to prevent access to
online information or services to legitimate users [1]. The DoS attack strategy is based on the
asymmetry between the Internet hosts’ and victim’s resources. The attacker exploits the resources
of thousands of compromised machines, called bots, which exceed the victim’s limited resources.
Therefore, the victim is not able to serve the requests made by both the bots and the legitimate
users.

The DoS attacks constitute a significant threat to the Internet. The security researchers con-
stantly develop defence countermeasures but the attackers in turn modify their attack mecha-
nisms circumventing current security solutions. Thus, the DoS attack methods evolve in terms
of complexity over the years [2].

New types of DoS attacks which are even more detrimental for network services have recently
emerged. The DoS link-flooding attacks aim to flood specific network links disrupting all services
passing through them. The DoS attacks against Spamhaus [3] constitute a recent example of these
DoS attack mechanisms. Even though the attacks started targeting specific servers, they evolved
to flood network links in several Internet Exchange Points (IXPs), indirectly affecting the services
using these IXPs. The DoS link-flooding attack strategy has higher complexity in comparison with
other DoS attacks since the network links leading to specific target services should be identified.
However, the consequences of the DoS link-flooding attacks outweigh the complexity of their
mechanism. Considering that critical activities, such as electric power distribution, financial
transactions, government services and industrial remote access networks, depend on Internet
connectivity, the DoS link-flooding attacks become of higher importance.

Recently, the advent of the Software Defined Networking (SDN) has become a breakthrough
in the Computer Networking field. This architecture allows decoupling of the control and data
plane, enables logically centralised network controllers to manage whole networks and promises to
reduce complexity in today’s network operations. Therefore, the SDN principles are a promising
asset in the attempt to counter complex DoS attacks.

1.1 Motivation

As discussed, the DoS link-flooding attacks pose a major threat among the diverse DoS attack
strategies. The Crossfire [4] and Coremelt [5] DoS link-flooding attacks cannot be easily blocked
by current defence countermeasures. These attacks use valid bot IP addresses and therefore
cannot be detected by IP spoofing filters [6]. Furthermore, legitimate traffic is used, either between
pairs of bots (Coremelt attack) or between bots and public servers (Crossfire attack). In addition,
current defence approaches cannot easily distinguish the attack traffic from the legitimate one
since the Crossfire attack uses low-intensity attack flows. The targets of the Coremelt attack are
backbone links within several network domains (Autonomous Systems - ASes). In the Crossfire
attack, the targets are network links around a certain geographical region which belong to several
ASes and Internet Service Providers (ISPs). This makes a single ISP unable to stop the attack.
The current online and offline traffic engineering mechanisms cannot counter these DoS link-
flooding attacks since the offline ones react late, i.e., generate new routes in hours or even days,
and the online ones can lead to routing instabilities [9] especially when ISP collaboration is needed
to block an attack as in the case of the Crossfire attack. The feasibility of ISP coordination is

11

12 CHAPTER 1. INTRODUCTION

also an issue due to competitive and privacy concerns. Even if the online traffic engineering
approaches could be applied, the Crossfire attack could bypass them by targeting different sets
of network links at a time.

The Crossfire attack, compared to the Coremelt attack, poses more challenges to take into account
when developing a security solution [4]. The Crossfire attack is robust against route shifts and
it avoids triggering alarms for potential attacks by changing the set of target links every time
interval given by the attacker. In addition, its efficiency, in contrast to Coremelt attack, does not
depend on how the bots are geographically distributed. The Crossfire attack also requires ISP
collaboration to be defeated. Thus, the Crossfire is a more interesting attack to focus on in order
to devise a detection and mitigation solution.

The Crossfire attack potential countermeasures are ISP collaboration and reactive rerouting of
flows traversing flooded network links [4]. We look at how SDN can be used in the context of
such practices. The SDN principles and particularly the OpenFlow protocol which implements
them provide high flexibility in managing a network [10, 11]. In SDN, the network traffic is
identified, monitored, controlled and managed on a flow level. SDN enables real-time (reactive)
flow management which can be modified based on the network response and on demand changes
of the user’s or the network application’s requirements. Current IP networks do not offer this
level of granularity in network control and management. Furthermore, the logically centralized
network controller in an SDN environment has full knowledge of the global network state and
control over it. Therefore, traffic engineering policies can be easily imposed all over the network.
On the contrary, today’s network devices have limited visibility usually only within their imme-
diate network neighbourhood and should be individually configured. The SDN characteristic of
centralised controllers which have full network knowledge and control also facilitates ISP collab-
oration. It is beneficial to exchange aggregate information in a hierarchical fashion only among
network controllers rather than among all network devices. For all the above-mentioned reasons,
we employ SDN to counter the Crossfire attack.

1.2 Related Work

1.2.1 DoS Attack Detection and Mitigation using SDIN

At the current time, there is a small number of published papers having proposed methods
on DoS attack detection and mitigation using SDN. Indicatively, in [12], the authors present
a low-overhead technique for traffic analysis using Self Organizing Maps to classify flows. This
mechanism is deployed on an SDN (NOX-controlled [13]) network to enable DoS attack detection.
Our approach differs from this as our proposed solution not only performs DoS attack detection
but also mitigation. The detection and mitigation mechanisms are coupled in our work. We have
designed an online traffic engineering technique which primarily conducts mitigation. However,
the mitigation approach uses a clever strategy that also enables detection. Moreover, we employ
SDN principles in order to distinguish (and mitigate) the malicious traffic from the legitimate
one taking into consideration that the attacker generates legitimate low-rate traffic flows and not
easy-to-detect heavy-hitters. In their work, regular abnormal traffic is detected. In addition, they
focus only on a local network domain. On the other hand, we conduct detection and mitigation
within multiple network domains. In particular, our solution works both locally and in a client-
ISP collaborative environment.

1.2.2 DoS Link-Flooding Attack Countermeasures

There is not any significant work on defence solutions against the DoS link-flooding attacks since
the high complexity of their characteristics has not allowed them to commonly occur yet. However,
the potential effects of such attacks are detrimental in terms of costs for Internet services and
can surpass the cost of developing such attacks when disrupting services which highly depend on
the Internet, such as industrial networks, financial and government services etc. The published
Coremelt [5] and Crossfire [4] attacks highlighted the feasibility and the consequences of this
type of DoS attacks. Therefore, a recent paper [14] is a first approach towards defeating DoS
link-flooding attacks. In CoDef [14], the authors propose a cooperative method for identifying
low-rate attack traffic. The traffic source and target ASes communicate with each other and
low-rate malicious traffic ASes are identified by not complying with multiple rerouting requests

1.3 The Task 13

generated by the target ASes. Our work has also the same goal but the fundamental conceptual
difference is that we do not explicitly communicate with the traffic sources. We apply our defence
solution and we monitor how the attacker implicitly reacts. Another major difference is that we
focus on the Crossfire attack while their approach cannot deal with it. Furthermore, we enable
collaboration between the target ASes and their direct upstream providers since we first focus
on solving the problem within a local domain (the target AS) and then we expand our security
mechanism on an inter-domain level. We believe this is a more feasible scenario considering
the current Internet state (multihoming practices of large ASes on the edge hosting numerous
Internet services attractive for such attacks). In CoDef, the authors mention SDN as a possible
mechanism for implementing their solution, while we explore in depth the power and capabilities
of SDN taking its principles into account both in our design and implementation. However, our
work has similarities with CoDef. We both use rerouting to mitigate and detect the DoS link-
flooding attack (both locally and on an inter-domain level in our case - only on an inter-domain
level in CoDef). The potentially malicious traffic is rate-limited in both works. We limit the rates
of the potentially malicious sources while they provide higher bandwidth guarantees in legitimate
traffic. Finally, we both employ inter-ISP coordination to tackle the attack, though in a different
way (different reaction and coordination algorithms).

1.3 The Task

In this thesis, a prototype of a cooperative detection and mitigation service for link-flooding
attacks will be developed, focusing on the Crossfire attack. An SDN environment with a controller
per network domain is assumed and inter-controller communication will be deployed to facilitate
ISP collaboration. Moreover, detection and mitigation techniques, such as flow rerouting, rate-
limiting and ranking, between and within network domains will be implemented. Finally, the
performance of the proposed attack countermeasure will be evaluated on a network emulation
platform (Mininet [15]) in terms of feasibility, efficiency and accuracy.

The contributions of this thesis are:

Detection and Mitigation Technique against the Crossfire Attack: We present our se-
curity solution which combines online Traffic Engineering (TE) and network security techniques.
The Crossfire attack is a powerful attack and multiple mechanisms are needed to defeat it. Our
mechanism is an online TE strategy which is performed under the control of a centralized vantage
point (the network controller) which allows us to deal with routing instabilities that current prac-
tices (such as implicit OSPF weight tuning) may cause. The detection and mitigation mechanisms
are coupled and interdependent in our approach.

Implementation of Working Prototype: We implement a working prototype of the proposed
technique and we also evaluate it on an emulated testbed (Mininet). We show the experimental
results of its performance evaluation to highlight the feasibility, efficiency and accuracy of our
approach. The prototype can also be deployed in a production testbed.

Incentives: We outline a number of incentives for ISP collaboration and for deploying the
proposed security service within an enterprise network.

1.4 Overview

The rest of the thesis is organized as follows: In the first part of chapter 2, an overview of the
Crossfire attack is described, while the second part gives an overview of the Software Defined
Networking. Chapter 3 presents the proposed solution to counter this type of DoS link-flooding
attack. At first, we introduce our attacker model based on the Crossfire attack and then we explain
how our detection and mitigation approach is designed. Chapter 4 gives implementation details of
our attacker and defender. Chapter 5 shows the evaluation results of our attack countermeasures
and discusses the conclusions and insights drawn from them. In chapter 6, future tasks related
to this work are proposed. Chapter 7 summarizes the thesis.

14

CHAPTER 1.

INTRODUCTION

Chapter 2

Background

The first part of this chapter presents an overview of the Crossfire attack. More details about this
DoS link-flooding attack can be found in [4]. An overview of the Software Defined Networking is
described in the second part. Further information can be found in [10, 11].

2.1 The Crossfire Attack

The aim of the Crossfire attack is to block legitimate users from accessing a certain geographical
area of the Internet, the Target Area. This area usually contains hosts offering important services
to the rest of the Internet and is surrounded by multiple public servers, the Decoy Servers.
The concept of the attack is based on the fact that specific network links, the Target Links,
lead to both the Decoy Servers and the Target Area. Therefore, an attacker can employ bots to
flood the Target Links by sending traffic only to the Decoy Servers. As a consequence, when the
Target Links are flooded, the Target Area becomes unreachable from the rest of the Internet.
The intended victim is not aware of the attack since there is not any attack traffic destined to
the Target Area.

To launch the Crossfire attack, three main steps are needed: the link map construction, the attack
setup and the bot coordination. These steps are briefly described in the following subsections.

2.1.1 Link Map Construction

Adversary Bots
.@, e traceroute

‘?sﬁ[\);ég —”:‘ \\
»s -

traceroute
Internet .

Decoy servers- -\ Target Area
Link-Map Construction
Traceroute: Bots — Servers
Link-Persistence

Figure 2.1: Link Map Construction [4]

The first step of the Crossfire attack is the link map construction (Figure 2.1). The attacker
builds a map of the network links along the paths from her bots to both the decoy servers and
the public servers in the target area using traceroutes and processing their results. Each bot
executes multiple traceroutes to a destination to determine whether the same links are traversed
each time or not. Some ISPs often load-balance the traffic passing through their network, resulting

15

16 CHAPTER 2. BACKGROUND

in different routes between the same pairs of nodes. If this is the case in the data gathered by
the traceroutes, the corresponding network links are not considered as candidate target links to
be flooded by the attacker (due to the implicit link ”protection” through load-balancing).

2.1.2 Attack Setup

Adversary

Internet

Decoy servers- -\ Target Area
|39 Attack Setup
(1) Flow-Density Computation
(2) Target-Link Selection

Figure 2.2: Attack Setup [4]

After the link map has been constructed, the attacker uses the links of the stable routes of the
link map to determine the target links (Figure 2.2). The candidate target links are categorized
based on the largest number of routes and flows passing through them, the flow density, and
leading to the target area. If a certain link is used by a large number of flows, then its flooding
can effectively disrupt the access to the target area. The attacker selects multiple disjoint groups
of potential target links and floods one each time. The feature of dynamically changing the set
of links to flood enhances the undetectability of the attack. The final target is to concurrently
flood all the links of a certain set of target links each time in order to fully disrupt target area
access for legitimate traffic.

2.1.3 Bot Coordination

\d\ersan

\t!acl\ Flows

4!— e
(_ommand' s=s e

| |
\

\

Internet

Decoy servers xh’"«.,ngl_’gﬂ Area
Bot Coordination
Mtacl\-l-’lo“ Assignment
Ta rget-Link Flooding

Figure 2.3: Bot Coordination [4]

In the last part of the attack, the attacker assigns to her bots both the decoy servers to send
traffic to and their corresponding flow rates and then the bots start the flooding (Figure 2.3).
The assignment is made in a way that each flow from a bot to a decoy server has low bandwidth
demand while the selected target links are flooded by the aggregate flow rate which exceeds the

2.2 Software Defined Networking 17

target link bandwidth. The flows generated by the bots have low-rate so that no current security
solution can classify the traffic as malicious. Furthermore, the traffic needed to flood the selected
target links is evenly distributed to multiple bots and decoy servers. Thus, the servers in the
target area are unable to detect the attack as no attack traffic is destined to the target area. The
decoy servers are also unable to identify the attack since the attack traffic is distributed in a large
number of decoy servers and there is not a high enough bandwidth increase in each server to
trigger an alarm. After the assignment has finished, the bots start generating the attack traffic.
The adversary can repeatedly execute the bot coordination part of the attack by changing the
set of the target links in order to prolong its duration and “mislead” the defender.

2.2 Software Defined Networking

Software Defined Networking is a novel network architecture which allows separation of the net-
work control functions, the control plane, such as tracking the topology, computing routes and
installing forwarding tables, from the forwarding functions, the data plane, such as forwarding,
buffering, filtering, marking packets. Therefore, the network control can directly be programmat-
ically configured having abstract knowledge about the underlying infrastructure. Furthermore,
the control plane is logically centralised maintaining a global network view. The SDN deploy-
ment simplifies the network functions, operation and maintenance and enables the development
of open standards and thus rapid innovation. In addition, the use of SDN reduces the need of
intelligence in the network devices since the control decisions are made by the centralised network
controller.

2.2.1 OpenFlow

OpenFlow is a communication interface and mechanism between the control plane and the data
plane in an SDN environment. A typical SDN environment consists of multiple switches and
network controllers (Figure 2.4). Each switch contains a flow table and a secure channel interface.
The flow table processes and forwards traffic flows using sets of flow matching rules, the flow
entries. The flow rules contain header fields to identify certain traffic packets and actions to
perform on the corresponding packets. Each entry in the flow table also contains a list of counters
which hold statistical information about the matching packets. The network control plane decides
how to treat packets which have no matching flow rules in the flow table of a switch. A controller
installs and removes flow entries in a flow table through the secure channel of the switch using
OpenFlow-based messages. OpenFlow is currently the only standardized protocol which enables
Software Defined Networking and can be integrated on current physical and virtual networks.

OpenFlow
Protocol | \ 4
Secure [g+**"" Controller

Channel

Flow
Table

OpenFlow Switch

Figure 2.4: OpenFlow-based Switch-Controller Communication [16]

18

CHAPTER 2. BACKGROUND

Chapter 3

Attacker and Defender Model

Before discussing how the Crossfire attack is modelled and how our detection and mitigation
approach is designed, we briefly describe the environment we are working in. A multihomed
enterprise network is considered to be protected by our solution against the Crossfire attack. This
countermeasure is offered by collaborating Internet Service Providers (ISPs) as a service to the
customer, the enterprise network. It is safe to consider that an enterprise network is multihomed
as in general the enterprise networks use more than one ISP to access to the Internet in order to
achieve higher throughput, fault-tolerance etc. We consider that we work on a SDN environment,
where the network devices of the enterprise and the providers’ networks are managed by their
corresponding controllers. This SDN principle simplifies ISP collaboration. Dealing with the
attack locally precedes ISP collaboration, and it helps scale up our approach since each domain
does its best to handle the attack first on a local level and then on a higher scale by involving
more ISPs. This also helps to mitigate the propagation of routing instabilities to the outside
world, when the outside world does not need to know about local TE changes. More details on
the exact approach will be explained later in this chapter.

Multiple ISPs should collaborate to counter this attack considering that the attack traffic will
derive from multiple network domains. The incentives for assuming that the involved ISPs col-
laborate are the benefits from providing the security service in terms of revenue, the reputation
they earn in the network security area and the fact that the ISPs, based on our design, do not
need to disclose valuable information, such as their topologies, routing policies etc., which would
violate their privacy and put their business at risk. An ISP ”sees” the enterprise network and the
other ISPs as a cloud and has only knowledge about its peering links to the other ISPs and the
enterprise network.

3.1 Attacker Model: Launching a Reactive Crossfire At-
tack

In this section, we describe how the attacker in the Crossfire Attack is modelled in the context
of this thesis.

In general, the attacker behaves as described in section 2.1. However, in order to evaluate our
proposed solution to the attack, we have to make some assumptions on how the attacker reacts
to specific cases, e.g., rerouting, which were not fully addressed in [4].

The attacker starts with setting up and launching the attack following the same steps as in
the Crossfire attack. Thus, the attacker constructs a link-map for a certain target area, sets up
the attack finding the target links based on their flow density and then assigns to her bots the
decoys servers to send traffic to. The attacker continues with constantly monitoring the previously
constructed link-map and the corresponding flow-density until any changes, i.e., topology changes
due to reroutings, are detected. The attacker can then determine if any rerouting along the paths
between her bots and the decoy or target servers has happened. If this is the case, the attacker
sets up again and relaunches the attack. The attacker has a fixed attack budget and should
allocate her resources as efficiently as possible. The attack budget is defined as the total number
of bots the adversary employs to launch the attack and in our case is considered to be fixed. The
attacker model is summarized in Figure 3.1.

19

20 CHAPTER 3. ATTACKER AND DEFENDER MODEL

v

Setup and Launch Attack:
A. Link-Map Construction

_) B. Attack Setup

C. Bot Coordination

12

Monitor Link-Map
& Flow Density

YES

Detect Changes?

Figure 3.1: Attacker Model

There are many strategies of decoy server assignment to bots. A strategy is selected considering
that the attack traffic should be evenly distributed between the bots and the decoy servers.
Thus, the bots should not generate too much traffic as they may be considered suspicious by
the defender and each decoy server should not receive a large amount of traffic so as an attack
alarm is not triggered. In this way, the defence approach becomes difficult, especially in terms
of reliable detection of the bots. We further discuss about assignment strategies as well as our
custom one in section 4.1.3.

3.2 Defender Model: Detection and Mitigation Approach

In order to detect and mitigate the Crossfire attack, we divide the problem in two parts: the
local approach that is enabled when the attack occurs in the local domain and the inter-domain
approach which is executed when the local approach is unable to handle the problem on its own
or when the attack happens on an inter-domain level. The inter-domain approach enhances the
detection and mitigation capability of the local one.

We consider that a Crossfire attack may arise either within the local, enterprise, network or on the
peering links between the local domain and its ISPs. In the scope of this thesis, we assume that
a Crossfire attack cannot happen within an ISP network due to the abundance of its resources.
We also consider that attack traffic does not originate from the local, enterprise network.

Routing Monitoring

~_ {7)

A Inter-controller
Communication

Figure 3.2: Defender Components Interaction

Taking into consideration the above mentioned parts of our approach, we further define the
components of our defender model. This categorization is necessary to help the reader understand
the principles of our approach. The Monitoring component conducts measurements to identify
severe congestions derived by a potential Crossfire attack and classify the congested traffic within
the network domain. The Routing component deals with the congested traffic during the Crossfire
attack and the Inter-domain (Inter-controller) component defines the interface among the local
domain and the collaborating ISPs. The components interact with each other in a specific way
which will be described later via examples. A simple model of the components interaction is
illustrated in Figure 3.2.

In Figure 3.3, our defence approach in a local domain is presented. Every link in the local network
is constantly monitored. In case of a severe link congestion, we check if another one has happened
in the past (i.e., if our security algorithm has at least been executed once). This is because we
would like to correlate a current congestion with an old one. If this mechanism is run for the first

3.2 Defender Model: Detection and Mitigation Approach 21

2

Monitor
Congestion

Y

Severe
Congestion?

Record Rerouted Sources

Notify
Upstream
ISP

Detect Returning
Sources/Crossfire
Attack?

Rerouting
Feasible?

Source Ranking/
Rate-Limit Check

Source
Rate-limited?

Figure 3.3: Defender Model

time, then we check if a rerouting is possible to bypass the congested link. If the local topology
allows an alternative path and this path has the required resources, then a selection of the
congested flows is rerouted and the corresponding sources are recorded. The flows are rerouted
based on a specific strategy, the implementation of which is described in section 4.2.2. We employ
destination-based rerouting for the congested flows since the number of the destinations of the
congested traffic is far less than the number of the congested flows. We have to remember that
in the Crossfire attack a link is flooded by a large number of low-rate traffic flows. Our rerouting
strategy leads part of the congested traffic in routes disjoint to the previously calculated by
the attacker target links and potentially disjoint to the new ones (the calculated ones after the
attacker has detected and reacted to the route shifts). The design goal of the rerouting is to
“force” a potential attacker to persist in flooding target links using the same sources but in traffic
destined to different destinations (decoy-servers). The congestion is mitigated and malicious
traffic can be detected if the same sources persist in further congestion events. The current and the
past flooding events are correlated, and if the above-mentioned desired reaction of the potential
attacker is identified, then the corresponding sources are marked as suspicious, incrementing a
corresponding counter. This traffic engineering mechanism enforces mitigation of the congested
traffic and may lead to the detection of the malicious traffic. We always attempt to reroute the
congested flows until their sources which are responsible for multiple congestions are rate-limited
when their suspiciousness degree exceeds a threshold. The higher the score of a source, the more
confident we are to detect the malicious traffic with higher probability. The concept of scores is
necessary in order to avoid considering legitimate sources as malicious as much as possible. The
upstream ISPs may help in the local detection and mitigation approach when there is not any
rerouting capability in the local domain. The corresponding ISPs reroute the congested traffic
through either another peering link or through a collaborating ISP if another peering link does
not exist or does not have the required resources. In this case, the local algorithm works as before.

Our defender model in the case of a Crossfire attack which aims at the peering links of the local
network with its direct ISPs is quite similar. The ISPs monitor the peering links with the local
network and reroute the traffic in the event of a congestion. The rerouting is feasible since its
bandwidth requirements are met by another peering link of the same or a collaborating ISP. The
ISPs may identify and rate-limit the malicious traffic in the peering links as in the case of our local
security approach. This is due to the fact that the malicious sources will persist in congesting
the inter-domain links. This detection and mitigation approach requires communication and

22 CHAPTER 3. ATTACKER AND DEFENDER MODEL

collaboration among the direct providers of the enterprise network.

Y o

Link Congestion
Decoy Decoy
Server 1 E Server 1
Decoy Decoy
Server 2 L Server 2

Decoy
Server 1

Decoy
Server 2

Legitimate traffic

>

Legitimate traffic

Attack traffic

Attack traffic
Rerouted
EI
Y a—

Target
Server

Target ---oo- legitimate traffic
Server Rerouted
attack traffic

o

(a) Sample Topology (b) Target Link Congestion (c) Congestion Rerouting

Figure 3.4: Local Rerouting Example

To further explain our defender model in more detail, we will use an example (Figures 3.4, 3.5
and 3.6). Let us consider a simple topology with a target server, two entry switches and two
decoy servers (Figure 3.4a). Taking into account the Attack Setup step of the Crossfire attack,
described in section 2.1.2, the target link of this topology and of this designated target area is
the one marked in red colour. The attacker therefore assigns to her bots to send traffic to decoy
servers 1 and 2 and launches the attack to flood the target link (section 2.1.3). There is also
legitimate traffic with destination to both the decoy and target servers (Figure 3.4b).

The target link is severely congested and for example the decoy server 2 is the destination of
the congested flows which is selected for rerouting based on our classification mechanism. This
mechanism attempts to implicitly identify the decoy servers. It is based on the assumption that
the attacker will attempt to evenly distribute her flows among the decoy servers. Thus, the flows
towards the decoy servers will occupy homogeneous bandwidth on the flooded link. We assume
that the bandwidth of flows leading to target servers does not follow the same distribution.
The congested flows are aggregated by their destination and the aggregated flows are classified
according to homogeneous occupied bandwidth in the target link. Then, the destinations with
high homogeneity level and contributing to a large part of the congestion bandwidth are chosen to
be rerouted, so the path towards the target area may not be affected, i.e., rerouted. This ensures
that malicious traffic detection is enabled in subsequent link congestions. If our mechanism also
changes the routes to the target servers, the malicious traffic may be detected but after more
executions of our detection algorithm than in the previous case. In any case, any congestion is
successfully mitigated. Consequently, the traffic, legitimate and malicious one, to decoy server 2
is now routed towards a path that is disjoint with the flooded link (Figure 3.4c). We have to note
that in the case of a more complex topology and in the presence of severe congested links within
the same time interval, the reroutings should take into account the concurrent flooded network
links. This is necessary since the new routing paths should not contain the already congested
links. Our approach will also find routing paths that are able to accommodate the congested
flows in terms of bandwidth as much as possible. The flows of a congested link could be rerouted
in multiple network paths. We should note that this is not equivalent to multipath routing per
flow but per group of rerouted flows. Each individual flow still follows a single path from the
available ones, albeit different than its initial one due to the occurrence of the rerouting event.
The sources that were rerouted are recorded along with the rerouted paths.

The rerouting will change the link-map of the attacker. When this change is identified, the
attacker will set up again and relaunch the attack (Figure 3.5a) based on the attacker model
(Figure 3.1). The calculated target link will be the same as before in this example. The attacker
now assigns to her bots to send traffic only to decoy server 1 since the decoy server 2 is reached
through a path which is disjoint with the target link. The attacker will stop sending traffic to
decoy server 2 considering that the new path along this server does not contain the target link

3.2 Defender Model: Detection and Mitigation Approach 23

and that she has a fixed attack budget, as mentioned in section 3.1. Our design is based on the
fact that the time of the attacker’s readjustment is higher than that of the defender’s reaction.
The time it takes the defender to react is faster than the time that the attacker identifies and
responds to the defender’s reaction. Therefore, our approach alleviates the problem.

X N X N
“\ //ﬁ/

=

Link Congestion

Decoy
Server 1

Decoy
Server 2

Decoy
Server 2

x I e Legitimate traffic x I
Attack traffic + ——— Attack traffic +
L—

Decoy
Server 2

Legitimate traffic Legitimate traffic

Attack traffic

Rerouted
legitimate traffic

Target Rerouted

Server legitimate traffic

Target Rerouted

Target

Server legitimate traffic E Server
—
—7

(a) Attack Resetup (b) Severe Recongestion (c) Suspicious Source Marking

Figure 3.5: Local Rerouting Example - cont.

This rerouting event may increase the cost of the attack as some bots may be required to send
more flows to the same decoy servers, decoy server 1 in this example, to flood the target link in
case no more decoy servers come into play as in this example. Our approach attempts to increase
the probability of detecting the attack at the decoy servers by implicitly forcing the attacker to
assign more flows to certain decoy servers (more bandwidth is received by the decoy servers).
The target link is flooded and the sources of the flows that were previously rerouted are present
in the congested link (Figure 3.5b). Since the rerouted sources stopped sending traffic towards
the rerouting paths and are now present in the flooded link, we can assume that these are
suspicious sources (Figure 3.5¢). Thus, these sources are marked in our attempt to detect the
malicious traffic. As long as the attack is persistent and our topology allows multiple reroutings,
the malicious traffic can be distinguished with higher certainty. When the suspiciousness rank of
some sources surpasses a threshold that allows us to determine that they are malicious with high
probability, then they can be rate-limited. To consider that a source is suspicious, we should take
into account that subsequent link congestions should not take place along the just previously
rerouted paths. In this way, we ensure that traffic sources in a flash crowd will not be considered
malicious. In case a flash crowd causes a severe congestion, the corresponding sources will not
stop sending traffic towards a rerouted destination. In case of a flash crowd during the Crossfire
attack, then multiple rounds of our algorithm should be executed to be able to distinguish the
malicious traffic. Up to now, we consider that the granularity of the traffic flows is on the level
of the IP addresses (source IP address, destination IP address tuples). However, in large scale
enterprise networks where thousands of flows are present, it is easier to manage flows on an IP
prefix level, essentially employing aggregation in order to deal with the issue of high volume
state management. Our approach in this case does not change but our algorithm should run
more rounds than when managing traffic flows as IP address tuples in order to determine that a
prefix is malicious.

The congested traffic is rerouted as before as long as the topology allows it. In case there are
not any further alternative routes for the congested flows or the topology does not allow any
secondary paths, as in Figure 3.6a, then the corresponding upstream ISP should be notified to
extend our detection and mitigation attempts. The controller of the local network communicates
with the one of the provider network to reroute the congested flows through another peering
link of this provider or of a collaborating one and notifies the local network about the rerouting
state of the reported flows (Figure 3.6b). The local algorithm continues its execution as before.
The advantage of our approach is that both the local network and the collaborating providers
are allowed to not disclose information about their networks, such as their topologies, routing

24 CHAPTER 3. ATTACKER AND DEFENDER MODEL

policies etc.

Controller

Congestion
DoS Control

Channel [Channel

Legitimate traffic

—— Attack traffic

No rerouting
available -
Contact the ISP

Rerouted
legitimate traffic

Server 2

______ Rerouted
attack traffic

Enterprise
Network
Controller

Legitimate traffic

Attack traffic
Enterprise
Network

(a) Infeasible Local Rerouting (b) Inter-Domain Rerouting

Figure 3.6: Inter-Domain Rerouting Example

Chapter 4

Attacker and Defender
Implementation

As discussed in Chapter 3, we design our security approach assuming a pure SDN environment.
To implement our approach on this environment, we use the OpenFlow protocol which is cur-
rently the only one that enables Software Defined Networking in a clean and standardised fashion.
As mentioned in section 2.2.1, the network control functionalities in a typical OpenFlow-based
SDN environment are performed by logically centralised network controllers. There is currently
an increasing number of frameworks that enable the development of OpenFlow controller appli-
cations. The choice of the controller platform depends on the needs of the controller applications,
the programming language we would like to use, etc [17] . POX is a Python-based OpenFlow
controller framework [18, 19]. It currently supports OpenFlow version 1.0, is widely used and
supported and its learning curve is easy. However, POX has slow performance. It allows easy
and fast development of OpenFlow controller applications when there are not any controller per-
formance requirements and thus is preferred in research, experimentation and demonstrations
[19, 17, 18]. For the above-mentioned reasons, POX is chosen as the OpenFlow controller plat-
form to implement our security approach. We have to note that we work on the carp branch of
POX since it was the most recent release when this thesis started.

4.1 Attacker: Launching a Reactive Crossfire Attack

In section 3.1, we described how the Crossfire attacker is modelled. In this section, we will explain
how we implement it based on this model.

4.1.1 Link-Map Construction and Monitoring

The attacker selects a certain geographical area as a target and builds a map of its network
links (i.e., a link-map). The attacker runs multiple traceroutes from her bots to public servers
inside and around the target area, gathers all the results and processes them to construct the
link-map. In addition, the attacker executes traceroutes periodically to verify whether there are
any modifications to her constructed link-map or not. In case of a map change, the adversary
uses the updated data to set-up and launch her attack over again.

4.1.2 Flow Density Computation - Target Link Selection

The attacker processes the link-map she has built to select the target links to flood (Figure 4.1).
The attacker computes how many times a network link is traversed, i.e., the flow density of a
link, along the multiple routes from her bots to the target area servers. Then, she selects the
network link with the highest density as a target link. When a target link is determined, the
bot to target servers paths which include it are removed from the set of bot to target servers
paths which is taken into account to determine a target link. The algorithm runs again until the
attacker has selected as many target links as needed for cutting-off the target area from the rest
of the Internet. This process chooses the link with the highest flow density in each execution.
This characteristic guarantees that the chosen target link maximizes the effects of the attack. The

25

26 CHAPTER 4. ATTACKER AND DEFENDER IMPLEMENTATION

algorithm also enables selecting disjoint target links which are flooded in sets to avoid causing
topology changes within a certain target area. If the adversary keeps constantly flooding a single
set of target links, route changes will arise from link loss detection mechanisms in conventional
routing protocols (OSPF, IS-IS, BGP) [4]. This feature helps in keeping the attack undetectable.

v

R: set of all bot to target area routes
L: set of candidate target links
T: set of target links

Add all links of R to L

Find the link from L with the higest
Flow Density and add it to T

v

Remove all routes of R
that include the target link

Figure 4.1: Target Link Selection Algorithm [4]

4.1.3 Bot Assignment Strategy

After the adversary has selected the target links to flood, she has to assign to her bots the decoy
servers to send traffic to. Each bot generates low-rate traffic to a decoy server in the Crossfire
attack in order not to be distinguished from legitimate sources and therefore not to be detected.
Thus, each bot should generate flows leading to multiple decoy servers so as the aggregate traffic
of a large number of bots is capable of flooding the target link. The total malicious traffic
received by a decoy server should not have a high bandwidth demand to avoid raising an alarm
for a potential attack. Hence, the selected bot assignment strategy should distribute the traffic
between the bots and the decoy servers as evenly as possible. This is not a trivial problem and
many strategies can be developed.

Taking into account that the target links can be in different geographical locations as well as the
bots exist in multiple network domains and physical areas, we assume that the attacker assigns
her bots to a set of decoy servers based on their proximity. In this way, the attacker maximizes
the consequences of the Crossfire attack due to reduced delay between the bots and the assigned
decoy servers. Therefore, to assign bots to decoy servers, we first need a map of the bots and the
corresponding accessible decoy servers. As this task is out of the scope of this thesis, we employ
a simplistic approach towards this issue. As we are aware of the bot locations and the topology
characteristics on our experimental evaluation, we are able to efficiently assign sets of bots in
corresponding sets of decoy servers. A more sophisticated approach could use a mapping from
the TP addresses of both the bots and the decoy servers to their geolocations [20].

Considering the previously mentioned bot assignment criteria, we define a custom bot assignment
scheme (Figure 4.2). After the clustering which we discussed has been completed, the decoy
servers that are eligible to receive traffic by a set of bots (i.e., the routes towards them traverse
a given target link) are mapped to corresponding First-In First-Out (FIFO) queues. Then, the
set of bots of the cluster is placed in every FIFO queue. We have to note that all eligible decoy
servers are accessible by all bots that are assigned to participate to this cluster. The number of
flows which are necessary to occupy the total link capacity of, i.e., to flood, the given target link is
afterwards computed. We assume that the attacker can predict the target link’s bandwidth with
high precision and that she is aware of the size of her generated flows. Based on the calculated
required number of malicious flows, the attacker chooses a FIFO queue from the ones that were
previously constructed to assign a single flow to one of its bots. After a single bot, which is
contained in a queue, has been assigned to send traffic to the corresponding decoy server, the

4.1 Attacker: Launching a Reactive Crossfire Attack

27

4

Clustering based on both the bot
and decoy server (target link) locations

v

Place all bots per corresponding eligible
decoy server of a cluster in a FIFO queue

7

Calculate required number of flows
to flood the corresponding target link

NO

Remaining
required

le
*‘

Assign a single flow to a bot from the top
of the FIFO queue mapping to a decoy server
of the specific cluster (target link)

v

This bot should not have been assigned a
flow to a previous checked decoy server until
all servers are checked in a round

12

Assign a flow to this bot if a disctinct bot does

flows?

Check next FIFO queue in round-robin fashion

1

Flush assigned bots list if all decoy servers
have been checked within this assignment round

not exist and place it at the end of its queue

Else, put bot at the end of the queue, get
another one for its top until a unique bot is found

Figure 4.2: Bot Assignment Strategy

next FIFO queue in round robin fashion is considered. An assignment round is completed when
every decoy server is included as destination to the corresponding assigned flows. During an
assignment round, the scheme attempts to assign flows to distinct bots to ensure that all given
bots of a cluster are assigned around the same number of flows. In case the assignment scenario
does not allow any other unique bots to be assigned within an assignment round (due to the
remaining required number of flows and the numbers of both the bots and decoy servers), then
the bot under consideration is assigned a flow. Then, the next decoy server in order is considered
as the destination in a to-be-assigned flow. When a flow assignment is attempted, the scheme
selects a bot from the top of the FIFO queue and then this bot is placed at its end regardless of
whether this bot is assigned to send a flow in the current selection or not. The algorithm runs
until the number of the assigned flows is equal to the number of the required ones. The features
of our custom bot assignment strategy enable as equal distribution of the flows with destinations
to the eligible decoy servers as possible. This scheme also attempts to evenly allocate the required
number of flows to the set of bots. Considering that the issue of equally allotting flows between
bots and decoy servers is challenging as well as it is a minor task in the scope of this thesis, we
did not undertake to devise a more sophisticated scheme.

4.1.4 Attack Traffic Generation

In addition to the previously discussed assignment phase, the rates of the corresponding assigned
flows should be determined. Based on the aforementioned assignment criteria and assuming that
the decoy servers are publicly accessible web servers, we consider that each attack flow consists
of sending one HTTP GET message per second. Hence, the calculation of the number of flows
which is necessary to flood a target link, mentioned in the previous section, depends on this unit
flow-rate. However, in case of multiple topology changes around a given cluster of bots and decoy
servers, it is possible that multiple attack flows are generated between the same pair of endpoints
to flood a target link (i.e., the flow-rates are increased - n-fold rate regarding the mentioned unit
flow-rate). In case of topology changes, the decoy servers’ routes could shift to network paths
disjoint with the target link calculated by the attacker. Thus, the number of the eligible to receive
attack traffic decoy servers for a given cluster may be reduced and the corresponding flow-rates
of the bots should be increased to be able to flood the target link.

We have to note that no potential attack alarm is raised at the decoy servers since the considered
web traffic is a legitimate one and by taking into account the characteristics of our custom
assignment strategy.

28 CHAPTER 4. ATTACKER AND DEFENDER IMPLEMENTATION

The bots are afterwards ordered by the adversary to launch the attack based on the assigned
decoy servers and their corresponding flow-rates.

We implement the traffic generation using Scapy, a program that easily crafts network packets
[21]. Tt is Python-based as the OpenFlow controller framework we use, i.e., POX. We first tried
to generate web traffic using the GNU WGET program [22], but due to bugs and errors from
using it within our emulation environment we ended up into using Scapy.

4.2 Defender: Detection and Mitigation Approach

The OpenFlow controller framework we employ to develop our security approach, i.e., POX,
is based on an event-driven programming model. The controller registers for events and the
developer implements event handlers [17].

The POX-based controller functionalities are implemented on multiple Components [19]. There-
fore, our defence solution depends on Components which are provided by the POX framework
for core functions and useful characteristics as well as on Components which we develop for the
needs of our proposed scheme.

Considering the architecture of the proposed defender model which is defined in section 3.2, we
will explain in detail how each of the architecture’s components are implemented in the following
sections.

4.2.1 Monitoring

As briefly discussed in section 3.2, the Monitoring component is responsible for identifying se-
vere network link congestions. To enable this feature, the component measures periodically the
bandwidth of the links within the considered network. It is implemented using the Port Statis-
tics capability of the OpenFlow protocol. OpenFlow enables requesting information about the
physical ports of a switch and the response message contains the transmitted bytes of the con-
sidered ports. By periodically parsing this data, the transmitted bandwidth of a given port can
be determined. We assume that a single network link is connected to a port of a switch. Thus,
the bandwidth of a port in a switch determines the bandwidth of the corresponding network
link. It has to be mentioned that bandwidth measurements are made and link flow information is
retrieved using the OpenFlow protocol. This implementation decision is not binding. One could
use an external mechanism for these purposes (e.g., NetFlow) that would collaborate with the
defence mechanism imlpemented in OpenFlow. We chose to use OpenFlow for bandwidth mea-
surements and flow data collection since we wanted to build a complete network application that
runs using OpenFlow.

In the case of the enterprise network, all its network links are monitored whereas the peering
links to the enterprise network are only monitored within a provider network domain. This is
due to our assumption in section 3.2 that a Crossfire attack may occur either in a local domain
or on its peering links with its ISPs.

The actions of the monitoring component constitute the first step in our attempt to detect and
mitigate the Crossfire attack. When a link congestion occurs, information about the flows passing
through the congested link is requested from the corresponding port and switch. This is enabled
by employing the Individual Flow Statistics mechanism of OpenFlow. The congested flows are
grouped by distinct destination Internet Protocol (IP) addresses. Bandwidth measurements are
then conducted to the congested link for each group by using the Aggregate Flow Statistics
feature of OpenFlow. Our goal is to identify the bandwidth distribution of the aggregate flows.
The groups are sorted in a way that the destinations occupying around the same bandwidth at
the congested link are higher in order (Figure 4.4). This is because the attacker aims to equally
distribute the number of flows which are required to flood a target link among the decoy servers.
Therefore, this classification mechanism is a heuristic in the attempt to exclude target servers
to be placed in higher order than many decoy servers. The aggregate flows in a high order will
be selected for rerouting as long as their bandwidth requirements meet a rerouting bandwidth
threshold. The selection of the destinations to reroute is completed as long as the total bandwidth
demands of all the selected for rerouting groups reach the defined threshold or the next group in
order does not fit within the threshold in terms of bandwidth. We assume that the target servers
may not occupy around the same bandwidth as the decoy servers. Thus, this heuristic avoids to
reroute flows with destinations leading to target servers. Even in the case where the heuristic

4.2 Defender: Detection and Mitigation Approach 29

1

Severe link
congestion event

x t

Get link flow info - group
by destination address Decide to reroute destinations higher in the
classification order meeting a rerouting
V bandwidth threshlod for every congested link
Measure each
destination bandwidth T

Classify destinations of each congested link
regarding their bandwidth homogeneity

A
Concurlrent NO -~
Congestions?
Concurrent
»| congestions
interval

Figure 4.3: Link Congestion Monitoring

is mislead and leads to unwanted target area traffic rerouting, the detection algorithm does not
break but needs more rounds in order to clearly identify attack traffic.

DestinationA Dest 4
Bandwidth

Dest 1 Dest 2

Dest 3

>

Lower Classification Order

Figure 4.4: Example of our Classification Mechanism

Then, the routing component is triggered by a message from the monitoring one to deal with
the congested traffic. The message contains information about the congested link such as the
aggregate flows’ destination IPs that were selected to be rerouted, their bandwidth and their
corresponding source IPs. It also contains a matrix with the available bandwidth of every net-
work link of the considered network domain to facilitate the rerouting decision of the routing
component. Furthermore, it also includes a matrix of the level of suspiciousness of some source
addresses. This matrix enables rate-limiting to flows with sources whose rank exceeds a prede-
fined threshold. In the following paragraphs within this section, we will explain how this matrix
is constructed and its use. In case of multiple congested links within the same time interval, these
link congestions are handled together as a batch, so as a single message is sent to the routing
component. Figure 4.3 presents this part of our algorithm. The control is then passed to the
routing component, which is explained in section 4.2.2.

After the routing component has rerouted the selected congested flows, the monitoring component
is triggered again. This paragraph describes the other functionality of the monitoring component
that monitors the reroutings made by the routing component. The rerouted flows and the network
links towards the new paths which are disjoint with the previous routes are recorded. We aim at
identifying potential changes in the behaviour of the rerouted flows in the event of a subsequent
congestion. We expect that the attacker may stop sending traffic towards the new routes as
these may not include potential target links. She may reassign her bots to send traffic to other
destinations instead. When a subsequent congestion occurs in a non rerouted link, the Individual
Flow Statistics mechanism of OpenFlow is used as discussed before. However, in this case it
requests information not only about the flows passing through the congested link but also about

30 CHAPTER 4. ATTACKER AND DEFENDER IMPLEMENTATION

v

Subsequent severe link
congestion event

)

Increase their corresponding
suspiciousness rank

Sources disappeared
from the rerouting paths
and currently appeared
in the congested links?

Link within previous
rerouting links ?

Correlate flow info of the congested links with
Get link flow info - group this of previous reroutings
by destination address *

Get current flow info of previous rerouting
links - group by destination address

Concurrent \)A
Congestions? NO kel

YES ConcurTent

»| congestions

interval

Figure 4.5: Rerouting Monitoring

the flows passing through the recorded rerouted routes. For scalability reasons, the information
about the rerouted flows is requested by a single switch, the first one towards the corresponding
recorded network paths. The new congestion may appear in a different link with respect to
the link of a previous congestion and many concurrent congestions may occur within the same
time interval which should be handled together as a batch as discussed before. Therefore, the
correlation between the recorded flows and the flows which are present in the current flooded
links is made after the time that is considered to deal with concurrent network congestions has
elapsed. We first check whether the recorded rerouted flows are still present at the rerouted
paths or not and then we verify whether the flows that disappeared from the rerouted network
links are now present in the current flooded links. If this is the case, the corresponding source
IPs are marked as suspicious, incrementing a corresponding counter. We have to note that in
a correlation round between the set of the rerouted links and the set of the concurrent target
links, we only increment the score of the suspicious sources by one even if these sources are
successfully correlated more than once within the same correlation round. This is a conservative
approach but it provides flexibility in avoiding false positives, e.g., when the suspicious source is
an IP prefix from which both bots and legitimate hosts originate. This scheme also deals with
the congestions due to flash crowds. After a rerouting is completed, the rerouted flows that may
congest the rerouted links will not be considered as suspicious. If the attacker reacts in as many
reroutings as possible, she makes us more confident to detect the malicious traffic with higher
probability. Figure 4.5 shows this part of our methodology.

4.2.2 Routing

The routing component is enabled by the monitoring one in the presence of network link conges-
tions. The monitoring component reports to the routing one the flows to be rerouted along with
their corresponding bandwidth requirements and a matrix containing the available bandwidth
of all the network links. A matrix which contains some source addresses and their score of being
considered as malicious is also reported. The routing component attempts to find new routing
paths for the congested flows taking into consideration both the bandwidth requirements of the
flows and the bandwidth availability of the network links along the alternative network routes. It
also sets a rate limit to flows with certain source addresses. This feature is enabled by installing
two queues in every port of a switch. The first queue is the default one which has the size of the
nominal network link bandwidth and the second one has a reduced size compared to the first to
achieve setting a limit to the rates of the flows which are placed in this queue.

4.2 Defender: Detection and Mitigation Approach 31

\

Group congested flows

by their routing paths T T

* 5 Contact the ISP
Monitor X "
Exclude flows Trom each Rerouted|Elows in cas.e ur?reroute
group that their sources flow info is stored
should be rate-limited
A A
v YES

Rate-limit sources with high
suspiciousness rank (if any)

Check next
aggregate flows

All congested
groups checked?

Many retries to
fully reroute a group?

Store
Unrerouted
Flow Info

All flows of this
group rerouted?

Find a new routing path for each group
YES which is disjoint with all congested links
and which fits (in BW) at least one grouped flow

All flows of a group
remained unrerouted?

Record rerouted flows
#71 and corresponding links

Reroute flow(-s) >

Figure 4.6: Congested Flows Rerouting

A new path is generated considering all the reported congested links. Thus, the new path will
not involve another already congested link. To optimize the search of a new routing path for the
reported flows, the flows are aggregated based on their existing path. It is first checked whether
some of the considered flows should be rate-limited or not based on the corresponding matrix
and then the groups are formed. For each group, the routing component attempts to find a new
path which will be disjoint with all the reported congested links. If such path is found, then the
available bandwidth of all the new path’s network links is checked. If the links can accommodate
flows from the selected group, these flows are immediately rerouted. In case that flows from
this group do not further fit in this new path due to its limited remaining available bandwidth,
the routing component attempts to discover a new path that will carry the rest. If there is not
another rerouting possibility or the component has made many attempts to reroute the remaining
unrerouted flows of this group and still not all of them are successfully rerouted, then the next
group of flows is examined. This happens for scalability reasons. In case that not even a single
flow of a group is rerouted due to no rerouting possibilities, then the corresponding ISP should
be notified to reroute these flows in an inter-domain level. We choose not to contact the ISP if
at least a single flow of a group is rerouted, as we consider that this successful rerouting partly
alleviates the congestion. We have to mention that the OpenFlow reaction time in detecting
and mitigating a congestion is orders of magnitude less than the time that takes the attacker to
readjust to this rerouting. The attacker has to execute multiple traceroutes to reconstruct her
link-map in this case. Therefore, a Crossfire attack cannot have a permanent duration.

The information about the flows which were successfully rerouted, their corresponding new rout-
ing links which are disjoint with their previous paths and the information about the first hop
towards the new routes are all reported back to the monitoring component in the attempt to
detect the malicious traffic. The last part of section 4.2.1 explains how the reported information
is used. Figure 4.6 illustrates the actions of the routing component.

32 CHAPTER 4. ATTACKER AND DEFENDER IMPLEMENTATION

4.2.3 Inter-controller Communication

The POX Messenger component provides an interface that allows external services to communi-
cate with POX using bidirectional JSON-encoded messages [23]. The communication is enabled
by selecting one of the transports (TCP socket and HTTP transport in the carp branch of POX).
POX and external software exchange messages via certain channels which are determined when
a connection between them is established. The Messenger component also provides a scheme
that enables POX to automatically process messages received on a channel, called Channel-
Bot [24]. Taking advantage of the benefits of the Messenger component, we build a custom
Messenger-based framework that employs TCP socket transport to enable POX inter-controller
communication. The Messenger component offers a simple client script (test_client.py) to test the
communication with POX. Based on this sample script, we enable the communication between
POX controllers using a client-server model. In addition to the simplicity of this approach, we
employ this model because we might not know which controller initiates first a connection to a
peer. As a result, each POX controller implements both a client and a server to enable inter-
controller communication. Each controller employs its server to receive messages and responds
using its client. In particular, messages are received by a ChannelBot which notifies the server
about the reception of messages. The server then decides how to process them and can send
back its replies by passing the corresponding responses to its client. The server interacts with
the Monitoring component of our application either by sending information to it or by getting
data from it that needs to be transmitted to other POX controller (Defender Model Architecture
- Figure 3.2). Figure 4.7 illustrates the details of the inter-controller communication interface.

Server ChannelBot ChannelBot Server

Inter-Controller Inter-Controller
Communication Communication
Client / \ Client

Figure 4.7: Inter-Controller Communication Interface

We assume that POX controllers are connected in pairs imitating the Border Gateway Protocol
(BGP) model [25]. Thus, each pair of controllers uses unique channels to communicate. Each
connection of the client of a controller to the server of another controller is determined by a
unique channel. Therefore, the communication between a pair of controllers employs two channels,
one for each communication direction. We consider two types of channels between every pair
of controllers, the Control channel that is used for exchanging connectivity and reachability
information and the DoS channel that is used for exchanging DoS-specific messages. We have
to remember that we assume that a single controller is responsible for a network domain. The
Control channel remains always active and a DoS channel is created whenever a DoS event
occurs within a network domain and the controller of another network should be notified. Before a
channel, either Control or DoS, is created, we employ the ChannelBot framework to authenticate
the peers. The client of a controller connects with the AuthChannelBot of the other controller
through a default channel to request a communication channel, either a Control or a DoS one.
The AuthChannelBot generates and sends a nonce to the client and the client replies with the
Message Authentication Code (MAC) of the nonce. We assume that each pair of controllers share
a secret key. Therefore, the controller that initiated the connection is successfully authenticated
and a communication channel for this direction is created. After the authentication phase has
completed, a ControlChannelBot or a DoSChannelBot is responsible for receiving messages from
the created Control or DoS channel respectively.

In our approach, the OpenFlow controllers exchange different types of messages depending on
the role each controller has. The controller of the enterprise network exchanges messages with its
peer on a direct upstream provider and the upstream providers’ controllers can also communicate
with each other. Since we consider an enterprise network connected to multiple direct upstream
providers as the environment for our approach (chapter 3), attack traffic may originate from the
direct upstream provider networks. As discussed, we assume no traffic is generated within the
enterprise network. When link flooding occurs within the enterprise network, the congested flows
which cannot be rerouted within the enterprise network are reported by the network controller to

4.3 Auxiliary Components 33

the corresponding upstream providers’ controllers in order to be rerouted through another peering
link between the enterprise network and the corresponding provider networks. The enterprise
network controller reports the flows to be rerouted, their bandwidth requirements and a matrix
which contains the sources that are marked as suspicious and their suspiciousness level. Since the
attacker reacts to the defender’s rerouting when she identifies the route changes, the new target
links may potentially be in the peering links to the local network. Therefore, the suspiciousness
information is used when such an event occurs.

An ISP’s controller which received a rerouting request by the enterprise network attempts to
reroute the reported flows using an algorithm similar to the one described in section 4.2.2. The
provider selects to which peering link the flows are rerouted. The decision is made based on the
bandwidth availability of the alternative peering links and the bandwidth requirements of the
reported flows. The provider attempts to reroute as many flows as possible. After the rerouting
has completed, the provider stores the information about the flows that were successfully rerouted
and the corresponding rerouting peering links and notifies the enterprise network by sending the
same information.

In the event of a peering link congestion after a rerouting has been previously completed due
to a reported enterprise network link congestion or an old peering link flooding, the provider’s
controller attempts to correlate the stored information about the previous rerouting with the
information about the current congestion in the same way as the correlation which happens in
the enterprise network domain and was previously described in the last paragraph of section 4.2.1.
In case of a successful correlation, the controller of the provider network sends an asynchronous
message to the enterprise network controller to update the scores of the sources marked by this
correlation on its local suspiciousness matrix. Of course, the controller of the provider network
also updates its local counters. The provider’s controller enforces a limit to the rate of the flows
whose source ranks surpass a predefined threshold in the same way as described in section 4.2.2.
There is also the case in which a provider cannot reroute any of the flows passing through
specific peering links (in case a congestion occurs in the peering links or of a reported enterprise
network congestion) due to lack of alternative peering links or of available resources on them and
a physically connected collaborating provider should be contacted. This type of interaction will
be taken into account in order to extend our current approach in a future work.

4.3 Auxiliary Components

In order to dynamically discover a network topology and detect any addition or removal of a
network link, POX provides a custom component, the openflow.discovery, which sends custom
LLDP messages to identify topology changes. The Monitoring component should be aware of
the links that are included in the topology since, as we discussed before, it monitors the network
links. Therefore the Monitoring component depends on the Discovery one.

4.3.1 Flow Routing Management

We consider that our defence mechanism against the Crossfire attack is deployed on networks
which have a baseline routing policy. The traffic on these networks is identified on a flow level.
For simplicity, we assume that flows prefer to be routed along the Shortest Path. Thus, we de-
velop a custom component that implements the Dijkstra algorithm to discover shortest path
routes along a network topology. This component depends on the Discovery component to dy-
namically discover the topology of a network. We also assume that the network controller holds
information about which traffic passes through and how this traffic is routed within a network
domain. This knowledge facilitates flow management in the presence of the Crossfire attack. In
our implementation, the controller aggregates traffic flows by their source and destination switch
pairs and by the network topology information that each set of flows “sees”. The default topol-
ogy for all flow groups is the full real network topology. The controller stores information about
the adjacent nodes of all nodes in the topology. In case the Crossfire attack occurs, the Rout-
ing component which runs on top of the custom routing management component employs the
network controller’s knowledge to mitigate severe network congestions. The Routing component
(described in section 4.2.2) creates virtual topologies on top of the default one by removing the
congested network links from the default topology information. In this way, a shortest path that
bypasses the flooded network links can be found while keeping the default routing information

34 CHAPTER 4. ATTACKER AND DEFENDER IMPLEMENTATION

intact. The congested flows are mapped to the corresponding virtual topologies and then the cus-
tom routing management component groups them as discussed and generates their shortest path
routes considering their virtual topologies. Therefore, the Routing component enforces routing
policies which supersede the baseline routing policy in order to mitigate severe congestions. We
have to mention that the type of the baseline routing policy (Shortest Path routing in this case)
is not binding to our defence approach. However, our solution depends on the existence of an
underlying flow routing mechanism similar to the one that was previously described.

4.3.2 Enabling Traceroute Capability in POX and OpenFlow

To build the link-map, the attacker runs multiple traceroutes around the target area (section
4.1.1). In general, there is not a built-in mechanism either in POX or OpenFlow that would
support executing traceroutes. As mentioned in the beginning of this chapter, POX implements
OpenFlow version 1.0 which does not support the installation of any rules at the switches that
would enable them to decrement the value of the Time-To-Live (TTL) field of an IP packet. Thus,
IP packets (and hence traceroute packets) must be first forwarded to the OpenFlow controller
which decreases their TTL value and then sends them back to the switches to forward them to
their next hop. Furthermore, the packet library of POX (pox.lib.packet) and more specifically
the source file which enables processing icmp packets in POX does not include an ICMP Time
Exceeded packet structure. This structure is necessary to identify intermediate hops when running
traceroute to a destination. Accordingly, to enable this capability, we implement a custom packet
struct based on the other ICMP packet structures in POX. These are the necessary steps towards
enabling traceroutes in POX and OpenFlow version 1.0. We have to highlight that there is a
limitation in the scalability of this approach. The execution of traceroutes using the OpenFlow
controller as proxy server adds a significant overhead and imposes load in the form of Packet-Ins
and Packet-Outs to the network controller. Furthermore, each probe of a traceroute should first
pass from the OpenFlow controller before it is forwarded to its next hop. Therefore, the latencies
displayed for each hop in a traceroute result are not indicative of the latency to reach this hop. Of
course, in practice the controller would not suffer this extra load and traceroute latencies would
be indicative since there are more scalable mechanisms used in practice to deal with traceroute
responses (ICMP agents on switches, distributed traceroute responders, etc.). The traceroute
controller application was specifically developed for exhibition and demonstration reasons and
to provide a classic means for an attacker to collect information about the IP-level topology
of a network. Enabling traceroute in SDN to gather this IP-level information is of course not
designed to help the attacker, but to enable an external source to troubleshoot routing problems.
Traceroutes are useful not for attack reasons but for troubleshooting and we do not think that
simply disabling traceroutes everywhere is a sound idea (we would not have so straightforward
attacks but also not so straightforward routing troubleshooting).

Chapter 5

Experimental Evaluation

In this chapter, we present the results produced by evaluating the performance of our defence
approach. At first, we describe how we set up our emulations. Then, we give details about our
performance metrics and we present the results in the corresponding sections. We afterwards
mention potential origins of induced error to our measurements and we finally discuss about the
conclusions drawn from our results.

5.1 Setup

To evaluate how our defence solution reacts against the Crossfire attack, we conduct emulations.
We have built a working prototype based on our attack countermeasures and we would like to
assess its performance as if it is deployed in a production environment. We deploy Mininet [15]
for network emulation. It is an easy and lightweight network emulator for developing OpenFlow-
based network control applications. As we discussed in chapter 4, we use POX as our OpenFlow-
based development platform. POX and Mininet are pre-installed in a single Virtual Machine
which can be easily downloaded and installed [26]. We use VirtualBox as our virtualization
software [27] since the VM is a VirtualBox image by default and its installation instructions
assume that it runs on VirtualBox [26]. The VM has a Linux 64-bit Operating System (Ubuntu
12.10) and contains Mininet version 2.0.0 and the master branch of POX. As mentioned in chapter
4, the POX’s carp branch is used to develop our application. Thus, this branch has to be installed
[28]. We have to note that the default switches in a Mininet network are based on Open vSwitch
(OVS) [29], an open source virtual switch, which enables the use of OpenFlow. The default OVS
version in Mininet version 2.0.0 is 1.4.3 which is the one used in our OVS configurations (section
4.2.2). We have to point out that both the POX controller and the Mininet network for our
emulations run within the same VM since our measurements depend on timestamps provided by
both tools. If POX and Mininet run in separate VMs, it is highly possible that the corresponding
timestamps would not be synchronized. Our system that hosts this VM has a dual-core 2.67 GHz
processor and 4 GB RAM. To conduct our emulations, we have assigned the use of two cores and
1.5 GB memory to the VM through VirtualBox configuration.

For the rest of this chapter, we will conduct measurements assessing the performance of our
defence solution in case the Crossfire attack occurs within an enterprise network. We use a
theoretical network topology (Figure 5.1) for the role of the enterprise network. This topology
highlights the Crossfire attack and the proposed countermeasure.

The theoretical topology consists of four entry switches and it is assumed that the attacker
considers the server at the bottom of this topology as the target server (area). The rest of the
servers in this topology are considered by the attacker as decoy servers. All the networks links in
the topology have a capacity of 200 kbps. Furthermore, three bots and two legitimate hosts are
connected to each one of the four border switches of the network. We consider that these hosts
generate traffic originated from the Internet. Thus, the links connected to the entry switches have
a 100 ms delay. Bots generate flows of 4 kbps unit flow rate. To emulate legitimate traffic, we
assume that users’ arrival and service time follow an exponential distribution. Regarding the bots,
it is assumed that certain bots are clustered during the bot assignment phase (section 4.1.3). The
bots accessing the enterprise network through the first two and the rest two border switches are
clustered accordingly. We have also to remember that it is considered that the attacker employs

35

36 CHAPTER 5. EXPERIMENTAL EVALUATION

Server 7

E Decoy
Server 2 = Server 8

Decoy
Server 12

Server 3 Server 9

Decoy Decoy
Server 4 Server 10

Decoy
Server 6

Figure 5.1: Theoretical Topology

a fix number of bots to launch the Crossfire attack.

We construct the given topology in Mininet and we configure the network link delay and capacity
using the TCLink class which Mininet offers. We configure the queues in every OVS switch of the
network before Mininet is launched. As discussed, we use two queues to enforce a rate limit to
potentially malicious flows. The default queue for all flows has the same size as the corresponding
network link capacity and the queue to which the malicious flows are assigned for rate-limiting
has half the size of the default one. We have downscaled our experiments since our computer and
hence the VM used for our emulations have limited resources.

Our defence approach involves configuring many parameters. We mention their default values
used during our emulations. The monitoring component conducts bandwidth measurements to
each network link of the topology every 2 seconds. It also estimates the bandwidth of all the
grouped flows passing through a congested link by making measurements every 1 sec and for 3
seconds in total. We set the time interval that is used to handle as a batch all the link congestions
which occur within it to 5 seconds. The congested flows that are selected to be rerouted form
at most the 40 % of the total link occupied bandwidth. A severe link congestion is identified
when the bandwidth the link carries exceeds 95 % of its nominal capacity. We consider that a
source address is malicious when its level of suspiciousness reaches 3. Table 5.1 accumulates all
the aforementioned default configuration values for our emulations.

Before we start conducting our emulations, we execute Ping commands from all the legitimate
users and bots to every server within the theoretical topology. It is necessary for bots and users
to be aware of a map of IP to MAC addresses to avoid significant traffic overhead during our
experiments in the forms of ARP messages and Packet-Ins.

5.2 Reaction Times

The design of our security mechanism against the Crossfire attack is based on the fact that the
defender reacts fast and the attacker cannot respond quickly to the defender’s reaction. Thus,
the attack is mitigated. In this section and in the following subsections, we evaluate the accuracy

5.2 Reaction Times 37
Parameter Default Value
Network Link Capacity 200 kbps
Unit Flow Rate 4 kbps
External Network Link Delay 100 ms
Network Link BW Measurements Interval 2 secs
Destination BW Measurements Interval 1 secs
Total Destination BW Measurements Time 3 secs
Concurrent Link Congestions Time Interval 5 secs
Congested Link Occupied BW Rerouting Threshold 40 % of nominal link BW
Severe Link Ccongestion BW Threshold 95 % of nominal link BW
Suspiciousness Level Rate-Limit Threshold 3
Table 5.1: Default Experimental Configuration
of this approach.
Attack First Target Last Target
Topology Discovery Attack Setup Launched Link Flooded Link Flooded
A » A - A A
« 7N »7, Y L
Attack qomplete
Process
Tracessroutes - Calculate Flow Bot T ‘ Process P
. . " raceroute: rocess
ATTACKER| 10 ceroutes Link-Map . Den3|ty-§elect Assignment - Tracessroutes Traceroutes Tracessroutes Traceroutes
ACTIONS Changes Detection Target Links Launch Attack
DEFENDER Congested Flow Congestion
ACTIONS Periodic Link Bandwidth Measurements Handle Concurrent Bandwidth 9 .
Congestions Interval Measurements - Rerouting
Congestion cor ‘ LAnachkd Previous Flooding
Mmgagd Attacker’s Reaction HTC e Correlation
) »
A Process A\ Defender’s Reaction
Tracessroutes - Calculate Flow Bot 1st Severe
ATTACKER | 1o ceroutes Link-Map Density - Select | Assignment - Congestion
ACTIONS Changes Detection | TargetLinks | Launch Attack | Detected
»
DEFENDER Congestion Periodic Link Bandwidth Measurements
ACTIONS Rerouting

Figure 5.2: Attacker’s and Defender’s Event Sequence Diagram

In Figure 5.2 which is based on what we have already discussed on chapter 3, the sequential steps
of the attacker and the defender actions are presented. We will explain these actions in detail in
the following subsections.

5.2.1 Reaction Time of Attacker

In Figure 5.2, the Crossfire attack is divided in three parts: the dynamic topology discovery, the
set-up of the attack and the completion of the attack. The adversary constantly monitors the
target area in an attempt to discover the target topology and any dynamic changes on it. In the
event of route changes, she sets-up and launches the attack. The attack is considered successful
when all the calculated target links are flooded. We have to note that after the attack has been
launched and while attack traffic is being sent, the attacker still keeps track of the target area.
In the dynamic topology discovery part of the attack, the attacker runs multiple traceroutes
and constructs the map of the network links around the target area. Since the attacker may
execute traceroutes while topology changes are in progress, this part of the attack may have to
be executed many times until a stable link-map is built. We assume that running two extra sets
of traceroutes when a link-map change has been detected can verify that a stable link-map will be
constructed. Considering that executing traceroutes in OpenFlow adds a significant overhead to
the network controller, we run sequential traceroutes (one host each time) instead of parallel ones
(all hosts concurrently) to be able to successfully build a map of the network links around the
target area. However, this strategy results in a high amount of time needed for executing all the
traceroutes necessary to build a link-map. Therefore, instead of constantly running traceroutes to
detect route changes and also running two extra sets of traceroutes to verify the stability of the
contructed link-map, we periodically run a single set of traceroutes under the assumption that

38 CHAPTER 5. EXPERIMENTAL EVALUATION

topology changes only occur within the time interval between two consecutive sets of traceroutes.
To represent the parallel traceroutes in theory with the sequential traceroutes in practice, we store
data about the minimum and maximum time for executing a single from a set of traceroutes. It
is then assumed that the time needed to run the a set of traceroutes is equal to the average of
its minimum and maximum values. Although this data doesn’t show exactly how much time a
stable link-map construction needs, it helps us as to estimate the reaction time of the attacker.
We believe that the execution of traceroutes until a stable link-map is determined spends most
of the time needed to successfully launch a Crossfire attack due to the Round Trip Time between
a bot and a decoy or target server.

In the attack set-up, the flow density of the links of the link-map is computed and the links to
flood are selected. The attacker also assigns her bots to send traffic to certain decoy servers and
then orders them to launch the attack. The attack is considered successful (attack completion)
when all the calculated target links are flooded.

In the following paragraphs, we measure the attack setup and the attack success times and the
time it takes the attacker to react to our defence mechanism. We conduct multiple emulations
modifying the attacker’s unit flow rate to verify how the corresponding times are affected.

1.2

Attack set-up time (sec)
o o
(=2} 00
T T

N
i
T

1
1
1
1
1
0.2f —

0.0

4kbps 8kbps
Unit attack flow rate

Figure 5.3: Attack Setup Time

In Figure 5.3, the boxplots of the attack setup time when generating attack traffic of 4 and 8 kbps
as unit flow rates are presented. It is clear that the time is decreased when increasing the unit
flow rate since the attack setup includes the bot assignment phase. In this phase, the attacker
calculates the number of flows (and then assigns the flows to her bots) which is required to flood
a certain target link. As discussed, we assume that the bots use a fixed unit flow rate and that
the adversary is aware of the target link capacity. By increasing the unit flow rate, less flows are
needed to flood a target link and therefore the bot assignment scheme is completed faster.

In Figure 5.4, the boxplots of the attack success (complete) time when generating attack traffic
of 4 and 8 kbps are presented. It is clear that the time is decreased when increasing the unit flow
rate since the attack is launched in a higher rate. Even though the amount of the cumulative
traffic in the target links is the same in both cases, the higher packet length that we use in order
to increase the unit flow rate is responsible for this behaviour. We have to mention that this
measurement is biased by our link bandwidth measurements mechanism. It is assumed that an
attack is successful when all the target links are identified as severely congested by our bandwidth
measurements mechanism. This measurement clearly depends on how often the network links are
polled for their occupied bandwidth.

In Figure 5.5, the boxplots of the reaction time of the attacker when generating attack traffic of 4
and 8 kbps are presented. The reaction time is presented in Figure 5.2 and is defined as the time
interval between a successful response to the attack (congestion mitigation) by the defender’s

5.2 Reaction Times 39

10

Attack success time (sec)

4kbps 8kbps
Unit attack flow rate

Figure 5.4: Attack Success Time

~ © ©
<) =) n
T T

o N
wn =)
T T

o
o
T

u
[¢)]
T

Attacker's reaction time (sec)

w
=)
T

»
)
T

by
o

4kbps 8kbps
Unit attack flow rate

Figure 5.5: Attacker’s Reaction Time

mechanism and until when an attack is launched once again. Since the time spent for topology
discovery (traceroutes and link-map contruction) is highly topology-dependent, the attacker’s
reaction time mainly depends on the attack setup time. Therefore, it is clear why the reaction
time of the attacker has the same behaviour as the attacker setup time when modifying the unit
flow rate. It is noteworthy to mention that as described in the first paragraph of this section, this
is an estimate of the attacker’s reaction time since we run traceroutes in a sequential instead of
in a parallel fashion.

This metric is highly important for assessing the performance of our defence countermeasure
against the Crossfire attack. In section 5.5, the attacker’s reaction time is compared with the one
of the defender to evaluate the accuracy of our security solution.

40 CHAPTER 5. EXPERIMENTAL EVALUATION

5.2.2 Reaction Time of Defender

As shown in Figure 5.2, the reaction time of the defender is defined as the time interval between
when the first severe congestion is detected by the defender and the time when all the concurrent
congestions are mitigated (rerouted). It is assumed that many severe congestions may occur
within the same time interval to successfully prevent access to the target area. The boxplots of
the reaction time of the attacker when generating attack traffic of 4 and 8 kbps are presented in
Figure 5.6.

11

=
o
T

O
T

Defender's reaction time (sec)

1
6f :

4kbps 8kbps
Unit attack flow rate

Figure 5.6: Defender’s Reaction Time

There is not any clear correlation between the defender’s reaction times when using a different
unit flow rate since there is not much difference between the defender’s reaction times. Our
OpenFlow-based defence mechanism receives around the same amount of flow information in the
event of a severe link congestion in both cases. Our controller application then decides how to
reroute the congested traffic. The rerouting decision has nothing to do with the unit rate of the
generated flows when using this topology due to its abundance of resources. A rerouting path is
always directly found without having to search for many paths to accommodate the flows to be
rerouted. Thus, the insignificant difference between the defender’s reaction times may arise from
various sources of error (section 5.4).

5.3 Attack Cost Increase

As mentioned, the adversary attempts to equally distribute among her bots and the decoy servers
the required number of flows (bot IP, decoy server IP tuples) when aiming to flood a target
link. This strategy ensures that the Crossfire attack remains undetected at the decoy servers by
conventional security solutions. Due to the design of our solution, the congested traffic is rerouted
in network paths disjoint to the flooded links. The attacker then identifies changes on her link-map
and she readjusts her attack properly by recalculating the target links. Our approach employs
destination-based rerouting for the congested flows destined to decoy servers. Therefore, the set
of decoy servers that are included in bot-to-decoy-server routes which traverse a target link may
change (may be reduced) due to the defender’s reaction. This is a very topology-dependent issue.
The security solution attempts to disrupt the initial distribution during the bot assignment phase
of the attack when the attack was launched for the first time. The scheme attempts to "force”
the attacker to increase the assigned number of flows destined to certain decoy servers. In this
way, the total traffic received by the decoy servers is increased raising the probability that the
attack is detected at the decoy servers. This is defined as an increase to the cost of the attack.
In case a given set of bots are assigned to flood a target link, as in our case (clustering - section

5.3 Attack Cost Increase 41

Attack Flow D|str|but|on

1.0

Decoy Server 1
Decoy Server 2
Decoy Server 3
Decoy Server 4
Decoy Server 5
Decoy Server 6

0.8f

jnonnn

0.6

0.41

0.2 I I I |
0.0

Attack (Bot Assignment) Rounds

Estimated Received Attack BW (% Target Link BW)

(a) Assigned Attack Flow Distribution - 1st Target Link

Attack Flow Dlstrlbutlon

1.0

Decoy Server 7
Decoy Server 8
Decoy Server 9
Decoy Server 10
Decoy Server 11
Decoy Server 12

0.8f

jnonnn

0.6

0.4+

Tl 2 3 4

Attack (Bot Assignment) Rounds

Estimated Received Attack BW (% Target Link BW)

(b) Assigned Attack Flow Distribution - 2nd Target Link

Figure 5.7: Attack Cost Increase

4.1.3), and the set of decoy servers to receive attack traffic is reduced by our reroutings, then
each decoy server of this set will now receive higher amount of malicious traffic so as the attack
keeps successfully flooding a target link. In Figure 5.7, it is clear that our assumption is valid,
but we have to mention that this a highly topology-dependent feature. To fully understand this
meaning of this figure, we have to take into account the topology we used in our emulations
(Figure 5.1). In our emulation, the attacker calculates the same two target links each time due
to the position of the target and the decoy servers within the theoretical topology. The defender
reroutes portions of the attack traffic by changing the routes towards some decoy servers which
are selected by our classification mechanism. The target server routes remain unchanged since it
does not receive highly homogeneous bandwidth compared with that of the other servers within
this topology. The attacker then responds to this shift but due to nature of this topology keeps
flooding the same target links and therefore sending traffic to the unrerouted decoy servers. As
a result, the bandwidth these servers receive is increased in each attack round.

We have also to mention this graph is based on data during the bot assignment phase of the

42 CHAPTER 5. EXPERIMENTAL EVALUATION

attacker each time the attacker (re-)launches the attack. We can notice from the figure that
five attack rounds exist. Due to the nature of this topology (the attacker calculates the same
target links every time), the suspiciousness level of the bots reaches three (equal to the default
rate-limit threshold) at the forth round. Thus, the Crossfire attack sources will be detected in
the fifth round when a link flooding generated by the attack is identified by our scheme.

5.4 Sources of Error

The results we presented in the previous sections are biased by various factors. First of all,
Mininet has limitations in generating high-rate traffic. Since Mininet hosts depend on the shared
underlying Linux Operating System, they schedule traffic to be generated using the TCP stack
of Linux OS. This makes Mininet by definition not an accurate way to timestamp and control
the generated traffic and this is an important limitation. Also, the popen() interface in Mininet
had an unexpected behaviour when trying to launch traffic from each of the Mininet hosts. Our
developed Shell script for generating traffic was unexpectedly stopping after some time. This was
the reason why we used the cmd() method instead, but additionally we had to employ a custom
mechanism to ensure that the generating process would not be killed. Mininet does not offer a
clean and standard way of generating high rate traffic, so our approach probably induced an error
to our measurements. Furthermore, Scapy, the program we used for generating packets, imposes
an overhead to the generated traffic and therefore to the results. Scapy was constantly executed
by Mininet hosts during our emulations since it was an important part of the traffic generation.
Moreover, both POX and Mininet run in the same Virtual Machine during our emulations. Since
they shared the same resources, this may have affected our results. In addition, our findings may
have been influenced by the resources as well as the running processes of the computer which
hosts the VM we used for our emulations.

5.5 Insights

In this section, we discuss the conclusions which arise from our results. In our approach, the
defender reacts to a potential Crossfire attack and the attacker readjusts to this reaction in order
to maintain the attack active. The correlation between the reaction times of the defender and
the attacker determines how fast the Crossfire attack is mitigated and can be detected. Our
SDN-based mechanism reacts fast against the Crossfire attack while the attacker has to readjust
to our mitigation strategy. The attacker’s reaction time (Figure 5.5) therefore determines how
long the attack stays ineffective. On the other hand, the defender’s reaction time (Figure 5.6)
determines how long the attack is effective upon its identification in the form of severe link
congestions until its mitigation. The reaction time of the defender also determines how fast in
total the Crossfire attack sources can be detected while the attack is in progress. Since our
solution "forces” the adversary to respond each time and provides detection of the malicious
sources after many executions of our algorithm, an approach which offers fast reaction leads to
faster detection in total.

The Crossfire is a distributed DoS attack in which multiple target links are flooded within a
certain time interval (concurrently) to disrupt the target area’s Internet connectivity. Therefore,
we consider a time interval in our approach that severe link congestions which occur within it
as handled together as a batch. This considered interval is necessary to enable severe congestion
mitigation in a correct way since by using this mechanism it is not possible to route the congested
traffic along a network path which includes a target link that is about to flood. In these emu-
lations, we have set this time interval to 5.0 seconds. We have also taken this time interval into
account when calculating the reaction time of the defender. That is the reason why the Figure
5.6 displays high values. It is clear by comparing Figures 5.6 and 5.5, that if we do not take the
concurrent link congestions time interval into account, the defender reacts much faster than the
attacker validating the accuracy of our approach.

Chapter 6

Future Work

Designing, implementing and evaluating an attack countermeasure to a reactive Crossfire attack
requires a lot of effort. Therefore, a number of tasks could be done to further extend our work.
Since our model involves configuring many parameters, an evaluation that takes into account
more of them could be performed to gain a deep understanding of the parameter interaction
on our model. Moreover, experiments could be run on real network topologies such as those de-
rived by the Internet Topology Zoo project [30]. Also, evaluating the inter-domain coordination
using realistic client-upstream ISP pairs. In addition, we were using OpenFlow for conducting
bandwidth measurements. Clearly, OpenFlow is not designed for this purpose, so another moni-
toring tool for finer-grained bandwidth measurements could also be applied to our solution (e.g.,
NetFlow). Furthermore, we assume that the baseline routing in our work is based on Shortest
Path First. It would be interesting to research on how our approach could be modified when
policy-based routing is enforced in a network domain. Flow rules with different priorities could
be installed in an OpenFlow network for this purpose but the routing policy interaction remains
an open problem in Software Defined Networking. Since we faced many bugs and errors while
trying to generate traffic using Mininet, one could attempt to generate traffic using a different
approach and maybe use another emulation platform to assess our solution. It would be also in-
teresting to enhance our solution by integrating other security mechanisms, such as a Hierarchical
Heavy Hitters detection approach [31].

Our work mainly focused on devising a solution to defeat the Crossfire attack on a local level.
A simple model was also built for extending our defence mechanism from a local to an inter-
domain level. Thus, research could be further conducted about how to counter the Crossfire
attack on an inter-domain level and a more extensive model could be designed and implemented.
In the inter-domain part of our model, we assumed that all the enterprise network’s upstream
direct providers collaborate to provide a defence solution to the Crossfire attack. It would be
a desirable task to investigate countermeasures when some direct ISPs do not collaborate and
also when some higher level (e.g., Tier-2) providers collaborate with each other and with lower
level (e.g., Tier-3) ISPs to defeat the Crossfire attack. Furthermore, our solution is deployed in a
pure SDN environment in our work. It would be a challenge to enable compatibility with legacy
equipment for our network application, especially on an inter-domain level (e.g., communication
either between enterprise network running SDN and direct ISP using legacy equipment or among
collaborating ISPs which some of them run SDN and the rest work on a legacy environment).
Since multiple controllers per network domain may be used in large scale networks for scalability
and fault-tolerance reasons, it would be also interesting to verify how our approach is extended
in this case. One last future task could be the identification of the potential Target Area and
Decoy Servers in order to find the rerouting paths that are disjoint with both the current and the
potentially subsequent target links. In our work, we assume that we are not aware of the Target
Area and the Decoy Servers. Thus, the rerouting based on our approach may potentially lead to
a path including a newly calculated target link. In this case, the detection of the Crossfire attack
could not be possible directly based on our model and more rerouting "detection-mitigation”
rounds would be required to potentially identify portions of the attack sources.

43

44

CHAPTER 6. FUTURE WORK

Chapter 7

Summary

In this thesis, an online traffic engineering scheme towards both detecting and mitigating the
Crossfire attack was designed and developed. SDN and network security characteristics were
used to counter this attack since current defence mechanisms are unable to defeat it. A working
prototype was built and evaluated on an emulation platform (Mininet) and can be integrated in a
production testbed. It was assumed that we work on a pure SDN environment. The performance
evaluation results indicated that our detection and mitigation mechanism can detect and mitigate
the Crossfire attack. In particular, our scheme is executed fast resulting in successful mitigation
of the Crossfire attack since the attack’s responsiveness is slow due to its inherent characteristics.
The attacker uses traceroutes to launch an easily implemented and low-cost attack at which no
sophisticated tools or knowledge are needed. On the other hand, the effectiveness of the attack
is limited by the overhead of the Round Trip Time between the bots and the servers in and
around a certain target area when attempting to adjust to topology changes. Our scheme causes
topology changes to mitigate the attack and can also detect the malicious sources by monitoring
the attacker’s reaction to the network route shifts generated by our mechanism. Our solution
was mainly focused on the case when the Crossfire attack occurs within an enterprise network.
Our technique was also briefly designed and implemented to expand on a inter-domain level in
order to enhance the mitigation and detection capability of the local domain but still more work
can be done. Our proposed solution was based on the fact that the attacker uses traceroutes to
enable dynamic topology discovery. This imposes a limitation to our solution when the attacker
has for example full topology knowledge due to social engineering, has hacked the BGP tables
or the OpenFlow controllers of the enterprise network or has gained access to OSPF routers.
However, our scheme conducts mitigation and may be able to conduct detection in those cases.
The implementation of the whole solution was a very challenging task and is worth of more future
work in terms of parameterization, topology exploration and attack strategies.

45

46

CHAPTER 7. SUMMARY

Bibliography

1]

2]

[6]

(7]

8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

US-CERT. Security Tip (ST04-015): Understanding Denial-of-Service Attacks.
http:/ /www.us-cert.gov/ncas/tips/ST04-015. Last visit on March 21, 2014.

J. Mirkovic, and P. Reiher. A Taxonomy of DDoS Attack and DDoS Defense Mechanisms.
ACM SIGCOMM Computer Communications Review, Volume 34, Number 2, April 2004.

J. Markoff, and N. Perloth. Firm Is Accused of Sending Spam, and Fight Jams In-
ternet. hitp://www.nytimes.com/2018/03/27/technology/internet /online-dispute-becomes-
internet-snarling-attack.html. Last visit on March 21, 2014.

M. S. Kang, S. B. Lee, and V. D. Gligor. The Crossfire Attack. In Proceedings of IEEE
Symposium on Security and Privacy, 2013.

A. Studer, and A. Perrig. The Coremelt Attack. In Proceedings of the 14th Furopean Sym-
posium on Research in Computer Security, 2009.

P. Ferguson. Network Ingress Filtering: Defeating Denial of Service Attacks which employ
IP Source Address Spoofing. RFC 2827, 2000.

A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow Filter to Mitigate DDoS
Flooding Attacks. In Proceedings of the IEEE Security and Privacy Symposium, 2004.

R. Moskowitz, and P. Nikander. Host Identity Protocol (HIP) Architecture. RF'C' /423, 2006.

K. Levanti. Routing management in network operations. Ph.D. dissertation, Carnegie Mel-
lon University, 2012.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner. Openflow: Enabling Innovation in Campus Networks. ACM SIG-
COMM Computer Communication Review, March 2008.

Open Networking Foundation. Software-Defined Networking: The New Norm for Net-
works. https://www.opennetworking. org/images/stories/downloads/sdn-resources/white-
papers/wp-sdn-newnorm.pdf, ONF White Paper, April 13, 2012.

R. Braga, E. Mota, and A. Passito. Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In Local Computer Networks (LCN), 2010 IEEE 35th Conference on,
Pages 408-415, October 2010.

NOXRepo.org. About NOX. http://www.nozxrepo.org/nox/about-noz/. Last visit on March
98, 2014.

S. B. Lee, M. S. Kang, and V. D. Gligor. CoDef: Collaborative Defense Against Large-Scale
Link-Flooding Attacks. In Proceedings of ACM CoNEXT, December 2013.

Mininet Team. Mininet. http://mininet.org/. Last visit on April 3, 2014.
Specification. OpenFlow Switch. Version 1.0.0 (Wire Protocol 0x01). December 31, 2009.

N. Feamster. Software Defined Networking. https://www.coursera.org/course/sdn. Last visit
on April 5, 2014.

NOXRepo.org. About POX. http://www.noxrepo.org/pox/about-pox/. Last visit on April 5,
2014.

47

48

BIBLIOGRAPHY

[19]

[20]
[21]
22]

23]

[24]

Open Networking Lab. POX Wiki. https://openflow.stanford.edu/display/ONL/POX+ Wiki.
Last visit on April 5, 2014.

MaxMind Inc. GeolP. www.maxmind.com. Last visit on April 7, 2014.
Philippe Biondi. Scapy. http://www.secdev.org/projects/scapy/. Last visit on April 7, 2014.

GNU Operating System. GNU Wget. https://www.gnu.org/software/wget/. Last visit on
April 7, 2014.

Open Networking Lab. POX Messenger.
https://openflow.stanford.edu/display/ONL/POX+ Wiki#POX Wiki-messenger. Last visit
on April 8, 2014.

James McCauley. POX Messenger Source Code.

https://github.com/nozrepo/pox/blob/carp /pox/messenger/_init_.py. Last visit on April 8,
2014.

BGP4.AS. BGP: the Border Gateway Protocol, Advanced Internet Routing Resources.
http://www.bgp4.as/. Last visit on April 9, 2014.

OpenFlow Team. OpenFlow Tutorial, Required Software Installation Instructions.
http://archive.openflow.org/wk/index.php /OpenFlow_ Tutorial# Pre-requisites. Last visit on
April 10, 2014.

Oracle. VirtualBox. https://www.virtualboz.org/. Last visit on April 10, 2014.

Open Networking Lab. POX, Selecting a Branch/Version.
https://openflow.stanford.edu/display/ONL/POX+ Wiki#POX Wiki-
SelectingaBranch%2F Version. Last visit on April 10, 2014.

Open vSwitch. Open vSwitch, An Open Virtual Switch. http://openvswitch.org/. Last visit
on April 10, 2014.

S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The Internet Topology
Zoo. IEEE Journal on Selected Areas in Communications, Volume 29, Number 9, Pages
1765-1775, October 2011.

L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic aggregates on com-
modity switches. In Proc. Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE), March 2011.

