
Institut für
Technische Informatik und
Kommunikationsnetze

Adrian Gämperli

Evaluating the Effect of SDN Central-
ization on Internet Routing Conver-
gence

Master Thesis MA-2013-19
October 2013 to April 2014

Tutor: Vasileios Kotronis
Co-Tutor: Prof. Xenofontas Dimitropoulos
Supervisor: Prof. Bernhard Plattner

2

Abstract

The state of the art inter-domain routing protocol is BGP. For many applications in the Internet
reliable connectivity is crucial. However, it is known that BGP has slow convergence which can
result in packet loss. A new approach proposed by researchers is to form AS clusters with
multiple Autonomous Systems using Software Defined Networking.
We developed an inter-domain emulation framework based on Mininet which supports SDN
switches and BGP routers. Therefore it is possible to conduct hybrid SDN and BGP inter-domain
routing experiments. The BGP routers run Quagga.
Moreover, we have designed and implemented a SDN inter-domain controller based on POX
which not only controls the SDN switches, but also interacts with BGP routers outside the cluster.
The goal of the controller was to improve the routing convergence time in the network. We run
route announcements, withdrawal and fail-over experiments on the clique topology with different
number of nodes, controller parameter value and percentage of SDN deployment.
We found that the AS cluster approach never had a significantly worse average convergence
time than a pure BGP deployment. But on the other hand the benefits can be significant com-
pared to the pure BGP deployment. When using our controller parameter recommendation the
centralization had the biggest impact on the withdrawal experiment where we had up to 85%
less convergence time. In the fail-over experiment even a small SDN deployment is beneficial.
Announcements have an improved convergence time in bigger SDN deployments.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 The Task . 7
1.3 Contributions . 8
1.4 Acknowledgements . 8
1.5 Overview . 8

2 Background 9
2.1 BGP . 9

2.1.1 Basic principles . 9
2.1.2 Path selection algorithm . 9

2.2 Software Defined Networking . 10
2.3 Mininet . 10

3 Designing a SDN Inter-domain Routing Controller 13
3.1 Design goals . 13
3.2 Path selection . 14

4 Hybrid SDN&BGP Emulation Framework 19
4.1 Overview . 19
4.2 Controller . 20
4.3 Emulator . 21

4.3.1 Mininet extensions . 21
4.3.2 Network setups . 23
4.3.3 Topologies . 23
4.3.4 Usage . 24
4.3.5 Measurement framework . 24
4.3.6 Third party modules . 26

5 Evaluation of convergence time 27
5.1 Experiments . 27

5.1.1 Withdrawal . 27
5.1.2 Fail-over . 27
5.1.3 Announcement . 28
5.1.4 Changing Parameters . 28

5.2 Results . 29
5.2.1 Withdrawal . 29
5.2.2 Fail-over . 34
5.2.3 Announcement . 36
5.2.4 Sources of error . 42

5.3 Conclusion-Insights . 42

6 Future Work 47

7 Related work 49

8 Summary 51

3

4 CONTENTS

List of Figures

2.1 Example OpenFlow network . 10

3.1 Switch graph updates . 14
3.2 Example of redrawing an edge . 15
3.3 Recomputation Queue . 16
3.4 Switch graph changes . 16
3.5 Flow entry change . 17

4.1 Emulation overview . 19
4.2 Simplified conceptual controller implementation overview 20
4.3 Log storage path struture . 24
4.4 Loss and convergence time . 26

5.1 Clique topology with 4 nodes . 27
5.2 Withdrawal experiment . 28
5.3 Fail-over experiment . 28
5.4 Announcement experiment . 28
5.5 Withdrawal: 25% SDN, 16 nodes . 29
5.6 Withdrawal: 25% SDN, 8 nodes . 30
5.7 Withdrawal: 50% SDN, 16 nodes . 30
5.8 Withdrawal: 50% SDN, 8 nodes . 31
5.9 Withdrawal: 75% SDN, 16 nodes . 31
5.10 Withdrawal: 75% SDN, 8 nodes . 32
5.11 Withdrawal: 10s RWI, 16 nodes . 32
5.12 Withdrawal: 10s RWI, 8 nodes . 33
5.13 Withdrawal: 30s RWI, 8 nodes . 34
5.14 Fail-over: 25% SDN, 16 nodes . 34
5.15 Fail-over: 25% SDN, 8 nodes . 35
5.16 Fail-over: 50% SDN, 16 nodes . 35
5.17 Fail-over: 50% SDN, 8 nodes . 36
5.18 Fail-over: 75% SDN, 16 nodes . 36
5.19 Fail-over: 75% SDN, 8 nodes . 37
5.20 Fail-over: 10s RWI, 16 nodes . 37
5.21 Fail-over: 10s RWI, 8 nodes . 38
5.22 Announcement: 25% SDN, 16 nodes . 38
5.23 Announcement: 25% SDN, 8 nodes . 39
5.24 Announcement: 50% SDN, 16 nodes . 39
5.25 Announcement: 50% SDN, 8 nodes . 40
5.26 Announcement: 75% SDN, 16 nodes . 40
5.27 Announcement: 75% SDN, 8 nodes . 41
5.28 Announcement: 10s RWI, 16 nodes . 42
5.29 Announcement: 10s RWI, 8 nodes . 43
5.30 Announcement: 20s RWI, 16 nodes . 43
5.31 Announcement: 20s RWI, 8 nodes . 44
5.32 Announcement: 5s RWI, 16 nodes . 44
5.33 Announcement: 5s RWI, 8 nodes . 45

5

6 LIST OF FIGURES

Chapter 1

Introduction

Current inter-domain routing is performed using the Border Gateway Protocol (BGP). This pro-
tocol is a distributed implementation of route selection, therefore every BGP routers computes
the path itself. The Internet is very popular and many Internet applications depend on a reliable
connection over the Internet. However, it is well-known that BGP has some problems.

1.1 Motivation

One problem BGP is facing is the slow convergence time. After a topology change in BGP it
may take a long time until the network converges as routers try to find a consensus on new
paths [1]. Even though there are approaches which try to modify BGP in order to improve the
convergence time, is not known that anyone tried to actually deploy such solutions in practice
[1] [2]. Therefore any new solution has to be able to inter-operate with BGP.
In recent years Software Defined Networking (SDN) has become popular for intra-domain rout-
ing. The SDN approach separates the routing and the forwarding plane. Consequently the rout-
ing decision can be centralized which offers new possibilities. It has been shown, that in intra-
domain routing a centralized approach can improve the convergence compared to link-state
protocols [3].
While SDN in intra-domain routing has been discussed, the effects of SDN in inter-domain
routing are still unexplored. Kotronis et al [2] propose a new inter-domain routing approach
by combining several Autonomous Systems into clusters and introducing a centralized routing
decision for those participating in the cluster. By the introduction of centralization they suggest
that it helps in enhancements in inter-domain routing since the routing decisions can be made
with a bird’s eye view. Furthermore, this approach is also backwards compatible and therefore
the clusters can be gradually built and integrated within the current Internet topology.

1.2 The Task

The tasks of this project can be split into the following two subtasks:

Emulation Framework The first subtask of the project has the goal of building an inter-domain
emulation framework. The framework should not only support legacy inter-domain network de-
vices, but also SDN switches. It should feature the possibility to conduct hybrid inter-domain
routing experiments.

Effects of centralization The second subtask of the project is to build an inter-domain rout-
ing SDN controller which interacts with BGP routers and is able to form clusters out of SDN
switches representing ASes. Using this controller and the emulation framework developed in
the first subtask, experiments should be conducted to measure the effect of centralization on
the convergence time in an experimental manner.

7

8 CHAPTER 1. INTRODUCTION

1.3 Contributions

We make the following contributions:

Emulation Framework We developed a network emulation framework based on Mininet
which not only supports SDN networks but also legacy BGP networks. BGP routers support
the Gao-Rexford guideline policies [4]. The framework automatically manages IP addresses
and configuration of the devices. Furthermore the user can create more realistic topologies by
compiling them from public measurement data. To analyse the gathered information analysis
tools are provided.

IDR SDN Controller We propose an Inter-Domain Routing (IDR) SDN controller, which is
able to control clusters formed out of several Autonomous Systems. Furthermore the controller
is able to interact with BGP routers outside the cluster.

Inter-domain routing convergence time The experiments conducted in the clique topology
show that AS clusters can improve the convergence time significantly in certain scenarios. Al-
ready small SDN deployments can have a beneficial effect on the overall convergence time.
With the recommended controller parameter we never observed a significantly higher average
convergence time for a network with a SDN cluster compared to a pure BGP deployment.

1.4 Acknowledgements

I would like to thank Prof. Bernhard Plattner for the opportunity to do the master project at the
Communication Systems Group. I’m especially thankful for the invaluable feedback, discussions
and time invested by my tutors Vassilis and Fontas during the whole project.

1.5 Overview

In Chapter 2 we introduce the main technologies used in our project. Chapter 3 describes how
we designed our SDN controller. In the subsequent Chapter 4 we give details about the imple-
mentation of the developed emulation framework. Chapter 5 describes the experiments done.
Furthermore it presents the results and discusses them. Possible future work is presented in
Chapter 6. We then outline related work in Chapter 7. Finally, we summarize our project in
Chapter 8.

Chapter 2

Background

We first introduce the current state of inter-domain routing and explain how BGP works. In the
following section we give an introduction into SDN and finally we give some information about
Mininet, a SDN emulation framework.

2.1 BGP

The Border Gateway Protocol (BGP) is the de facto standard of inter-domain routing. It is a
distributed inter-domain routing protocol which is defined in a couple of IETF RFCs. The most
recent version is RFC 4271 [5]. In this report BGP always means eBGP. In this section we want
to summarize parts of BGP which are used or are of relevance in this project.

2.1.1 Basic principles

BGP is a distributed policy-based path vector protocol. Therefore route announcements always
contain the full AS-path to the destination, which a packet will theoretically take to the desti-
nation. A routing domain in BGP is called Autonomous System (AS). Each AS has a unique
number: the AS number. However, an AS can operate multiple BGP routers. When a router is
connected to routers of a different AS, route exchange is facilitated through a BGP ’peering’.

Update message A BGP update message can either include an announcement or withdrawal.
These messages most importantly include a prefix, an action (announcement, withdrawal) and
some attributes such as the AS path or the next hop. The AS path contains most importantly the
AS sequence. The AS sequence contains an ordered list of AS numbers to where the packet
will probably flow when it is being sent on this path.

Update process After BGP has established the connection with a peer the peers can start
sending BGP Update messages to each other. Standard BGP only selects one best path, there-
fore no multi-path is supported. This implies that when a router is announcing a path to a des-
tination with sequence A and afterwards sends another announcement to the same neighbor
with a different sequence B, sequence A is then regarded as invalid.

2.1.2 Path selection algorithm

In BGP every router decides itself which route to choose. The choice of the best path is based
on local configuration according to the AS policy, AS path length, path origin, age of the path,
router ID of the neighbor, IP address of the neighbor, etc. [6]

Minimum Route Advertisement Interval (MRAI) timer The MRAI timer delays BGP updates
to the neighbors in order to mitigate the problem of route flapping and achieve more stable
routing. The interval is per destination and applied per peer. (see Section 9.2.1.1 in [5])

9

10 CHAPTER 2. BACKGROUND

Policy Using parameters it is possible to set policies. One might want to take advantage of
such possibilities due to business agreements or technical reasons such as congestion.

Loops In BGP loops can be detected as the update messages also contain the path the
packet probably will take. Therefore every router can check whether the path loops back to itself
by checking whether its AS number is contained in the AS path. Such update messages can
then be discarded. However, information inconsistencies between the routers can lead to loops.
[7].

Quagga Quagga [8] is a routing software not only implementing BGP but also RIP and OSPF.
It is regarded as one of the most used routing software for inter-domain routing on general
purpose hardware.
Mattia Rossi [9] describes that Quagga uses a so called ’burst’ MRAI timer. This means that all
updates are queued up per neighbor and are sent as soon as the timer expired. Additionally he
explains that in Quagga the timers are not applied to withdrawals.

2.2 Software Defined Networking

In recent years Software Defined Networking has become popular in intra-domain routing. Be-
cause the routing decision and the actual forwarding of the packets are two different problems,
SDN splits the control and the data plane. As the routing decision can be done in a centralized
fashion it is possible to make more advanced decisions and routing management problems can
be solved easier, while new routing alternatives and applications (e.g. ’green’ routing, time-of-
day routing) can be implemented.

OpenFlow OpenFlow [10] is an implementation of a southbound interface for SDN. OpenFlow
consists of OpenFlow switches and controllers. Whereas the switches forward the packets, the
controllers are responsible for creating decision rules and installing them on the switches. The
communication between the controller and switch is done over a secure channel. The rules
sent are called flow entries and are stored in flow tables on the switch. A flow entry consists
of matching fields, counters and instructions. When a packet matches the matching fields the
counters are updated accordingly and the instructions are applied to the packet. Matching fields
can e.g. include source or destination IP addresses, as well as VLAN ids, TCP ports, etc. An
example instruction is to alter the destination IP address of the packet. Figure 2.1 shows an
example network with four hosts, connected to an OpenFlow switch. The OpenFlow switch is
connected to an OpenFlow controller.

Figure 2.1: Example OpenFlow network

2.3 Mininet

Mininet [11] is a SDN emulation framework. It runs hosts as processes of the host system, which
has a positive effect on the used resources. Mininet is mainly written in Python and provides a

2.3 Mininet 11

Python API for network creation and monitoring. It can emulate OpenFlow switches, OpenFlow
controllers, hosts and links along with their properties such as maximum host CPU, link latency
and bandwidth, etc.

12 CHAPTER 2. BACKGROUND

Chapter 3

Designing a SDN Inter-domain
Routing Controller

In this chapter we give insight in the design of the SDN inter-domain routing (IDR) controller.

3.1 Design goals

We want to build a controller which exploits the centralization of the control plane routing deci-
sion process and build AS clusters [2]. Using this approach we want to primarily achieve better
routing convergence. It is also crucial that the controller is not only optimized for convergence
but also inter-operates with the currently deployed BGP routers.
The goals we want to achieve in particular are the following:

Exploit centralization As suggested in [2] we want to form AS clusters which use a central-
ized controller. Due to the centralization we want to primarily improve the convergence time in
general, helping both the cluster and the outside (legacy) world in providing more stable routing.

Inter-operating with BGP As BGP routers are currently deployed across the globe and are
managed by a lot of different parties, it is crucial that a controller inter-operates with BGP routers
and that compatibility with the BGP standard is supported.

Shortest path The routing algorithm should choose the shortest path based on the number of
Autonomous Systems. Our main baseline routing ’policy’ is: ’prefer the shortest AS-level path’
(in terms of hops).

Disjoint clusters The controller should support disjoint clusters and paths which leave and
reenter the cluster. Allowing this kind of paths makes it possible that when the cluster is internally
partitioned due to an inter-domain link failure, it is not partitioned on the global level since paths
that join the two parts over legacy outside ASes can still be used.

No implicit policies No policy implications should be made, such as preferring internal paths
over paths which are partially outside the cluster. As mentioned before we follow the simple
policy of preferring the shortest AS-level path in all cases.

No cluster lock-in The AS number of the participating Autonomous Systems should be kept
to avoid cluster lock-in and to provide the possibility for a smooth transition. We also keep the
AS numbers of each participating AS as each AS might also want to use a different upstream
provider which does not belong to the cluster as backup or for other purposes. In general, an
AS maintains its ’identity’ whether it is outside or inside the cluster.

13

14 CHAPTER 3. DESIGNING A SDN INTER-DOMAIN ROUTING CONTROLLER

No multi-path As a first step we do not support multi-path.

3.2 Path selection

To understand the operation of the path selection algorithm, we first introduce two graphs, which
are important for the path selection.

Switch graph The Switch graph is a directed graph, which supports simple edges between
the same source and target node with the same direction (no multi-edges). The same graph is
used for all prefixes in the network. It basically represents the physical topology, seen from the
controller’s perspective.
We have two kinds of nodes in this graph. Firstly we have switch nodes, which represent SDN
switches. Secondly we have prefix nodes. An edge shows that data can be forwarded from the
source to the destination of the edge. The Switch graph is built gradually. We add a directed
edge between two switch nodes, when a switch node detects a link in that direction. An edge
from a switch to a prefix node is added, when the prefix is learned from BGP or the prefix is
directly connected to that particular SDN switch (origin of prefix). As there can only be one edge
per direction between two nodes we only add the best path. On edges learned from BGP we
also store the AS sequence as an edge attribute.
Figure 3.1 shows the process of selecting the best path between a switch and prefix node. It
also shows what is altered in the Switch graph. Generally we save all paths which the clusters
receives information about. When a removed path has been the last path to that prefix, the
path is removed from the Switch graph. However, when it is not the last path to reach the same
destination we update the switch graph with the best saved path. All newly discovered paths are
saved. When the new path is a BGP update we always update the Switch graph with the best
path, even if the best path has not changed. This is due to an implementation specific issue.
Directly connected paths are only triggering a Switch graph update when the new path is better
than all saved paths.

Path change received

change

type
save path

add
forget path

remove

Change Switch graph:

update path to prefix with

best saved path

BGP

 no

saved path

improved best

metric

yes

yes

Change Switch graph:

remove path to the

prefix

No path

to prefix

left

no
 yes

Figure 3.1: Switch graph updates

Figure 3.2a shows an example of a Switch graph. Switch 1000 to 5000 are connected in a se-
quence and form a cluster. Both switches 1000 and 5000 know a path to the prefix 8.0.10.0/29,
which they learned from BGP. Switch 3000 has a directly connected prefix (8.0.3.0/29).

3.2 Path selection 15

8.0.10.0/29

Switch

dpid 1000

Switch

dpid 2000

Switch

dpid 3000

Switch

dpid 4000

Switch

dpid 5000

AS11,1,10

AS10

8.0.3.0/29

(a) Switch graph

AS1

AS3

AS2

AS5 AS4

8.0.10.0/29
 AS10

 AS11

(b) AS topology graph: 8.0.10.0/29

Figure 3.2: Example of redrawing an edge

AS topology graph The AS topology graph saves the AS topology within the cluster for a
specific destination prefix. Therefore there can be different graphs for different prefixes. This
graph is a transformation of the Switch graph. Like the Switch graph, it is a directed graph.
This graph consists of cluster ASes and a destination prefix node. At the beginning of the trans-
formation to the AS topology graph all AS numbers of the cluster are added as nodes. The AS
relationships inside the cluster, which have been represented as edges between switch nodes
in the Switch Graph are also added to the new graph. Then all edges between switch nodes
and the destination prefix node in the Switch graph are checked regarding whether the AS se-
quence contains AS numbers of the cluster. When no cluster AS number is found we add a link
between the AS node of the switch and the prefix with the number of BGP AS hops as weight.
However, when such an AS number is found, a new edge is added between the AS node of the
previous source of the edge and the first AS number which has been found to be part of our
cluster. The edge weight is the number of hops plus one, since we would have one edge more
between those AS numbers. We also store the modified AS sequence as an edge attribute,
and the remaining AS sequence is discarded. In Figure 3.2 an example transformation from a
Switch graph to a AS topology graph for the destination 8.0.10.0/29 is shown.

Algorithm To compute the best paths Dijkstra is run on the AS topology graph using the
previously mentioned weights. As Dijkstra never creates loops we will not create paths with
loops within our cluster.
We introduced the two previously explained graphs for loop avoidance regarding paths that pass
through our cluster, exit it and revisit it (such paths can be valid or not depending on whether
they are loop-free or not). BGP discards paths which include the router’s AS number. However,
this is not possible in our cluster environment, since Dijkstra needs to run on the same graph
for every node, to not introduce unintended routing behavior. When discarding all paths with AS
numbers of the cluster in the AS sequence we would not support disjoint clusters. Therefore
both graphs are necessary.

Recomputation Wait Interval We added a delayed recomputation of paths instead of delayed
BGP updates to always do what we are announcing.
We added this mechanism for the following reasons: Firstly we want to avoid loops with neigh-
bors due to outdated information. Secondly because it seems likely that in a standard topology
our cluster receives another announcement about the same prefix through other neighbors.
Therefore we can make the network more stable. Furthermore we can reduce the number of
path changes.
Before we queue a recomputation, the prefix to be recomputed is checked whether it is already
contained in the queue. When this is the case it is discarded otherwise it is added to the queue.
Queued prefixes are recomputed after a fixed recomputation wait interval (RWI). Figure 3.3
shows this process.

Path recomputation Paths are only recomputed when needed. Figure 3.4 shows which type
of Switch graph change, result in which prefixes to be requested for recomputation. A link
change between switch nodes or a switch change in the Switch graph request a full recom-
putation of all prefixes currently known in the network. However, when a prefix is changed, e.g.
a second switch adds a path to a prefix, only that single prefix is requested for recomputation.

16 CHAPTER 3. DESIGNING A SDN INTER-DOMAIN ROUTING CONTROLLER

Request to recompute

prefixes

Filter prefixes which

are already in the

recomputation queue

Schedule remaining

prefixes from request

for recompution

after recomputation wait

interval

Figure 3.3: Recomputation Queue

Prefix change

Request prefix

recompution

Link change Switch change

Request recomputation of

all prefixes in the network

Figure 3.4: Switch graph changes

Consistency To achieve consistency during route installation we install the routes from the
destination to the source. However, we do not wait until the SDN switch confirms (OpenFlow
barrier) the installation as we faced timing issues. Without this ordering we might get a possible
policy violation, unintended paths or loops [12].

Inter-operation with BGP We announce the prefixes at the same time to the BGP neighbors
as we do the flow entry installations on the cluster SDN switches without a delay. Announce-
ments contain the complete AS sequence which also includes the AS numbers in our cluster
as BGP would do. Therefore a path change within our cluster with the same length is also
announced to the neighbors. To minimize the number of flow installations and BGP announce-
ments we check whether we already sent it before. Figure 3.5 shows how a flow entry change
is processed within the controller as described in this paragraph.

3.2 Path selection 17

Intention to

change a flow entry

Type Delete flow
delete

Send BGP withdrawal

Duplicate

Replacement

 no

Modify flow on switchAdd flow to switch

 yes
no

Send BGP announcement

 install

Figure 3.5: Flow entry change

18 CHAPTER 3. DESIGNING A SDN INTER-DOMAIN ROUTING CONTROLLER

Chapter 4

Hybrid SDN&BGP Emulation
Framework

We developed a hybrid SDN and BGP Emulation Framework. Our framework is based on
Mininet [11] and POX [13]. POX is an OpenFlow controller. The framework is written in Python
and runs on Ubuntu 13.10 x64.

4.1 Overview

In Figure 4.1 we show an overview of our implementation. We see an example of how the hosts
are connected to each other. On the left side we see the legacy part of the test network. Whereas
on the right side we illustrate a sample cluster. Both, BGP routers and SDN switches, can
originate prefixes. It is also possible to add a host which is connected to the network device and
has an IP address within the particular prefix. Furthermore both approaches can be combined
to form a hybrid network. In Figure 4.1 for simplicity we omit the event collector which collects
events from all parts of the network and saves them into a log file. BGP routers always peer with
a BGP monitor, which has the goal to collect routing control plane state changes. Moreover,
per cluster we have a special cluster BGP router which relays routing information between BGP
routers and the SDN controller. For every BGP peering there is a link from the cluster BGP router
to the adjacent SDN switch. In our network design we model one Autonomous System (AS) as
one router. Therefore the effects of intra-domain routing are neglected. The reason for choosing
this is that we want to isolate the effect of inter-domain routing convergence and experimentally
study its properties.

8.0.1.0/29

BGP router

BGP monitor

Cluster BGP Speaker

C

C

M

M
SDN Switch

SDN Controller

8.0.6.0/29

Cluster

Figure 4.1: Emulation overview

19

20 CHAPTER 4. HYBRID SDN&BGP EMULATION FRAMEWORK

4.2 Controller

In this section we give insights in the implementation of the controller described in Chapter 3.

RoutingGraph
Global view of

the cluster,

calculates paths

BorderSwitch
Represents one

SDN switch

BorderSwitch
Represents one

SDN switch

BorderSwitch
Represents one

SDN switch

BGPListener
Listens and

speaks BGP

C

Figure 4.2: Simplified conceptual controller implementation overview

Overview In Figure 4.2 an overview of the implementation is shown, which is slightly modi-
fied for better understanding. Every OpenFlow switch which is connected to our controller has
a instance of the class BorderSwitch to keep state of information related to that switch. These
instances also exist for SDN switches which do not have a peering to a BGP router. One im-
portant task of the instance is to keep track of prefixes it has learned either because the prefix
is directly connected to that switch or because it has learned that network from BGP. Best path
changes are then propagated to the RoutingGraph instance, which keeps the global overview
of the network. The Switch graph is stored in that instance and is updated with the received
best path changes. As soon as flow entries have been calculated the RoutingGraph passes
them to the BorderSwitch instances which handle them. They not only install the flow entries on
the OpenFlow Switch but also announce and withdraw paths over BGP to its neighbors. This
includes keeping track of the announced paths, which may be sent to a newly established BGP
peering neighbor. Furthermore the BorderSwitch instances respond to ARP requests of hosts.

Forwarding flow entries Flow entries responsible for routing the payload traffic are installed
permanently on the switches. We set the network destination and the Ethernet frame type (IPv4)
as match fields. Furthermore we set the priority to the prefix length to prefer more specific
prefixes over larger prefixes. The flow entries only have an output action to forward the traffic
to the destination. When the next hop is a BGP router or a directly connected host also the
destination MAC address is changed.

Graph manipulation To store the graphs the DiGraph class of NetworkX is used. From the
same library the Dijkstra implementation is used for shortest path computation.

BGP communication Every cluster has one BGP host which is responsible for the BGP com-
munication with all BGP neighbors of the cluster. This is however not a regular BGP router as
we need to parse all incoming paths and inject announcements. We therefore use ExaBGP [14],
which does not install the forwarding rules on the host but passes the paths to an application.
Because we only have one ExaBGP host per cluster and a static peering prefix length, the host
has one link per BGP peering to the adjacent switch. The switches detect the BGP connections
based on the peering IP addresses which are automatically provided to the controller. Therefore
the controller can detect and learn the switch port numbers and start forwarding ARP and IP
traffic between the external BGP router and ExaBGP of the cluster. These rules are installed to
enable a successful BGP connection.

4.3 Emulator 21

Cluster-wide topology detection The POX OpenFlow discovery module is used for link de-
tection between switches. As we had some problems regarding flapping connections and the
topology within the cluster is not changed intentionally in our setup, we changed the timeout
setting from the OpenFlow KeepAlive module to Python’s maximum integer. In case it is still
flapping, we log those events to the log file and they are detected as an error while analyzing
for convergence time.

Origination of a prefix As it is unknown to the controller on which switch port a host with a
prefix is connected to, the controller waits until it receives a packet belonging to the prefix and
then starts announcing the prefix.

Limitations The controller does not yet support policies and only announces prefixes when
a host has been added to that network. Furthermore it does also not fully support AS sets
because they are not used in our network. POX is implemented using cooperative multitasking.
Therefore the controller does no parallel task execution.

4.3 Emulator

The goal of our network emulation was to have an easy to use emulator which can be easily
adapted.

4.3.1 Mininet extensions

For our emulation framework we use Mininet (see Section 2.3). Mininet has been chosen be-
cause of its performance advantages and it provides an easy to use Python API to generate
SDN networks. As we also wanted to emulate BGP networks we extended Mininet to also use
BGP routers using the Quagga routing software. Furthermore some code changes to Mininet
were needed.

Naming

Host names All our networking devices, which represent an AS (BGP routers and SDN
switches) are named ’r AS number . Router ID ’. The Router ID is an incrementing identifier
within the AS. In the current framework the Router ID is always equal to 0, as we only have one
network device per AS. With this naming pattern we allow further extension of our framework
to support multiple devices per AS. We have chosen the same naming pattern for both, BGP
routers and SDN switches, because this allows experiment scripts to refer to a particular AS
network device without requiring to know which type it will be. The dpids of the SDN switches
are numbers and can be calculated using AS number ∗ 1000 + Router ID.
Hosts are named in a similar way as network devices: ’h AS number . Host ID ’. The Host ID
is also unique within the AS. The naming has also been chosen because of easier and faster
management and pattern recognition.
And as it is common in Mininet the controllers are named with ’c Cluster ID ’ and the cluster BGP
router is called ’vb Cluster ID ’. The Cluster ID is a unique number which identifies a cluster.
Therefore e.g. c1 and vb1 are in the same cluster.
The BGP monitor has the name ’m Monitor ID ’. However, only one BGP monitor is started,
therefore it is m1.

IP addresses All IP addresses are grouped by their prefix for better understanding. Moreover,
we only support IPv4 addresses.

1.0.0.0/8 As BGP routers need a router id assigned we selected this range for BGP router ids.

2.0.0.0/8 Every BGP peering network is assigned a /30 prefix from this range.

22 CHAPTER 4. HYBRID SDN&BGP EMULATION FRAMEWORK

8.0.0.0/8 All routed prefixes in our emulation are in this range and have a prefix length of /29.
In our emulation we do not have a minimum prefix length restriction of /24 for a successful
announcement or any other pre-installed policies. The second and third octets of the prefix
represent the AS number. Because we use 2 octets for the AS representation we have a
restriction on AS numbers to 16 bits. This is why there is no support for ASN-32.

Auxiliary

Our framework uses the the directory /tmp/sc to create configuration files, mount directories and
communication sockets. UNIX domain sockets are used, because all hosts share some parts of
the file system. We can not use the local interface as hosts have their own network namespace.

Mininet Command line

We extended the Mininet Command line to support some more functionality:

comment Sends a comment event to the log file, can be used to document an experiment.

marker Sets a marker in the log file, which can e.g., be used to measure the time between two
markers.

bgpannounce Announces a prefix on a BGP router

lastrcps Shows number of seconds since the last routing control plane signaling change which
is basically the last BGP update seen in the network. This command can also block until
a specified amount of seconds have elapsed.

lastrcpsc Similar as lastrcps, but it uses the last routing control plane state change which is a
SDN flow entry change or a BGP update to the BGP monitor.

waitconverged Waits until the network is converged. We defined converged as that 90 sec-
onds have elapsed since the last routing control plane signaling and routing control state
change. 90 seconds were selected as a practical waiting time for convergence verifica-
tion since we noticed that a BGP update after 90 seconds correlated with an old routing
change is extremely unlikely to happen.

link Brings both interfaces which connect two nodes up or down, depending on the experi-
menter’s requirements.

ip Prints the IP address of a node.

wait The console blocks for a given number of seconds.

nodecmd Runs a command on a node.

interface Prints interface names which connect two nodes.

hping Ping a host from another host.

neighbors Show neighbors of a node.

checkHosts Checks connectivity between all hosts using pings.

pingHosts Ping every host from every host.

Most commands support host name substitution.

Randomness

On startup of the network several parameters are pseudo random to try to make the BGP
decisions more independent from our emulation framework implementation. We shuffle the host,
switches and link list of Mininet (to change the startup order), choose a pseudo random BGP
router id and randomize BGP peering IP addresses. The seed is stored in the log file and can
be passed to the startup script.

4.3 Emulator 23

Wait converged

When the emulation starts we wait until the network has converged. We use the previously men-
tioned waitconverged command, which waits until the last message is older than 90 seconds.
Sometimes it is necessary to add a wait command before the waitconverged command as it
can take a couple of seconds until the network reacts.

Failure detection

To detect failures in our framework we added ping checks between all hosts. This failure de-
tection is executed at the start and end of the experiment. When the ping check before the
experiment is unsuccessful, the experiment is immediately halted for further investigation. To
use this feature the user has to add a host to every AS. Furthermore we try to catch all ex-
ceptions and log them to the log file. To avoid unnoticed failures the analysis tool fails when it
detects an error or certain events in the log file, unless this setting is overwritten.

BGP router

The BGP routers run Quagga. The configuration is generated automatically. We developed a
Quagga template configuration which allows to easily set policies. Three policies are defined:
Peer (announce own and customer’s prefixes), Customer (send all prefixes), Upstream (an-
nounce own and customer’s prefixes).
To allow asymmetric routing the rp_filter has been disabled on all interfaces. Furthermore the
connect timer has been set to 5 seconds for faster startup. The BGP MRAI is unchanged at the
default value of 30 seconds because in reality most routers use that value (i.e., as best practice).
To have an insight in what is going on in the network and to determine the last routing control
plane signaling change we capture BGP packets on all interfaces of the BGP routers and log
them by sending the contained information to the event collector.

SDN switches

We use the standard Mininet SDN switches which make use of Open vSwitch [15].

4.3.2 Network setups

To save the experiment context in a consistent and reproducible way we save all network topolo-
gies and experiments as Python code, which is located in the folder nwsetup. In those files the
topology and the experiments can be defined. To customize the topology command line options
can be provided at every emulation start. Experiments can be defined with Python code, since
this is very helpful for automation. In experiments it is possible to use the Mininet CLI commands
and commands for loss measurement.

4.3.3 Topologies

There are two different possibilities to create the topologies. Firstly they can be set manually
and secondly the can be created based on measured data of the Internet.
When manually creating the topology the network devices and links can be defined. Additionally
it is possible to add attributes like latency to the links or annotate them with relationships (e.g.,
p2p, c2p) and form clusters.
The CAIDA AS Relationship [16] and the iPlane Inter-PoP link dataset [17] are used to construct
the topology based on Internet measurements. The dataset from CAIDA is used to determine
the links and relationships. Whereas the iPlane dataset is used to determine the latencies on the
links between the ASs. On links which have no latency specified or an invalid latency has been
set (such as <0ms), the default latency is used. Generally we use a default latency of 24ms,
which is the the average latency of the file of 14th December 2013. The value is rounded up
from 23.6459ms to 24ms. The AS relationships are used to choose the routing policy. In artificial
topologies, as the ones used in the final evaluation, default policy is to prefer the shortest path
route (in terms of AS hops).

24 CHAPTER 4. HYBRID SDN&BGP EMULATION FRAMEWORK

4.3.4 Usage

To use the emulator framework one can use the sc-network command. The first positional ar-
gument is the network setup name, which is the name of the network setup file. The other
arguments are optional. They include the configuration for the network setup or the experiment
which should be made automatically. When no experiments are given the framework starts the
modified Mininet console. Other possible arguments are to specify the seed or are log storage
specific.
The usage is as follows:

sc-network [-h] [--config CONFIG] [--group GROUP] [--run RUN]
[--experiments EXPERIMENTS] [--log LOG] [--seed SEED]
setup

4.3.5 Measurement framework

Log files are generated automatically with information about the network. It was our goal to try
to save all relevant information about the experiment. Furthermore we wanted to make it simple
for automated analysis to not spend time on simple analysis tasks.

Event collector

An event collector has been developed where we can send events to. Events are Python
classes. To save events to the log files they are serialized using pickle1. Events can also give
context to other events. For example, an IP assignment event can provide the IP address to host
name relationship to other events, which can use this information to print easier to understand
log messages for humans.

Log storage structure

For better log file management the log files are sorted into directories. The format of the path is
as following:

network setup / group / config / run / experiment name / repeat .log

Figure 4.3: Log storage path struture

The network setup is the name of the network setup (see 4.3.2). The group can be used to
group some executions of the experiments. This can be used to get a better view. Config is the
configuration string which has been provided to setup the network setup. A run is a complete
restart of the experiment including the start-up phase. The log entries of the start-up phase and
manual experiments are saved in the run folder. However, automated experiments are saved
in a separate folder. The file name corresponds to the repeat number. The difference between
a run and a repeat is that a run has its own start up phase, whereas a repeat is without one.
This could be the case when snapshotting would be implemented. Snapshotting would have the
advantage that the state after the start-up phase can be used for multiple experiments.

Reading log files

As files are saved in a structured way log files and experiments can be easily selected for
automated analysis matching certain criteria. File selection can be done using the FileManager
class. Criteria can be specified which the log files have to fulfill, then all matching log files are
returned. The log files can be passed to event readers which deserialize and analyze the log
files.

1https://docs.python.org/2.7/library/pickle.html

4.3 Emulator 25

Log file analysis

We developed some tools which can be used for log file analysis:

sc-convergence To calculate the convergence time of several different experiments. It draws
a boxplot and prints some statistical information about the experiments.

sc-networkgraph As we also store network topology events in log files we can show a graph
of the created network.

sc-logview To manually review the log file.

sc-bgpview To visualize BGP state changes.

Events

Events always save the time, when they are created and a unique identifier, which can be used
to gather further information about the event.
The most important events are the following:

BGPUpdateEvent Quagga changes its selected route.

BGPUpdateCaptureEvent A captured BGP update message.

SDNUpdateEvent A switch installed a new flow entry.

MeasureResultEvent Saves the result from a loss measurement.

HostPingErrorEvent Usually indicates that something went wrong, as not all hosts responded
to pings.

Many more classes are defined and are usually straightforward to understand.

BGP monitor

To collect the latest routing control state changes we setup an ExaBGP host which peers with
every non-cluster BGP router. The advertisement interval of the BGP router is set to 1 second for
that link, to receive most state changes. Therefore state changes more frequent than 1 second
are not tracked.

Loss measurement

We developed a tool to measure loss. The measurement is done using a measurement server
and a client. A server instance runs on every host. The protocol is built on UDP. After the
initial setup phase it periodically sends a sequence number and the send time to the server.
The server keeps track of these packets. It discards packets which arrived later than the buffer
time. It is important that at the end of the measurement the packets are not lost otherwise the
measurement can not be stopped. An issue is that while sending packets we are facing clock
inaccuracy problems.
We can measure:

• packet loss (absolute)

• packet loss (relative)

• loss time

We define the loss time as the time difference between the first loss and the last loss in a
measurement. The send time of the packets is used for this calculation. The loss in Figure 4.4
is 3.

26 CHAPTER 4. HYBRID SDN&BGP EMULATION FRAMEWORK

1 2 3 54 60-1

BGP message

Packet loss Convergence timeLoss time

Incident

Figure 4.4: Loss and convergence time

Convergence time

The convergence time is the time between the incident and the last BGP announcement which
has been triggered by an incident. After the convergence time the network is stable again. In
Figure 4.4 the convergence time would be 5.

4.3.6 Third party modules

The controller is implemented using the libraries POX [13] (Version carp), NetworkX2 and Ex-
aBGP [14] (Version 3.3.2). POX is an OpenFlow controller. We use a patched version, which
does not pass certain events to our control application before the connection is up and drops
a BarrierIn on connection setup. NetworkX is a Python library for graphs. ExaBGP is a BGP
speaker which passes the parsed BGP messages to other applications. We were able to iden-
tify some bugs and contributed patches to fix these problems. These included for example
that passed BGP announcements have not been announced or have been sent to wrong BGP
routers.
As already noted Mininet [11] is used with some patches. The interested reader should be aware
to use a kernel version which is compatible with Mininet (we used 3.11.0-19-generic), otherwise
Mininet might block after some time. Furthermore Quagga has been used, which is installed
from the Ubuntu repository (Version 0.99.22.1-2). For inter process communication we use the
Python binding of 0MQ also from the Ubuntu repository. Other used Python modules include:
netaddr, scapy3, twisted and numpy. For network visualization we use BGPplay.js4.

2http://networkx.github.io/
3http://www.secdev.org/projects/scapy/
4http://bgplayjs.com/

Chapter 5

Evaluation of convergence time

For the evaluation of the convergence time we used the clique topology (see Figure 5.1). The
clique, or a full mesh, is a network where every node is connected with every other node. We
have chosen the clique as it is the worst case in terms of high BGP convergence.
The experiments were run on virtual machines with 8GB Ram and 4 CPUs (at least 2 GHz).

r2.0 r3.0

r1.0 r4.0

Figure 5.1: Clique topology with 4 nodes

The prefix we are investigating is connected to a BGP AS which is not part of clique but is
connected to it. We will refer to that AS as AS40000. When having a hybrid clique network, the
SDN nodes always have higher AS numbers than the BGP nodes. For instance when having 8
nodes in the clique and 25% SDN nodes, then AS1 to AS6 are BGP routers whereas AS7 and
AS8 are in the SDN cluster. We are only using a single SDN cluster. Furthermore we installed
a policy on AS40000 to only allow prefix announcements, which are originated in that AS. The
links between the clique nodes have a latency of 24ms which is an average latency.

5.1 Experiments

We defined the following three experiments.

5.1.1 Withdrawal

In the withdrawal experiment the announcing AS has only one upstream. AS40000 is only con-
nected to AS1, which is a BGP AS. The experiment is to take down the link between these
two ASes. The experiment is illustrated in Figure 5.2. We selected this experiment because it is
known that BGP withdrawals have the longest convergence times. [1]

5.1.2 Fail-over

The fail-over experiments tests what happens when one of the two upstream links fails. AS40000
is connected to AS1 and the highest AS number in the clique. Therefore the investigated AS is
connected to both network types (BGP, SDN), if present in the network. This experiment is a
typical case of an ISP which may experience a failure with the peering of one of its upstreams.
Figure 5.3 shows this experiment.

27

28 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

r2.0 r3.0

r1.0 r4.0

r40000.0

Figure 5.2: Withdrawal experiment

r2.0 r3.0

r1.0 r4.0

r40000.0

Figure 5.3: Fail-over experiment

5.1.3 Announcement

Having one upstream to the clique (see Figure 5.4) the AS starts to announce a new prefix.

r2.0 r3.0

r1.0 r4.0

r40000.0

Figure 5.4: Announcement experiment

5.1.4 Changing Parameters

Number of nodes We expect different results for a different number of nodes as the number
of peerings depends on the number of nodes. We have therefore chosen to do the experiments
for 8 and 16 clique nodes.

Percentage of SDN deployment We vary the percentage of SDN switches in the clique as
we want to see how the convergence time is influenced by changing the number of ASes that
join the cluster.

Recomputation Wait Interval We also want to explore the effect of the Recomputation Wait
Interval (RWI) on the convergence time of the network and find a good practice value.

5.2 Results 29

Figure 5.5: Withdrawal: 25% SDN, 16 nodes

5.2 Results

In this section we present the results of the experiments. The experiments always run ten times
for statistical confidence reasons. The results are presented in boxplots. Lines connect the av-
erage values in order to exhibit the ’trends’ that characterize the plots.

5.2.1 Withdrawal

Recompute Wait Interval

In Figure 5.6 and Figure 5.8 it seems that smaller RWI values are better for convergence time
in cliques with 8 nodes even though the clusters participate in path exploration. However, espe-
cially interesting is comparing the convergence time with 30 seconds RWI of those both plots.
With 25% SDN deployment BGP creates pathological paths within the BGP part of the network
before the first RWI elapses. At the first recomputation the cluster pick up the pathological paths
and reannounced them. However with the 50% SDN deployment the pathological paths include
BGP numbers of the clusters at the time when the cluster starts its first recomputation. As clus-
ter numbers are included in the AS path, the cluster can detect that these are pathological paths
and sends a withdrawal to all its neighbors at once. After these withdrawals the BGP routers
also start to withdraw the prefix to certain neighbors until the full network converged. In all these
cases the average convergence time is about the RWI value. We also noticed the same phe-
nomena for 30 seconds RWI in Figure 5.9. The two outliers are a multiple of the RWI as the
previously mentioned phenomena only happen when the RWI was triggered the second time.
The fact that in Figure 5.10 the convergence time corresponds to the RWI seems obvious since
only one BGP router is participating in path exploration.
The convergence times for 16 node cliques (Figure 5.5, Figure 5.7 and Figure 5.9) have a slight
trend to be better with higher RWI values. Which we think is due to the less frequent contribution
to the path exploration process.

SDN Deployment

By looking at Figure 5.11, which is a 16 nodes clique, we can see the convergence time drops
almost linearly with the percentage of SDN deployment. Comparing the convergence times
between the pure BGP and 75% SDN deployment one can notice a huge convergence time

30 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.6: Withdrawal: 25% SDN, 8 nodes

Figure 5.7: Withdrawal: 50% SDN, 16 nodes

5.2 Results 31

Figure 5.8: Withdrawal: 50% SDN, 8 nodes

Figure 5.9: Withdrawal: 75% SDN, 16 nodes

32 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.10: Withdrawal: 75% SDN, 8 nodes

improvement of about 5 minutes. According to Figure 5.12 a smaller network with 8 nodes is
behaving similarly in terms of convergence times, except that it has shorter convergence times
overall. These observations similarly apply for the other RWI values tested. Figure 5.13 shows
very clearly the lower bound of the convergence time for our cluster. The convergence time can
not become smaller than the RWI value as our cluster will not send a route update about a prefix
to BGP neighbors before the RWI timer expired.

Figure 5.11: Withdrawal: 10s RWI, 16 nodes

5.2 Results 33

Figure 5.12: Withdrawal: 10s RWI, 8 nodes

Interpretation

We see that in the withdrawal process in networks with a small number of BGP nodes (≤ 4)
a cluster can reduce the convergence time by keeping an old (shorter pathological) path so
that BGP routers change their pathological paths to the cluster before the RWI expires. Due to
loop detection of the controller, the controller can detect that all nodes changed the best path
to the cluster and withdraws the prefix to all BGP neighbors at once when the RWI expires.
Due to this, all BGP routers receive withdrawals from all SDN neighbors. They then only have
paths over BGP neighbors left. From which they select the best path. Because all pathological
paths they can choose from have the same length, Quagga needs a tie breaker. Separate
experiments suggest that Quagga uses the neighbors router id as tie breaker. As every node is
connected with every other node all BGP routers choose the same neighbor as next-hop. The
nodes then send a withdrawal to the selected next-hop, as they have to withdraw the previously
announced path. Announcements to other neighbors are not yet send because of the MRAI
timer. The selected next-hop obviously receives withdrawals from all neighbors. It therefore can
send withdrawals of its pathological paths to all neighbors. This can repeat itself until the MRAI
of the BGP routers or the RWI of the cluster expires.

Looking at these results it becomes obvious that in future work we have to look into networks
where not all BGP routers are directly connected to the cluster. However, it seems to be a good
idea to send BGP updates for the same prefix for all cluster members at the same time.

To recommend a RWI in this case is difficult because for bigger cliques we would need a higher
RWI and for smaller ones a lower RWI. However, even with worse RWI values the convergence
times are not very different from the good ones. Therefore we suggest to not depend the RWI
choice on this experiment. Even though the different RWI values do not change the convergence
time much the convergence time decrease a lot due to introduction of the cluster. Even a small
percentage of deployed SDN ASes (25%) is already beneficial for better convergence times.
Furthermore the plots show the impact of the SDN controller is significant and can improve the
convergence time a lot.

34 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.13: Withdrawal: 30s RWI, 8 nodes

5.2.2 Fail-over

Recompute Wait Interval

When first comparing plots where we have 8 nodes in the clique, we can see that in Figure 5.15
(25% SDN deployment) and Figure 5.17 (50% SDN deployment) we have the best average
convergence time with an RWI value of 10 seconds. But when looking at Figure 5.19, where we
have 75% SDN deployment, we see the best average convergence time with a 5 seconds RWI.
In the 16 nodes clique experiments (Figure 5.16, Figure 5.16 and Figure 5.18) the 5 and 10
seconds RWI experiments tend to have better convergence times than in the other cases.

Figure 5.14: Fail-over: 25% SDN, 16 nodes

5.2 Results 35

Figure 5.15: Fail-over: 25% SDN, 8 nodes

Figure 5.16: Fail-over: 50% SDN, 16 nodes

SDN Deployment

Figure 5.20 and Figure 5.21 with a 10 seconds RWI show that when we have 25% SDN it is
already about the best convergence time result for that the 10 seconds RWI and it is better than
the pure BGP deployment

Interpretation

We have seen that most times we have approximately the best convergence times with 10
seconds RWI and with that RWI value we would have a small positive impact with 25% SDN de-

36 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.17: Fail-over: 50% SDN, 8 nodes

Figure 5.18: Fail-over: 75% SDN, 16 nodes

ployment. However, when the cluster grows the convergence time will increasingly deteriorate.

5.2.3 Announcement

Recompute Wait Interval

Analysing Figure 5.22, Figure 5.23, Figure 5.24, Figure 5.25, Figure 5.26 and Figure 5.27 we
can notice that it is hard to see an influence of the RWI value on the routing convergence time.

5.2 Results 37

Figure 5.19: Fail-over: 75% SDN, 8 nodes

Figure 5.20: Fail-over: 10s RWI, 16 nodes

38 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.21: Fail-over: 10s RWI, 8 nodes

Figure 5.22: Announcement: 25% SDN, 16 nodes

5.2 Results 39

Figure 5.23: Announcement: 25% SDN, 8 nodes

Figure 5.24: Announcement: 50% SDN, 16 nodes

40 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.25: Announcement: 50% SDN, 8 nodes

Figure 5.26: Announcement: 75% SDN, 16 nodes

5.2 Results 41

Figure 5.27: Announcement: 75% SDN, 8 nodes

42 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.28: Announcement: 10s RWI, 16 nodes

SDN Deployment

When taking a look at the plots for the RWI values 10 (Figure 5.28 and Figure 5.29) and 20
seconds (Figure 5.30 and Figure 5.31) where the percentage of SDN deployment is compared
we can see a small decreasing trend the higher the SDN deployment percentage. However
there is a difference between 8 and 16 nodes. 16 nodes tend to need a higher percentage of
SDN nodes to improve the convergence time. Furthermore we can notice that the range of the
convergence time increases with larger SDN deployment. On the other hand Figure 5.32 and
Figure 5.33 show that the convergence time can increase slightly with a higher SDN percentage.

Interpretation

We found that with an increasing percentage of SDN switches we can slightly improve the
convergence time for certain RWI values. However, to make more detailed statement about the
improvements we can achieve we would need to run the experiments more often.
As we think it is a good property that a cluster improves the routing convergence when it grows,
we suggest an RWI of 10 or 20 seconds even though the other average convergence times are
not much different.

5.2.4 Sources of error

Mininet runs on a single host and every node is a process where they share resources. The
effects of running the experiments in such an environment are unknown especially regarding
concurrency.
We tried to set up our network in random order. However, we still have some fixed network setup
sequences.
The experiments only run 10 times. Therefore the results are not yet very confident.

5.3 Conclusion-Insights

Our measurements suggest that the controller usually improves convergence time but never
makes it significantly worse as compared to pure BGP routing. But there are use cases where

5.3 Conclusion-Insights 43

Figure 5.29: Announcement: 10s RWI, 8 nodes

Figure 5.30: Announcement: 20s RWI, 16 nodes

44 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Figure 5.31: Announcement: 20s RWI, 8 nodes

Figure 5.32: Announcement: 5s RWI, 16 nodes

5.3 Conclusion-Insights 45

Figure 5.33: Announcement: 5s RWI, 8 nodes

it can reduce the convergence time significantly. Even small SDN deployments can already
improve the convergence time.
In the announcement experiment we have seen that the different RWI values do not have a
significant impact on the convergence time but we would prefer 10 or 20 seconds because of
its decreasing property when the cluster grows. Furthermore we concluded that an RWI of 10
seconds would be best for fail-overs. For withdrawals we have been inconclusive about the best
RWI value. We therefore suggest that an 10 seconds RWI is used in general.
As we have seen the convergence time is always lower-bounded by the RWI when at least one
SDN switch is involved. This behavior can be easily explained by the design of our controller.
To make more detailed conclusions the experiments have to be run more often. However it is
already possible to see trends in our gathered data.
As this analysis is only for clique topologies, they can not be applied to other topologies. There-
fore further analysis has to be done on different topologies including more realistic policies. We
expect that results on other topologies will verify our observations and amplify the good effect
of centralization on IDR routing convergence.

46 CHAPTER 5. EVALUATION OF CONVERGENCE TIME

Chapter 6

Future Work

In this section we provide an overview on possible future work.

Policies In the public Internet routing policies are very common and they are also important
for convergence, as they define the propagation path of the changes. However the main parts
of the topologies are without any policy other than shortest path routing, even though it would
be partly supported by our framework. We therefore suggest completing the policy support by
implementing policies into the controller, which could be applied to the AS topology graph. We
suggest using the patent from Bauer et al [18].

Different topologies Our experiments were limited to the clique topology. We want to extend
the experiments to bigger and more realistic topologies with policies, such as topologies build
from Internet measurements.

Multiple clusters As IDR clustering would gain adoption clusters would be operated by mul-
tiple parties. Therefore there has to be research into the effects of interaction between multiple
clusters. Another important point is that SDN clusters operators probably will have different pa-
rameters set. For that reason it has to be tested how different parameters interact with each
other.
Multiple clusters would also give the opportunity to introduce a new inter-cluster routing protocol,
which could be exploited to improve convergence time or to inform neighbor clusters about
temporary congestion and negotiate an alternative path.

Stability The current controller path selection does not take into account the already installed
path and it is not necessarily deterministic. We therefore suggest performing research into im-
provements of taking the previous state into account. The idea is that when we have two equal
length paths and one path has already been in place, that we do not change to the newer path.
We expect to be able to avoid unnecessary route changes and further stabilize the network.

Packet loss Even though our emulation framework has already the ability to measure loss,
it is not yet possible to display loss in a appropriate way, e.g. such that it is possible to detect
which hosts are losing packets. Furthermore the loss measurements have to be included in the
experiments.

Testing Testing our controller application is cumbersome, error-prone and time-consuming.
We suggest developing a unit testing framework for inter-domain routing controllers which does
not only check for expected flow entry installations but also would interact with BGP. More-
over intuitive installed flow entry analysis tools would be helpful, such as an easy forwarding
graph generation for simple flow entries. Furthermore we suggest using an automated controller
fuzzing tool.

47

48 CHAPTER 6. FUTURE WORK

Effect of intra-domain routing In our experiments intra-domain routing within the Au-
tonomous Systems is neglected. We suggest looking into what effect intra-domain can have
on inter-domain routing.

Influence of controller link latency We assumed that the link latency to the controller is
zero, but especially in inter-domain routing the routers are distant and latencies are therefore
unavoidable. In further work one can investigate the effect of controller link latency on loss.

Different BGP implementations As the BGP routers used in the Internet have different im-
plementations of BGP, we suggest performing research on the effects of these different BGP
implementations regarding interaction with our cluster.

Link change Currently it is not possible to take down a link where one of the endpoints is a
SDN node. Therefore this can be implemented.

Speed up Starting the network emulation until the network has converged takes some time.
We suggest snapshotting the emulator after startup to reuse the initial converged state for mul-
tiple different experiments.

Multi-path Multi-path support could be a very interesting extension for the emulator and con-
troller.

Chapter 7

Related work

Prior research on how to improve inter domain routing convergence has been mainly focused
on improving BGP or on introducing new distributed protocols.
Kotronis et al [2] then proposed a new solution by exploiting the centralization of SDN beyond
AS boundaries and build AS clusters, which was also the motivation for this project.
The Open Network Operating System (ONOS) [19] is a yet to be (publicly) released Operating
System for Large Scale Networks. According to the already available public information it is
a Distributed Network OS for Large Scale Networks which provides the global network view
to its control applications. It is built for scale and fault tolerance. Whereas ONOS is built to
be production ready for Large Scale Networks our approach is better suited for prototyping as
we for instance use cooperative multitasking. Due to this simplification we can focus more on
research questions than on concurrency issues.
RouteFlow [20] is a platform where the controller application mirrors the SDN topology to a
virtual network and runs a legacy routing protocol on top of it. Through the OpenFlow controller it
installs the forwarding rules from the virtual routers to the SDN switches. Our controller however
does not copy routing decisions of legacy protocols but interacts with legacy devices and runs
its own algorithm.
There exist several networking emulators. Most of them are focused on either legacy routing
protocols or SDN. For example Mininet [11] is a pure SDN emulation framework. On the other
hand there exist for example AutoNetkit [21], which provides legacy routing protocols with auto-
matic configuration generation. In contrast to these solutions our emulator framework provides
both approaches and can emulate hybrid networks, which allows to run new kinds of experi-
ments. Schlinker et al [22] also developed an emulator based on Mininet which supports SDN
and BGP. Unlike our solutions theirs is not focused on building AS clusters.

49

50 CHAPTER 7. RELATED WORK

Chapter 8

Summary

The goal of this master thesis project was to evaluate the effects that a centralized SDN con-
troller can have on inter-domain routing convergence, having the routing decisions of an SDN-
capable AS cluster taken in a central component, which also interacts with external legacy
equipment over BGP. We designed an SDN IDR controller and developed an emulation frame-
work which supports conducting hybrid BGP and SDN experiments. After having conducted
route withdrawal, fail-over and announcement experiments, we concluded that the introduction
of AS clusters and logically centralized control can be beneficial to the routing convergence time
both within the clusters and without. We suggested using a RWI value of 10 seconds for cluster-
controller route recomputation, as an analog to the classic MRAI timer of BGP. Furthermore we
found that even small SDN deployments help the network converge faster in certain cases. In
route withdrawal experiments the convergence time drops significantly. There is also a small
convergence time drop with fail-overs with small SDN deployments. However, route announce-
ment convergence times are only slightly improved in large SDN deployments. Overall, the main
results show that BGP convergence time is the upper-bound for the SDN-aided convergence as
verified by experiments. Furthermore, some scenarios suggest much better results with SDN
achieving reductions up to 85%.

51

52 CHAPTER 8. SUMMARY

Bibliography

[1] Oliveira, R., Zhang, B., Pei, D., Izhak-Ratzin, R., Zhang, L.: Quantifying path exploration in
the internet. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measure-
ment. IMC ’06, New York, NY, USA, ACM (2006) 269–282

[2] Kotronis, V., Dimitropoulos, X., Ager, B.: Outsourcing the routing control logic: Better inter-
net routing based on sdn principles. In: Proceedings of the 11th ACM Workshop on Hot
Topics in Networks. HotNets-XI, New York, NY, USA, ACM (2012) 55–60

[3] Fu, J., Sjödin, P., Karlsson, G.: Intra-domain routing convergence with centralized control.
Computer Networks 53(18) (2009) 2985 – 2996

[4] Gao, L., Rexford, J.: Stable internet routing without global coordination. IEEE/ACM Trans.
Netw. 9(6) (December 2001) 681–692

[5] Hares, S., Rekhter, Y., Li, T.: A border gateway protocol 4 (bgp-4). (2006)

[6] Cisco: Bgp best path selection algorithm. http://www.cisco.com/c/en/us/support/docs/ip/border-
gateway-protocol-bgp/13753-25.html Accessed: 19.04.2014.

[7] Pei, D., Zhao, X., Massey, D., Zhang, L.: A study of bgp path vector route looping behavior.
In: Distributed Computing Systems, 2004. Proceedings. 24th International Conference on,
IEEE (2004) 720–729

[8] : Quagga routing software suite. http://www.nongnu.org/quagga/ Accessed: 18.04.2014.

[9] Rossi, M.: Implementing path-exploration damping in the Quagga Software Routing Suite
Version 0.99.13 - patch set version 0.3. Technical Report 090730A, Centre for Advanced
Internet Architectures, Swinburne University of Technology, Melbourne, Australia (30 July
2009)

[10] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks. ACM SIG-
COMM Computer Communication Review 38(2) (2008) 69–74

[11] Lantz, B., Heller, B., McKeown, N.: A network in a laptop: Rapid prototyping for software-
defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks. Hotnets-IX, New York, NY, USA, ACM (2010) 19:1–19:6

[12] Wattenhofer, R.: On consistent updates in software defined networks.
http://www.csg.ethz.ch/education/lectures/ATCN/hs2013/material/15_SDN_updates_slides
(2013) Accessed: 19.04.2014.

[13] : Pox. http://www.noxrepo.org/pox/about-pox/ Accessed: 30.03.2014.

[14] Networks, E.: Exa-networks/exabgp. https://github.com/Exa-Networks/exabgp Accessed:
20.04.2014.

[15] : Open vswitch. http://openvswitch.org/ Accessed: 19.04.2014.

[16] Cooperative Association for Internet Data Analysis: As relationships dataset.
http://www.caida.org/data/as-relationships/ Accessed: 20.04.2014.

53

54 BIBLIOGRAPHY

[17] University of Washington, Computer Science & Engineering: iplane: Datasets.
http://iplane.cs.washington.edu/data/data.html Accessed: 20.04.2014.

[18] Bauer, D., Dechouniotis, D., Dimitropoulos, C., Kind, A.: Valley-free shortest path method
(March 2011) US Patent 7,907,596.

[19] ON.Lab: What is onos? http://tools.onlab.us/onos.html Accessed: 20.04.2014.

[20] Nascimento, M.R., Rothenberg, C.E., Salvador, M.R., Corrêa, C.N.A., de Lucena, S.C.,
Magalhães, M.F.: Virtual routers as a service: The routeflow approach leveraging software-
defined networks. In: Proceedings of the 6th International Conference on Future Internet
Technologies. CFI ’11, New York, NY, USA, ACM (2011) 34–37

[21] Knight, S., Jaboldinov, A., Maennel, O., Phillips, I., Roughan, M.: Autonetkit: Simplifying
large scale, open-source network experimentation. In: Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’12, New York, NY, USA, ACM (2012) 97–98

[22] Schlinker, B.C., Zarifis, K., Cunha, I., Feamster, N., Katz-Bassett, E., Yu, M.: Towards
impactful routing research: Running your own (emulated) as on the (real) internet. In:
Proceedings of the 2013 Workshop on Student Workhop. CoNEXT Student Workhop ’13,
New York, NY, USA, ACM (2013) 31–34

