
Institut für
Technische Informatik und
Kommunikationsnetze

Research Project

at the Department of Information Technology

and Electrical Engineering

Towards Exploiting Intra-Application

Dynamism using an H.264 Codec

Georgios Kathareios

MSc. Student, Delft University of Technology

Advisors: Lars Schor

Dr. Hoeseok Yang

Dr. Iuliana Bacivarov

Professor: Prof. Dr. Lothar Thiele

Supervisor at TUDelft: Prof. Dr. Koen Bertels

Zurich

16th November 2013

� II �

Abstract

The computational requirements of applications targeting multi- and many-
core systems increase rapidly. In order to achieve optimized execution,
streaming applications must dynamically adapt to changes of their input.
In this work, this intra-application dynamism is explored using an H.264
standard complying Codec pair.

Initially, an encoder/decoder pair of applications is implemented for the
DAL model of computation, using code targeting the HOPES framework
as baseline. Focus is given on the encoder application, where we apply the
wavefront parallelism technique in order to increase the degree of parallelism.
This degree is de�ned as a function of the input video's resolution, which
introduces static dynamism to the application.

As a means of increasing the encoder's performance, a frame pipelining
scheme is proposed. In addition, we argue that run-time dynamism can
be achieved by balancing the tradeo� between execution time and compres-
sion rate. Three encoding parameters are proposed that can be adjusted at
run-time to achieve run-time dynamism.

Finally, the implementation is evaluated, by calculating the maximum the-
oretical speedup that it can achieve and by exploring the e�ects of di�erent
mappings and di�erent degrees of parallelism on the performance. The res-
ults show that we have achieved better maximum speedup than the HOPES
implementation.

� III �

� IV �

Acknowledgements

I would like to express my sincere gratitude to Prof. Dr. Lothar Thiele for
giving me the opportunity to work on this project in his research group in
ETHZ.

I would also like to deeply thank Prof. Dr. Koen Bertels for agreeing to be
my supervisor in TUDelft.

Finally, this project would not have been completed without the help and
support of my advisors Lars Schor, Dr. Hoeseok Yang and Dr. Iuliana
Bacivarov. Their guidance, help and ideas during our discussions proved
critical for solving the problems of this work.

� V �

� VI �

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 DAL Framework . 2

1.4 Related Work . 4

1.5 Outline . 5

2 The H.264 Standard 7

2.1 Overview . 7

2.2 Terminology and Basic Concepts 8

2.3 H.264 Structure . 10

2.3.1 Encoder . 10

2.3.2 Decoder . 12

2.4 The Baseline Pro�le . 12

2.5 Summary . 14

3 DAL Implementation of the Standard 15

3.1 HOPES to DAL Transformation 16

3.2 Encoder . 17

3.3 Decoder . 19

3.4 Increasing the Degree of Parallelism 20

3.5 Improving the Performance 24

3.6 Summary . 26

4 Run-Time Dynamism 27

4.1 I to P Frames Ratio . 28

4.2 Motion Estimation Search Range 29

4.3 Slices Per Frame . 30

4.4 Summary . 30

5 Experiments 33

� VII �

5.1 Model of the Application . 33

5.2 Experimental Setup . 35

5.3 E�ect of Mapping . 35

5.4 E�ect of Number of ME Processes 37

5.5 Summary . 38

6 Conclusion and Outlook 41

6.1 Conclusion . 41

6.2 Outlook . 42

A Acronyms 43

B Presentation Slides 45

� VIII �

List of Figures

1.1 Stucture of the design �ow of DAL. 2

1.2 Flow chart of the H.264 encoder. 5

2.1 The functions of the H.264 pro�les. 8

2.2 Functional speci�cation of a H.264 encoder. 11

2.3 Functional speci�cation of a H.264 decoder 11

2.4 An example of dependencies for motion vector prediction . . . 12

2.5 The dependencies for intra-prediction of a 4x4 block. 13

3.1 Division of the encoder functions in processes. 17

3.2 The process network of the base DAL implementation of the
encoder. 18

3.3 Division of the decoder functions in processes. 19

3.4 The process network of the DAL implementation of the decoder. 20

3.5 Dependencies of the currently processed macroblock. 21

3.6 Example of the order that macroblocks are processed when
using wavefront parallelism. 22

3.7 The process network of the improved encoder application for
4 ME instances. 23

3.8 Execution of two successive frames in the current implement-
ation. 24

3.9 Pipelining two successive frames. 25

4.1 Fps per frame for 1:250 and 1:5 I to P frames encoding of a
300 frames, CIF resolution video. 28

4.2 Example of a Motion Estimation search window. 29

5.1 Example of the timings of the processes for the theoretical
encoder. 34

5.2 Execution time for a 300 QCIF video using four di�erent map-
pings. 37

� IX �

5.3 Speedup achieved for a varying number ofME processes, com-
pared to the single ME process encoder. 37

� X �

1
Introduction

1.1 Motivation

In recent years, we have witnessed a paradigm shift from single-core to multi-
core systems, a change that was inevitable since single-core systems hit the
so-called �power wall�. Almost free performance was achieved by increasing
the clock frequency of such systems, at the cost of increasing power consump-
tion to prohibitive levels. At the same time, advances in VLSI technology
manage to constantly increase the number of transistors per chip, paving
the way for multiple cores per chip. Thus, in the �eld of embedded systems,
Multi-Processor Systems-On-Chip (MPSoC) became the norm, as they o�er
high computing capabilities and low power consumption. However, these
gains come at the cost of more complex programming models, which raise a
number of new challenges. One particular challenge is the optimized utiliz-
ation of the cores for the execution of an application.

Furthermore, the behaviour and performance of modern applications highly
depend on their input. Hence, in order to achieve the most e�cient util-
ization of the hardware, applications must dynamically adapt and react to
changes in their input. A prominent example of this kind of applications is a
video encoder/decoder pair. Usually, the encoding/decoding process needs
to meet throughput and latency constraints, which need to be ensured for
every input video. As such, the system resources that the application utilizes
must be dynamically adjusted in order to prevent over- or under-utilization
of the underlying platform.

� 1 �

CHAPTER 1. INTRODUCTION

This research project explores this intra-application dynamism on an H.264
compliant encoder implemented using the DAL framework.

1.2 Contributions

� A H.264 complying encoder/decoder pair of applications is implemen-
ted using the DAL framework. These applications are used as the base
for the rest of the project, but can also be used as benchmarks for the
framework.

� We discuss the wavefront parallelism inherent to the Motion Estimation
step of the encoder and present a way to calculate the maximum degree
of parallelism that can be achieved as a function of the input video's
resolution. The implemented encoder is modi�ed to exploit this extra
parallelism.

� Finally, we evaluate the resulting application and propose possible en-
hancements of the implementation, aiming in increasing its perform-
ance and achieving run-time dynamism.

1.3 DAL Framework

The Distributed Application Layer (DAL) [15] is a scenario-based design �ow
and software development framework to specify applications as platform-
independent Kahn Process Networks (KPN) [3], map, and execute them
on heterogeneous many-core platforms. It was developed by the Computer
Engineering and Networking Laboratory (TIK) of the Swiss Federal Institute
of Technology (ETHZ) as a contribution to the EU-FP7 project EURETILE
[12].

Figure 1.1: Stucture of the design �ow of DAL [15].

� 2 �

1.3. DAL FRAMEWORK

DAL is designed for use in embedded systems, where typically a given set of
applications shares the system, with a fraction of them running at a given
time. The design �ow it encompasses is shown in Fig.1.1. The behaviour of
the system is described as a prede�ned set of scenarios, which is restricted
in size and known at design-time. A scenario is de�ned as a system state at
which a subset of the system's applications' set is running or paused. The
transitions between scenarios e�ectively enable behavioural inter-application
dynamism. They are described by a Finite State Machine (FSM) that rep-
resents the scenarios as states. These transitions are triggered by events
generated by the applications or the run-time system.

The applications that run on the system are described by means of KPNs.
Each individual application is composed of a set of autonomous processes,
which interact by exchanging data through FIFO channels. The KPN pro-
cesses are speci�ed using a high-level API that includes the procedures INIT,
FIRE, and FINISH for each one of them. The �rst procedure is called once
for initialization whenever the application starts, and the last one is called
to cleanup after the application is �nished. The FIRE procedure is called
repeatedly for the duration of the application by the system's scheduler,
performing the main purpose of the process. Inter-process communication
is achieved by the procedures DAL_read and DAL_write at any part of
the process. In addition, events can be generated by any process with the
send_event procedure.

Apart from the software, the design �ow involves the description of the under-
lying system's architecture. The architecture model describes the platform
in an abstract manner, using a hierarchical representation that separates
intra-core, intra-tile and inter-tile communication. At the same time, spare
cores are kept as backup at design-time to ensure transparent fault recovery
at run-time, enabling architectural dynamism.

The �nal component of the design �ow is the mapping of software elements
(processes) to hardware elements (cores). The mapping process on DAL is
performed on design-time. For each scenario an optimal mapping is gener-
ated, forming a set of mapping that the run-time manager can access and
apply to start, stop, pause, and resume an application. In order to avoid
recon�guration overhead and process migration costs, the applications are
assumed resident, i.e., they have the same mapping in two connected scen-
arios.

Extra features of the DAL framework include Design-Time Analysis and
Mapping Optimization [4], and Expendable Process Networks (EPN) [16].
Design-Time Analysis and Mapping Optimization can be performed when
the performance analyses of the system's applications are known. Also given
the architectural model of the system as input, an evolutionary algorithm
computes the set of optimal mappings that ful�l a set of prede�ned con-

� 3 �

CHAPTER 1. INTRODUCTION

straints. EPNs are a model of computation that can dynamically increase
the degree of parallelism of KPNs or other streaming programming models,
by abstracting several possible granularities in a single speci�cation. Using
methods such as process replication and unfolding, the process network of
an application can be transformed to an equivalent network with di�erent
granularity.

The DAL framework will be used in this work for producing and running
the H.264 encoder and decoder implementations.

1.4 Related Work

The H.264 standard is often ported and evaluated for a wide variety of plat-
forms in related research work, due to its widespread use, high computa-
tional power demands and heavy data dependencies that make parallelization
a challenge. Implementations of a standard-complying encoder on generic
multi-processors, the Cell Processor and GPUs exist. In this section, we
present some examples. For more details on technical terms, or information
on wavefront parallelism, refer to Chapter 2 and Section 3.4, respectively.

Rodriguez et al. [14] consider parallelizing on the GOP1 level and the slice
level. However, multiple GOPs may not be available immediately, as in the
case of streaming videos, or two-ways video communication. In addition, it is
often the case that one slice per frame is used to achieve the best compression
rate, and as such these techniques can not be employed in the general case.

On the other hand, Zrida et al. [18] use task parallelism and describe the
encoder by means of a �ne grained KPN. The granularity is then coarsened,
according to their workload analysis, to a KPN resembling the one used
in this work. Subsequently, they identify the macroblock dependencies and
further parallelize the Motion Estimation task on the macroblock level, by
dividing the frame in three columns. Although the number of columns could
potentially change by spawning more identical tasks, this division does not
give the maximum possible degree of parallelism as in other implementations.

Ko et al. [5] propose their own Motion Estimation algorithm which is suitable
for GPU implementations, and combine it with frame-level parallelism. On
the same context, Wu et al. [9] parallelize all steps of the encoding process
for GPU, by taking advantage of the high degree of parallelism on such
platforms, e.g., in inter-prediction, they omit motion vector prediction and
therefore all dependencies from the current frame. In intra-prediction, a
form of wavefront parallelism is used, as described later on in this work. In

1Group of Pictures: A group of consecutive frames starting with an I frame, that is
encoded independently from any other frame.

� 4 �

1.5. OUTLINE

this particular form, in order to further increase the degree of parallelism,
two of the available prediction modes are omitted to reduce the number of
dependencies for each macroblock, which can result in a lower compression
rate. However innovative and successful, GPU implementations cannot be
ported directly on MPSoCs, since these systems lack on raw computational
power and �ne granularity.

Figure 1.2: Flow chart of the H.264 encoder [7].

The work most closely related to this project is the research done in the
Seoul National University [7, 11]. The HOPES framework [6] is employed
to implement an H.264 encoder that takes advantage of task parallelism.
This is similar to DAL, in the sense that the applications are described in a
platform-independent format, called the Common Intermediate Code (CIC)
format, resembling the KPN description of DAL. The architecture and the
mapping of the target platform are also provided for the generation of the
�nal executable program. A major di�erence between the two frameworks is
that HOPES does not provide inter-application dynamism, as only a single
mapping is provided. The initial implementation of the encoder in this work
is based on the popular x264 open source encoder [1], which consists of the
�ve tasks shown in Fig. 1.2. In order to improve this implementation, the
Motion Estimation task is substituted by a wrapper task, including several
instances of the Motion Estimation task. This scheme increases the degree
of parallelism and takes advantage of the wavefront parallelism. The results
show that 56% performance improvement is achieved by using 2 Motion
Estimation tasks. The code of the initial implementation will be the basis
for the DAL implementation in this work.

1.5 Outline

The rest of this project report is organized in three chapters.

Chapter 2 provides a brief introduction to the H.264 standard. We �rst
provide an overview of the basic functionalities it includes, and describe

� 5 �

CHAPTER 1. INTRODUCTION

some basic terminology that is used in the rest of the work. Furthermore, we
show the structures of a typical standard-complying encoder and decoder,
and describe details of the baseline pro�le that will be the target of this
project.

In Chapter 3 the encoder/decoder pair's implementation is discussed. First,
we show how each of the initial implementations is achieved and discuss
modi�cations that had to be done in the provided HOPES implementations.
Afterwards, we extend and improve the encoder, by further parallelizing the
Motion Estimation process using the wavefront parallelism present in the
application, thus enabling static dynamism. In the end of the chapter, we
propose an enhancement for improving the performance of the �nal imple-
mentation.

Chapter 4 discusses methods that can utilized for achieving run-time intra-
application dynamism on the application. In particular, three methods are
discussed, which focus on balancing the tradeo� between the performance of
the encoder and the compression rate of the output.

Chapter 5 shows our experimental results of the improved encoder and the
e�ect that design parameters have on the performance.

� 6 �

2
The H.264 Standard

The H.264/MPEG-4 AVC (Advanced Video Codec) is one of the most widely
used video coding standards in recent years, which is mainly attributed to its
signi�cantly increased achievable bitrate compression compared to its prede-
cessors. However, the increased performance comes at the cost of increased
complexity and a lengthy speci�cation.

This chapter aims at describing the basic concepts of the standard and
providing a very brief summary of the speci�cation that are needed in order
to present our work 1. Section 2.1 provides an overview of the standard,
while Section 2.2 covers the basic terminology. Furthermore, the structures
of both the encoder and the decoder are presented in Section 2.3, and the
baseline pro�le that was implemented is described in Section 2.4.

2.1 Overview

The H.264 standard speci�cation [2] was developed by the ISO/IEC Mov-
ing Picture Experts Group (MPEG) and the ITU-T Video Coding Experts
Group (VCEG), a partnership known as Joint Video Team (JVT). The
�rst version of the standard was completed in 2003 under the formal name
ISO/IEC 14496−10 − MPEG 4 Part 10, Advanced Video Coding. It was
motivated by emerging networking technologies such as xDSL and UMTS,

1For a more detailed description, the reader is referred to [13], [17], and of course the
standard's speci�cation [2].

� 7 �

CHAPTER 2. THE H.264 STANDARD

and was designed to outperform previous video coding standards, such as the
basic MPEG-4 (part 2 of the MPEG4 standards) and H263, providing better
compression rates and fault-tolerance. The standard reportedly achieves up
to 50% better compression in various bitrates and resolutions, although its
decoder is twice as complex as the basic MPEG-4 and its encoder can be as
much as 10 times more complex [10].

The standard provides �exibility and is applicable in a variety of cases, ran-
ging from two-way video communication to high quality video streaming over
packet networks. This �exibility is achieved by the di�erent pro�les that are
described in the speci�cation. These include:

� The Baseline pro�le

� The Main pro�le

� The Extended pro�le

Each pro�le supports a particular set of coding functions and targets dif-
ferent applications, but is not limited by them. Their functionalities are
summarized in Fig. 2.1. In this work, we focus on the baseline pro�le which
has the lowest complexity and is more suited for embedded systems.

Figure 2.1: The functions of the H.264 pro�les [13].

2.2 Terminology and Basic Concepts

The standard is implemented via a pair of algorithms called Codec (enCOder-
/DECoder). The encoder takes a video sequence as input and processes it to

� 8 �

2.2. TERMINOLOGY AND BASIC CONCEPTS

produce the compressed bitstream, which can be transmitted via some com-
munication medium or stored. The decoder reverses the compression and
reconstructs the video sequence for playback.

A video consists of a sequence of frames that when alternated at the correct
rate produce the moving picture. The frame consists of spatio-temporal
samples called picture elements or pixels. The H.264 standard supports
rectangular frames of the YUV colour space (a.k.a. YCrCb) sampled with
the 4:2:0 format. As such, each picture is described by its luminance and Cr
and Cb chroma coe�cients (Y, U, V, respectively), with the last two being
sampled at half the rate of the �rst, both in the horizontal and vertical
directions.

A frame, in order to be encoded and to produce a coded picture, is divided into
macroblocks, each containing 16x16 luma samples, 8x8 Cr chroma samples
and 8x8 Cb chroma samples. A macroblock can possibly be further divided
into sizes as small as 4x4 Y, 2x2 U and 2x2 V samples, if needed. A slice
is a set of macroblocks in raster scan order that belong in the same picture
and can be encoded independently to other slices of the same frame. For
simplicity, we will only use one slice per frame. A slice can be character-
ized as an I- or P-slice in the baseline pro�le2. An I-slice contains only I
macroblocks, that is, macroblocks that are encoded (decoded) by utilizing
data from previously encoded (decoded) macroblocks within the same slice
and as such is independent from any other slice. A P-slice on the other
hand contains both I and P macroblocks. P macroblocks are macroblocks
that are encoded (decoded) by utilizing data from macroblocks that belong
to a previously encoded (decoded) frame (called the reference frame). The
process that enables the coding based on a previous frame is called Motion
Estimation and Motion Compensation.

The idea behind the Motion Estimation and Compensation process is the
fact that video sequences depict moving objects. Thus, it is not needed
to re-transmit the data needed to describe an object, when the transmis-
sion of the object's movement su�ces. The Motion Estimation algorithm
calculates for each macroblock of the currently processed frame, the most
similar macroblock of a certain search area of the reference frame, called the
predictor macroblock. The di�erence between the current macroblock and
the predictor is called the residual. A motion vector is used to describe the
spatial displacement between the two. The residual most likely contains less
energy than the initial macroblock, hence requires less space to be stored (or
transmitted) along with the motion vector (a process called Motion Com-
pensation). A P macroblock is said to be inter-predicted, as it depends on
macroblocks of another slice, while an I macroblock is intra-predicted, as its
prediction comes from previously processed macroblocks of the same slice.

2Also B-, SI- or SP-slice in other pro�les.

� 9 �

CHAPTER 2. THE H.264 STANDARD

The Group of Pictures (GOP) is a set of successive frames, with every one of
them independent of frames outside the group. Thus, GOPs are independent
from one another, a desired attribute because faults inside one set are not
propagated outside of it. The �rst frame of the group is an I-frame which
is succeeded by P-frames that use the �rst one as a reference, thus ensuring
the independence of the GOP.

Apart from the prediction, in order to utilize as less data as possible for
each macroblock, the residuals are transformed by a Hadamard or DCT -like
transformation and quantized (each value is divided by a constant quantiz-
ation parameter). Additionally, the data are coded with some form of En-
tropy encoding such as a Context-Adaptive Variable Length Coding (CAVLC)
scheme. The quantization processes is a lossy compression method, which
means that data are lost during the process and cannot be reconstructed.
It is more likely that the edges of the macroblocks su�er the biggest loss,
resulting in visible blocks on the reconstructed video. In order to avoid
this phenomenon, a deblocking �lter is applied to every decoded macrob-
lock. The �nal compressed bitstream is passed to the Network Abstraction
Layer (NAL), which facilitates the use of the standard on a broad variety of
systems.

2.3 H.264 Structure

In common with earlier video coding standards, the H.264 speci�cation does
not directly specify a Codec pair. On the contrary, it speci�es in detail the
syntax of a coded bitstream, the semantics of the syntax elements and their
decoding process, by which the initial video sequence can be retrieved [17].
In practice however, the functional representations of an H.264 encoder and
decoder pair most likely resemble the ones shown in Figures 2.2 and 2.3,
respectively.

2.3.1 Encoder

The Encoder consists of two paths, a �forward� path that encodes the current
macroblock, and a "backwards" path that reconstructs it for use as a future
reference (Fig. 2.2). The reconstruction of the reference frames on the
encoder is needed because, as stated before, the encoding process is a lossy
form of compression. That being said, some data of the initial video signal
will be lost during the encoding process, and as such a decoded macroblock
will slightly di�er from its initial counterpart. Thus, when the encoder bases
its description of a macroblock on previous ones, the base must match exactly
the one that the decoder will later utilize.

� 10 �

2.3. H.264 STRUCTURE

Figure 2.2: Functional speci�cation of a H.264 encoder [13].

Figure 2.3: Functional speci�cation of a H.264 decoder [13].

The forward path takes as input a frame that needs to be encoded (Fn),
in units of a macroblock. Each macroblock is either inter- or intra- pre-
dicted, and the prediction P is produced. In the case of inter-prediction, the
motion estimation algorithm uses the already reconstructed frame F ′n−1 as
a reference and produces a motion vector. In the case of intra-prediction,
the reconstructed macroblocks of the same frame are used (uF ′n) as a base.
Subsequently, the prediction is subtracted from the initial macroblock to
produce the residual Dn, which is transformed (T) and quantized (Q) to
produce X, the set of quantized transformed parameters. Afterwards, the
elements of X are reordered to group non-zero coe�cients and subjected to
Entropy encoding to produce the �nal bitstream in the form of NAL units.

The reconstruction path rescales (Q−1) the elements of X, and in turn the
inverse transformation (T−1) produces the reconstructed residual (D′n). The
residual combined with the prediction form the reconstructed frame, which
is �ltered with a Deblocking �lter and stored as a reference. The �lter is
applied on the encoder as well because there is a need to have the references
in exactly the same form as the decoder will, in order to produce the same
prediction.

� 11 �

CHAPTER 2. THE H.264 STANDARD

2.3.2 Decoder

The Decoder is the inverse process of the encoder (Fig. 2.3). It receives the
compressed bitstream as input, in the form of NAL units and proceeds to
decode the Entropy coding and inverse the reordering scan performed by the
encoder. At this point, the set of quantized transformed parameters X is
reconstructed and is treated in the same way as the reconstruction path of
the encoder; it is rescaled (Q−1) and inverse transformed (T−1) to produce
the residual (D′n) which is identical to the residual D′n of the encoder. In
addition, the prediction (P) for the current macroblock is constructed from
previously decoded macroblocks of either the same frame (intra-) or the
reference frame (inter-prediction), according to guidelines provided by the
header information. The prediction is added to the residual and the result
is �ltered in order to produce the reconstructed frame (F ′n).

2.4 The Baseline Pro�le

In this work, we focus on the Baseline Pro�le of the standard. As mentioned,
this pro�le includes the most basic compression techniques and as such does
not achieve the highest possible compression rate. However, due to its low
complexity it is a perfect candidate for implementation on embedded systems
and applications such as video-conferencing. In addition, it encompasses the
core behaviour of the H.264 encoding/decoding process, therefore it can be
perfectly utilized to investigate the behaviour and dynamism of a Codec pair.
In this work, some details of this pro�le's implementation proved crucial and
are thus explained in this section.

Figure 2.4: An example of dependencies for motion vector prediction [13].

In the H.264 standard, every macroblock is predicted from previously pro-

� 12 �

2.4. THE BASELINE PROFILE

cessed data and consequently heavy dependencies are introduced between
them, dictating the order in which they are processed. In the baseline pro-
�le in particular, during Inter-prediction, a frame heavily depends on its
reference frame. In addition, more dependencies are introduced by the need
for reduced output. The motion vector produced from the Motion Estim-
ation is also encoded to reduce the resulting bitstream, in a process called
Motion Vector Prediction. This process predicts the motion vector of a block
(macroblock or smaller size) by the motion vectors of its left, top, and top-
right neighbours in the same frame. Fig. 2.4 shows an example of that:
The macroblock E depends on its three neightbours, despite their parti-
tion size. These particular neighbours are already processed in a raster scan
of the macroblocks, but nevertheless the introduced dependencies hinder a
potential change of the scan order.

Intra-prediction has similar dependencies. The prediction can take place
either in macroblock size or 4x4 samples sized luma partitions of macroblock
(with the corresponding chroma blocks). There exist a number of intra-
prediction modes for each size, each introducing its own dependencies. The
largest number of dependencies are present on 4x4 luma blocks. In total, 9
modes exist for intra-predicting in this size, shown in Fig. 2.5. In this �gure,
the direction of each of the 9 numbered vectors shows the direction of the
dependencies for each sample. We can see that for modes 3 and 7, the same
dependencies as motion vector prediction are present (left, top, top-right),
while in total the current block can depend on the same blocks and on its
top-left one.

Figure 2.5: The dependencies for intra-prediction of a 4x4 block [17].

These dependencies will be revisited in the next chapter, as they are the
main di�culty in parallelizing the H.264 encoder.

� 13 �

CHAPTER 2. THE H.264 STANDARD

2.5 Summary

In this chapter, a brief introduction to the H.264 standard was presented.
Some main concepts were discussed and the major functional blocks of a
Codec pair are described. Finally, some aspects of the baseline pro�le are
analysed that will prove crucial further on.

� 14 �

3
DAL Implementation of the Standard

As the �rst task of this project, an H.264 compliant Codec pair is implemen-
ted using the DAL framework. As mentioned earlier, the implementation
is based on code for HOPES, provided by the Seoul National University
and supports the baseline pro�le of the coding standard. Initially, intra-
application dynamism is not considered, but a simple process network is
created for each of the encoder and decoder applications. Then, focus is
given on the encoder application for two reasons. Firstly, the dependencies
between macroblocks are identical in the encoding and decoding process.
Secondly, the encoder must be much more �exible in its execution, as it is
called to make all decisions concerning the way a video is coded. As such,
with the aim to both increase the degree of parallelism and allow a certain
�exibility according to the input type, we explore the technique of wavefront
parallelism on the encoder.

This chapter shows the methodology that was followed to achieve these goals.
Section 3.1 presents the basic steps to convert an application from its CIC
description in HOPES to its equivalent KPN description in DAL. Sections
3.2 and 3.3 describe how these steps are applied to create the initial im-
plementations of the encoder and the decoder, respectively. Furthermore,
Section 3.4 explores the wavefront parallelism that can be exploited on the
encoder, and Section 3.5 proposes a method to increase the implementation's
performance.

� 15 �

CHAPTER 3. DAL IMPLEMENTATION OF THE STANDARD

3.1 HOPES to DAL Transformation

As mentioned earlier, the HOPES and DAL frameworks bear similarities in
the way that applications are described. However, in order to transform a
CIC speci�cation to a KPN one, emphasis must be put on certain di�erences.

s t a t i c i n t somevar ;

void p ro c e s s_ in i t () { . . . }
i n t process_go (){

. . .
somevar = . . . ;
. . .
MQ_RECEIVE(port_id , buf , s i z e) ;
. . .
MQ_SEND(port_id , buf , s i z e) ;
. . .

}
void process_wrapup () { . . . }

typede f s t r u c t _loca l_states {
i n t somevar ;

} process_State ;

void p ro c e s s_ in i t (DAL_process *p) { . . . }
i n t p r o c e s s_ f i r e (DAL_process *p){

. . .
p−>loca l−>somevar = . . . ;
. . .
DAL_read(p , port_id , buf , s i z e) ;
. . .
DAL_write (p , port_id , buf , s i z e) ;
. . .

}
void p ro c e s s_ f i n i s h (DAL_process *p) { . . . }

Table 3.1: Conversion of a HOPES process speci�cation (left) to the DAL
equivalent (right).

The description of an application on the HOPES framework consists of a
set of processes connected to a process network. Each process is de�ned
by three functions: {process name}_init(), {process name}_go() and {pro-
cess name}_wrapup(). These functions can be directly used to describe the
process in DAL, as the corresponding {process name}_init(DAL_process *),
{process name}_�re(DAL_process *) and {process name}_�nish(DAL_process
*) functions (Table 3.1). In addition, the HOPES APIsMQ_RECEIVE and
MQ_SEND must be replaced by the corresponding DAL APIs DAL_read
and DAL_write.

The major di�erence between the two frameworks lies in the description of
the internal state of each process. In HOPES any variable that keeps its
value between calls of the go function can be declared as static, which makes
it a part of the process state. In DAL such a declaration is not desirable.
A process can be instantiated more than once on the process network and
as such, declaration of a variable as static may lead to usage of the same
memory space by all instances of the process, with unpredictable results.
Instead, DAL provides memory for the internal state of each instance of a
process in the form of the struct _local_states. Hence, every static variable
declaration of the HOPES implementation must be moved to the struct on
DAL (somevar in the example of Table 3.1). Since some static variables may
be global on HOPES, a pointer to the state struct is given to each function
that needs to access it in DAL, thus ensuring a di�erent instance of the
variable for each process instance.

� 16 �

3.2. ENCODER

Finally, the way the application terminates changes between the two frame-
works. HOPES uses a prede�ned maximum number of �rings, known at
design time, for each process. DAL, on the other hand, provides higher
�exibility by giving the application the ability to signal the run-time con-
troller for a scenario change when it has been completed or needs to pause.
Therefore, it can terminate when the entirety of its input is consumed, re-
gardless of its size, which is the termination method we will use in this work's
applications.

3.2 Encoder

Using the transformation technique presented above, the base implementa-
tion for the encoder application on the DAL framework was created. In this
section, the speci�cs of this implementation are presented.

The encoder implementation uses task division on the macroblock level. The
set of functions is divided among �ve processes: Init, ME, Encode, Deblock,
and VLC. The division of the application's function set is shown in Fig. 3.1.

Figure 3.1: Division of the encoder functions in processes.

The application accepts the input video in raw YUV sequence �le format
and the Init process reads one frame of the input �le at a time. Frames are
speci�ed as I or P ones, based on the GOP size value; the �rst frame of each
GOP is speci�ed as I and the rest as P. Subsequently, each frame is divided
in macroblocks, which are scanned in raster order and fed to the ME process.

The ME process reads one macroblock in each �ring sent from the Init

� 17 �

CHAPTER 3. DAL IMPLEMENTATION OF THE STANDARD

process and performs inter- and intra-prediction1, using the macroblock's
reference and neighbouring data that is communicated from the Deblock
process. The results of the two predictions are compared and the best one
is used as the macroblock's predictor, which is sent to the Encode process.

In turn, the Encode process uses the predictor and the raw macroblock to
calculate the residual, which is subsequently transformed and quantized to
form the coded macroblock. This result is sent to the VLC process and is
also reconstructed, with the reconstruction being passed onto the Deblock
process.

The Deblock process stores the reconstructed macroblocks to form a data-
base containing the reference frame's macroblocks used for inter-prediction,
and the current frame's macroblocks used for intra-prediction. Thus, when
it receives a reconstructed macroblock, it saves it in the database and loads
macroblocks that are needed for inter- and intra-prediction of the next mac-
roblock in line. The Deblock process also performs the task of deblocking
�ltering. Since intra-prediction requires un�ltered macroblocks, and inter-
prediction requires the �ltered ones, frames that are used as references are
�ltered when they are fully processed. When the �nal macroblock of such
a frame is received, the process performs the deblocking �lter to the whole
frame and saves it as a reference.

Finally, the VLC process reorders the elements of the received coded mac-
roblock and produces the �nal bitstream by applying variable length coding
on these elements and every other necessary information needed for recon-
structing the macroblock (e.g., the macroblock type, possibly the motion
vector etc.). It also creates the headers of the NAL units and writes all this
data on the output �le.

Figure 3.2: The process network of the base DAL implementation of the
encoder.

1Only intra-prediction is performed if the macroblock belongs to an I-frame.

� 18 �

3.3. DECODER

The process network of the encoder is shown in Fig. 3.2. The communication
channels follow the �ow of data as described earlier. The only exception is
the channel from the Init process to the VLC process. This channel is
added to signal the end of the input �le to the VLC process, which in turns
signals the run-time controller to terminate the application. For signalling
between the two processes we exploit the fact that they both �re once for each
macroblock of the input video. On each �ring, the Init process sends a token
with a prede�ned value indicating that the end of the input �le is not reached.
When the input is fully read, the Init process sends a di�erent prede�ned
value and terminates its own execution. At this point, the processes ME,
Encode and Decode will not receive any inputs and will remain inactive, with
the possibility of being terminated. The VLC process reads one token from
the Init process on each �ring and interprets its value, thus knowing when
the input is over and the run-time controller needs to be signalled.

3.3 Decoder

In accordance to the encoder application, the DAL implementation of the
decoder application was derived from the corresponding HOPES implement-
ation.

For the decoder implementation, task parallelism is used as well. The set
of functions is now divided among seven processes: Read�le, Decode, PredY,
PredU, PredV, Deblock, and WriteFile, as shown in Fig. 3.3.

Figure 3.3: Division of the decoder functions in processes.

The Read�le process reads the input bitstream, checks it for errors, and de-
codes any header information. This information, along with the still encoded
payload, is sent to the Decode process. Each NAL unit corresponds to one
slice of the encoded video, and since one slice per frame is used, the Read�le
process �res once per frame.

The Decode process, as the name suggests, decodes the variable length cod-
ing, reorders and rescales the NAL units' data to form the transformed re-

� 19 �

CHAPTER 3. DAL IMPLEMENTATION OF THE STANDARD

siduals. These data are sent to one of the three Pred processes, according to
the luma or chroma component they represent. However, macroblocks are
transmitted in 4x4 blocks, so that the necessary computations are pipelined.

Since the luma and the two chroma components are independent, the tasks
of inverse transformation, motion compensation and reverse intra-prediction
for each component can be calculated in parallel. As such, the processes
PredY, PredU and PredV perform these tasks concurrently for each 4x4
block they receive from the Decode process, by using as reference the data
received by the Deblock process. The results of the Pred processes are the
reconstructed blocks, which are sent to Deblock.

The Deblock process once again acts as a database for references, similar to
its counterpart of the same name from the encoder application. Once each
frame is completed, it performs the deblocking �lter to enhance the quality,
and sends it to the Write�le process, which simply writes it to the output
�le.

Figure 3.4: The process network of the DAL implementation of the decoder.

The process network of the decoder application is shown in Fig. 3.4. Once
again, an extra channel is introduced from the Read�le process to the Write-
�le one to signal the end of the input �le for the application's termination.
The same principle as in the encoder application is used.

3.4 Increasing the Degree of Parallelism

From the two applications that were implemented, the encoder exhibits
greater potential for exploring its intra-application dynamism. This is due
to the fact that the encoder has an endless range of possible inputs, decides
all the parameters concerning the way they are encoded (e.g., selecting the
GOP size, the types of frames) and also contains the Motion Estimation task

� 20 �

3.4. INCREASING THE DEGREE OF PARALLELISM

which can be the subject of a whole di�erent work by itself. The decoder,
on the other hand, can also have a very diverse set of inputs, but is limited
by the way it processes them, because it is bounded by the decisions of the
encoder. Thus, for the rest of this work, we will focus our e�orts on the
encoder, with some of our ideas being applicable to the decoder, as well.

In the process network of the encoder (Fig. 3.2), we can see that the Init
process can run independently from the rest, and so does the VLC one, as
long as it receives input from the Encode process. However, the feedback
loop between the other three processes prohibits their parallel execution.
This loop is imposed by the dependencies of the encoding algorithm; the ME
process has to use previously encoded macroblocks as references. Therefore,
in this implementation, the ME, Encode, and Deblock processes are always
serialized. To alleviate this problem, we must change the order in which the
macroblocks of a frame are being processed, so that the ME process does
not always depend on the previously processed macroblock. The �rst step
towards this goal is to identify all macroblock dependencies.

As already mentioned in Section 2.4, a macroblock depends on its neigh-
bouring macroblocks in order to be processed (Fig. 3.5). In the case of
inter-prediction these neighbours are the left, top, and top-right macrob-
locks of the currently processed one. In the case of intra-prediction the
dependencies include the top-left neighbour, as well. Thus, in the general
case, for a macroblock to be processed, its left and top-right macroblocks
must have been already processed. If this condition is met, the rest of the
dependencies are resolved recursively.

Figure 3.5: Dependencies of the currently processed macroblock: (a) during
inter-prediction, (b) during intra-prediction, (c) in the general case.

� 21 �

CHAPTER 3. DAL IMPLEMENTATION OF THE STANDARD

It is evident that when the macroblocks are issued by the Init process in
raster order, the above mentioned dependencies do not allow for more than
one macroblock to be processed at a time. However, we can change the pro-
cessing order and increase the number of macroblocks that can be processed
in parallel, using for the ME process a popular technique called wavefront
parallelism [7, 9]. This technique guarantees that all macroblocks that have
their dependencies resolved are issued on every step and the degree of par-
allelism increases from one to a maximum value, and then decreases back
to one. An example of wavefront parallelism can be seen in Fig. 3.6, for a
frame consisting of 4x7 macroblocks.

In this example, we see that the �rst two macroblocks are processed sequen-
tially, because of their dependencies. However, on the third step, the degree
of parallelism increases by one, because there are two macroblocks with re-
solved dependencies. In the same manner, the degree keeps increasing until
a maximum value of four, and then gradually decreases back to one.

Figure 3.6: Example of the order that macroblocks are processed when using
wavefront parallelism.

In this technique, the maximum achievable degree of parallelism depends
on the size of the input video frame. A frame with w ∗ h resolution, has
MB_width = (w + 15)/16 2 macroblocks in the vertical direction and
MB_height = (h + 15)/16 macroblocks in the horizontal one. The max-
imum achievable degree of parallelism is:

max_par = min((MB_width+ 1)/2,MB_height) (3.1)

The number of steps required for processing that frame are:

#steps = MB_width+ 2 ∗ (MB_height− 1) (3.2)

2/ symbolizes integer division, fractions symbolize regular division.

� 22 �

3.4. INCREASING THE DEGREE OF PARALLELISM

The average degree of parallelism is:

avg_par =
MB_width ∗MB_height

#steps
(3.3)

Using wavefront parallelism on the ME process enhances the encoder in two
ways: multiple macroblocks can be predicted at the same time and the �rings
of the Encode and Deblock processes can overlap. As such, we improve the
encoder implementation by multiplying the ME process as many times as
max_par for the given input resolution. For spawning multiple instances of
the process on the process network speci�cation, the iterators of the DAL
framework are used. Fig. 3.7 shows how the process network is altered for a
frame with max_par = 4.

Figure 3.7: The process network of the improved encoder application for 4
ME instances.

The code for the ME process does not need to change, as it does not keep
any internal state between consecutive �rings; it just processes any input
it is given. On the other hand, the code of the Init, Encode, Deblock and
VLC processes has to be modi�ed. The Init process is changed so as to
issue, on each step, all macroblocks that have their dependencies resolved.
Each macroblock line of the input frame is sent to a di�erent ME process:
a macroblock with coordinates (i, j) is sent to the ME process with index
(j%#ME_processes). The order in which the macroblocks are issued can
be easily computed by the frame's resolution, and so it is known by every
process of the application. As such, the Encode process is changed to read
from the correct ME on each �ring, in the same order as they were issued
by the Init process.

The most important changes were made to the Deblock and VLC processes.

� 23 �

CHAPTER 3. DAL IMPLEMENTATION OF THE STANDARD

Deblock does not �re for every macroblock, as it used to, but rather �res
for each step. It waits to receive all the reconstructed macroblocks of the
previous step, and saves them one by one as they are received. After they
have all been collected, it sends the data needed for the next step to the
ME processes, which start their execution at almost the same time. The
VLC process has to change because of the fact that the output bitstream
describes the macroblocks in raster order. Previously, when the macroblocks
were processed in the same order, each one that reached the VLC process
was written directly to the output. However, now that the order has changed,
partial bitstreams for each macroblock must be stored until the correct ones
are received and they can all be written to the output.

In this improved implementation, we have managed to increase the degree
of parallelism of the encoder, but most importantly, we have shown that
this degree is a function of the input video resolution. We have managed
to introduce some dynamism on the encoder application, moving one step
towards the goal of this project.

3.5 Improving the Performance

Using the wavefront parallelism technique on the encoder in the previously
described manner, the average degree of parallelism is lower than the max-
imum achievable one. In this section a method is proposed for increasing the
average parallelism, therefore increasing the performance. We need to point
out that this method was not implemented, since it exceeded the goals of
this project.

Figure 3.8: Execution of two successive frames in the current implementa-
tion, as described in the previous subsection.

Fig. 3.8 shows the execution of two consecutive frames in time. As shown, a
frame can only start being processed when all the macroblocks of its previ-
ous frame have been completed. This restriction is imposed because, during
inter-prediction, a macroblock depends on macroblocks that have already
been processed by the deblocking �lter. Since the �ltering is performed on
the whole frame after it is completed, the next frame can only start be-

� 24 �

3.5. IMPROVING THE PERFORMANCE

ing processed afterwards. This results in periods in time where each ME
process remains inactive, as shown in the �gure. Thus, the average parallel-
ism achieved throughout the encoding of the whole video equals the average
parallelism for one frame, which is inherently less than the maximum.

In order to address this problem, we propose a pipelined scheme of frame
processing, by modifying the implementation of the deblocking �lter. Using
this scheme, the execution of two successive frames will be as shown in Fig.
3.9. In this �gure we see that the gaps between consecutive �rings of the ME
processes are no longer present. Hence, the average degree of parallelism will
become almost equal to the maximum.

Figure 3.9: Pipelining two successive frames.

In the previous implementation we have considered that when a frame is
processed, all previous frames are already processed and can be directly used
as references. However, this is no longer the case in the described approach
as at some time intervals, the processing of two successive frames overlap.
Two main concerns arise: the deblocking �ltering and the inter-prediction
dependencies.

The deblocking �lter implementation must change so that �ltering is per-
formed on each macroblock separately as soon as possible, because this mac-
roblock may be needed as an inter-prediction reference before its frame's
execution is over. The dependencies of a macroblock for the �ltering are
its bottom and right neighbours [8]. This means that a macroblock can be
deblocked only after the next time step, when its right neighbour will be pro-
cessed. Therefore, after receiving the macroblocks of the current step, the
new implementation of the Deblock process should deblock the macroblocks
of the previous step.

In addition, the inter-prediction's dependency from a previous frame must
be revisited. When a macroblock from the current frame is processed, all
macroblocks from its reference frame that belong in its Motion Estimation
window must be already processed (Fig. 3.9). This could potentially cause
a problem for the frame directly succeeding the reference. Adding the de-
pendency of the deblocking �lter, the current macroblock can be processed
at least after ME_search_range+1 time steps after the macroblock in the
same position on the reference frame. In case this cannot be done, gaps must

� 25 �

CHAPTER 3. DAL IMPLEMENTATION OF THE STANDARD

be inserted in the pipeline, resulting again in a decreased average degree of
parallelism. For frequently used search ranges, even in small resolutions like
QCIF (11*9 macroblocks) there should not be a problem. However, if the
search range is increased for quality improvement, attention must be given
in the dependencies of the pipeline.

The proposed method is expected to increase the performance of the encoder
signi�cantly, by increasing its degree of parallelism.

3.6 Summary

In conclusion, in this chapter the implementation of the Codec pair for
the DAL framework is presented. First, the methodology for converting
a HOPES application speci�cation to its DAL equivalent is discussed. Af-
terwards, using this methodology, the initial implementations of the encoder
and decoder are created, from the code provided by the SNU. Deciding to
focus on the encoder for the rest of the work, its main problem for achieving
parallel execution is discussed and a solution is implemented, which enables
some static dynamism on the application as a reaction to the input video
resolution. Finally, a technique is proposed for improving the overall per-
formance of the encoder.

� 26 �

4
Run-Time Dynamism

The implemented H.264 encoder, described in the previous chapter, adjusts
its degree of parallelism according to the input video frame size. This is a
form of static intra-application dynamism, since it is unlikely that the res-
olution changes during a video encoding process. Nevertheless, streaming
applications like this one often have strict throughput constraints. For ex-
ample, real-time video transmission requires a constant frame rate of at least
24 frames per second (fps) for a frame sequence to be perceived as a video by
the human visual system, while HDTV standards require 60 fps. For large
video resolutions, i.e., 720p and 1080p, achieving the necessary framerate
can be challenging. Furthermore, the workload that a video introduces does
not only depend on the video's resolution, but also on the visual data; quick
motion and scene changes increase the computational requirements. Thus,
the encoder must react to high-workload input video at run-time whenever
there is a risk of not meeting the constraints.

As a means of introducing run-time dynamism on the encoder application,
we propose balancing the tradeo� between the achieved fps and the video
compression rate. The encoder can easily monitor the fps by measuring the
elapsed time between the processing of the last macroblocks of two successive
frames. In case the achieved fps drops and gets close to the lower bound
imposed by the constraints, compression rate can be sacri�ced in favour
of better performance. Conveniently enough, the H.264 standards provides
opportunities to balance this tradeo� by adjusting encoding parameters at
run-time. In this chapter we propose three such parameters that can be used
to provide run-time dynamism.

� 27 �

CHAPTER 4. RUN-TIME DYNAMISM

4.1 I to P Frames Ratio

The �rst parameter that is proposed for run-time dynamism is the ratio
between I and P frames. Since the �rst frame of each GOP is speci�ed as
an I frame and the rest as P frames, the ratio can be adjusted by increasing
or decreasing the GOP size. Macroblocks belonging to I frames are only
intra-predicted, while macroblocks from P frames are both inter- and intra-
predicted. Thus, I frames are encoded faster than P frames, which means
that higher fps can be achieved. However, the compression rate of P frames
is higher, since both prediction techniques are used on their macroblocks.
The most accurate of the two predictions is selected, which in turn produces
a residual with less energy, needing less bits to be encoded.

Figure 4.1: Fps per frame for 1:250 (top) and 1:5 (bottom) I to P frames
encoding of a 300 frames, CIF resolution video.

Fig. 4.1 shows the fps achieved for each frame for encoding 300 frames of
a CIF resolution (352*288) video using the implemented encoder and two
di�erent I to P frames ratios 1. For the 1:250 rate, it is evident that the
fps for the P-frames is just below 60, but spikes on the sole I-frame (frame
251) to approximately 70 fps. By increasing the rate to 1:5, more spikes are
introduced, which e�ectively increases the average fps of the encoding process
by approximately 5.1%. The input 45.5 MB video is compressed to 3.82 MB
for the lower ratio and to 4.04 MB for the higher ratio. This means that
along with the speedup, a drop of approximately 5.4% is witnessed in the
compression rate, as expected. These results show that it is indeed possible
to balance, within a certain range, the achieved fps and output compression
rate tradeo� by adjusting the I to P frames ratio at run-time.

1The experimental setup for these measurements corresponds to the setup described
in 5.2.

� 28 �

4.2. MOTION ESTIMATION SEARCH RANGE

4.2 Motion Estimation Search Range

Another parameter that in�uences both the framerate and compression rate
of the encoder is the range of the search window for the Motion Estima-
tion algorithm. This algorithm is part of the inter-prediction process and
therefore only a�ects P frames. Still, it is one of the most computationally
intensive parts of the encoder, and its behaviour can in�uence the behaviour
of the whole application. This algorithm calculates the vector of a macrob-
lock's motion between the current and reference frames. In order to perform
this calculation, the algorithm calculates the macroblock of the reference
frame that best matches the macroblock currently being encoded, with the
comparison between two macroblocks being determined by some metric, e.g.,
the Sum of Absolute Transformed Di�erences (SATD).

Usually, a full search algorithm that compares the current macroblock with
all macroblocks of the reference frame is too slow and is not used, despite
the fact that it calculates the optimal matching. Instead, heuristic methods
are used, which, in the general case, only compare the current macroblock
with macroblocks within a certain window in the reference frame. The search
window is centered at the macroblock with the same coordinates in the refer-
ence frame (Fig. 4.2). The shape of the window and the starting point of the
search varies according to the algorithm used. Frequently, early termination
techniques are used in the search, when a macroblock that matches better
than its neighbours is found. In our implementation a hexagonal search win-
dow is used, the starting point of the search depends on the motion vectors
of the neighbours, and early termination is used to speed up the execution.

Figure 4.2: Example of a Motion Estimation search window.

The range of the search window can determine the speed of the Motion
Estimation algorithm. Using a larger range, more comparisons are possible,
resulting in increased execution time. However, more comparisons means
that there is a higher probability of a better matching, which in turn produces

� 29 �

CHAPTER 4. RUN-TIME DYNAMISM

a residual containing less energy, thus requiring less bits to be encoded.
Therefore, adjusting the Motion Estimation search window range at run-
time can balance the fps-compression rate tradeo�, as desired.

4.3 Slices Per Frame

On both the encoder and decoder implementations in this work, it is assumed
that each frame is encoded in a single slice, which is a popular method in
small and medium resolutions. However, it is possible to split each frame in
more than one slices, and the number of slices per frame can vary between
frames. Thus, this property can be used as another parameter that is adjus-
ted at run-time for achieving dynamism.

As mentioned earlier, slices are encoded and decoded independently. Hence,
it is possible to process them in parallel, by multiplying the corresponding
parts of the process network on di�erent cores. This slice-level parallelism
decreases the processing time of each frame which in turn increases the fps
of the application. However, the higher the number of slices per frame, the
lower the compression rate. This is attributed to two main reasons. Firstly,
there is less �exibility in encoding a single macroblock, because only data
within the same slice can be used. This means that suboptimal predictors
are calculated, resulting in suboptimal compression. Secondly, each slice
requires separate header data and as such, higher slice numbers result to
higher data overhead on the encoded video.

Therefore, the number of slices per frame can be dynamically adjusted at
run-time and increase or decrease the degree of parallelism of the encoder
application, providing either increased fps or better compression rate, ac-
cording to the application's constraints.

4.4 Summary

In this chapter, we proposed exploiting run-time dynamism on the encoder
application, by balancing the tradeo� between time and compression per-
formance. In order to do so, three encoding parameters are presented that
can be adjusted at run-time. The e�ects of each of these parameters is
shown in Table 4.1. The I to P frames ratio is the most easily controlled
of the three and the search range of the Motion Estimation algorithm is a
parameter which greatly a�ects the application's behaviour. Finally, adjust-
ing the number of slices per frame can enable frame-level parallelism, which
cannot be exploited by the current implementation.

� 30 �

4.4. SUMMARY

Parameter Options
Computation Compression

Time Rate

I to P frames ratio
I frames + -
P frames - +

Motion Estimation Search Large Window - +
Window Size Small Window + -

Number of Slices per Frame
Multiple Slices/Frame + -
One Slice per Frame - +

Table 4.1: Summary of the e�ects of di�erent encoding parameters.

� 31 �

CHAPTER 4. RUN-TIME DYNAMISM

� 32 �

5
Experiments

In this chapter, the evaluation of the wavefront parallelism technique used
on the implemented encoder is presented. Focus is given on the execution
time of the application and the speedup achieved by implementation-speci�c
parameters. Other metrics, like the compression rate and quality of the
coded video, are not considered, as they depend on the encoding parameters
of the H.264 standard which remain unchanged throughout all experiments.
First, the theoretical model of the application is presented in Section 5.1,
according to which the maximum theoretical speedup achieved with wave-
front parallelism is calculated. Then, in Section 5.2, the experimental setup
is discussed and Sections 5.3 and 5.4 explore the e�ect of the mapping and
number of ME processes on the encoder, respectively.

5.1 Model of the Application

As explained in Section 3.4, the behaviour of the application depends on
the ME, Encode and Deblock processes, due to the dependencies that are
introduced by the encoding algorithm. The wavefront parallelism technique
changes the execution timings of these processes and as such, the model only
considers them to calculate the theoretical speedup.

As also shown in that section, the maximum degree of parallelism is a func-
tion of the input video resolution (Eq. 3.1). The average degree of parallelism
depends on the resolution as well, and is lower than the maximum parallel-
ism (Eq. 3.3). Thus, for each input video resolution, a (max_par,avg_par)

� 33 �

CHAPTER 5. EXPERIMENTS

pair is de�ned.

A (max_par,avg_par)-encoder is equivalent to a theoretical encoder with
a constant degree of parallelism equal to avg_par. This theoretical encoder
will be represented as (avg_par)-th.encoder, and will be used as a model for
calculating the maximum speedup.

Figure 5.1: Example of the timings of the processes for the theoretical en-
coder.

Fig. 5.1 shows an example process pipeline for encoding three macroblocks
on a (1)-th.encoder and a (3)-th.encoder. On the (3)-th.encoder, the Deblock
process is represented as two separate blocks. Deb_R represents the reading
and saving of the coded data of each macroblock, while Deb_W represents
the time needed for loading and communicating the macroblocks needed for
the next step, along with the time needed for performing the �ltering. On
the (1)-th.encoder, the Deblock process is approximated as a single Deb block
per macroblock. The execution time of this approximation is calculated as
the sum of the time of one Deb_R (tDeb_R), plus the time for one write.
Deb_W represents the writing of avg_par macroblocks, thus one writing

requires
tDeb_W

n time. This means that: tDeb = tDeb_R +
tDeb_W

n .

This model shows that we can calculate the execution time for encoding n
macroblocks for the two theoretical encoders, using the following formulas:

t(1)−th.encoder = (tME + tEnc + tDeb) ∗ n

t(avg_par)−th.encoder =
(
tME + tEnc + tDeb_R + tDeb_W + (avg_par − 1)∗
max(tEnc, tDeb_R)

)
∗ n

avg_par

Subsequently, when using an average parallelism of avg_par, the speedup
gained compared to the sequential execution of one ME process is calculated
as follows:

� 34 �

5.2. EXPERIMENTAL SETUP

speedup(avg_par) =

(tME + tEnc + tDeb) ∗ avg_par

tME + tEnc + tDeb_R + tDeb_W + (avg_par − 1) ∗max(tEnc, tDeb_R)
(5.1)

In order to calculate the maximum theoretical speedup for a given input
video resolution, �rst the average degree of parallelism is calculated from Eq.
3.3. Then, the average execution time of the processes ME and Enc, and the
two parts of the Deblock process are measured, and tDeb is calculated. These
values in turn give the maximum theoretical speedup of this implementation
through Eq. 5.1.

5.2 Experimental Setup

All experiments were conducted on a machine with two 8-core Intel Xeon
E5-2690 CPUs and 16 GB of shared memory. Two input video resolutions
where used, QCIF and CIF. The properties of these two formats are shown
in Table 5.1. The average and maximum degrees of parallelism, are calcu-
lated from Equations 3.1 and 3.3 respectively, and the maximum theoretical
speedup is calculated as explained in the previous section. The execution
time of each process' �ring is measured as the user and kernel CPU time of
the corresponding thread, to avoid measuring waiting and context-switching
time. However, every measurement of the encoder's total execution time
regards the elapsed time, to present the real capabilities of the application.

Format Resolution
Max. Avg. Max. Theoretical

parallelism parallelism Speedup

QCIF 176*144 6 3,67 2,37

CIF 352*288 11 7,07 2,25

Table 5.1: Properties of the formats used as inputs.

The process network of Fig. 3.7 is used, with as many ME processes as
needed on every experiment. The goal of the experiments is to explore the
e�ects of two important parameters of the implementation: the mapping and
the number of ME processes.

5.3 E�ect of Mapping

The �rst experiment explores the e�ect di�erent mappings have on the en-
coder implementation. A 300 frames, QCIF video is used as input to an
encoder with the maximum number of ME processes (6).

� 35 �

CHAPTER 5. EXPERIMENTS

Four di�erent mappings are compared:

1. For the �rst mapping, all processes are mapped on the same core.

2. The second mapping keeps all processes on the same core as the pre-
vious mapping, except the ME ones, which are mapped in pairs on
di�erent cores. In this case, four cores are utilized.

3. A greedy mapping scheme is considered next. Each process is mapped
on a di�erent core. In total, ten cores are used.

4. For the last mapping, information on the application's timings is used
to reduce the number of cores that are needed. It is easy to deduce
from Fig. 5.1 that the Encode and Deblock processes' execution never
overlap with theME processes' execution. Hence, Encode is mapped on
the same core asME0 and Deblock is mapped on the same core asME1.
In addition, Init and VLC are mapped on the same core, even though
their executions overlap, since they do not have high computational
requirements. Seven cores are needed for this mapping.

The execution times of the encoder for each of these mappings are shown in
Fig. 5.2. We can see that mapping 2 improves the execution time compared
to mapping 1, since the degree of parallelism increases. However, when more
that one ME processes are mapped on the same core, the maximum degree
of parallelism cannot be exploited, as their executions overlap. This is the
main reason why mapping 3 performs better than mapping 2. The �nal
mapping is the best among the four, since it performs the best, on less cores
that mapping 3. In the last two mappings, no processes' executions overlap
on any core, but mapping 4 performs better. The reason for that is the fact
that processes with high communication between them are mapped on the
same cores, so this communication can bene�t from the core's cache memory.

This experiment shows that a good mapping can a�ect the application's per-
formance. The last mapping is most likely not the optimal one. It can be
improved by creating the performance model of the application which would
enable usage of the DAL framework's mapping optimizations. However, this
model must be extremely accurate to achieve the optimal mapping. The
optimal mapping would be given by an exhaustive search of the di�erent
mappings, but this would be very time consuming and expensive. Neverthe-
less, it is evident that utilizing information on the processes' execution can
increase the e�ectiveness of the mapping .

Kim et al. [7] use the same input video to test the e�ects the wavefront
parallelism in their implementation. Even though our base implementation
was derived from the base implementation of that work, they achieve 1.56x
speedup compared to a single core execution, while we achieve 2.18x.

� 36 �

5.4. EFFECT OF NUMBER OF ME PROCESSES

Figure 5.2: Execution time for a 300 QCIF video using four di�erent map-
pings.

5.4 E�ect of Number of ME Processes

The next experiment showcases the e�ect of varying the number of ME
processes on the application's performance. A 1374 frames, CIF resolution
video is used as input, in which a maximum of 11 ME processes can be
utilized. The total elapsed time of the application's execution is measured,
for di�erent numbers of ME processes, ranging from 1 to the maximum 11.
The fourth mapping from the previous experiment is used, therefore the
number of cores used is equal to the number of ME processes plus one.

Figure 5.3: Speedup achieved for a varying number of ME processes, com-
pared to the single ME process encoder.

Fig. 5.3 shows the speedup achieved with each ME processes count, com-
pared to the execution time of the application with one such process. It

� 37 �

CHAPTER 5. EXPERIMENTS

is evident that the speedup increases as the number of processes increases.
This is due to the fact that the predictions of more macroblocks are executed
in parallel. As shown in the �gure, the speedup is sub-linear. This is attrib-
uted to the fact that only a part of the application is parallelized, and even
though some processes are pipelined, there are still parts of the encoder that
are executed sequentially, i.e., the Deblock process always follows an Encode
process. In addition, diminishing returns are witnessed as the number of
processes increases, as is usually the case when increasing the parallelism
of an application. This phenomenon can be attributed to the fact that the
processes share the same system resources, such as the L2 cache memory and
the memory bus, which can become congested as the communication tra�c
increases.

Nevertheless, using the maximum number of processes reaches close to the
maximum achievable speedup. The divergence between the maximum theor-
etical and experimental speedups is attributed to the fact that the theoretical
model does not incorporate some aspects of real-world systems, such as con-
text switches and waiting time for memory accesses.

In addition, from the �gure one can notice that the execution with 5 ME
processes achieves a speedup very close to the one achieved with 11 processes.
Therefore, using 5 processes gives a more e�cient encoder, as half the cores
are used.

The �nal remark on this experiment concerns the subject of Chapter 4.
The adjustment of the number of ME processes can be another means of
introducing run-time dynamism on the application. This way, the tradeo�
between performance and number of utilized cores can be balanced at a
frame-to-frame basis, without the need for reduced compression rate. For
example, on a motion heavy scene, the encoder can use 5 ME processes.
On another scene with less computational requirements, 3 processes can be
used if the constraints can still be met, with the remaining two processes
remaining inactive, which temporarily reduces the core count by two.

5.5 Summary

In conclusion, this chapter evaluates the performance of the wavefront parallelism-
enhanced encoder application. A theoretical model of execution is created,
from which the maximum achievable theoretical speedup is calculated. We
performed two experiments that show how two di�erent implementation
parameters a�ect the performance. The �rst experiment regards the map-
ping of the encoder's processes and showed that a mapping that considers
the application's characteristics is essential. It also shows that the achieved
speedup is higher than that of related work [7]. The second experiment ex-

� 38 �

5.5. SUMMARY

plores the number ofME processes that are needed for an e�cient execution.
It is shown that the maximum number of processes does not produce a cost-
optimal execution and that the experimental speedup reaches close to the
theoretical maximum.

� 39 �

CHAPTER 5. EXPERIMENTS

� 40 �

6
Conclusion and Outlook

6.1 Conclusion

This project provides a �rst outlook to exploit intra-application dynamism
on streaming applications, using an H.264 compliant encoder/decoder pair
as a case study.

Initially, the main aspects of the H.264/AVC standard are summarized to
provide a brief introduction and rudimentary understanding of the coding
process for the reader. The Codec pair was implemented on the DAL frame-
work, based on code for the HOPES framework, provided by the SNU. At
�rst, non-dynamic implementations are created in the form of static process
networks for the two applications. Focusing on the encoder application, the
popular technique of wavefront parallelism is utilized in order to increase
its degree of parallelism. This technique also enables static dynamism on
the number of processes of the process network, which now depends on the
resolution of the input video. The performance of the application increases
with this technique, but we propose a pipelining scheme that can be used to
further boost the performance.

In our implementation, only static dynamism is introduced. However, the
coding standard provides opportunities for balancing the tradeo� between
execution time and compression rate at run-time. We propose three encoding
parameters that can be dynamically adjusted towards this goal: the I to P
frames ratio, the search window of the Motion Estimation algorithm and the
number of slices per frame.

� 41 �

CHAPTER 6. CONCLUSION AND OUTLOOK

Finally, the implemented encoder, enhanced with wavefront parallelism is
evaluated. The methodology for calculating the maximum theoretical par-
allelism for each input video resolution is presented. Then, our experiments
show the e�ect that the mapping and the varying number of ME processes
have on the application's performance. Results show that a mapping that
utilizes information on the processes' execution can bene�t the performance,
but also that less than the maximum number of ME processes can provide
almost the maximum speedup. Furthermore, this implementation's achieved
speedup is higher than that of related work [7] that uses the same technique
.

6.2 Outlook

This project was only a �rst step towards an e�cient intra-application dy-
namic Codec pair. Several enhancements of this �rst implementation have
been proposed throughout this report and can be explored on any follow-up
work.

Techniques for achieving run-time dynamism have been described and can
be incorporated in the application in the future. By doing so, we can uncover
the extend to which the dynamism improves the execution.

As far as performance is concerned, a frame pipelining scheme has been
proposed, which can increase the average degree of parallelism on the en-
coder application. In addition, code and communication optimizations can
be performed towards the same goal.

In addition, the wavefront parallelism technique and the previous proposals
(when applicable) can also be used on the decoder, in order to determine
whether the results are consistent on a di�erent streaming application.

Finally, it would be very interesting to implement the main or extended
pro�le of the H.264 standard, in order to provide more e�cient compression
rates, and an even more complex application for study.

� 42 �

A
List of Acronyms

API Application Programming Interface
AVC Advanced Video Coding
CAVLC Context Adaptive Variable Length Coding
CIC Common Intermediate Code
CIF Common Intermediate Format
Codec Encoder/Decoder
DAL Distributed Application Layer
DCT Discrete Cosine Transformation
EPN Expandable Process Network
FPS Frames Per Second
FSM Finite State Machine
GOP Group Of Pictures
HDTV High De�nition Television
HOPES Hope Of Parallel Embedded Software development
KPN Kahn Process Network
MB Macroblock
MC Motion Compensation
ME Motion Estimation
MPEG Moving Picture Experts Group
MPSoC Multi-Processor System-on-Chip
NAL Network Abstraction Layer
QCIF Quarter Common Intermediate Format
SATD Sum of Absolute Transformed Di�erences
VLC Variable Length Coding

� 43 �

APPENDIX A. ACRONYMS

� 44 �

B
Presentation Slides

� 45 �

Towards Exploiting Intra-Application

Dynamism using a H.264 Codec

Georgios Kathareios
MSc. Embedded Systems Student

TUDelft

 Advisors: Lars Schor Professor: Prof. Dr. Lothar Thiele

 Dr. Hoeseok Yang

 Dr. Iuliana Bacivarov

Motivation and Problem Definition

11/1/2013 2 G.Kathareios

• Computational requirements of applications targeting multi- and many-

core systems increase rapidly

• Applications must dynamically adapt to changes of their input

• Intra-application dynamism depends on the application

Problem Definition:

Explore intra-application dynamism of streaming applications with a

H.264 codec as a case study

APPENDIX B. PRESENTATION SLIDES

� 46 �

Contributions

11/1/2013 3 G.Kathareios

• Implemented a H.264/AVC standard encoder/decoder

pair for the Distributed Application Layer (DAL)

• Designed and implemented a technique to increase the

degree of parallelism of the encoder

• Proposed enhancements for achieving run-time

dynamism

Outline

 Context and background

 Related work

 DAL framework

 H.264/AVC standard

 Contributions

 DAL Implementation

 Increase the degree of parallelism

 Current restrictions and proposed solutions

 Evaluation

11/1/2013 4 G.Kathareios

� 47 �

Related Work

11/1/2013 5 G.Kathareios

• Kim et. al.: Automatic H.264 Synthesis for the Cell Processor from a

 Target Independent Specification , SNU (2008)

 - Task Parallelization on the Cell Processor

 - Increase of parallelism: 1,53x speedup on QCIF resolution

• Wu et. al.: A parallel H.264 Encoder with CUDA: Mapping and Evaluation,

 NUDT (2012)

 - Full parallelization targeting GPUs

 - Sacrifice quality for increasing the degree of parallelism

Dynamism is not discussed!

DAL Framework

11/1/2013 6 G.Kathareios

mapping

optimization

mapping

storage

run-time

manager

start / stop application(s)

onto architecture

fault events

behavioral events

O
F

F
L
IN

E

O
N

L
IN

E

3

2 1

Application(s) Architecture

Intra-Application
Dynamism

APPENDIX B. PRESENTATION SLIDES

� 48 �

H.264/AVC Standard

11/1/2013 7 G.Kathareios

Advanced Video Coding Standard

 Compression of “raw” video for transmission and storage

 Decompression of coded video for playback

+ 50% better compression rate than basic MPEG-4

 - Computationally intensive

Widely used:

H.264/AVC Standard

11/1/2013 8 G.Kathareios

Basic Element: Macroblock
(16 * 16 pixels rectangular block)

Main idea: Each macroblock can be predicted based on a group of previously

 processed macroblocks

Intra-prediction (spatial prediction) Inter-prediction (temporal prediction)

X

C B

A

X = i∙Α + j∙B + k∙C

i, j, k describe X

X

t

Y

The motion vector describes X

� 49 �

H.264/AVC Standard

11/1/2013 9 G.Kathareios

I and P macroblocks

• I frames (contain only I macroblocks)

• P frames (contain I and P macroblocks)

I frame

I frame
P frame

P frame
P frame

P frame

t

HOPES Implementation of the Encoder

11/1/2013 10 G.Kathareios

Init ME Encode VLC

Deblock

APPENDIX B. PRESENTATION SLIDES

� 50 �

 Context and starting point

 Related work

 DAL framework

 H.264/AVC standard

 Contributions

 DAL Implementation

 Increase the degree of parallelism

 Current restrictions and proposed solutions

 Evaluation

11/1/2013 11 G.Kathareios

DAL Implementation of the Encoder

11/1/2013 12 G.Kathareios

Init

VLC

ME

Encode

Deblock

� 51 �

DAL Implementation of the Encoder

11/1/2013 13 G.Kathareios

Problem: algorithmic dependencies

 serialize the processes

Encode

Deblock

ME

Focus of main improvement:

Dependencies

11/1/2013 14 G.Kathareios

Inter-Prediction Dependencies:

Reference Frame

ME Search Window

Current Frame

t

Intra-Prediction Dependencies:

Current Frame

APPENDIX B. PRESENTATION SLIDES

� 52 �

Dependencies

11/1/2013 15 G.Kathareios

Inter-Prediction Dependencies:

Reference Frame

ME Search Window

Current Frame

t

Intra-Prediction Dependencies:

Current Frame

In all cases:

Current Frame

Left and top-right

macroblocks must be

already processed!

Wavefront Parallelism

11/1/2013 16 G.Kathareios

1,1 1,4 1,5 1,6 1,7

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,1 4,2 4,3 4,4 4,5 4,6 4,7

1,1 1,3

t

1,2
Increase and decrease of the

degree of parallelism between 1

and a maximum value

� 53 �

Wavefront Parallelism

11/1/2013 17 G.Kathareios

1,1 1,3 1,4 1,5 1,6 1,7

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,1 4,2 4,3 4,4 4,5 4,6 4,7

1,1 1,2 1,3

1,1 1,2 1,3

2,1

1,4 1,5 1,6 1,7

2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,1 4,2 4,3 4,4 4,5 4,6 4,7

t

Metrics for the Degree of Parallelism

11/1/2013 18 G.Kathareios

1,1 1,2 1,3

2,1

1,4 1,5 1,6 1,7

2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,1 4,2 4,3 4,4 4,5 4,6 4,7

t

Number of steps

Max.

parallelism

Max. parallelism depends on the frame resolution

Average

parallelism
=

#macroblocks per frame

#steps

APPENDIX B. PRESENTATION SLIDES

� 54 �

ME Parallelization

11/1/2013 19 G.Kathareios

ME1 ME1 ME1

ME2

ME1 ME1 ME1 ME1

ME2 ME2 ME2 ME2 ME2 ME2

ME3 ME3 ME3 ME3 ME3 ME3 ME3

ME4 ME4 ME4 ME4 ME4 ME4 ME4

t

Number of steps

Max.

parallelism

Each macroblock line

in different ME process

Init VLC Enc

Deb

ME1

ME2

ME4

ME3

 Context and background

 Related work

 DAL framework

 H.264/AVC standard

 Contributions

 DAL Implementation

 Increase the degree of parallelism

 Current restrictions and proposed solutions

 Evaluation

11/1/2013 20 G.Kathareios

� 55 �

Problem: ME Process Inactivity

11/1/2013 21 G.Kathareios

Average parallelism ≠ Maximum parallelism

Frame i Frame i+1

t

…

ME1
ME2

ME3
ME4

Solution: Pipeline

11/1/2013 22 G.Kathareios

Improvement: Pipeline

Average parallelism very close to maximum

• Needs changes on the deblocking filter

• Increases memory and communication

t

ME1
ME2

ME3
ME4

…

Frame i+1 Frame i

APPENDIX B. PRESENTATION SLIDES

� 56 �

Problem: Only Static Dynamism

11/1/2013 23 G.Kathareios

Parameter Options
Computation

Time

Compression

Rate

I to P frames ratio
I frames + -

P frames - +

Tradeoff: Computation Time (FPS) – Compression Rate

Run-time dynamism will make the implementation more flexible

Solution: I to P Frames Ratio

11/1/2013 24 G.Kathareios

1:250

1:5

Average = 59,06

Average = 62,13

5,2% speedup 5,8% loss of compression

� 57 �

 Context and background

 Related work

 DAL framework

 H.264/AVC standard

 Contributions

 DAL Implementation

 Increase of degree of parallelism

 Proposals for improvement

 Evaluation

11/1/2013 25 G.Kathareios

Experimental Setup

11/1/2013 26 G.Kathareios

Target System:
2x8-Core Intel Xeon E5-2690

Inputs:
• QCIF resolution (176*144)

 Max parallelism: 6 ME processes

• CIF resolution (352*288)

 Max parallelism: 11 ME processes

Init VLC Enc

Deb

ME1

ME2

ME4

ME3

Two important parameters:

• Mapping

• Number of ME processes

APPENDIX B. PRESENTATION SLIDES

� 58 �

Effect of Mapping

11/1/2013 27 G.Kathareios

Input: 300 frames QCIF video

Performance benefits from “smart” mapping

Number of ME Processes

11/1/2013 28 G.Kathareios

Input:
1374 frames CIF video

5 ME processes almost as good as 11

Mapping:

Optimized mapping from previous experiment

� 59 �

Conclusion

11/1/2013 29 G.Kathareios

• Implemented a H.264/AVC standard compliant codec pair for

the DAL framework

• Designed a method to increase the

 degree of parallelism of the encoder

 using wavefront parallelism

• Proposed options for improving the performance and achieving

run-time dynamism

Init VLC Enc

Deb

ME1

ME2

ME4

ME3

t

ME1

ME2

ME3

ME4

Frame i+1 Frame i

APPENDIX B. PRESENTATION SLIDES

� 60 �

� 61 �

Bibliography

[1] x264. http://www.videolan.org/developers/x264.html.

[2] ISO/IEC 14496-10 and ITU-T Recommendation. H.264 : Advanced
Video Coding for Generic Audiovisual Services. 2003.

[3] Gilles Kahn. The semantics of simple language for parallel
programming. In IFIP Congress, pages 471�475, 1974.

[4] Shin-Haeng Kang, Hoeseok Yang, Lars Schor, Iuliana Bacivarov,
Soonhoi Ha, and Lothar Thiele. Multi-objective mapping optimization
via problem decomposition for many-core systems. In Proc. IEEE
Symposium on Embedded Systems for Real-Time Multimedia
(ESTIMedia), pages 28�37, Tampere, Finland, Oct 2012. IEEE.

[5] Youngsub Ko, Youngmin Yi, and Soonhoi Ha. An E�cient
Parallelization Technique for x264 Encoder on Heterogeneous
Platforms Consisting of CPUs and GPUs. Journal of Real-Time Image
Processing, pages 1�14, 2013.

[6] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and
Yunheung Paek. A Retargetable Parallel-Programming Framework for
MPSoC. ACM Trans. Design Autom. Electr. Syst., 13, 2008.

[7] Hae-woo Park Kyunghyun Kim, Jaewon Lee and Soonhoi Ha.
Automatic H.264 Encoder Synthesis for the Cell processor from a
Target Independent Speci�cation. In ESTImedia, pages 95�100, 2008.

[8] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz.
Adaptive deblocking �lter. Circuits and Systems for Video Technology,
IEEE Transactions on, 13(7):614�619, 2003.

[9] Wu Nan, Mei Wen, Huayou Su, Ju Ren, and Chunyuan Zhang. A
Parallel H.264 Encoder with CUDA: Mapping and Evaluation. In
ICPADS, pages 276�283. IEEE Computer Society, 2012.

[10] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke,
F. Pereira, T. Stockhammer, and T. Wedi. Video Coding with

� 62 �

http://www.videolan.org/developers/x264.html

BIBLIOGRAPHY

H.264/AVC: Tools, Performance, and Complexity. Circuits and
Systems Magazine, IEEE, 4:7�28, 2004.

[11] Jonghan Park and Soonhoi Ha. Performance Analysis of Parallel
Execution of H.264 Encoder on the Cell Processor. In ESTImedia,
pages 27�32. IEEE, 2007.

[12] Pier Stanislao Paolucci, Iuliana Bacivarov, Gert Goossens, Rainer
Leupers, Frédéric Rousseau, Christoph Schumacher, Lothar Thiele and
Piero Vicini. EURETILE 2010-2012 Summary: First Three Years of
Activity of the European Reference Tiled Experiment. CoRR,
abs/1305.1459, 2013.

[13] I.E. Richardson. H.264 and MPEG-4 Video Compression: Video
Coding for Next-generation Multimedia. Wiley, 2003.

[14] A. Rodriguez, A. Gonzalez, and M. P. Malumbres. Hierarchical
Parallelization of an H.264/AVC Video Encoder. In Proceedings of the
international symposium on Parallel Computing in Electrical
Engineering, PARELEC '06, pages 363�368, 2006.

[15] Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang,
Shin-Haeng Kang, and Lothar Thiele. Scenario-Based Design Flow for
Mapping Streaming Applications onto On-Chip Many-Core Systems.
In CASES, pages 71�80. ACM, 2012.

[16] Lars Schor, Hoeseok Yang, Iuliana Bacivarov, and Lothar Thiele.
Expandable process networks to e�ciently specify and explore task,
data, and pipeline parallelism. In Proc. International Conference on
Compilers Architecture and Synthesis for Embedded Systems (CASES),
Montreal, Canada, Oct 2013. IEEE.

[17] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview
of the H.264/AVC Video Coding Standard. Circuits and Systems for
Video Technology, IEEE Transactions on, 13:560�576, 2003.

[18] Hajer Krichene Zrida, Abderrazek Jemai, Ahmed C. Ammari, and
Mohamed Abid. High level H.264/AVC Video Encoder Parallelization
for Multiprocessor Implementation. In DATE, pages 940�945. IEEE,
2009.

� 63 �

	Introduction
	Motivation
	Contributions
	DAL Framework
	Related Work
	Outline

	The H.264 Standard
	Overview
	Terminology and Basic Concepts
	H.264 Structure
	Encoder
	Decoder

	The Baseline Profile
	Summary

	DAL Implementation of the Standard
	HOPES to DAL Transformation
	Encoder
	Decoder
	Increasing the Degree of Parallelism
	Improving the Performance
	Summary

	Run-Time Dynamism
	I to P Frames Ratio
	Motion Estimation Search Range
	Slices Per Frame
	Summary

	Experiments
	Model of the Application
	Experimental Setup
	Effect of Mapping
	Effect of Number of ME Processes
	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Acronyms
	Presentation Slides

