
Institut für
Technische Informatik und
Kommunikationsnetze

Damiano Boppart

XMPProbe
XMPP Server Monitoring

Semester Thesis SA-2013-66
December 2013 to February 2014

Advisors: Xenofontas Dimitropoulos, Brian Trammell
Supervisor: Prof. Dr. Bernhard Plattner

ii

Abstract

The Extensible Messaging and Presence Protocol is an open, widely adopted protocol for in-
stant messaging. In practice, many operators that offer the use of their XMPP server to their
users free of charge do not manage to provide a very reliable service. In addition, different soft-
ware implementations of XMPP cause systematic connectivity issues between certain clients
and servers, or between certain servers. And yet, so far there are no tools known to the au-
thors that allow an end user to monitor the reliability or availability of a server, or systematically
attempt to uncover incompatibilities. We design and implement such a tool and discuss mea-
surements made with it. We conclude that service quality indeed varies drastically between
different servers.

iii

Acknowledgements

I would like to thank Prof. Plattner, Fontas and Brian for letting me have a go at a project idea
of my own and for their support throughout this thesis, to Raoul for his stimulating input on the
SSD that led to an excellent solution and his graph images, to Volker for showing me that PIP
solves everything (yes, everything) and to Silvio and Christoph for their remarks on the draft of
this paper.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Task . 1
1.3 Related Work . 2

1.3.1 Remote Tools . 2
1.3.2 Local Tools . 2

1.4 Overview . 3

2 Jabber Basics 5
2.1 Architecture . 5
2.2 Addressing . 6
2.3 Presence Information . 6
2.4 Protocol Extensions . 7

3 Problem Statement 9

4 XMPProbe 11
4.1 Overview . 11
4.2 Backend . 11
4.3 Prerequisites of XMPProbe . 13
4.4 Basics . 13
4.5 The Speed Speed Dating Problem . 14

4.5.1 The Algorithm . 15
4.5.2 Implementation in XMPProbe . 18

4.6 Conversations . 18
4.7 Logging . 19
4.8 Limitations . 19

4.8.1 Issues Inherent to XMPP . 19
4.8.2 Issues Inherent to the Implementation of XMPProbe 20

5 Measurements 21
5.1 Analysis of the Dataset . 21

6 Conclusion and Outlook 25

A Using XMPProbe 27

B XMPProbe Configuration File Format 29
B.1 Sample Configuration . 29
B.2 Configuration Parameters . 29

C Message Format 31

v

vi CONTENTS

D CSV Log Format 35
D.1 Log File Sample . 36

E Analysis Script 37

F Message Quotas per Account 41

Chapter 1

Introduction

XMPP (the Extensible Messaging and Presence Protocol also commonly known as Jabber1)
is an open communications protocol. It is one of the dinosaurs of instant messaging protocols.
Originally developed in 1999, it was standardized by the Internet Engineering Task Force start-
ing in 20022. Continued development of the protocol is ongoing today, and is coordinated by the
XMPP Standards Foundation (XSF).
XMPP has a userbase of over ten million people worldwide3. Various large companies that offer
instant messaging services are compatible with XMPP, including Google (with Google Talk),
AOL (with its AOL Instant Messenger), Facebook (with Facebook Chat) and Microsoft (with
Microsoft Messenger Service and Skype).
Despite this wide adoption, very little academic research into how Jabber fares in practice has
been conducted.

1.1 Motivation

The motivation for this thesis comes from a very practical need of one of the authors of this the-
sis: the need for an XMPP server that offers excellent reliability. Since XMPP is a communication
medium of paramount importance for him, sub-par service of his service providers used so far
have left him dissatisfied. Countless servers are available that allow any user to create and use
an account with them, free of charge. Naturally, the question of which provider offers the best
service poses itself. It turns out that so far no-one has made a serious attempt to benchmark
the reliability of the freely usable servers4. Thus the idea for this thesis was born: create a tool
that allows an end-user to find a particularly reliable Jabber server.

1.2 The Task

This thesis investigates the availability5 of free XMPP servers. Personal experience from one of
the authors has shown that some of these freely available servers commonly suffer from brief
outages. Unfortunately, there is currently no monitoring software available that would allow to
capture the state of these servers such that objective assertions about availability can be made.

1The terms XMPP and Jabber are used interchangeably throughout this thesis.
2As of 2011, XMPP is discussed in RFC 3922 http://tools.ietf.org/html/rfc3922, RFC 3923 http:

//tools.ietf.org/html/rfc3923, RFC 6120 http://tools.ietf.org/html/rfc6120, RFC 6121 http:
//tools.ietf.org/html/rfc6121 and RFC 6122 http://tools.ietf.org/html/rfc6122.

3According to the XSF: http://xmpp.org/xsf/press/2003-09-22.shtml
4By this term we mean Jabber servers that allow any Internet user to create an account and use it free of charge.
5Or, put differently: uptime or reliability

1

http://tools.ietf.org/html/rfc3922
http://tools.ietf.org/html/rfc3923
http://tools.ietf.org/html/rfc3923
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6122
http://xmpp.org/xsf/press/2003-09-22.shtml

2 CHAPTER 1. INTRODUCTION

We therefore implement a monitoring tool, that measures the availability of XMPP servers. This
new monitoring application allows to determine availability and functionality of features of an
XMPP server that an end user commonly uses.
Firstly, this monitoring application is designed to be used for research, as one tool of a toolbox
that allows to paint a more comprehensive picture of the landscape of the Internet as far as
XMPP is concerned. Secondly, this application is useful for system administrators that operate
XMPP servers since it allows them to be alerted to issues with the service they provide. Thirdly,
this tool empowers end users to inform themselves about the quality of service their Jabber
server of choice provides.
Using this monitoring tool, we collect data about the state of a number of freely usable hosted
XMPP servers.

1.3 Related Work

The available methods and tools to monitor XMPP servers can be classified into two categories:

Remote tools This category contains the tools that interface with the XMPP server only by way
of the XMP Protocol. There is no requirement to run such tools on the machine that runs
the XMPP server, and no special interface or feature needs to be configured or present
on the server.

Local tools This category contains the tools that are designed to interface with the server not
necessarily through XMPP, but through other means as well. This usually means that they
are server implementation specific, and also that it might be required to install them on the
machine the server runs on.

The following two subsections showcase the tools of the respective categories that we investi-
gated.

1.3.1 Remote Tools

XMPPoke is a tool that falls into this category. XMPPoke is free software, and is available on
their website [1].
XMPPoke is a tools for “testing the encryption strength of XMPP servers” [1]. It “can test the
TLS configuration and the DNSSEC deployment of XMPP servers, give warnings about issues
with certificate chains, show the list of ciphersuites used by a server and their strength, check
DANE records, and [other features]” [2].
The IM Observatory at https://xmpp.net/ showcases what XMPPoke has to offer.
XMPPoke aims to provide an easy way for end users to judge the security level of a public XMPP
server by assigning a grade to the security of client-to-server and server-to-server connections,
respectively.
The IM Observatory serves as ongoing progress report to the implementation of the Jabber
Manifesto [5]. The signing parties of this declaration of intent aim to “establishing ubiquitous
encryption over our network [of XMPP servers by] May 19, 2014.” [5]
However, XMPPoke exclusively deals with security aspects of communication with XMPP. Fea-
tures such as testing that instant messaging functionality is in fact in working order for a given
server are not part of its scope.

1.3.2 Local Tools

Due to their nature, local tools are actually not in the scope of this thesis. However, for com-
pleteness’ sake, one representative for this category is illustrated here.

https://xmpp.net/

1.4 Overview 3

munin-prosody6 is a plugin for the widely used monitoring software Munin7. This plugin works
only for the XMMP server software Prosody8. The communication between Munin and Prosody
happens through Prosody’s text-based maintenance console.
XMPP Server software implementation specific monitoring are obviously limited to only working
with specific XMPP servers.

1.4 Overview

The basic terminology and architecture of XMPP is introduced in Chapter 2.
The observed issues with XMPP in practice are outlined in Chapter 3. The occurrence of the
issues described here is what we hope to quantify using the tool we developed.
An overview and in-depth, technical discussion of the monitoring application we developed is
presented in Chapter 4.
The use of our tool, and the insights gained from the data it collects are investigated in Chap-
ter 5.
Finally, in Chapter 6 we give our conclusion and an outlook.

6https://github.com/jarus/munin-prosody
7Munin; a networked resource monitoring tool; http://munin-monitoring.org/
8Prosody; a modern XMPP communication server; http://prosody.im/

https://github.com/jarus/munin-prosody
http://munin-monitoring.org/
http://prosody.im/

4 CHAPTER 1. INTRODUCTION

Chapter 2

Jabber Basics

This chapter introduces some of the basic concepts and the terminology of XMPP.

2.1 Architecture

montague.net

romeo

koarl

franz peter

juliet

capulet.comwasinet.org

Internet

Figure 2.1: A View of the XMPP Network [4]

XMPP is built on a decentralized client-server infrastructure. The servers connect to their clients
on one side, and to other servers on the other. There is no hierarchical distinction between
servers.
In Figure 2.1 the different components of the XMPP network are shown:

5

6 CHAPTER 2. JABBER BASICS

Servers montague.net, wasinet.org and capulet.com.

User accounts romeo on montague.net, koarl, franz and peter on wasinet.org and
juliet on capulet.com.

Clients The various desktop computers, laptops and phones, each associated with one ac-
count.

In a similar fashion to email (by way of SMTP1), an end user sends messages with his client
software over servers acting as relays to reach an other user. So, a message from romeo
to juliet is routed through romeo’s home server montague.net, then passed on to the
recipients home server capulet.com and from there to juliet’s client. Unlike with email, the
route from a user’s home server to the recipient’s home server is always direct. A message will
therefore take at most three hops on the XMPP layer to be delivered to the recipient.
A server operator configures his server to either allow or deny his users to connect to users on
other XMPP servers. If users are allowed to contact other servers, the server is called federated.

2.2 Addressing

Entities on an XMPP network all have a unique address. XMPP relies on the Domain Name
System for address resolution. Identifiers of users, so called Jabber IDs (abbreviated JIDs)
resemble email addresses: koarl@wasinet.org.
Each JID contains a domain name that identifies the XMPP server the account is registered to,
wasinet.org in the above example. The user part of the JID, koarl in this example, uniquely
identifies an account on a server. Jabber IDs of the form user@domain.tld are referred to as
bare JIDs.
When an end user connects to the XMPP network with his client software, his JID will have
a so-called resource identifier added to the Jabber ID. The resource part of the JID iden-
tifies a particular instance of client software. A user may be connected using an arbitrary
number of clients simultaneously. In the above example, Koarl runs a Jabber client on both
his phone and his laptop, and so the Jabber IDs that identify these two “end-points” might
be koarl@wasinet.org/myphone and koarl@wasinet.org/computer. JIDs that include
resource names, and thus identify an “end-point” and not just an account, are referred to as full
JIDs. Each full JID (and the corresponding XMPP client it stands for) has individual presence
information and capabilities.

2.3 Presence Information

Presence (referred to in many clients as Status) is one of the fundamental building blocks of
XMPP. Presence information offers the possibility for a user to share information about his avail-
ability and willingness to engage in communication with other users. XMPP defines the four
basic availability statuses “chatty”, “away”, “extended away” and “do not disturb”. Sharing pres-
ence information with another user requires preceding explicit consent. Granting this consent is
called presence subscription.
For example, for franz to be able to see peter’s presence information a two-way exchange
is required: franz must send a presence subscription request to peter, who must reply with
an affirmative answer. Sharing presence information is not inherently bi-directional, but most
XMPP client software implements the authorization of presence subscription requests in such a
way that information will be shared both ways after one user has initiated presence subscription
in one direction2.

1The Simple Mail Transfer Protocol
2That is, after having authorized franz to access his presence information, peter’s client automatically sends a

presence subscription request to franz.

2.4 Protocol Extensions 7

The set of accounts that one user receives presence information from is referred to as the roster
or buddy list. A user’s server keeps track of the state of presence subscriptions. When the state
of a presence subscription changes, or on request, the server provides the connected clients
with an updated roster. The roster is managed by the client, but stored on the server.
The presence information is considered by a server when deciding which end-point of one
account a message should be sent to. If a message defines a bare JID as the recipient, then
the servers choses the resource with the highest priority. If a message defines a full JID as the
recipient, then the specified resource will receive the message. If the specified resource can
not be reached, then the server caches the message for later delivery or returns an error. If a
message only has a bare JID as a recipient and no resources are available, then the server
caches the message for later delivery or returns an error.

2.4 Protocol Extensions

As the “extensible” in XMPP suggests, the protocol is designed to have features added. Exten-
sions may of course be designed by anyone, but extensions published by the XMPP Standards
Foundation enjoy particularly wide-spread adoption. The XSF published standard extensions
are called XMPP Extension Protocol or XEP.
Standards may be purely procedural3, informational4, or add new features to XMPP5.
Server software that does not support numerous XEPs out of the box and just offers “pure”
RFC-compliant XMPP is more the exception than the rule6.

3For example XEP-0001: The standards process followed by the XMPP Standards Foundation.
4For example XEP-0160: Best practices to be followed by XMPP servers in handling messages sent to recipients

who are offline.
5For example XEP-0166: An extension for initiating and managing peer-to-peer media sessions between two XMPP

entities with session management semantics compatible with SIP.
6An overview of the status of the support of various XEPs for XMPP server software can be found at http:

//en.wikipedia.org/wiki/Comparison_of_XMPP_server_software

http://en.wikipedia.org/wiki/Comparison_of_XMPP_server_software
http://en.wikipedia.org/wiki/Comparison_of_XMPP_server_software

8 CHAPTER 2. JABBER BASICS

Chapter 3

Problem Statement

In everyday use, issues with using Jabber occur frequently. Examples include:

1. Every so often a Jabber account might be disconnected for a couple of minutes. Jabber
client software will usually make the user aware of this, as shown in Figure 3.1.

2. Individual messages of a longer conversation get lost when one of participants goes offline
for a short time.

3. More subtle issues surround the propagation of presence information. In Figure 3.2, the
client is configured to use two different Jabber accounts at the same time. Each receives
presence information from one other account shown twice in the buddy list as P. The
presence information (the account is currently Away) should be the same for both buddies
in the roster, and yet one buddy is correctly shown as being away while the other seems
to be offline.

4. Some connectivity issues don’t just involve individual accounts, but all communication
between two particular servers. What this can look like is shown in Figure 3.3. For all
users that have accounts at one particular domain, the presence information reads 404:
Remove Server Not Found1.

Generally, it is not clear which of the involved XMPP implementations (the user’s client, the
user’s server, the buddy’s server or the buddy’s client) is at fault when issues like this occur. The
monitoring tool we develop helps in pinpointing the origin of the problem for such issues.

Figure 3.1: Failed Connections Attempt

1In this particular case it was revealed that an upgrade of the software on the seemingly “not found” server removed
some workaround for incorrectly implemented features in the author’s server that subsequently generates these error
messages.

9

10 CHAPTER 3. PROBLEM STATEMENT

Figure 3.2: Some Presence Subscriptions Are More Equal Than Others

Figure 3.3: Swissjabber Connectivity Issues

Chapter 4

XMPProbe

The tool we developed, XMPProbe, allows the monitoring of certain features of a Jabber server,
and so can detect and document issues such as the ones described in Chapter 3. Collecting
information to pinpoint the exact problem is the first step in solving it.
The information that XMPProbe collects should allow its user to determine:

• How frequently certain problems manifest,

• How long they persist, and

• What domain is affected by a problem.

XMPProbe interacts with the Jabber servers it monitors exclusively over Jabber. That is, it is not
dependent on any features specific to particular server software implementation. Furthermore,
no special configuration or support by the server operator is required to use XMPProbe, which
makes it easy to deploy. Most importantly, this allows any end user to do the monitoring by
herself.

4.1 Overview

XMPProbe is designed to evaluate one of the fundamental features of an XMPP server: sending
instant messages.
XMPProbe essentially mimics the typical behavior of an end user: Having registered a Jabber
account with a server, a user adds some of her friends to her buddy list, and will occasionally
send them instant messages and receive messages in response. In essence, XMPProbe is
nothing more than an implementation of a Jabber client software, albeit one that doesn’t allow
it’s user to type the messages to be sent herself.
In a nutshell, XMPProbe takes some configuration information (including a list of Jabber ac-
count credentials) from the user, periodically exchanges messages between these accounts
and creates log files of what has happened for offline analysis.
The following sections each go into more detail about one aspect of the architecture of XMP-
Probe.

4.2 Backend

Since the authors are proficient in Python1, and a variety of implementations of XMPP are
available in Python, we decided to write all code for this thesis in Python.

1The Python programming language: http://www.python.org/

11

http://www.python.org/

12 CHAPTER 4. XMPPROBE

The following list gives an overview over the various XMPP libraries2 considered for the use in
XMPProbe.

jabber.py3,4 Python 2.0+. GPLv2 License. Last release in 2003-11.

xmpppy5,6 Python 2. GPLv2 License. Last code change in 2009-04.

headstock7,8 Python 2.5+. BSD License. Last code change in 2011.

PyXMPP9,10 Python 2.6. LGPL 2.1 License. Last code change in 2011-08.

PyXMPP211,12 Python 2.7 (using automated conversion also 3.2). LGPL 2.1 License. Last re-
lease in 2013-10. “This code is far from being complete and is not actively developed.”

Wokkel13,14 Python 2.4+. MIT License. Last stable release in 2013-01.

SleekXMPP15,16 Python 2.6+ or 3.1. MIT License. Last release in 2014-02.

Twisted17,18 Python 2.6+. MIT License. Last release in 2013-11. “Twisted is an event-driven
networking engine” and not actually a library with any XMPP-specific features imple-
mented.

GAE XMPP Python API19 Python 2.7. Proprietary License. Google App Engine is a PaaS plat-
form, and this is not an XMPP library that can be used like the others.

We had three main criteria for the evaluation of the available libraries:

Python 3 Support Python 3.0 was released at the end of 2008. As a rule of thumb, we assume
that any library that has not managed to be compatible with Python 3 after 5 years has
either been abandoned or is at the very least not maintained enthusiastically any more.
The release dates or update dates of the libraries above are consistent with this rule of
thumb.

XEPs Supported The selection of XEPs supported by each library, as well as the work needed
for adding support for additional XEPs was considered. A wide variety of XEPs is actually
supported and in and used by many server and client implementations, and a library that
offers “bare” RFC-compliant XMPP would not allow us to test any functionality introduced
in XEPs easily.

Documentation Given the short duration of this Semester Thesis, we needed a library with
documentation that allows swift implementation of a working product.

2The XSF maintains a list of libraries for various programming languages at http://xmpp.org/
xmpp-software/libraries/

3jabber.py Code: http://sourceforge.net/projects/jabberpy/files/
4jabber.py Documentation: http://jabberpy.sourceforge.net/
5xmpppy Code: http://sourceforge.net/projects/xmpppy/files/
6xmpppy Documentation: http://xmpppy.sourceforge.net/
7headstock Code: https://github.com/Lawouach/headstock
8headstock Documentation: http://www.defuze.org/oss/headstock/docs/0.4.1/
9PyXMPP Code: https://github.com/Jajcus/pyxmpp

10PyXMPP Documentation: http://pyxmpp.jajcus.net/pyxmpp.html
11PyXMPP2 Code: https://github.com/Jajcus/pyxmpp2
12PyXMPP2 Documentation: http://jajcus.github.io/pyxmpp2/api/
13Wokkel Code: http://hg.ik.nu/wokkel
14Wokkel Documentation: http://wokkel.ik.nu/
15SleekXMPP Code: https://github.com/fritzy/SleekXMPP
16SleekXMPP Documentation: http://fritzy.github.io/SleekXMPP/
17Twisted Code: http://twistedmatrix.com/trac/browser
18Twisted Documentation: http://twistedmatrix.com/trac/
19GAE XMPP Python API Documentation: https://developers.google.com/appengine/docs/python/

xmpp/

http://xmpp.org/xmpp-software/libraries/
http://xmpp.org/xmpp-software/libraries/
http://sourceforge.net/projects/jabberpy/files/
http://jabberpy.sourceforge.net/
http://sourceforge.net/projects/xmpppy/files/
http://xmpppy.sourceforge.net/
https://github.com/Lawouach/headstock
http://www.defuze.org/oss/headstock/docs/0.4.1/
https://github.com/Jajcus/pyxmpp
http://pyxmpp.jajcus.net/pyxmpp.html
https://github.com/Jajcus/pyxmpp2
http://jajcus.github.io/pyxmpp2/api/
http://hg.ik.nu/wokkel
http://wokkel.ik.nu/
https://github.com/fritzy/SleekXMPP
http://fritzy.github.io/SleekXMPP/
http://twistedmatrix.com/trac/browser
http://twistedmatrix.com/trac/
https://developers.google.com/appengine/docs/python/xmpp/
https://developers.google.com/appengine/docs/python/xmpp/

4.3 Prerequisites of XMPProbe 13

Given these criteria, only two viable candidates of the above list remained: Wokkel and Sleek-
XMPP. In the end, we selected SleekXMPP because it supports more XEPs and the documen-
tation is of high quality.

4.3 Prerequisites of XMPProbe

XMPProbe monitors a given Jabber server by mimicking the interaction with that server that a
normal user has. Like a normal user, XMPProbe needs to have a working Jabber account on
the server in question, and a networked machine to run her client software on.
Originally, XMPProbe was designed to register the required accounts on the servers to be mon-
itored itself20. However, it turns out that this approach is not viable in practice. Many XMPP
servers do not allow in-band registration as a matter of policy. Of those servers that do, many
require interaction in the form of solving a CAPTCHA or verifying account creation by using a
code sent by email. Also, the servers that easily allow automated in-band registration typically
have a limit of only allowing one new account per 24 hours and IP address to be registered.
Many server operators point out on their website that these restrictions have been put in place
precisely because account creation is easy to automate otherwise, and some of them have suf-
fered from spam and DDoS attacks as a result. The approach of having the user of XMPProbe
provide a list of server names was thus abandoned in favor of the user having to provide a list of
at least one working Jabber account per server to be monitored. This approach removes a lot of
the complexity from setting up monitoring, and the user can control exactly what accounts are
used for monitoring. In addition to account credentials, the user also has to provide the Jabber
resource used for all instances of XMPProbe and some more options regarding logging. The
complete specification of the required information to run XMPProbe is detailed in Appendix A.
By using full Jabber IDs for all chat messages, XMPProbe ensures that the messages sent
between a set of accounts being used for monitoring do not affect the use of these accounts
for other resources. In particular, this means that a user can use her account “normally” while
using it for monitoring with XMPProbe at the same time without any messages being routed to
the “wrong” connected client. This use of full Jabber IDs also allows a user to use one account
for multiple independent monitoring tasks with XMPProbe. An application of this would be to run
multiple monitoring tasks of XMPProbe on different physical machines, so that problems and
outages specific to one machine do not result in missing log data (since for the “gap” in data
caused by one machine data from another machine can be used). In fact, XMPProbe runs a
separate instance of itself per account it monitors. Also, one monitoring task can be split up to
run on more than one machine to work around resource constraints.
This “compartmentalization” of running XMPProbe instances by using full JIDs has its limits,
though: since the roster is not particular to a connected client software, but to an account, the
buddy list is shared between all resources. This means that the buddies added by one instance
of XMPProbe will show up for all other instances (and in the end user’s other connected clients,
where applicable). This does however not impact the behavior or functionality of XMPProbe.
XMPProbe does not rely on the content of the roster or presence information when deciding
who to send messages to.

4.4 Basics

Given a list of accounts to monitor, XMPProbe derives a schedule of “conversations”. Over time,
each JID will exchange messages with each other JID in the set of accounts configured, thus
testing connectivity for every possible pair of chat partners.
To reduce the complexity and the probability that issues in XMPProbe lead to wrong or in-
complete data, XMPProbe was designed in a way that each instance (tending to one Jabber

20By using the in-band registration feature specified by XEP-0077.

14 CHAPTER 4. XMPPROBE

account) running as part of a monitoring task works independently of all other instances and
there is no control information that needs to be communicated between instances.
This means that the scheduling of these conversations that test connectivity between a pair of
accounts (and therefore between different instances of XMPProbe) has to be deterministic. The
schedule we use is given by a solution to the Speed Speed Dating Problem.

4.5 The Speed Speed Dating Problem

The Speed Speed Dating Problem (abbreviated SSD) is named after an illustrative story that
was made up by one of the authors to have an obvious example of its application. The story
goes as follows:
You are organizing a speed dating event for n bisexual people. Every attendee should have one
conversation (or “date”) with every other attendee at some point. All conversations have a fixed
duration, and start synchronously. So, all people sit down in pairs for having a conversation si-
multaneously, and all people switch chairs simultaneously. At any given time, one attendee may
only be part of up to one conversation. How can you as the organizer schedule the conversa-
tions in such a way that the complete event takes as little time as possible?
A more formal description of the same problem can be given in terms of graph theory:
An algorithm that solves the Speed Speed Dating Problem is an algorithm that returns a set of
matchings M on the complete graph Kn = V,E such that the union of all edges in the matchings
in M is equal to E:

Kn = {V,E}, a complete graph with n nodes (4.1)

∀m ∈M,m is a matching on Kn (4.2)

⋃
∀m∈M

m = E (4.3)

The cardinality of M expressed in terms of n is the complexity of the solution to the SSD.
A trivial algorithm that solves the problem is the following one:
Each matching in M consists of exactly one edge, that is:

M = {{a}, {b}, {c}, ...}∀a, b, c, ... ∈ E and a, b, c, ... pair-wise unequal (4.4)

Or, more formally:

M = {{e}
∣∣e ∈ E} (4.5)

Given that the complete graph Kn has n·(n−1)
2 edges, the complexity of this solution is:

n · (n− 1)

2
=

n2

2
− n

2
= O(n2) (4.6)

A theoretical lower bound can be derived using the assumption that every matching m ∈M is a
maximum matching. A maximum matching contains bn2 c edges. The lowest-possible complexity
of a solution assuming every matching is a maximum matching is therefore:

n·(n−1)
2

bn2 c
=

n·(n−1)

2
n
2

= n− 1 = O(n) n even
n·(n−1)

2
n−1
2

= n = O(n) n odd
(4.7)

For an even number of nodes, all n nodes are part of a maximum matching, for an odd number
of nodes n− 1 nodes are part of a matching.
For XMPProbe, we designed an algorithm that is more efficient that the trivial approach outlined
above.

4.5 The Speed Speed Dating Problem 15

Figure 4.1: Matchings for n odd.[3]

4.5.1 The Algorithm

To better visualize the algorithm, we arrange the n nodes of the complete graph equally spaced
along a circle line. We also define the distance between nodes along this circle line: Each node
has two nodes closest on the circle line. These are the neighbors of distance 1. The next closest
pair of nodes has distance 2, etc.
We distinguish between the cases of n odd and n even.

n Odd

For an odd n, one node is not paired up with any other node for each matching. One matching
of the solution is constructed in the following way:

1. One node is labeled as inactive.

2. Each possible pair of nodes with the same distance from the inactive node is communi-
cating in this matching.

The complete set of matchings that make up a solution is constructed by executing above pro-
cedure n times and picking a different node to be marked as inactive in the first step every
time. In Figure 4.1 the visualization of this procedure is given for n = 5. The bottom right graph
combines the 5 matchings depicted into the complete graph.

n Even

For an even n, either all or all but two nodes are paired up with another node for each matching.
The matchings of a solution are constructed in two different ways. The matchings with two idle
nodes are constructed in the manner of the “odd” solution:

1. One node is labeled as inactive.

16 CHAPTER 4. XMPPROBE

Figure 4.2: Matchings for n even with two idle nodes per matching.[3]

2. Each possible pair of nodes with the same distance from the inactive node is communi-
cating in this matching.

3. The one node with the highest distance from the inactive node is also labeled as inactive.

Half the set of matchings that make up a solution are constructed by executing above procedure
n
2 times and picking a different node to be marked as inactive in the first step every time such
that all nodes were marked as inactive exactly once after n

2 matchings.
In Figure 4.2, the visualization of this procedure is given for n = 8. The bottom right graph
combines the 4 matchings depicted into one graph.
The remaining matchings with no idle nodes are constructed in the following way:

1. Label two neighboring nodes with start.

2. Each possible pair of nodes with the same distance to the closest node labeled start is
communicating in this matching.

3. The two nodes with the highest distance to the closest node labeled with start are also
labeled with start.

Half the set of matchings that make up a solution are constructed by executing the above pro-
cedure n

2 times and picking a different pair of starting nodes to be marked with start in the first
step every time, such that every pair of neighboring nodes was labeled with start in exactly one
matching after n

2 matchings.
In Figure 4.3, the visualization of this procedure is given for n = 8. The bottom right graph
combines the 4 matchings depicted into one graph.
In Figure 4.4 these two different sets of matchings are combined into one graph, resulting in the
complete graph Kn.

4.5 The Speed Speed Dating Problem 17

Figure 4.3: Matchings for n even with no idle nodes per matching.[3]

Figure 4.4: Matchings for n even assembled from the two subsets of matchings.[3]

18 CHAPTER 4. XMPPROBE

4.5.2 Implementation in XMPProbe

In XMPProbe the class SpeedSpeedDating provides an implementation of the above algo-
rithm. The essential part of the algorithm implementation in Python is shown in Listing 4.1. The
case for two nodes has to be handled separately.

1 l = [’Alice’, ’Bob’, ’Mallory’, ’Eve’]
2 xs = [] # Aggregator
3 if len(l) == 2:
4 xs = [l]
5 elif len(l) % 2 == 0:
6 m = len(self._l) // 2 # Half the length of the agent list.
7 for i in range(m):
8 xs.append(l[i:] + l[:i])
9 for i in range(m):

10 xs.append(l[i + 1:i + m] + l[i + m + 1:] + l[:i])
11 else:
12 for i in range(len(l)):
13 xs.append(l[i + 1:] + l[:i])
14

15 matchings = [list(zip(x[:len(x) // 2], x[len(x) // 2:][::-1])) for x in xs]

Listing 4.1: Speed Speed Dating in Python

XMPProbe extends the Speed Speed Dating problem above by one small detail: We assume
that even though for all conversations between two accounts messages are sent in both direc-
tions, that there might be a difference depending on who starts a conversation. That is, not only
are we interested in having a conversation scheme where Alice strikes up a conversation with
Bob every so often, in addition we want that Bob initiates a conversation with Alice.
We have implemented this by interpreting the edges of a matching as directed edges, and
generating a “reciprocal” matching for each matching in the solution of the SSD: That is, for all
matchings m of the solution M we add a matching m′ where all directed edges are reversed.
An edge (a, b) of m is transformed to an edge (b, a) in m′. By this extension, the size of our set
of matchings is always 2 · n, but the order in which the matchings are parsed ensures that any
two accounts have a conversation every n rounds anyway.
A configuration parameter of XMPProbe defines a period, and the conversations of one match-
ing are conducted every period.

4.6 Conversations

A conversation between two accounts consists of two messages: The initiating party, Alice,
sends an “ask” message to the recipient party, Bob, who replies with an “answer” message.
A message is a serialized representation of a number of attributes. The following table gives the
details on the attributes and their purpose:

magic A “magic number” identifying this message as being sent by XMPProbe.

version The version of the format of the message. Currently there is only version 1.

nonce A number picked randomly for the ask message of a conversation and incremented for
every subsequent message of a conversation. The presence of the nonce makes it un-
likely that messages from one conversation will ever be mistaken as being part of another
conversation.

t_sent A timestamp of when the message was generated.

t_rcvd A timestamp of when the message was generated to which this message is a response
to.

report The function of this message. Currently, the functions “ask” and “answer” are defined.

4.7 Logging 19

comment An arbitrary string that is passed along with each message. This is used to provide
a sysadmin investigating an account used for monitoring with XMPProbe with contact
information21.

checksum A checksum of all the above fields for verifying the integrity of the attributes of a
message.

Messages are serialized using JSON, because the serialized form has good readability and
Python has good support for handling JSON.

4.7 Logging

All the activity of XMPProbe and the information it obtains about the servers it monitors are
logged in three ways:

Standard output For human-readable log messages with very high verbosity.

Log file A duplicate of the standard output log messages, for later reference.

CSV 22 file For some very particular events only. The log file’s format is completely specified,
and the log files are suitable for machine-reading.

While the first two log types are only suitable for manual reference, the third type was designed
specifically to make offline data analysis easy. The CSV file log contains information about 14
particular events that occur during the run of XMPProbe23. These events can be grouped into
three categories:

Online status Events in this category represent connecting (“going online”) and disconnecting
(“going offline”) of the Jabber account.

Presence Events in this category represent changes in presence subscription between two
accounts.

Instant Messaging Events in this category cover sending an receiving chat messages of the
format specified above as well as arbitrary unsolicited messages.

A discussion of what information can be extracted from the log files, as well as an example using
collected data is given in Chapter 5.

4.8 Limitations

XMPProbe has limitations that fall into two categories: Features of the XMPP landscape that
can not be monitored due to the way the protocol is designed, and issues with XMPProbe that
can be remedied by extending the functionality of XMPProbe.

4.8.1 Issues Inherent to XMPP

Many XMPP service operators use load-balancing to be able to use multiple physical machines
to run one virtual instance of an XMPP server. Load balancing is often implemented using DNS
record priorities24 or using transport layer load balancing. Since load balancing is transparent
to clients (and for the most part to load-balanced server itself) it is impossible to reliably detect

21Assuming, of course, that the sysadmin in question can read the messages sent by the account
22Comma-Separated Values a more or less standardize format for tabular data.
23The details on all these events and the format of the log entries are presented in Appendix D.
24XMPP allows this to be implemented easily by design through its use of DNS SRV and TXT records

20 CHAPTER 4. XMPPROBE

problems such as an outage of some (but not all) of the backend servers using monitoring on
the XMPP layer.
Another problem is the standard-compliant behavior of servers regarding the handling of chat
messages for offline recipients: Servers should cache messages for accounts that are offline
and deliver them once the account connects again. This makes it impossible to measure the
end-to-end path delay for messages without relying on information from the server. If a server
wrongly assumes a client to be offline for a period of time, and all messages to that client are
cached, then the path delay of those messages will be measured to be longer by the time the
messages were cached. Indeed, unrealistically long path delays as a result of message caching
have been observed in the dataset discussed in Section 5.1.

4.8.2 Issues Inherent to the Implementation of XMPProbe

Through the development we have seen that the library we use, SleekXMPP is not without
faults: There are accounts that SleekXMPP can never connect to, even though other XMPP
Clients can connect with the same account credentials. Network outages are “hidden” inter-
nally, and XMPProbe is not notified about them. These issues can most likely be addressed by
setting up SleekXMPP differently than it is used now in XMPProbe or by minimal modifications
to the library. A way of simultaneously addressing the network connectivity issue and gather
additional useful information would be to extend XMPProbe to periodically send out XMPP ping
messages25 which would offer a way to verify connectivity as well as provide a separate way to
measure path delay.
One assumption that the current implementation of XMPProbe makes is that the monitored
XMPP servers are indifferent to the order in which they send messages to other servers as part
of the pair-wise matching scheme that XMPProbe uses26. In other words, XMPProbe makes the
assumption that the server behaves in exactly the same way when Alice talks to Bob first and
then to Carol compared to when Alice talks to Carol before Bob. We do not actually know that
this assumption holds true.
Currently, XMPProbe only tests that sending chat messages works correctly, but there are of
course countless other interesting features of the XMP Protocol to investigate, such as the
speed and correctness of the propagation of presence information or the time needed to connect
to and authenticate with the server.
One way in which the completion of one set of conversations could be sped up (from the current
n rounds) would be to “collapse” multiple conversations into one time slot. This feature is already
partially implemented. The implementation of the SSD used by XMPProbe returns a list of
conversation partners for each round, and at the moment the length of the list is capped to
one. By increasing the length of this list to k (and thus having each account be involved in k
conversations per period) the time needed to have a conversation with every buddy could be
sped up significantly.
Lastly, another feature that would make XMPProbe even more interesting to use would be if it
offered a way to crawl the web to find additional XMPP servers to monitor, as opposed to relying
on a user-provided list of accounts27.

25XMPP layer ping messages are standardized in XEP-0199.
26That is, the order in which the matchings constituting a solution to the SSD problem are parsed
27Since XMPP uses TCP port numbers officially recognized by the IANA in addition to identifying DNS records,

automatic identification of XMPP servers is reasonably possible.

Chapter 5

Measurements

Using XMPProbe we ran a test using 58 Jabber accounts on 30 different servers. Each server
had one or two registered accounts1. The test ran for 17+2 hours with a period of 10 seconds.
The interval between repeat communication of any pair of accounts was thus:

10seconds · 58accounts = 9minutes40seconds (5.1)

The test generated a total of 379.6MiB of log file data, of which 81.2MiB was in CSV log files.
All instances of XMPProbe ran on one machine, since this allowed for most accurate possible
path delay measurements. No activity that might have disrupted data collection was detected
on the machine for the duration of the test.
For data analysis, we developed the Python script analysis.py. The details about the script
are discussed in Appendix E.
The following section shows and comments the information extracted from the dataset.

5.1 Analysis of the Dataset

The total number of 582198 records is split up by event as shown in Table 5.1. An overview over
the percentage of correctly answered messages per account is given in Table 5.2. In Table 5.3,
the numbers for selected event types are given by account.
Of the 58 accounts, 51 were able to connect successfully (i.e. a connect event was registered
on each of these accounts) and send ask and answer messages.
By the data shown in Table 5.3 we can separate the remaining 7 accounts into two categories:

Many disconnects Accounts in this category disconnect on average a lot more frequently than
once per period. This behavior is a bug in XMPProbe, since XMPProbe is designed to
reconnect at most once per period. The authentication is handled entirely by SleekXMPP.

Few disconnects Accounts in this category either have incorrect information in the config-
uration file, or SleekXMPP has trouble for unknown reason for authenticating with this
particular account.

The small number of single authentication failure events registered are of no concern as they
all immediately precede a successful connection attempt. We regard these nauth events as
flukes.
Since we have 51 working accounts in this data set (that originally had an empty roster), we
expect each possible pair of these accounts to subscribe to each other’s presence information.

1We try to take nothing for granted, including that communication between two accounts on the same server works
correctly.

2Specifically, the log entries were made between 2014-02-26 06:08:10.205568 UTC and 2014-02-26
23:13:31.225412 over a duration of 17:05:21.019844 hours.

21

22 CHAPTER 5. MEASUREMENTS

Given that SleekXMPP handles reciprocal presence subscriptions3 automatically in XMPProbe,
we expect to see one rsubscribe event for each possible pair:

n · (n− 1)

2

∣∣∣∣
n=51

=
51 · (51− 1)

2
= 1275 (5.2)

According to the value of rsubscribe events in Table 5.1 we calculate that 94.51% of the
expected subscription requests actually happened correctly.

Event Count
connect 51
disconnect 92896
nauth 19
ranswer 106582
rask 108599
rsubscribe 1205
rsubscribed 554
rsurprise 33
runknown 13985
sanswer 108599
sask 140553
skip 7341
ssubscribe 1781
ssubscribed 0

Table 5.1: Event Count by Type

The correctly working accounts all sent out around 2400 ask messages each, of which between
7.19% and 99.88% were answered correctly per account. At this stage of maturity of XMPProbe
we are not concerned about the quality of service of low-scoring servers in this metric. The
low values are more likely due to some unlucky bug affecting XMPProbe only in combination
with particular XMPP server software implementations than due to low service quality of the
respective servers. We can however say that in the best-case scenario XMPProbe is definitely
not responsible for dropping a significant amount of messages: rates go as low as around 1
failure to answer per 600 messages for the best of accounts.
For the events of the types rask, ranswer and rsurprise that signify the reception of a valid
message, the path delays have the following statistical metrics:

minimum 0.012371s

5th percentile 0.026598s

50th percentile 0.0760875s

95th percentile 0.318321s

maximum 6383.632378s

Since we send messages between Jabber account residing on the same server as well as half-
way around the globe4 the interval given by the minimum and the 95th percentile seem perfectly
reasonable. The maximum value of over 1:45 hours suggests that XMPP servers do indeed
cache messages to be delivered later for accounts that are offline, as is defined in the protocol
specification.

3That is, if Alice successfully subscribes to Bob’s presence information, then Alice will automatically grant Bob
access to hers in return.

4From Germany to New Zealand, for instance.

5.1 Analysis of the Dataset 23

JID asks_received answers_sent success rate remaining_asks
xmpprobe—0@jabber.ccc.de/longxmpprobe 2407 2404 99.88% 3
damiano1@koalatux.ch/longxmpprobe 2431 2427 99.84% 4
xmpprobe—1@jabber.meta.net.nz/longxmpprobe 2430 2426 99.84% 4
xmpprobe—1@jabber.ccc.de/longxmpprobe 2424 2420 99.83% 4
xmpprobe—0@im.apinc.org/longxmpprobe 2418 2414 99.83% 4
xmpprobe—1@im.apinc.org/longxmpprobe 2416 2412 99.83% 4
xmpprobe—0@jabber.meta.net.nz/longxmpprobe 2403 2399 99.83% 4
xmpprobe—1@jabber.rueckgr.at/longxmpprobe 2433 2428 99.79% 5
damiano0@koalatux.ch/longxmpprobe 2432 2427 99.79% 5
xmpprobe—1@jabb3r.de/longxmpprobe 2419 2414 99.79% 5
xmpprobe—0@jabb3r.de/longxmpprobe 2413 2408 99.79% 5
xmpprobe—1@jabber.minus273.org/longxmpprobe 2433 2427 99.75% 6
xmpprobe—0@creep.im/longxmpprobe 2421 2415 99.75% 6
xmpprobe—1@creep.im/longxmpprobe 2412 2406 99.75% 6
xmpprobe—0@jabber.minus273.org/longxmpprobe 2402 2396 99.75% 6
xmpprobe—0@jabber.no-sense.net/longxmpprobe 2402 2396 99.75% 6
xmpprobe—0@jabberafrica.org/longxmpprobe 2403 2351 97.84% 52
xmpprobe—0@jabme.de/longxmpprobe 2401 2349 97.83% 52
xmpprobe—1@jabberafrica.org/longxmpprobe 2436 2383 97.82% 53
xmpprobe—1@jabme.de/longxmpprobe 2437 2383 97.78% 54
xmpprobe—0@draugr.de/longxmpprobe 2418 2310 95.53% 108
xmpprobe—1@draugr.de/longxmpprobe 2412 2303 95.48% 109
xmpprobe—1@coderollers.com/longxmpprobe 2410 2300 95.44% 110
xmpprobe—1@jabber.de/longxmpprobe 2428 2317 95.43% 111
xmpprobe—0@jabbim.cz/longxmpprobe 2400 2290 95.42% 110
xmpprobe—0@coderollers.com/longxmpprobe 2420 2309 95.41% 111
xmpprobe—1@jabbim.cz/longxmpprobe 2437 2325 95.40% 112
xmpprobe—0@jabber.de/longxmpprobe 2407 2296 95.39% 111
xmpprobe—1@xmppnet.de/longxmpprobe 2435 2253 92.53% 182
xmpprobe—0@jabber-br.org/longxmpprobe 2410 2198 91.20% 212
xmpprobe—1@jabber-br.org/longxmpprobe 2419 2206 91.19% 213
xmpprobe—1@is-a-furry.org/longxmpprobe 2415 2199 91.06% 216
xmpprobe—0@is-a-furry.org/longxmpprobe 2415 2199 91.06% 216
xmpprobe—1@tigase.im/longxmpprobe 2431 2180 89.68% 251
xmpprobe—0@tigase.im/longxmpprobe 2402 2150 89.51% 252
xmpprobe—0@alpha-labs.net/longxmpprobe 2425 2109 86.97% 316
xmpprobe—1@alpha-labs.net/longxmpprobe 2405 2089 86.86% 316
xmpprobe___0@ch3kr.de/longxmpprobe 2429 1959 80.65% 470
xmpprobe___1@ch3kr.de/longxmpprobe 2428 1958 80.64% 470
xmpprobe—0@chatme.im/longxmpprobe 2433 1942 79.82% 491
xmpprobe—1@chatme.im/longxmpprobe 2418 1917 79.28% 501
xmpprobe—0@blah.im/longxmpprobe 2422 1904 78.61% 518
xmpprobe—1@blah.im/longxmpprobe 2405 1889 78.54% 516
xmpprobe—1@jabber.iitsp.com/longxmpprobe 2417 1897 78.49% 520
xmpprobe—0@jabber.iitsp.com/longxmpprobe 2402 1882 78.35% 520
xmpprobe—0@jabber.yeahnah.co.nz/longxmpprobe 2398 1629 67.93% 769
xmpprobe—0@lightwitch.org/longxmpprobe 2418 1620 67.00% 798
xmpprobe—1@jabber.at/longxmpprobe 2430 772 31.77% 1658
xmpprobe—0@jabber.at/longxmpprobe 2432 760 31.25% 1672
xmpprobe—1@jappix.com/longxmpprobe 2485 192 7.73% 2293
xmpprobe—0@jappix.com/longxmpprobe 2448 176 7.19% 2272
test1@uptime.p1.im/longxmpprobe 2448 0 0.00% 2448
xmpprobe—1@jabber.smash-net.org/longxmpprobe 2447 0 0.00% 2447
test0@uptime.p1.im/longxmpprobe 2447 0 0.00% 2447
xmpprobe—1@jabber.yeahnah.co.nz/longxmpprobe 2446 0 0.00% 2446
xmpprobe—0@jabber.rueckgr.at/longxmpprobe 2446 0 0.00% 2446
xmpprobe—0@xmppnet.de/longxmpprobe 2446 0 0.00% 2446
xmpprobe—0@jabber.smash-net.org/longxmpprobe 2446 0 0.00% 2446

Table 5.2: Messages per Account

24 CHAPTER 5. MEASUREMENTS

Account Connect Disconnect Nauth
xmpprobe-xmpprobe—1@jabber.smash-net.org 0 28104 0
xmpprobe-xmpprobe—0@jabber.smash-net.org 0 28096 0
xmpprobe-test1@uptime.p1.im 0 18212 0
xmpprobe-test0@uptime.p1.im 0 18204 0
xmpprobe-xmpprobe—0@jappix.com 1 95 1
xmpprobe-xmpprobe—1@jappix.com 1 79 1
xmpprobe-xmpprobe—0@lightwitch.org 1 43 2
xmpprobe-xmpprobe—1@chatme.im 1 33 0
xmpprobe-xmpprobe—0@chatme.im 1 27 0
xmpprobe-xmpprobe—0@jabber.rueckgr.at 0 1 4
xmpprobe-xmpprobe—0@xmppnet.de 0 1 4
xmpprobe-xmpprobe—1@jabber.yeahnah.co.nz 0 1 3
xmpprobe-damiano0@koalatux.ch 1 0 0
xmpprobe-damiano1@koalatux.ch 1 0 0
xmpprobe-xmpprobe___0@ch3kr.de 1 0 0
xmpprobe-xmpprobe___1@ch3kr.de 1 0 0
xmpprobe-xmpprobe—0@alpha-labs.net 1 0 1
xmpprobe-xmpprobe—0@blah.im 1 0 0
xmpprobe-xmpprobe—0@coderollers.com 1 0 0
xmpprobe-xmpprobe—0@creep.im 1 0 0
xmpprobe-xmpprobe—0@draugr.de 1 0 0
xmpprobe-xmpprobe—0@im.apinc.org 1 0 0
xmpprobe-xmpprobe—0@is-a-furry.org 1 0 0
xmpprobe-xmpprobe—0@jabb3r.de 1 0 0
xmpprobe-xmpprobe—0@jabber-br.org 1 0 0
xmpprobe-xmpprobe—0@jabber.at 1 0 0
xmpprobe-xmpprobe—0@jabber.ccc.de 1 0 0
xmpprobe-xmpprobe—0@jabber.de 1 0 0
xmpprobe-xmpprobe—0@jabber.iitsp.com 1 0 1
xmpprobe-xmpprobe—0@jabber.meta.net.nz 1 0 0
xmpprobe-xmpprobe—0@jabber.minus273.org 1 0 0
xmpprobe-xmpprobe—0@jabber.no-sense.net 1 0 0
xmpprobe-xmpprobe—0@jabber.yeahnah.co.nz 1 0 0
xmpprobe-xmpprobe—0@jabberafrica.org 1 0 0
xmpprobe-xmpprobe—0@jabbim.cz 1 0 0
xmpprobe-xmpprobe—0@jabme.de 1 0 0
xmpprobe-xmpprobe—0@tigase.im 1 0 0
xmpprobe-xmpprobe—1@alpha-labs.net 1 0 1
xmpprobe-xmpprobe—1@blah.im 1 0 0
xmpprobe-xmpprobe—1@coderollers.com 1 0 0
xmpprobe-xmpprobe—1@creep.im 1 0 0
xmpprobe-xmpprobe—1@draugr.de 1 0 0
xmpprobe-xmpprobe—1@im.apinc.org 1 0 0
xmpprobe-xmpprobe—1@is-a-furry.org 1 0 0
xmpprobe-xmpprobe—1@jabb3r.de 1 0 0
xmpprobe-xmpprobe—1@jabber-br.org 1 0 0
xmpprobe-xmpprobe—1@jabber.at 1 0 0
xmpprobe-xmpprobe—1@jabber.ccc.de 1 0 0
xmpprobe-xmpprobe—1@jabber.de 1 0 0
xmpprobe-xmpprobe—1@jabber.iitsp.com 1 0 1
xmpprobe-xmpprobe—1@jabber.meta.net.nz 1 0 0
xmpprobe-xmpprobe—1@jabber.minus273.org 1 0 0
xmpprobe-xmpprobe—1@jabber.rueckgr.at 1 0 0
xmpprobe-xmpprobe—1@jabberafrica.org 1 0 0
xmpprobe-xmpprobe—1@jabbim.cz 1 0 0
xmpprobe-xmpprobe—1@jabme.de 1 0 0
xmpprobe-xmpprobe—1@tigase.im 1 0 0
xmpprobe-xmpprobe—1@xmppnet.de 1 0 0

Table 5.3: Counts for Selected Event Types per Account

Chapter 6

Conclusion and Outlook

We have shown that, even within the limited scope of a semester thesis, it is possible to create
a tool that provides interesting insights into the XMPP landscape of the Internet. Our tool is
straight-forward to use, and we hope that by making it available under a free license we inspire
others to use and possibly even extend it.
By running tests using XMPProbe, we were able to confirm the suspicions of some of the au-
thors that the quality of service is indeed lacking for some servers that are usable for free1. On
the other hand, we have also confirmed that there are servers with excellent service. We hope
that results obtained with this measurement tool inspire service operators around the world to
provide even better service now that the quality of their work can readily be compared to that of
others.
As has been discussed in Section 4.8 our solution XMPProbe is not without flaws. Last but not
least, our methods of analysis of the collected data are not yet very sophisticated. We hope that
we can extend the functionality of XMPProbe to become an even more powerful and useful tool
in the future.

1“And what happens on the day that you find out?” — “Well, we all know how much you love to say ’I told you so.’”

25

26 CHAPTER 6. CONCLUSION AND OUTLOOK

Appendix A

Using XMPProbe

XMPProbe is a tool for monitoring the availability of XMPP (also known as Jabber) servers. To
do this, it requires at least one working account on each of the servers to be monitored.
To use XMPProbe a configuration file is required. The specifics of the configuration file are
documented in Appendix B.
For XMPProbe, the specification of the command line arguments is printed below:

1 usage: xmpprobe [-h] [-c CONFIG] [-b BUDDY] account resource
2

3 XMPProbe: Monitoring XMPP Servers.
4

5 positional arguments:
6 account The account configuration to be used by this instance.
7 An object with the \PYGZdq{}jid\PYGZdq{} property set to this

value
8 must exist in the \PYGZdq{}accounts\PYGZdq{} array in the

specified
9 configuration file.

10 resource The jabber resource to be used by this instance.
11 Becomes a part of the log file name.
12

13 optional arguments:
14 -h, --help show this help message and exit
15 -c CONFIG, --config CONFIG
16 The path of the configuration file (default:
17 \PYGZdq{}./xmpprobe.conf\PYGZdq{})
18 -b BUDDY, --buddy BUDDY
19 The JID to send the ask message to. This argument is
20 only evaluated when the \PYGZdq{}account\PYGZdq{} is of usage

type
21 \PYGZdq{}ask\PYGZdq{}.

Listing A.1: XMPProbe Usage

For the use in production, only the arguments --config, account and resource are of use.
Invocation example:

1 $ xmpprobe -c config/xmpprobe-config.json "test0@example.com" "test" &
2 $ xmpprobe -c config/xmpprobe-config.json "test1@example.com" "test" &
3 $ xmpprobe -c config/xmpprobe-config.json "test2@example.com" "test" &
4 $ xmpprobe -c config/xmpprobe-config.json "test3@example.com" "test" &

Listing A.2: Running XMPProbe

Each Jabber account that should be monitored has to run its own instance of xmpprobe. Each
account also needs an appropriate configuration section in the config file.
The typical use case is to start one instance of XMPProbe for every account with usage type
normal in the configuration file.
The individual instances should be started as close together as possible, but this is not required.

27

28 APPENDIX A. USING XMPPROBE

Note that no chat messages might be exchanged for up to (number of accounts) · (period)
seconds, that is, XMPProbe can have a long initialization phase.
Return codes of XMPProbe are documented in the class Ret. XMPProbe should only quit on
its own right at the start. After the configuration is deemed to be valid, it runs indefinitely.

Appendix B

XMPProbe Configuration File
Format

XMPProbe requires a correct configuration file to run. All the settings that are not likely to change
between different runs of XMPProbe can only be set by options in the configuration file, and not
by command-line arguments.
The configuration file is written in JSON.

B.1 Sample Configuration

The following example is a complete and valid configuration file. The semantics of the individual
parameters are explained below.

1 {
2 "loglevel": "DEBUG",
3 "stdoutloglevel": "DEBUG",
4 "dataloglevel": "DEBUG",
5 "logfile": "./logs/xmpprobe-{account}-{resource}.log",
6 "datafile": "./logs/xmpprobe-{account}-{resource}.csv",
7 "period": 3,
8 "accounts": [
9 {

10 "jid": "test0@example.com",
11 "password": "secret0",
12 "usage": "normal"
13 },
14 {
15 "jid": "test1@xmpp.uk.to",
16 "password": "secret1",
17 "usage": "normal"
18 }
19]
20 }

Listing B.1: Sample Configuration File

B.2 Configuration Parameters

The configuration is represented by one JSON object. This object must have all of the following
keys:

loglevel (string): The logging level for the log data written to general logfile. This key must
have one of the following values: DEBUG, INFO, WARNING, ERROR, CRITICAL.

29

30 APPENDIX B. XMPPROBE CONFIGURATION FILE FORMAT

stdoutloglevel (string): The logging level for the log data written to standard output. This key
must have one of the following values: DEBUG, INFO, WARNING, ERROR, CRITICAL.

dataloglevel (string): The logging level for the data written to the CSV files. This key must
have one of the following values: DEBUG, INFO, WARNING, ERROR, CRITICAL.

Note that the only sensible value to currently use is DEBUG, this may change in future
versions.

logfile (string): The schema for the path and filename of the general log file. This string must
include the substrings {account} (which will be replaced by the Jabber ID of the used
account) and {resource} (which will be replaced by the resource name used). These
two parameters are command-line arguments.

datafile (string): The schema for the path and filename of the data file (CSV format). This
string must include the substrings {account} (which will be replaced by the Jabber ID of
the used account) and {resource} (which will be replaced by the resource name used).
These two parameters are command-line arguments.

period (integer): The sampling period (in seconds). This is the period with which new conver-
sations are started.

accounts (array): Array of account objects. The array must contain at least one value. To be
able to use most features of XMPProbe at least two account object are required.

The structure of account objects is defined in the following definition list.

Account objects have the following keys (all keys are mandatory):

jid (string): The Jabber ID of the account. Must be a bare Jabber ID, without a resource.

password (string): The password for jid.

usage (string): The usage type for this Jabber account. Must be one of the following: answer,
ask, debug_periodicbot, debug_timebot, echo, fixme, normal.

To use the jid for monitoring, this value must be set to normal. All other accounts that jid
should attempt to exchange messages with need to be set to normal too. At least two
accounts with a usage of normal are required for monitoring to work properly.

A value of fixme indicates that this account is not used for any purpose. All other possible
values are for testing and debugging purposes only. Refer to the documentation of the
classes AskBot (ask), AnswerBot (answer), PeriodicBot (debug_periodicbot),
TimeBot (debug_timebot) or EchoBot (echo), respectively.

Appendix C

Message Format

Class Message: Generate and validate messages.

All messages XMPProbe exchanges between accounts are generated by instances of this class.

A message (serialized as JSON) contains the following information:

Field
Name

Type Interpretation

magic string A constant used to identify a message as a representation of an instance of
Message.

ver-
sion

inte-
ger

Version of the message format.

nonce inte-
ger

An integer number picked randomly at the start of an exchange of
messages. Incremented (modulo 0x10000000000) for every further
message in the same thread.

t_sent ISO
8601

Timestamp when message was generated.

t_rcvd ISO
8601

Timestamp when the message to which this message is a reply to was
received.

re-
port

string The function (purpose) of this message.

com-
ment

string A human-readable string that is not processed. Intended to message nosy
XMPP server administrators that check what apparent spam XMPProbe
bots send around.

check-
sum

inte-
ger

A checksum of all the above data fields (excluding the checksum field).

The message exchanges that XMPProbe conducts work in the following way:

One agent sends an ask message, and the receiving agent responds with an answer message.

Note The checksumming is performed on the string representation of python at-
tributes/objects and not the JSON string representation of the attributes/ob-
jects.

Ask message specification:

31

32 APPENDIX C. MESSAGE FORMAT

Field
Name

Value

magic ‘xmpP’
ver-
sion

1

nonce uniformly distributed random number in the range [0x0, 0xffffffffff] (corresponds to
40 bits of entropy)

t_sent Timestamp when message was generated in UTC including timezone information
(Example: ‘2014-02-06T06:34:49.211885+00:00’)

t_rcvd None
report ‘ping’
com-
ment

refer to the value of COMM

check-
sum

zlib.adler32(str(magic) + str(version) + str(nonce) +
str(t_sent) + str(t_rcvd) + str(report) + str(comment))

Answer message specification:
Field
Name

Value

magic ‘xmpP’
ver-
sion

1

nonce ((nonce of *ask* message) + 1) % 0x10000000000
t_sent Timestamp when message was generated in UTC including timezone information
t_rcvd t_sent of *ask* message
report ‘pong’
com-
ment

refer to the value of COMM

check-
sum

zlib.adler32(str(magic) + str(version) + str(nonce) +
str(t_sent) + str(t_rcvd) + str(report) + str(comment))

Usage example:
Alice wants to start a conversation with Bob, so she creates a message object.

1 >>> a = xmpprobe.Message()

Listing C.1: Using the Message Class

When she is ready, she generates the message. Since the message contains a timestamp, it
should then actually be sent out as soon as possible.

1 >>> a.ask()
2 ’{"nonce":144974668543,"comment":"XMPP monitoring project. Contact mail:

xmpprobe@student.ethz.ch for information.","t_rcvd":null,"version":1,"magic":"xmpP
","report":"ping","checksum":2065312730,"t_sent":"2014-02-19T18
:38:55.137526+00:00"}’

Listing C.2: Using the Message Class

Now, Alice sends this message to Bob. Bob receives this message as m.

1 >>> try:
2 ... b = xmpprobe.Message(m)
3 ... except ValueError as e:
4 ... print(’fail!’)

Listing C.3: Using the Message Class

Alternatively, if Bob wants to reuse a previously created Message object, he can instead use:

1 >>> try:
2 ... b.decode(m)
3 ... except ValueError as e:

33

4 ... print(’fail!’)

Listing C.4: Using the Message Class

If either way of parsing the message does not raise an error, the message has the correct
syntax and meaningful values. Bob can now generate an answering message. Again, because
this answer contains a timestamp, it should be sent out as soon as possible.

1 >>> b.answer()
2 ’{"nonce":144974668544,"comment":"XMPP monitoring project. Contact mail:

xmpprobe@student.ethz.ch for information.","t_rcvd":"2014-02-19T18
:38:55.137526+00:00","version":1,"magic":"xmpP","report":"pong","checksum
":2954899668,"t_sent":"2014-02-19T18:39:09.088472+00:00"}’

Listing C.5: Using the Message Class

On receiving Bob’s answering message as m, Alice can now verify it as being a correct answer
message to the ask message she sent Bob earlier.

1 >>> try:
2 ... a.mark(m)
3 ... except ValueError as e:
4 ... print(’fail!’)

Listing C.6: Using the Message Class

If no error is raised, the answer message was valid.

34 APPENDIX C. MESSAGE FORMAT

Appendix D

CSV Log Format

This section outlines the details on the format used for the CSV output of XMPProbe. Each
record has an event type. The event type determines how many fields a record has, and what
their meaning is.
The following definition list shows what each field is used for, for each event type. Some fields
are common between various message formats: time is the timestamp (floating point number;
seconds since Unix time epoch) when the log entry was generated and event is the name of
the event type.
Note that timestamps other than time may be in a different format.

connect: time, jid, event

jid has connected.

nauth: time, jid, event

jid could not connect, because the authentication failed.

disconnect: time, jid, event

jid has disconnected.

ssubscribe: time, jid, event, other_jid

jid has sent a presence subscription request to other_jid.

rsubscribe: time, jid, event, other_jid

jid has received a presence subscription request from other_jid.

ssubscribed: time, jid, event, other_jid

jid has sent an affirmative answer to a presence subscription request from other_jid.
Since subscription management happens automatically in parts, this event will never ap-
pear in the log file.

rsubscribed: time, jid, event, other_jid

jid has received an affirmative answer from other_jid to a presence subscription re-
quest from jid.

skip: time, jid, event, other_jid

jid took too long handling all that needed to be done in one period. One or more periods
were skipped, and as a result other_jid was not sent an ask message.

sask: time, jid, event, other_jid, nonce, t_sent

jid has sent an ask message to other_jid. nonce and t_sent are the respective
fields from the sent message.

35

36 APPENDIX D. CSV LOG FORMAT

sanswer: time, jid, event, other_jid, nonce, t_sent

jid has sent an answer message to other_jid in reply to the ask message with the
respective fields nonce and t_sent.

runknown: time, jid, event, other_jid, msg

jid has received the message msg from other_jid that does not conform to the speci-
fication of ask and answer messages. This can mean that the message was a corrupt ask
or answer message, or that it was an unrelated message.

rask: time, jid, event, other_jid, nonce, t_sent

jid has received a valid ask message from other_jid. nonce and t_sent are the
respective fields from the received message. The path delay can be calculated from time
and t_sent.

ranswer: time, jid, event, other_jid, nonce, t_sent, t_rply

jid has received a valid answer message from other_jid. nonce and t_sent are the
respective fields from the ask message that this answer message is a reply to, that is the
nonce field from the answer message is decremented, and the t_sent log entry field is
actually t_rcvd from the message. t_rply is t_sent from the answer message. The path
delay can be calculated from time and t_rply.

rsurprise: time, jid, event, other_jid, nonce, t_sent, t_rply

jid has received an answer message from other_jid. The message appears to be
valid, but it can not be checked whether or not it’s an answer to an ask message that was
actually sent. The further log entry fields are defined in the manner of the ranswer log
entry fields.

D.1 Log File Sample

The following short snipped of a CSV log file illustrates what log entries look like for some of the
above event types.

1 1393449830.012724,xmpprobe---0@example.com/longxmpprobe,sask,xmpprobe---0@example.net/
longxmpprobe,642973785857,2014-02-26 21:23:50.012054+00:00

2 1393449830.163635,xmpprobe---0@example.com/longxmpprobe,ranswer,xmpprobe---0@example.
net/longxmpprobe,642973785857,2014-02-26 21:23:50.012054+00:00,2014-02-26
21:23:50.090813+00:00

3 1393449840.00329,xmpprobe---0@example.com/longxmpprobe,sask,xmpprobe---0@example.org/
longxmpprobe,54361358735,2014-02-26 21:24:00.002678+00:00

4 1393449840.046191,xmpprobe---0@example.com/longxmpprobe,runknown,xmpprobe---0@example.
org/longxmpprobe,"{""nonce"":54361358735,""comment"":""XMPP monitoring project.
Contact mail:xmpprobe@student.ethz.ch for information."",""t_rcvd"":null,""version
"":1,""magic"":""xmpP"",""report"":""ping"",""checksum"":1365126023,""t_sent
"":""2014-02-26T21:24:00.002678+00:00""}"

5 1393449850.011563,xmpprobe---0@example.com/longxmpprobe,sask,xmpprobe---0@jabber.
example.com/longxmpprobe,277493021238,2014-02-26 21:24:10.011015+00:00

6 1393449860.009387,xmpprobe---0@example.com/longxmpprobe,sask,xmpprobe---0@jabber.
example.net/longxmpprobe,1040098151630,2014-02-26 21:24:20.008674+00:00

7 1393449860.071305,xmpprobe---0@example.com/longxmpprobe,ranswer,xmpprobe---0@jabber.
example.net/longxmpprobe,1040098151630,2014-02-26 21:24:20.008674+00:00,2014-02-26
21:24:20.044593+00:00

Listing D.1: Log Sample

Appendix E

Analysis Script

Parse CSV files generated by XMPProbe and derive some statistics.
analysis.py is passed a directory of CSV log files and one function. It then computes the
requested values by going through all the CSV files found.
Currently, the following functions are supported:

files Print the filenames of the files that will be parsed for all other functions.

records Print the number of event records per type and the total.

interval Print timestamps of first and last event (of any type) recorded in the data set, and
calculate the time difference between the two.

Output format:

• Lowest timestamp, human readable timestamp, Unix time with microsecond res-
olution.

• Highest timestamp: human readable timestamp, Unix time with microsecond res-
olution.

• Runtime: human readable time interval with microsecond resolution (may contain
rounding errors due to conversion to float), time interval in seconds with microsecond
resolution

delay Calculate the minimum, 5th percentile, 50th percentile, 95th percentile and maximum of
the path delay for all instant messages sent recorded in the logs as events of the types
rask, ranswer and rsurprise. These three event types cover all messages that are
valid ask or answer messages. Other messages are ignored for this metric. Internally all
calculations are done in fixed point arithmetic as far as possible, but the library used for
calculating the percentile numbers requires the use of Python’s float type. So, unlike the
minimum and maximum values the percentile values are subject to rounding errors.

Output format: The following list gives the captions and type of the values printed in the
output.

• minimum, fixed point

• 5%%ile, float

• 50%%ile, float

• 95%%ile, float

• maximum, fixed point

37

38 APPENDIX E. ANALYSIS SCRIPT

msg_quota Calculate per-Jabber-account percentage of correctly answered messages, that
is, if Alice has sent an ask message to Bob (Alice records a sask event to the logs), the
message will be deemed answered correctly when Alice receives an appropriate answer
message from Bob (Alice records a ranswer or rsurprise event to the logs). Note that
if Bob has a bad success rate this does not imply that Bob is at fault, as Alice’s XMPP
server may be dropping or mangling the ask messages.

Output format: The calculated values are listed as one CSV record per account in the input
data. Each record contains the following fields:

JID (string) The Jabber ID.

asks_received (integer) The number of ask messages sent to this JID.

answers_sent (integer) The number of correct answer messages received from this
JID.

quota (float) The ratio of answers_sent over asks_received. A value of -1 indi-
cates NaN.

remaining_asks (integer) The number of ask messages sent to this JID that have no
recorded correct answers. A value of -1 indicates NaN.

remaining_answers (integer) The number of answer messages sent from this JID
that have no ask message that is answered. A value other than -1 indicates either a
bug in XMPProbe or analysis.py or manipulated data.

Usage example:

1 $./analysis.py ../data/run-1 files
2 58 files will be parsed.
3 58 files found with the following filenames:
4 [’../data/run-1/xmpprobe-xmpprobe---0@im.apinc.org-longxmpprobe.csv’,
5 ’../data/run-1/xmpprobe-xmpprobe---1@xmppnet.de-longxmpprobe.csv’,
6 ’../data/run-1/xmpprobe-xmpprobe---0@creep.im-longxmpprobe.csv’]
7

8 $./analysis.py ../data/run-1 records
9 58 files will be parsed.

10 Processing files ...
11 ..
12 Done parsing data. Execution time: 0:00:03.614930
13 Total number of records: 582198.
14 Number of records per event type:
15 { ’connect’: 51,
16 ’disconnect’: 92896,
17 ’ssubscribe’: 1781,
18 ’ssubscribed’: 0}
19

20 $./analysis.py ../data/run-1 interval
21 58 files will be parsed.
22 Processing files ...
23 ..
24 Done parsing data. Execution time: 0:00:14.437214
25 Lowest timestamp : 2014-02-26 06:08:10.205568 (1393391290.205568).
26 Highest timestamp: 2014-02-26 23:13:31.225412 (1393452811.225412).
27 Runtime : 17:05:21.019844 (61521.019844).
28

29 $./analysis.py ../data/run-1 delay
30 58 files will be parsed.
31 Processing files ...
32 ..
33 Done parsing data. Execution time: 0:01:06.116309
34 Interesting Delay Values:
35 minimum: 0.012371s
36 5%ile: 0.026598s
37 50%ile: 0.0760875s
38 95%ile: 0.318321s

39

39 maximum: 6383.632378s
40 Done. Execution time: 0:00:02.431927
41

42 $./analysis ../data/run-1 msg_quota
43 58 files will be parsed.
44 Processing files ...
45 ..
46 Done parsing data. Execution time: 0:00:06.182874
47 {JID}, {asks_received}, {answers_sent}, {quota}, {remaining_asks}, {remaining_answers}
48 xmpprobe---0@lightwitch.org/longxmpprobe,2418,1620,0.6699751861042184,798,-1
49 xmpprobe___1@ch3kr.de/longxmpprobe,2428,1958,0.8064250411861614,470,-1
50 xmpprobe---0@coderollers.com/longxmpprobe,2420,2309,0.9541322314049587,111,-1
51 xmpprobe---0@chatme.im/longxmpprobe,2433,1942,0.7981915330867242,491,-1
52 Done. Execution time: 0:00:00.001104

Listing E.1: Analysis Usage

Note that the output in this usage example has been truncated in parts and is therefore not
consistent.

40 APPENDIX E. ANALYSIS SCRIPT

Appendix F

Message Quotas per Account

1 JID,asks_received,answers_sent,quota,remaining_asks,remaining_answers
2 xmpprobe---0@jabber.ccc.de/longxmpprobe,2407,2404,99.88%,3,-1
3 damiano1@koalatux.ch/longxmpprobe,2431,2427,99.84%,4,-1
4 xmpprobe---1@jabber.meta.net.nz/longxmpprobe,2430,2426,99.84%,4,-1
5 xmpprobe---1@jabber.ccc.de/longxmpprobe,2424,2420,99.83%,4,-1
6 xmpprobe---0@im.apinc.org/longxmpprobe,2418,2414,99.83%,4,-1
7 xmpprobe---1@im.apinc.org/longxmpprobe,2416,2412,99.83%,4,-1
8 xmpprobe---0@jabber.meta.net.nz/longxmpprobe,2403,2399,99.83%,4,-1
9 xmpprobe---1@jabber.rueckgr.at/longxmpprobe,2433,2428,99.79%,5,-1

10 damiano0@koalatux.ch/longxmpprobe,2432,2427,99.79%,5,-1
11 xmpprobe---1@jabb3r.de/longxmpprobe,2419,2414,99.79%,5,-1
12 xmpprobe---0@jabb3r.de/longxmpprobe,2413,2408,99.79%,5,-1
13 xmpprobe---1@jabber.minus273.org/longxmpprobe,2433,2427,99.75%,6,-1
14 xmpprobe---0@creep.im/longxmpprobe,2421,2415,99.75%,6,-1
15 xmpprobe---1@creep.im/longxmpprobe,2412,2406,99.75%,6,-1
16 xmpprobe---0@jabber.minus273.org/longxmpprobe,2402,2396,99.75%,6,-1
17 xmpprobe---0@jabber.no-sense.net/longxmpprobe,2402,2396,99.75%,6,-1
18 xmpprobe---0@jabberafrica.org/longxmpprobe,2403,2351,97.84%,52,-1
19 xmpprobe---0@jabme.de/longxmpprobe,2401,2349,97.83%,52,-1
20 xmpprobe---1@jabberafrica.org/longxmpprobe,2436,2383,97.82%,53,-1
21 xmpprobe---1@jabme.de/longxmpprobe,2437,2383,97.78%,54,-1
22 xmpprobe---0@draugr.de/longxmpprobe,2418,2310,95.53%,108,-1
23 xmpprobe---1@draugr.de/longxmpprobe,2412,2303,95.48%,109,-1
24 xmpprobe---1@coderollers.com/longxmpprobe,2410,2300,95.44%,110,-1
25 xmpprobe---1@jabber.de/longxmpprobe,2428,2317,95.43%,111,-1
26 xmpprobe---0@jabbim.cz/longxmpprobe,2400,2290,95.42%,110,-1
27 xmpprobe---0@coderollers.com/longxmpprobe,2420,2309,95.41%,111,-1
28 xmpprobe---1@jabbim.cz/longxmpprobe,2437,2325,95.40%,112,-1
29 xmpprobe---0@jabber.de/longxmpprobe,2407,2296,95.39%,111,-1
30 xmpprobe---1@xmppnet.de/longxmpprobe,2435,2253,92.53%,182,-1
31 xmpprobe---0@jabber-br.org/longxmpprobe,2410,2198,91.20%,212,-1
32 xmpprobe---1@jabber-br.org/longxmpprobe,2419,2206,91.19%,213,-1
33 xmpprobe---1@is-a-furry.org/longxmpprobe,2415,2199,91.06%,216,-1
34 xmpprobe---0@is-a-furry.org/longxmpprobe,2415,2199,91.06%,216,-1
35 xmpprobe---1@tigase.im/longxmpprobe,2431,2180,89.68%,251,-1
36 xmpprobe---0@tigase.im/longxmpprobe,2402,2150,89.51%,252,-1
37 xmpprobe---0@alpha-labs.net/longxmpprobe,2425,2109,86.97%,316,-1
38 xmpprobe---1@alpha-labs.net/longxmpprobe,2405,2089,86.86%,316,-1
39 xmpprobe___0@ch3kr.de/longxmpprobe,2429,1959,80.65%,470,-1
40 xmpprobe___1@ch3kr.de/longxmpprobe,2428,1958,80.64%,470,-1
41 xmpprobe---0@chatme.im/longxmpprobe,2433,1942,79.82%,491,-1
42 xmpprobe---1@chatme.im/longxmpprobe,2418,1917,79.28%,501,-1
43 xmpprobe---0@blah.im/longxmpprobe,2422,1904,78.61%,518,-1
44 xmpprobe---1@blah.im/longxmpprobe,2405,1889,78.54%,516,-1
45 xmpprobe---1@jabber.iitsp.com/longxmpprobe,2417,1897,78.49%,520,-1
46 xmpprobe---0@jabber.iitsp.com/longxmpprobe,2402,1882,78.35%,520,-1
47 xmpprobe---0@jabber.yeahnah.co.nz/longxmpprobe,2398,1629,67.93%,769,-1
48 xmpprobe---0@lightwitch.org/longxmpprobe,2418,1620,67.00%,798,-1

41

42 APPENDIX F. MESSAGE QUOTAS PER ACCOUNT

49 xmpprobe---1@jabber.at/longxmpprobe,2430,772,31.77%,1658,-1
50 xmpprobe---0@jabber.at/longxmpprobe,2432,760,31.25%,1672,-1
51 xmpprobe---1@jappix.com/longxmpprobe,2485,192,7.73%,2293,-1
52 xmpprobe---0@jappix.com/longxmpprobe,2448,176,7.19%,2272,-1
53 test1@uptime.p1.im/longxmpprobe,2448,0,0.00%,2448,-1
54 xmpprobe---1@jabber.smash-net.org/longxmpprobe,2447,0,0.00%,2447,-1
55 test0@uptime.p1.im/longxmpprobe,2447,0,0.00%,2447,-1
56 xmpprobe---1@jabber.yeahnah.co.nz/longxmpprobe,2446,0,0.00%,2446,-1
57 xmpprobe---0@jabber.rueckgr.at/longxmpprobe,2446,0,0.00%,2446,-1
58 xmpprobe---0@xmppnet.de/longxmpprobe,2446,0,0.00%,2446,-1
59 xmpprobe---0@jabber.smash-net.org/longxmpprobe,2446,0,0.00%,2446,-1

Listing F.1: Complete List

Bibliography

[1] Thijs Alkemade, XMPPoke — testing the encryption strength of XMPP servers, https:
//bitbucket.org/xnyhps/xmppoke, 2013, [Online; accessed 2014-03-04].

[2] , IM observatory; testing the security of the jabber/XMPP network, https://xmpp.
net/about.php, 2014, [Online; accessed 2014-03-04].

[3] Raoul Bourquin, SSD, Unpublished images created in discussion of the SSD, 2014.

[4] D0ktorz, XMPP network, http://de.wikibooks.org/wiki/Datei:
Jabber-Netzwerk.svg, 2006, [Online; accessed 2014-03-04].

[5] Peter Saint-Andre, A public statement regarding ubiquitous encryption on the XMPP net-
work, https://github.com/stpeter/manifesto/blob/master/manifesto.txt,
2013, [Online; accessed 2014-03-04].

[6] Peter Saint-Andre, Kevin Smith, and Remko Troncon, XMPP: The definitive guide; buid-
ing real-time applications with Jabber technologies, O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472, 2009, The reference book on XMPP.

43

https://bitbucket.org/xnyhps/xmppoke
https://bitbucket.org/xnyhps/xmppoke
https://xmpp.net/about.php
https://xmpp.net/about.php
http://de.wikibooks.org/wiki/Datei:Jabber-Netzwerk.svg
http://de.wikibooks.org/wiki/Datei:Jabber-Netzwerk.svg
https://github.com/stpeter/manifesto/blob/master/manifesto.txt

