
Distributed
 Computing

Distributed Multiplayer Scenario

Bachelor Thesis

David Niggli

nigglid@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Michael König

Prof. Dr. Roger Wattenhofer

August 30, 2014

Acknowledgements

I am grateful to my supervisor Michael König, who spent a lot of time during
our weekly meetings to support me whenever I had difficulties. I would like to
thank Professor Roger Wattenhofer for offering me the opportunity to write my
bachelor’s thesis at the Distributed Computing Group and learn so much about
game development. Last but not least I thank my family and various friends for
moral support.

i

Abstract

The aim of this thesis is to design a multiplayer game including novel approaches
considering the gameplay. One way to achieve this is to mix several already
existing concepts, as well as to add innovative ideas in order to create a new
user experience. The result is a real time strategy game in a first person view
mode which takes place on a post-apocalyptic planet. To make the gameplay
interesting, features must be balanced in order to find compromises between the
different elder and well tested game concepts. My wish is that readers who want
to develop games on a non-professional basis find this work helpful for knowing
how to deal with challenges, be it in the architecture of the game engine or in
concrete problems like implementing a three dimensional game map.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Defining “Distributed Multiplayer Scenario” 1

1.2 Motivation . 1

1.3 Acronyms . 2

2 Gameplay 3

2.1 Mechanics, Dynamics, Aesthetics 3

2.2 From Standard Mechanics To New Aesthetics, By Using A Mix
And An Innovation . 3

2.3 An Obstacle To Overcome: The Lack Of Units 4

2.4 Preventing Players From Having To Wait 4

2.5 Game Concepts . 4

3 Testing And Balancing 7

3.1 Decorating The Map To Facilitate Navigation 7

3.2 Resource Sharing . 7

3.3 Adjusting Attributes, Upgrades And Their Cost 8

3.4 Shooting . 8

3.5 Flying Versus Jumping . 8

3.6 Speed Boost Versus Stamina . 9

3.7 Player Versus Building . 9

3.8 Changed And Dropped Buildings 9

4 Implementation 10

4.1 Lobby . 10

iii

Contents iv

4.2 User Interface . 11

4.3 Game engine . 11

4.4 Position, Orientation And Movement On A Sphere 12

4.5 The Compass . 18

4.6 Random Looking Textures On Surfaces Without Tiling Effects . 20

5 Analysis And Evaluation 22

5.1 Incomplete Features . 22

5.2 Conclusion . 23

Bibliography 24

A Appendix Chapter A-1

A.1 Compiling The Code . A-1

Chapter 1

Introduction

1.1 Defining “Distributed Multiplayer Scenario”

Computer game designer Chris Crawford defined a game as follows: It should be
entertaining, interactive, as well as involve a goal to reach and adversaries who
can interfere with each other’s actions:
Watching a video for example is entertaining, but it is not interactive. An
interactive plastic car for kids might be fun to play with, but it provides no
particular goal to reach, so it is just a toy, not a challenge. Solving a Rubik’s
cube involves no other agents, so it’s just a puzzle, not a conflict. When winning a
marathon, one does not have to struggle with direct interference from adversaries,
so it’s just a competition, not a game.[1]

Figure 1.1: Distributed Multiplayer Scenario

As confrontations, competitions and games all imply exclusive success between
groups of participants, they contain the notion of teams.
As Figure 1.1 illustrates, I would like to expand the previous definition in order
to define a distributed multiplayer scenario, which is the title of my thesis: it
should not only be competitive, but also cooperative:
In a chess game, the effort leading to the success or failure of a team is not
distributed over several players but depends on only one individual, so it’s just
a duel, not a distributed multiplayer scenario.

1.2 Motivation

The video game industry has flourished within the last few decades. Pioneers
have published games which were tremendously successful and the communities

1

1. Introduction 2

around them have grown in huge numbers.
Games are further developed in order to improve the gameplay and keep up with
technology, for example by making use of modern graphics hardware. New se-
quels are released and sold according to the reputation of predecessors.
Even though there are exceptions, most of the time distinct patterns are recog-
nizable and differences between games of the same genre are minor.
This project is about innovation and trying to create something new, unseen so
far. Although there might already exist games with similar ideas and features
as those introduced in this project, the aim is to find innovative approaches and
encourage readers to do the same.

1.3 Acronyms

RTS: Real Time Strategy
FPV: First Person View
FPS: First Person Shooter
MDA: Mechanics, Dynamics, Aesthetics[2]
TGUI: Texus’ Graphical User Interface[4]
SFML: Simple and Fast Media Library[3]

Chapter 2

Gameplay

2.1 Mechanics, Dynamics, Aesthetics

The goal of this project is to create a new user experience, thus the question
is how to design the game. The MDA[2] model describes how game design and
user experience relate to each other.

Mechanics describe the rules of the game and the control mechanisms defining
various actions a participant can perform.

Dynamics describe the system that define how a participant can act in order to
achieve his short- and long-term goals to ultimately win the game.

Aesthetics describe the resulting fun that the player experiences, which includes
sensation, fantasy, narrative, challenge, fellowship, discovery, expression
and submission.

2.2 From Standard Mechanics To New Aesthetics,
By Using A Mix And An Innovation

As the aim of this project is to design a game with innovative approaches, the
main focus will be on achieving new dynamics and ultimately new aesthetics, by
using standard mechanics.
In this project, the mechanics are a mix of the rules found in typical RTS games
and the control mechanisms found in typical FPS games.

Just as in a RTS game, players build structures in order to control certain areas
of the map. Gathering resources allows expansion across the map and attack
operations on the adversary.
Participants are units on the map and play in First Person View instead of hav-
ing a global perspective, like in “Savage RX”. In fact there are no units on the
map other than the players themselves.

3

2. Gameplay 4

Few video games actually take place on an spherical map due to the technical
complexity; an exception for example is for example “Planetary Annihilation”.
Some games use a torus-like map to achieve a similar effect while avoiding the
complexity of the task, for example “Snake”. If you can’t make it, you can fake
it...
This project rises to the challenge, implementing a three dimensional planet.

The hereby targeted core aesthetics are fellowship, challenge and sensation: play-
ers are encouraged to cooperate in large teams in order to achieve a bigger goal
while experiencing the walk on a spherical map.

2.3 An Obstacle To Overcome: The Lack Of Units

As the players are the only units on the map, resources and buildings have to
occupy the role usually attributed to units in a typical RTS game. One way
of doing that is to make shots cost resources. That way to attack a lot, one
needs a lot of resources, which would be the equivalent of many units. But those
resources should be intended for attacking before the attack takes place, as units
can not be used for anything else. Hence there is an attack resource equivalent
to units. Vehicles are also a way to simultaneously encourage teamwork among
players within a team, as well as replacing units. Unfortunately this feature is
not yet implemented due to time constraints.

2.4 Preventing Players From Having To Wait

One of the main concerns when making the players be the units of a RTS game
is what kind of activities they have to perform as units.
For example it is undesirable that they have to stay passively at one place while
building, repairing or gathering. When players die in shooters, they have to
wait for some time before they respawn. Instead of discouraging players from
dying by such means, it is done differently: by making them lose all the acquired
upgrades since their last death.

2.5 Game Concepts

Teams

Two teams face each other: North Pole versus South Pole.

2. Gameplay 5

Resources

Each team has three types of resources. One for building, one for attacking and
one for upgrading. Players of the same team share all resources.

Players

Players have attributes like a life points cap and regeneration value, a stamina
cap and regeneration value, an attack power and range. When all life points are
lost, the player dies and respawns on the pole of his team. Stamina is required
to sprint or gain altitude. Players can shoot laser beams with a certain attack
power and range, which cost the team resources.

Buildings

Teams expand their territory and control certain areas of the map by building
the following structures:

• The power plant is essential, as it is allowing the construction and activity
of other buildings around it within a certain range.

• The gatherer can only be placed on resource occurrences and gathers at a
certain rate.

• The shooter is a tower that shoots on enemy units within a certain range,
thus draining their life points.

• The healer is a building that heals wounded players of its team, again
within a certain range.

• The speeder is a structure that allows players of its team to travel faster
through controlled territory by increasing their stamina, hence allowing
constant sprinting.

Upgrades

Each building can be improved or improve the player by buying upgrades. De-
pending on the building, they increase the building’s own range, performance or
life points cap and the player’s range, performance, or cap in a specific domain.

2. Gameplay 6

For example a shooter can upgrade their own life points cap, their own shoot-
ing range, their own shooting power or the players’ shooting range, the player’s
shooting power. Along with the upgrades, there is an option to repair a dam-
aged building, which is more advantageous then rebuilding one, if the building
has been upgraded.

Game Object

A team starts with a power plant on one of the poles.
The game object is to build structures in order to gather resources permitting
various upgrades that enable more efficient exploration, expansion and destruc-
tion of adversary structures. The game is won when all adversary power plants
are destroyed.

Chapter 3

Testing And Balancing

3.1 Decorating The Map To Facilitate Navigation

On a map without corners, orientation is a main challenge. The compass gadget,
although it can guide a player directly to the own or enemy pole, is not enough
help for a beginner and still a limited one for advanced players.
In order to give players an idea of where they are, obstacle types such as black
rocks, gray rocks, volcanoes, monoliths, walls (and more could be added in the
future) are used to define regions of the map.
One side of the map is dominated by gray obstacles and the other half by black
ones. In their middles reside respectively a bunch of monoliths and an elliptic
volcano chain. Resources are to be found in both of these places, allowing a
larger sight by climbing on a monolith, or natural protection against adversaries
through life point draining volcanoes.
As northern and southern hemispheres are references with an absolute location
whereas West and East are only relative, a fragmented wall divides the planet
from pole to pole in a straight line in order to provide an equivalent reference.
Along that wall can be found four further major resource occurrences, two in
each hemisphere.
In case the players have any doubt about where to head because the black and
gray rock occurrences are insufficient to give them an idea of what bigger entities
may be found in that region, there are sign posts at both poles that indicate
where the volcanoes and monoliths are.
Few resource occurrences are spread out randomly across the map.

3.2 Resource Sharing

In order to prevent players from using all the upgrade resources on themselves,
costs grow polynomially, thus leaving other players from the team the time to up-
grade themselves to approximately the same level. Unequal resource use should
only happen if intended as a strategy and agreed upon amongst team mates.s

7

3. Testing And Balancing 8

achieved.

3.3 Adjusting Attributes, Upgrades And Their Cost

Exponential growth was experimented with but abandoned because of too ex-
treme consequences; it was replaced with attribute upgrades that increase per-
formance linearly, and costs that are polynomial in the level.

3.4 Shooting

Discrete Versus Continuous Shots

At first the idea was that players shoot bullets. While implementing the feature,
the first prototypes were just performing a ray trace every frame when shooting
in order to determine the target, and the idea of continuous laser beams remained
as it fit into the theme of the game. A resulting issue to be addressed in future
is for example that lag will cost amounts of resources spent on unwanted shots.

Resources Versus Munition

Along with life points and stamina came the idea of a munition bar, which
would only be refilled when a player comes near one of his buildings or maybe a
specific building. The fact that shots cost resources makes players not run out
of munition unless they can’t afford it anyway. This feature was dropped due to
exaggeration in realism and no real improvement on the gameplay.

Camera Origin Versus Shot Origin

When the player’s own shots were displayed, they covered the screen. To pre-
vent that, the camera position and the shooting source have been separated.
Implementation required some computation on client side to translate the visual
target into a corresponding shot direction.

3.5 Flying Versus Jumping

In the early stage of the development, the player could gain altitude quite easily.
The thought occurred to include and encourage flying as a feature. But after
testing it, the decision was made to weaken the ability to gain altitude to prevent
its abuse. Another issue is how much sideways movement control a player has

3. Testing And Balancing 9

when he is “in the air”. As the theme is post-apocalyptic, it was decided that
players are robots and given the same level of movement control at every altitude.

3.6 Speed Boost Versus Stamina

Speeders are supposed to enable fast travel in controlled territory. Testing the
speed boost led to the observation that the movement control decreases. This
issue is solved by restoring stamina to the player instead of directly increasing
his speed, hence allowing him to move faster by sprinting when he decides to.

3.7 Player Versus Building

As buildings play an important role in the game, it is important not to give
the player too much power. On the other hand the player is still the user, and
buildings should not be too powerful either. While balancing the attributes and
testing the gameplay, both extremes were experienced: from players destroying
anything in their way in the blink of an eye to buildings standing ground and
taking over the defence of occupied territory with overpowered towers. A compro-
mise between the two situations was established by empowering and weakening
each side back and forth until a healthy balance wa

3.8 Changed And Dropped Buildings

In the beginning all buildings had the same dimensions. For better recognition
they were changed to have different shapes and sizes.
The healer towers heals players of its team within a certain range of action; the
speeder tower was replaced with a highway tile, which restores stamina by some
technological means when players of its team walk on it. It was planned to make
entire roads with low cost, in order to create highways within the controlled ter-
ritory. This feature requires path finding and automated placing of individual
tiles; due to time constraints the feature is not completed.

Along with the speeder came the idea of a slower tower that would slow down
adversaries in order to give the team more time to react to attacks. This has been
left out because the first person view is already a handicap for map overview and
slowing down players even more does not make much sense.

Chapter 4

Implementation

4.1 Lobby

When the application is launched, the lobby is entered, as illustrated in Figure
4.1. On the left are a text box to enter a user name, a list box containing all
games hosted in the local network and buttons to exit the application, refresh
the list of games or join a selected game. Additionally there is a text box to
enter a game name, as well as a button to host a game under that name.

When hosting or after having joined a game, the right side displays a list of
all joined players along with some attributes, like the selected teams or whether
they are ready to start the game or not. A player can select a team with a combo
box and get ready to start the game with a check box, which is unchecked auto-
matically when settings change, for example if a new player enters or someone
turns to an other team. Additionally there is a chat box and a text box with a
send button for players to communicate while the game is set up.
When all players are ready the game is launched. When the host exits or the
game terminates the lobby is entered again.

10

4. Implementation 11

Figure 4.1: The lobby

4.2 User Interface

The control mechanisms are pretty much those of a typical FPS game: a player
moves using WASD keys, turns himself using the mouse, gains altitude with the
space key and performs actions using left click.

There are two modes of action: an economic mode in which a player can place
new or upgrade existing structures and a military mode in which a player can
shoot. These actions are performed using left click. A player can toggle between
the two modes using the E key; right clicking also brings the player back to
military mode.
In economy mode, when a player targets the ground, a building appears, if it
can’t be built due to collision, distance or lack of resources, it is half transpar-
ent. The different building types can be iterated through by scrolling or directly
accessed using the corresponding number key on the keyboard, and built by left
clicking. When a player targets a building he can apply upgrades on it, which
can also be scrolled through or accessed directly with the corresponding number
key.

4.3 Game engine

Framework

The following C++ libraries were used in this project:

4. Implementation 12

• SFML[3] provides five modules, which allow threading, networking, audio,
windowing and 2D graphics.

• TGUI[4] provides high-level GUI elements building up on SFML.

• OpenGl[7] was used for 3D scene rendering.

• Bullet Physics[5] was used for real time physics simulation.

Central Server

The network is centralised. The server is the ultimate reference considering the
game state. This avoids complicated protocols when it comes to the synchro-
nization of the virtual reality. On the other hand this architecture implies that
the server is the bottleneck concerning network latency. Client side movement
predictions are a possibility to overcome the issue, but in this project there was
no need for it, as the message complexity was very limited.
The clients receive user inputs, translate them in to local consequences such as
camera movement or building visualization before the user clicks to build, and
forwards game state relevant information to the server.
The server receives user inputs from the clients and applies the action to the
game state which he increments every frame, before broadcasting the changes to
all clients. The clients receive updates and change the data accordingly, which
is then displayed on the screen.

4.4 Position, Orientation And Movement On A Sphere

A player’s position and orientation (how he is rotated in the world) have to be
kept track of and updated according to movements, as illustrated in Figure 4.2.
The sphere is centred in the origin of the coordinate system, hence the y-axis
intersects it in an upper and a lower pole.

4. Implementation 13

Figure 4.2: Position, orientation, poles

Spherical Coordinates

In order to represent a player’s position, a first approach was to work with spher-
ical coordinates:
Instead of using three coordinates x, y and z for each dimension, two angles theta
and phi and a distance r to the origin would be used.

An advantage of this representation model is that theta, phi and r directly corre-
spond to the notions of latitude, longitude and altitude, as illustrated in Figure
4.3. For example, jumping just affects one coordinate (the altitude) indepen-
dently from the other two.

Figure 4.3: Spherical coordinates

A disadvantage of spherical coordinates is that it can involve case distinctions
between the hemispheres: when an angle has a value range from zero to two pi,
trigonometric equations can have multiple solutions.

4. Implementation 14

Transformation Matrices

OpenGL as well as Bullet Physics[5] use matrices to describe both position and
orientation of entities. These matrices have to be computed anyway for the ren-
dering process and the physical simulation.
The state of an entity is described by a vector that is its position, and a quater-
nion representing its orientation in the world, which is defined by a rotation axis
and a rotation angle, as described in Figure 4.3. The Bullet Physics[5] API and
the GL Mathematics library both provide the infrastructure to build matrices
from these components and vice versa extract the position and the orientation
from the matrix.

Figure 4.4: Vector and quaternion

From Movement Relative To The Player To Actual Movement On The
Sphere

The player orients himself by using the mouse and moves by pressing keys on
the keyboard.
Those inputs are interpreted relatively to the player’s reference frame. For ex-
ample a player can jump while moving forward and rightward at the same time.
That means that relatively to his current orientation, he wants to move along a
vector going up, forward and rightward.
That vector is then rotated and translated in the same way as the player in order
to obtain the final movement vector, as illustrated in Figure 4.5.

4. Implementation 15

Figure 4.5: From movement relative to the player to actual movement on the
sphere

Keeping The Player Upright Despite The Laws Of Physics

Using a real-time physics engine is nice for recovering from collisions or using its
built-in ray-trace feature, but some of its consequences are undesirable: in real
life, a person - or any object for that matter - can fall to the ground; in a video
game, a player’s character shouldn’t stumble in the first place.
Because that is a common issue, the physics engine allows to manipulate and
restrict the physical properties of physical entities.
On a plane, the engine can be allowed to only affect an object’s position, and
forbidden to affect its orientation, which therefore remains unchanged over time,
no matter what events occur; hence guaranteeing that the player will always be
upright.
On the sphere, leaving a player’s orientation unchanged is not wanted, as the
orientation of a player changes depending on his location. But one can think of
using a similar tactic: the player can be reoriented manually to guarantee that
he is standing upright.
To do that, the quaternion that transforms the position vector of the upper pole
into the position vector of the entity can be computed as illustrated in Figure 4.6:
the rotation angle is the inverse cosine of the dotproduct of the two normalized
vectors, and the rotation axis is their crossproduct.

4. Implementation 16

Figure 4.6: Reorientation quaternion

That rotation can be applied to the entity, hence orienting it up right. That
way, there is an injective projection from the entity’s initial orientation on the
upper pole to that on any location on the sphere.

Observation and Analysis: Strange Movement Behaviours Due To
Course Deviation

After the implementation, walking was tested on the sphere. At first it seemed
to work allright, but soon issues were discovered. The further away a player
walked from the upper pole, the more movements started behaving strangely,
following a particular pattern: when walking nearby the lower pole, the player
got trapped in a circular movement path around it while moving just forward.
On the upper hemisphere, the deviations from the course were negligible, in fact
they were not even noticeable, which led to the erroneous hypothesis of the need
for some kind of case distinction between hemispheres.
In order to understand what was exactly happening, the physics engine’s simu-
lation was removed in order to avoid any black box. The three steps that should
happen in a frame were manually implemented: First the player should move,
then gravity should pull him down to the ground, and finally the player should
get reoriented to be upright. Big steps per frame one after the other are de-
bugged, in order to observe the scene after each step. The findings were that
after a step, a player was no longer facing the same direction, but had made a
turn, as illustrated in Figure 4.7.

4. Implementation 17

Figure 4.7: Observation and analysis

The algorithm reoriented an entity by projecting it from the top to its new
location from scratch considering just its position like on a plane. For two neigh-
boring points on the lower hemisphere, that projection did not result in similar
rotations of an object around itself, hence the course deviation.

A Sphere Is Not A Curved Plane

The mistake was to just consider the sphere as nothing more than a curved plane.
This approximation was locally good enough on the upper pole, but when getting
closer to the other side of the sphere, it held less and less. In fact two opposite
directions going away from each other on the upper pole meet again on the lower
pole.
It turns out that walking on a sphere is not quite the same as walking on a
plane. Let’s first illustrate that with the example illustrated in Figure 4.8 and
then generalise it to a more global principle:
Standing on the North Pole and facing a certain direction a player can go down
the sphere until he reaches the equator; after moving half way around the sphere
he finally walks back up to the pole. He finds himself on the same position as he
started, but facing the exact opposite direction, hence he just passively rotated
by a hundred and eighty degrees. More generally, any given orientation can be
achieved on any given location on the sphere by just walking on it without ever
actively rotating.

4. Implementation 18

Figure 4.8: Walking on a sphere

Active And Passive Rotation

The findings were that the orientation of an entity does not only result from
the history of active rotations decided by the player through mouse movements
but also from the history of passive rotations resulting from movements on the
sphere.

A Constructive Approach

The problem is solved by computing the new orientation constructively accord-
ing to the last one, instead of using the initial one to do it from scratch.
To do so, the last position and orientation are stored before running the simula-
tion and are then used to compute the new orientation.

A Polished Solution

One problem remaining is that computation errors accumulate over time and
never get corrected. The more elegant way of doing it, is to compute the side
effect rotation caused by the movement and add it to a “pitch” rotation result-
ing from both active and passive rotation. After that, one can recompute the
orientation frame by frame, by first applying the pitch and then the projection.
Accumulated negligible errors on the pitch are not noticed, as the mouse control
precision is also limited. On the other hand cumulative yaw and roll deviations
are preferably avoided.

4.5 The Compass

One orientation feature is the compass gadget which always points toward the
upper pole. This is achieved by projecting the pole onto the player’s relative two

4. Implementation 19

dimensional plane and computing the angle between the forward vector and the
pole’s projected position vector, which is defined uniquely by the up vector. The
compass is then rotated by that angle, as illustrated in Figure 4.9.

Figure 4.9: North Pole projection

Projecting The Pole

Let n be the unit vector normal on the plane; n is equal to the normalized up
vector.
Let d be the distance between the pole and its projection on the plane; d is equal
to the dotproduct of the pole’s position relatively to the player and n.
To compute the projected position of the pole, d times n is added to the pole’s
position.

Compute The Angle

In the method described in Figure 4.5 the rotation angle of a quaternion is com-
puted using the inverse cosine of the dotproduct of the two normalized vectors,
which has two solutions but returns the one in the range between zero and pi.
Because the crossproduct and the dotproduct are complementary, the sign of the
angle is taken care of by the direction of the rotation axis, hence together they
define a unique rotation, as illustrated in Figure 4.10.
However the rotation angle of the compass has a range going from −π to π. The
up vector is used to define a unique solution:

4. Implementation 20

Figure 4.10: rotation angle uniqueness

The crossproduct of the forward vector and the up vector results in the right
vector.
If the dotproduct of the right vector and the projected position is positive, the
angle between them is acute, otherwise it is obtuse.
If the angle between the right vector and the projected position of the pole is
acute, the pole is to the right of the player, otherwise it is to the left.
If the pole is to the left of the player, the angle is positive, otherwise it is negative.
The angle has now a value range between −π and π.

4.6 Random Looking Textures On Surfaces Without
Tiling Effects

This part was experimented with in the plane; after the decision was made to
implement a spherical map it was dropped.
The goal was to construct big random looking surfaces with few texture varia-
tions. The plan was to use randomness to eliminate the tiling effect. Square tile
textures have borders B1 to B4 (top, bottom, right, left). Each of those borders
has an interface I1 or I2. Hence there are 24 tile textures with all possible inter-
faces at all possible borders.
Each of those textures is represented by an integer that is 1 in the beginning and
is then multiplied (or not) by prime numbers 2 through 7 if the borders B1 to
B4 have interface 1 (or I2).
A function was programmed, that generates an array of integers that represent
which of the 16 textures is to be used for each tile. It looks up the zero to two
neighbouring tiles already determined previously and randomly chooses a tex-
ture amongst the 4 to 16 compatible ones. A mesh is then generated using those
textures.

4. Implementation 21

Along the texture map, a randomized heightmap can be used to generate relief
with arbitrary constraints on slope and boundaries.

Chapter 5

Analysis And Evaluation

5.1 Incomplete Features

Due to time constraints, some of the planned features were not completed. They
give an idea of how existing features can be improved:

• When a player places a highway tile on the map, a set of tiles starting
at the closest already existing building and ending at the tile closest to
the targeted position is computed. The cost depends on the number of
required tiles. This improves the visual aesthetics as well as the gameplay
as the construction of continuous roads is automated and permits constant
sprinting.

• Power boosting vehicles that can only be deployed by several participants
encourage cooperation amongst players within the same team. For example
one person can only drive, but much faster than without the vehicle, and
an other one can only shoot, but with more damage points than without
the vehicle.

• To make the map less monotone, the planet consists of an amount and
variation of spheres that is small and random. The texture of its surface
are randomized in order to remove the tile effect.

• Instead of strictly splitting the purpose of resource types, some combina-
tions make the balancing more interesting.

• the lobby consists of different tabs: one for settings, one for the list of local
games, one for the currently joined game etc.

• a master server creates server threads listening on different ports. The list
of games displays attributes describing the number of players, if the server
runs on the master server or not etc.

• The following is more of a joke that crossed the mind: settings allow the
client to set a theme, for example in the fast food theme the monoliths are

22

5. Analysis And Evaluation 23

French fries, the resources are ketchup, mustard and mayonnaise, gatherers
are grills, a doughnut surrounds the planet on the equator etc.

5.2 Conclusion

The release of a video game involves big teams that work full time on it during
several months or years. Without having previously ever worked on a bigger
project, after a few months I have learned a lot about the used frameworks and
game development in general. Had I to reimplement it, the structure of the
engine would look differently. Not all the planned features were completed, but
the general idea of an RTS-like game taking place on a sphere struck me and I
am planning to take the idea further.

Bibliography

[1] by Michael Stevens’ youtube channel “Vsauce”: why do we play games?
http://www.youtube.com/watch?v=e5jDspIC4hY

[2] by Robin Hunicke, Marc LeBlanc and Robert Zubek: A Formal Approach to
Game Design and Game Research
http://www.cs.northwestern.edu/ hunicke/MDA.pdf

[3] SFML: Simple and Fast Media Library
http://www.sfml-dev.org

[4] TGUI: Texus’ Graphical User Interface(“GUI library for SFML”)
http://www.tgui.eu

[5] Bullet Physics: Real time physics simulation
http://www.bulletphysics.org

[6] GitHub: Git repository
http://www.github.com

[7] OpenGL: Open Graphics Library
http://www.opengl.org

24

Appendix A

Appendix Chapter

A.1 Compiling The Code

The external libraries mentioned in chapter “Implementation”, section “Frame-
work” can be downloaded for free on GitHub[6]. They need to be compiled and
linked to the source code of this project, which should be cross platform (Win-
dows, OS X and Linux) but was only tested on windows compiled with visual
studio 2013.

A-1

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Defining ``Distributed Multiplayer Scenario"
	1.2 Motivation
	1.3 Acronyms

	2 Gameplay
	2.1 Mechanics, Dynamics, Aesthetics
	2.2 From Standard Mechanics To New Aesthetics, By Using A Mix And An Innovation
	2.3 An Obstacle To Overcome: The Lack Of Units
	2.4 Preventing Players From Having To Wait
	2.5 Game Concepts

	3 Testing And Balancing
	3.1 Decorating The Map To Facilitate Navigation
	3.2 Resource Sharing
	3.3 Adjusting Attributes, Upgrades And Their Cost
	3.4 Shooting
	3.5 Flying Versus Jumping
	3.6 Speed Boost Versus Stamina
	3.7 Player Versus Building
	3.8 Changed And Dropped Buildings

	4 Implementation
	4.1 Lobby
	4.2 User Interface
	4.3 Game engine
	4.4 Position, Orientation And Movement On A Sphere
	4.5 The Compass
	4.6 Random Looking Textures On Surfaces Without Tiling Effects

	5 Analysis And Evaluation
	5.1 Incomplete Features
	5.2 Conclusion

	Bibliography
	A Appendix Chapter
	A.1 Compiling The Code

