
Distributed
 Computing

PaperRank for Literature Research

Group Project

Fabian Mentzer, Timon Ruban, Jan Schulze

mentzerf@ee.ethz.ch, truban@ee.ethz.ch, schulzej@ee.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zurich

Supervisors:

Tobias Langner, Jochen Seidel

Prof. Dr. Roger Wattenhofer

June 14, 2014

Abstract

While most common literature search engines use search queries based on key-
words, we are interested in finding important as well as relevant literature based
on other literature. To accomplish this, we introduce the PaperRank algorithm,
an adapted version of the PageRank algorithm. PaperRank attributes a single
score of absolute importance to scientific publications. To find the best configu-
ration for the parameters of the PaperRank, we conduct an empirical evaluation.
We go on to describe a search algorithm that uses PaperRank to find and rank
relevant literature given one or more input papers. In comparing our search
engine to others, we show how our approach of only using paper metadata –
information about references and authors – is already producing meaningful re-
sults.

i

Contents

Abstract i

1 Introduction 1

2 Related Work 2

2.1 Google Scholar & Co. 2

2.1.1 Bibliographic Databases 2

2.1.2 Search Engines . 2

3 Ranking Scientific Publications 4

3.1 Preliminaries . 4

3.2 The PageRank Algorithm . 5

3.2.1 Web Graph . 5

3.2.2 Random Surfer Model . 6

3.3 Adapting the PageRank Algorithm 7

3.3.1 Graph of the Web vs. Graph of a Citation Network . . . 8

3.3.2 A Random Literature Searcher 8

3.4 The PaperRank Algorithm . 9

3.4.1 Setup . 9

3.4.2 The Algorithm . 10

3.4.3 Treating Dangling Papers 11

3.4.4 Approximating the Rank Vector 13

3.5 Implementation . 13

3.6 Evaluating PaperRank . 14

3.6.1 Comparison with Conference Rankings 14

3.6.2 Adjusting the Parameters 16

3.6.3 Discussion . 17

ii

Contents iii

4 Finding Relevant Papers 19

4.1 Overview . 19

4.2 Formal Description . 20

4.2.1 Search Algorithm . 21

4.3 Implementation with a GUI . 24

4.3.1 GUI . 24

4.3.2 Local Paper Titles Search Index 24

4.3.3 Search Algorithm . 24

4.4 Evaluation and Comparison . 24

4.4.1 Google Scholar . 24

4.4.2 Mendeley . 26

5 Conclusion and Outlook 27

Bibliography 28

A Appendix Chapter A-1

A.1 Screenshots of the GUI . A-1

A.2 Additional Data . A-2

Chapter 1

Introduction

Most will agree that conducting literature research is an important, yet mundane
exercise. Fortunately, as scientific publications are becoming more and more
accessible through the web, search engines can be used to simplify this task.

In this group project we set out to develop a convenient and easy-to-use ap-
plication aimed at facilitating literature research. While most common literature
search engines use search queries based on keywords, we are interested in finding
important as well as relevant literature based on other literature. The key issue
we want to address is how to rank scientific publications by their importance1. In
particular, we are interested to see if it is possible to adapt the popular PageRank
algorithm, used to rank webpages, to our problem of ranking papers. To build
a useful search engine, we identify means to narrow down the search space and
find not just important, but relevant papers. The adapted PageRank, henceforth
called PaperRank, can then in turn rank these search results.

Using papers as inputs for the search engine is especially useful in situations
like the following: One might be looking into a new research field in which one is
not yet familiar with the distinct scientific terminology and thus does not know
which terms to search for. In this case an explicit keyword or author search, as
offered by most search engines, is not of much use. Sometimes this holds even
if one already has expertise in the topic in question. This is because different
papers might use different terminology describing the same thing. Then, the
search for specific keywords might exclude literature that is actually relevant.
For instance, consider the two heavily related concepts of “Random Walks” and
“Brownian Motion”. Explicitly searching for one term or the other can rule out
many interesting papers.

In this report we document the results of our group project. We first give a
short overview of other applications used to conduct literature research (Chap-
ter 2). Next we introduce PaperRank and describe it in detail (Chapter 3). In
Chapter 4 we discuss how the search algorithm works. Lastly, we present a con-
clusion to our work and give an outlook on possible future research (Chapter 5).

1We use the terms paper, publication and article interchangeably throughout this report.

1

Chapter 2

Related Work

2.1 Google Scholar & Co.

We give a short overview of various existing ways to conduct literature research.
Foremost it is important to distinguish between bibliographic databases and
more sophisticated search engines used for literature research.

2.1.1 Bibliographic Databases

Bibliographic databases are usually run and updated by a staff that collects
and indexes scholarly content. The consequence is that they offer high-quality
content, but are often only accessible through paid subscriptions. Since there
usually is no ranking employed, these databases are mostly addressed at experts
who know what specific scientific keywords or authors to search for. Examples
for bibliographic databases are the Web of Science1 or the online collections of
articles, papers and books found in university libraries (e.g. the ETH Library2).

2.1.2 Search Engines

In contrast to bibliographic databases, search engines for scholarly literature
especially aid researchers in the process of finding new, relevant literature. They
usually allow for text-based search queries and display a ranked list of results.
The ranking is often based on metadata of the scientific publications like the
count of references or when and where it was published. We describe two tools
that allow for such searches.

1http://wokinfo.com
2http://www.library.ethz.ch/de

2

http://wokinfo.com
http://www.library.ethz.ch/de

2. Related Work 3

Google Scholar

Google Scholar is a search engine that can be used to search for scholarly litera-
ture. It provides access to abstracts and metadata of scientific papers, and often
times even the full text article. It can also be used to analyze the references of
authors and their publications.

After entering a search query a list of results is displayed in a ranked order.
A Related Articles function, as the name implies, shows articles related to one
of the results.

While Google does not reveal the methods they use to rank the papers and
to find related papers, they paraphrase their approach in the following way:

“Google Scholar aims to rank documents the way researchers do,
weighing the full text of each document, where it was published, who
it was written by, as well as how often and how recently it has been
cited in other scholarly literature.” [Goo]

Mendeley

In their own words, Mendeley “is a free reference manager [...] that can help
you organize your research, collaborate with others online, and discover the latest
research.” [Men]. Its central feature is managing and organizing references, but it
also provides a search engine that lets one explore their crowd-sourced research
catalogs. In particular, in their standalone desktop application they offer the
functionality of finding relevant, related research based on selected papers. As
to how they find relevant literature, Mendeley does not offer an explanation.

Chapter 3

Ranking Scientific Publications

First we spell out the basics of the PageRank algorithm and its interpretation,
the Random Surfer Model, in Section 3.2. We then explain the train of thought
leading up to the adapted version of the PageRank algorithm: the PaperRank
(Section 3.3). After this we give a detailed description thereof (Section 3.4) and
provide insight into our implementation (Section 3.5). In Section 3.6 we explain
how to find good parameters for the PaperRank algorithm and evaluate our
findings.

3.1 Preliminaries

Markov Chains

An introduction to stochastic processes and Markov chains is given in [SS01].
Another review of Markov chain theory is also presented in [BG92]. Here, we
only state the results that will be needed later on.

Definition 3.1. Consider a discrete-time stochastic process (Xt, t ∈ N0) and a
finite, countable set S = {0, . . . , n− 1}. The stochastic process is called a finite-
state Markov chain on the state space S if the random variables X0, X1, X2, . . .
only take on values in S and Xt+1 only depends on Xt, namely if ∀ t ≥ 0 and
s0, . . . , st, st+1 ∈ S:

Pr[Xt+1 = st+1 | X0 = s0, X1 = s1, . . . , Xt = st] = Pr[Xt+1 = st+1 | Xt = st]

If in addition

pij := Pr[Xt+1 = i | Xt = j], ∀ i, j ∈ S

does not depend on t, the Markov chain is called time-homogeneous and a state
transition matrix P can be defined as

P = (pij)0≤i,j≤n .

4

3. Ranking Scientific Publications 5

Let
~q (0) = (q

(0)
0 , . . . , q

(0)
n−1)

be the probability distribution of X0 (i.e. Pr[X0 = i] = q
(0)
i , ∀ i ∈ S). Then the

probability distribution of Xt+1 can be calculated as

~q (t+1) = ~q (t) · P, t ≥ 0

or as
~q (t+1) = ~q (0) · P t+1, t ≥ 0 .

Definition 3.2. A probability vector ~π (with πj ≥ 0, j ∈ S and
∑

j∈S πj = 1)
is called the stationary distribution of the Markov chain with state transitition
matrix P if

~π = ~π · P .

We now state an important theorem on ergodic Markov chains. A definition
of ergodicity and a proof of the theorem can be found in [SS01].

Theorem 3.3. If a Markov chain (Xt, t ∈ N0) on the state space S is ergodic
(aperiodic and irreducible), it has a unique stationary distribution ~π and it con-
verges towards this stationary distribution independently of the initial probability
distribution of X0 (i.e. limt→∞ ~q

(t) = ~π).

A simple (sufficient) testing condition for ergodicity is the following: if all
elements of the state transition matrix P are strictly positive, the Markov chain
is ergodic.

3.2 The PageRank Algorithm

The PageRank algorithm was first introduced in [PBMW99]. A different expla-
nation is given in [Hav02].

3.2.1 Web Graph

The PageRank algorithm is used to rank websites using the underlying structure
of the world wide web. To do this the Internet is modeled as a directed graph
GI = (V,A). Each node v ∈ V represents a web page and every edge a = (u, v)
(with a ∈ A and u, v ∈ V) corresponds to a hyperlink on web page u referring
to web page v. The total number of web pages is given by n = |V |. In addition,
we label each web page 1 through n (i.e. V = {1, . . . , n}). The number of edges
a ∈ A emanating from node u is called out-degree of node u and is denoted by
deg+(u).

3. Ranking Scientific Publications 6

The goal of PageRank is to assign a certain rank to each web page v ∈ V
that determines the absolute importance of v among all the web pages. If we
define this process of assigning a rank to a web page as the mapping

r : V → R+

we can denote the output of PageRank by the rank vector

~r = (r(1), . . . , r(n)) ∈ R1×n
+ .

The basic idea of the algorithm is that a web page u recommends another
web page v if it links to it. Naturally, a recommendation by a more important
page should be worth more than a recommendation by a less important page.
Therefore the algorithm recursively takes the rank and the number of recom-
mendations (i.e. deg+(u)) of the recommending page u into account.

An intuitive basis for the calculation of the rank vector ~r is given by the
Random Surfer Model that was introduced in [PBMW99].

3.2.2 Random Surfer Model

The random surfer explores the Internet and jumps from web page to web page
by consecutively clicking random hyperlinks. This is equivalent to doing a ran-
dom walk on the graph GI . However, every now and then (with a certain prob-
ability α) the random surfer becomes bored and jumps to a random web page
(i.e. enters a completely new URL).

If we model this behavior of the random surfer as a Markov chain on the
state space V , the rank vector ~r is given as the stationary distribution of said
Markov chain. The corresponding state transition matrix M ′ is given by

M ′ = (1− α) ·M + α ·B, α ∈ [0, 1]

where B ∈ Rn×n is the uniform matrix (bij = 1
n , ∀ i, j ∈ V) and M is defined as

follows:

M =

m11 m12 · · · m1n

m21 m22 · · · m2n
...

...
. . .

...
mn1 mn2 · · · mnn

 ∈ Rn×n, muv =

{
1/deg+(u) if (u, v) ∈ A
0 else

Note that M corresponds to the state transition matrix of a random walk on the
graph GI = (V,A).

The rank vector ~r (i.e. the stationary distribution of the Markov chain with
state transition matrix M ′) can now be calculated as the limit for t→∞ of the
probability distribution ~r t+1 that is defined by

~r (t+1) = ~r (t) ·M ′, t ≥ 0

3. Ranking Scientific Publications 7

Bear in mind that because of B all elements of M ′ are strictly positive (i.e. m′uv >
0,∀ u, v ∈ V) and it follows that the Markov chain with state transition matrix
M ′ is ergodic. Using Theorem 3.3 it immediately follows that the rank vector ~r
exists and ~r (t) converges towards it independently of ~r (0) (i.e. ~r = limt→∞ ~r

(t)).

Since it does not matter what the initial vector ~r (0) looks like, as long as it
is a valid probability distribution, we simply choose the uniform vector ~r (0) =
(1
n , . . . ,

1
n).

Dangling Links

A dangling link is a link that points to a web page u with no outgoing links (i.e.
deg+(u) = 0). It is not obvious how to redistribute the rank of this web page. In
the calculation of the rank vector, rank would get lost for the web page with no
outgoing links (there would be an all zero row in the transition matrix M). This
is called a rank sink. In the original PageRank version suggested in [PBMW99]
all dangling links are removed recursively to avoid this predicament.

Note that if there are no dangling links, the L1-norm is preserved in the
calculation steps of the PageRank (i.e. ‖~r (t+1)‖1 = ‖~r (t)‖1). This can be seen,
as follows:

Proof.

‖~r (t+1)‖1 =

n∑
u=1

|r(t+1)
u | =

n∑
u=1

r(t+1)
u =

n∑
u=1

n∑
v=1

r(t)
v m′vu

=
n∑
v=1

r(t)
v

n∑
u=1

m′vu =
n∑
v=1

r(t)
v =

n∑
v=1

|r(t)
v | = ‖~r (t)‖1

where we used that all elements of the rank vector are nonnegative and that
all rows of M and B sum to 1 (because there are no dangling links and thereby no
all zero rows in M) and thus also all rows of M ′ sum to one (i.e.

∑n
u=1m

′
vu = 1).

3.3 Adapting the PageRank Algorithm

The PageRank algorithm is very useful for ranking web pages. It can be calcu-
lated offline, is resistant to most manipulations and gives a single number to the
importance of a web page. It seems reasonable to try and apply such a successful
algorithm in a different context. However, we can not directly apply it to the
problem of ranking scientific publications.

3. Ranking Scientific Publications 8

3.3.1 Graph of the Web vs. Graph of a Citation Network

The perhaps natural extension of the PageRank algorithm to our context would
be to use references as the “hyperlinks” between two papers. However, the graph
of a citation network (with papers as nodes and references as directed edges)
causes some immediate issues. Unlike the graph of the World Wide Web the
graph of a citation network has a tree-like structure – new publications almost
exclusively cite older publications. While it is possible that two collaborating
research groups writing their scientific papers at the same time will cite each
other, only very few (short) cycles will be introduced to the citation network, as
time elapses and the graph grows.

Recursively removing all of the dangling links, as in the original PageRank,
would now result in the removal of almost the entire graph. Even if this issue can
be resolved (it can!), the structure of the graph still leads to the rank distribution
being a one-way road. Thus older papers will accumulate much more rank than
newer publications.

3.3.2 A Random Literature Searcher

Keeping these challenges in mind, we now turn back to the intuition behind
the PageRank algorithm, the Random Surfer Model. The Random Surfer surfs
through the web by clicking random hyperlinks (following the recommendations
of the respective websites) and from time to time jumping to a random web page.
In the context of literature research it seems to make little sense to only follow
one reference after the other. Our goal is therefore to teach the Random Surfer
a thing or two about how to conduct literature research and turn him into a
Random Literature Searcher.

B
C

A
D

same author

cites
cited by

Figure 3.1: A graph showing the relationship between scientific publications

Looking at Figure 3.1 we see that there is more information to be gained
from paper A than just its references. It seems to be reasonable to assume that
papers B and C are also related to A in some way. The Random Literature
Searcher will try to make use of this information. Essentially he shall not only

3. Ranking Scientific Publications 9

jump to references of a paper, but also to papers citing the current paper (we
call them cited-bys) as well as other papers by the same authors1. This can be
easily accomplished by introducing new directed edges to the graph. Note that
the tree-like structure that caused problems earlier on is now no longer an issue
as there are many new edges in the graph.

However, are the papers written by the same author more or less relevant than
the cited-bys? Does it really make sense for an important paper to recommend
all papers that are citing it the same way it recommends its references? It is
not clear a priori if the references, cited-bys and papers by the same author are
equally relevant. To account for this problem we attribute different weights to the
edges pointing to the references, cited-bys and papers by the same authors. This
corresponds to the Random Literature Searcher choosing between the different
edges with different probabilities. We give a more formal explanation in the next
section.

3.4 The PaperRank Algorithm

3.4.1 Setup

Similar to Section 3.2.1 we first define a graph GP = (P,E) to model our network
of scientific publications. The set of nodes P represents the set of all scientific
papers labeled 1 through n, where n = |P |. E is the set of directed edges that
are labeled as reference, cited-by or sharing one or more authors and are denoted
by:

e := (p, q)i ∈ E, p, q ∈ P and i ∈ {r, c, a}

It can be written as the union of three disjoint sets of labeled, directed edges
E = Er ∪ Ec ∪ Ea, where ∀ p, q ∈ P :

(p, q)r ∈ Er if p cites q (reference)

(p, q)c ∈ Ec if q cites p (cited-by)

(p, q)a ∈ Ea if p and q share at least one author (same author)

Note that there can be two edges e1 and e2 pointing from p to q, as long as they
have different labels. Further we define three different out-degrees as

deg+
i (p) := |{q ∈ P : (p, q)i ∈ Ei}|, p ∈ P and i ∈ {r, c, a}

so that
deg+(p) = deg+

r (p) + deg+
c (p) + deg+

a (p)

1A technicality: To make things simpler, we consistently write “papers by the same authors”
when we really mean “papers written by one or more of the authors that wrote the other paper”,
even if “the other paper” only has one author.

3. Ranking Scientific Publications 10

holds.

As with the PageRank (see Section 3.2) the output of the PaperRank algo-
rithm will be a rank vector ~r ∈ R1×n

+ that defines a mapping

rank : P → R+ (3.1)

that assigns a rank to each paper p ∈ P . We will sometimes simply write the
PaperRank, when we actually mean the rank vector ~r defining the rank mapping.

3.4.2 The Algorithm

We now explain step by step how we model the behavior of the Random Lit-
erature Searcher, described in Section 3.3.2, with the transition matrix M ′ of
a Markov chain on state space P . In analogy to the PageRank we can then
calculate the PaperRank as the stationary distribution of this Markov chain.

Just as the Random Surfer, the Random Literature Searcher becomes “bored”
with a certain probability α and then looks at a completely random paper in-
stead of continuing with his normal “routine” (modeled by M). This gives rise
to

M ′ = (1− α) ·M + α ·B, α ∈ [0, 1] (3.2)

where B ∈ Rn×n is the uniform matrix (bij = 1
n , ∀ i, j ∈ P) and M will be given

next.

Recall that the Random Literature Searcher not only considers references
when deciding what paper to look at next, but cited-bys and papers by the same
authors as well. But instead of simply doing a random walk on the graph GP ,
we differentiate between edges with different labels. The Random Literature
Searcher first chooses what “kind” of paper it wants to look at next and then
selects the next paper of this “kind” at random. Formally speaking, it conducts
an experiment with sample space Ω = {r, c, a}, where the probability of the three
events is given by

Pr[r] = 1− β − γ (3.3)

Pr[c] = β (3.4)

Pr[a] = γ (3.5)

where β, γ ∈ [0, 1] so that β + γ ≤ 1. It observes event i ∈ Ω and then chooses
one of the edges labeled i uniformly at random. This can be written as:

M = (1− β − γ) ·Mr + β ·Mc + γ ·Ma (3.6)

3. Ranking Scientific Publications 11

where Mi (i ∈ {r, c, a}) is defined as:

Mi =

mi,11 mi,12 · · · m1n

mi,21 mi,22 · · · mi,2n
...

...
. . .

...
mi,n1 mi,n2 · · · mi,nn

 ∈ Rn×n, mi,pq =

{
1/deg+

i (p) if (p, q)i ∈ Ei
0 else

Note that M ′ is a valid state transition matrix (i.e. all rows sum to 1) only
if deg+

i (p) > 0 for all i ∈ {r, c, a}2. We describe what to do when this is not the
case in Section 3.4.3.

3.4.3 Treating Dangling Papers

In Section 3.2.2 we defined a dangling link as a link that points to a web page u
with no outgoing links (i.e. deg+(u) = 0). In the context of scientific publications
and the graph GP = (P,E) we define a dangling paper as a paper that has no
references, no cited-bys or no papers by the same authors. That is p ∈ P is a
dangling paper if ∃i ∈ {r, c, a} : deg+

i (p) = 0.

Such a dangling paper p represents a rank sink, since the rank attributed to
it is not fully redistributed. In other words, if the Random Literature Searcher
is currently looking at p and observes a label i for which deg+

i (p) = 0, it would
not know where to go next3.

We propose three different modes to solve this problem. In Mode 1 the
Random Literature Searcher will return to the dangling paper p. In Mode 2 it
jumps to a completely random paper q ∈ P . In Mode 3 the Random Literature
Searcher recognizes if it deals with a dangling paper p. In this case it will conduct
a different experiment, where it only chooses between labels i ∈ {r, c, a} for which
deg+

i (p) > 0 holds. For instance, if there are no references it will only choose
between the labels c and a for cited-bys and papers by the same authors. It then
falls back to choosing its next paper of this “kind” at random, as it does there
are no dangling papers.

For ease of notation, as in [Lap09], we use I{statement} to denote the indi-
cator of the statement. Namely

I{statement} =

{
1 if statement is true,

0 if statement is false.

Also note that a dangling paper p, for which (the stronger condition)

deg+(p) = deg+
r (p) + deg+

c (p) + deg+
a (p) = 0

2Otherwise, if deg+
i (p) = 0 the p-th row of Mi would be an all zero row. This leads to the

p-th row of M ′ not summing to 1.
3Remember that the Random Literature Searcher irrevocably chooses what “kind” of paper

it wants to visit next, before choosing one of these papers at random.

3. Ranking Scientific Publications 12

holds, contributes no information about its own importance or the importance
of other papers. We therefore remove all such papers from the graph GP .

Mode 1

In Mode 1 the Random Literature Searcher goes back to the same dangling paper
p, if it observes a label i ∈ {r, c, a} for which deg+

i (p) = 0. M ′ is as in (3.2) and
M as in (3.6). However, the elements mi,pq of Mi ∈ Rn×n now depend on deg+

i (p)
and are defined as follows, for i ∈ {r, c, a}

mi,pq =

{
I{(p, q)i ∈ Ei} · 1

deg+i (p)
if deg+

i (p) > 0

I{u = v} if deg+
i (p) = 0 .

Mode 2

In Mode 2 the Random Literature Searcher jumps to a paper in P uniformly at
random. M ′ is as in (3.2) and M as in (3.6). The elements mi,pq of Mi ∈ Rn×n
for i ∈ {r, c, a} are defined as

Mi ∈ Rn×n, mi,pq =

{
I{(p, q)i ∈ Ei} · 1

deg+i (p)
if deg+

i (p) > 0

1
n if deg+

i (p) = 0 .

Mode 3

In Mode 3 we avoid the situation that the Random Literature Searcher chooses
a label i ∈ {r, b, a}, for which deg+

i (p) = 0 holds, altogether. We denote by
Pr[i | p] the probability that the Random Literature Searcher chooses label i,
when it is currently looking at paper p. The values of Pr[i | p] are given in the
following table.

Pr[r | p] Pr[c | p] Pr[a | p] deg+
r (p) deg+

c (p) deg+
a (p)

1− β − γ β γ > 0 > 0 > 0

0 β
β+γ

γ
β+γ = 0 > 0 > 0

1−β−γ
1−β 0 γ

1−β > 0 = 0 > 0
1−β−γ

1−γ
β

1−γ 0 > 0 > 0 = 0

1 0 0 > 0 = 0 = 0
0 1 0 = 0 > 0 = 0
0 0 1 = 0 = 0 > 0

Table 3.1: The values of Pr[i | p] depending on deg+
i (p) for i ∈ {r, c, a}.

3. Ranking Scientific Publications 13

Remember that we remove all papers, where deg+
i (p) = 0,∀i ∈ {r, c, a}, so

we do not have to worry about this case.

Because in Mode 3 the probability, with which a certain label i is picked, is
no longer constant over all papers, we do not break down the matrix M into the
matrices Mr, Mc and Ma as in (3.6). Instead we directly define the elements
mpq for M ∈ Rn×n as follows:

mpq = I{(p, q)r ∈ Er}·
Pr[r | p]
deg+

r (p)
+ I{(p, q)c ∈ Ec}·

Pr[c | p]
deg+

c (p)
+ I{(p, q)a ∈ Ea}·

Pr[a | p]
deg+

a (p)

Note that if deg+
i (p) > 0,∀i ∈ {r, c, a} and p ∈ P the p-th row of M as defined

above is equivalent to the p-th row of M as defined in (3.6).

3.4.4 Approximating the Rank Vector

Now that M ′ has been properly defined, we give an algorithm to approximate
the stationary distribution (i.e. the rank vector) of the Markov chain with state
transition matrix M ′.

Let ~s ∈ R1×n
+ be the uniform vector ~s = (1

n , . . . ,
1
n) and ε ∈ R an arbitrary

small threshold.

Algorithm 1 Rank Vector Approximation

R(0) ← ~s
i← 0
repeat

R(i+1) = R(i) ·M ′
δ ← ‖R(i+1) −R(i)‖1
i← i+ 1

until δ < ε
return R(i)

3.5 Implementation

We implemented and tested the PaperRank algorithm using a MySQL database
provided by the Distributed Computing Group at the ETH Zurich. The content
was crawled from the ACM Digital Library4, a collection of scientific publications
in the field of computing and information technology.

We only use publications for which we have at least one reference, cited-by or
paper by the same authors in the database. We also exclude all publications that

4http://dl.acm.org

http://dl.acm.org

3. Ranking Scientific Publications 14

do not have a Parent ID in the ACM Digital Library, where Parent ID refers to
the ID of the conference proceeding it was published in. Books are an example
of entries without parent ID. The Parent ID refers to the ID of the conference
proceeding it was published in. This leaves us with a total of 1 674 288 papers,
7 060 598 references between these papers and 4 485 749 different authors.

We implemented the algorithm utilizing the Python5 libraries NumPy6 and
SciPy7 for array and matrix manipulations. The crucial part of the implementa-
tion, regarding time and memory usage, is calculating the matrix M . To allow
for an efficient calculation of the PaperRank, we calculate a basic, incomplete
version of M exactly once. When calculating a specific PaperRank we then load
this information and adapt the matrix according to the desired mode and the
desired parameter values. Further, to reduce memory usage, M is stored in a
sparse format. However, in Mode 2 some rows of M are no longer sparse. To
circumvent this problem and still keep a sparse matrix in the implementation,
we keep track of all these rows and take them into account separately from M
in the calculation of the PaperRank.

3.6 Evaluating PaperRank

In this Section we want to assess the PaperRank algorithm. A matter of par-
ticular interest is trying to find the best mode and the best values for α, β and
γ. As an objective measure of how good the PaperRank is, we use the Paper-
Rank to compute our own conference ranking and check if it correlates with
other established conference rankings. We then compare the PaperRanks among
themselves to examine the effect of changing individual parameters. A discussion
of our finding forms the last part of the evaluation.

To compare two rank vectors to each other we will use the Kendall rank
correlation coefficient τ (also called Kendall’s τ). It is a non-parametric test
that measures the similarity between two rankings. Depending on the number
of inversion between the two rankings τ takes on values between -1 (perfect
negative correlation) and 1 (perfect positive correlation). A detailed description
is provided in [Abd07].

3.6.1 Comparison with Conference Rankings

For a sensible PaperRank we would expect papers from important conferences
to have a high rank. Vice versa a paper with high rank will often times be from
an important conference. We therefore compute the rank of a conference c by

5http://www.python.org
6http://www.numpy.org
7http://www.scipy.org

http://www.python.org
http://www.numpy.org
http://www.scipy.org

3. Ranking Scientific Publications 15

averaging the ranks of all papers that belong to c. More formally, we can express
this as a mapping conf-rank that assigns a rank value to each conference. Let
C be a set of conferences. Fix a conference c ∈ C and let {p1, . . . , pk} be the set
of all papers published at c, then conf-rank can be defined as:

conf-rank : C → R+

c 7→
∑k

i=1 rank(pi)

k
,

where rank is the function defined in (3.1).

We compare our conference ranking to the Microsoft [Mic] and the CORE
[COR] conference ranking by calculating the Kendall rank correlation coefficient.
The Microsoft ranking assigns a so called field rating ranging from 0 to 182 to the
conferences in their database, whereas the CORE ranking divides the conferences
into four categories (A∗, A, B, C). For the CORE ranking we were able to match
145 711 papers for 2 686 conferences, for the Microsoft ranking we matched
228 948 papers for 5 260 conferences.

Mode Kendall’s τ α β γ

1 0.37081 0.1 0.2 0.5
1 0.37045 0.1 0.1 0.6
1 0.37030 0.1 0.1 0.7
1 0.36747 0.1 0.2 0.4
1 0.35986 0.1 0.1 0.5

2 0.37033 0.1 0.1 0.6
2 0.36578 0.1 0.1 0.5
2 0.36505 0.1 0.1 0.7
2 0.35981 0.2 0.1 0.6
2 0.35907 0.1 0.2 0.5

3 0.36664 0.1 0.1 0.6
3 0.36439 0.1 0.1 0.7
3 0.36009 0.1 0.1 0.5
3 0.35974 0.1 0.2 0.5
3 0.35697 0.1 0.2 0.4

CORE Ranking

Mode Kendall’s τ α β γ

1 0.25684 0.1 0.1 0.5
1 0.25496 0.1 0.1 0.4
1 0.25374 0.1 0.1 0.6
1 0.25281 0.1 0.2 0.3
1 0.25059 0.1 0.2 0.4

2 0.22367 0.1 0.1 0.5
2 0.22170 0.1 0.1 0.4
2 0.22108 0.1 0.1 0.6
2 0.21685 0.1 0.1 0.3
2 0.21553 0.2 0.1 0.5

3 0.24423 0.1 0.1 0.5
3 0.24308 0.1 0.1 0.4
3 0.24071 0.1 0.1 0.6
3 0.23890 0.1 0.1 0.3
3 0.23368 0.2 0.1 0.4

Microsoft Ranking

Figure 3.2: The best five results for every mode when comparing our conference
ranking to the CORE ranking [COR] and the Microsoft Ranking [Mic]. We com-
puted the PaperRanks, our according conference rankings and the Kendall rank
correlation coefficient for all three modes, α = 0.1, 0.2 . . . , 0.8, β = 0.1, 0.2 . . . , 0.8
and γ = 0.1, 0.2, . . . , 0.8.

Looking at Figure 3.2 one can see that Mode 1 achieves the highest correlation
coefficient τ for both rankings. Further the PaperRanks leading to the best
results have very similar parameter values for α, β and γ. While γ varies between
0.3 and 0.7, α and β only vary between 0.1 and 0.2. This already gives us some
insight on what the best parameter configuration looks like.

3. Ranking Scientific Publications 16

Figure 3.3: This figure shows a heatmap of the Kendall tau values of the com-
parison of our conference rank to the CORE ranking, plotted as a function of β
and γ. For every pair of β and γ the conference ranking is calculated with the
corresponding PaperRank and with α = 0.1 and using Mode 1. The maximum
kendall tau value is at β = 0.2, γ = 0.5 with a value of 0.3708. The plot is shown
in 3D in Figure A.3 in Appendix A.

From Figure 3.3 we can observe that choosing other values for β and γ can
lead to a worse performance. Especially choosing large values for β substantially
decreases the correlation coefficient.

3.6.2 Adjusting the Parameters

Next we examine the impact that the individual parameters have on the Paper-
Rank. We want to see how much the ranking is altered if we change α, β or γ.
To do this we fix all parameters but one. We then change this parameter (in
steps of 0.1), compute the different PaperRanks and compare them using the
Kendall rank correlation coefficient. Note that changing β or γ, of course also
means changing the parameter 1− β − γ affiliated with the references.

Corresponding to Figure 3.4 varying the values of β and γ (i.e. the proba-
bilities that the Random Literature Searcher chooses a reference, a cited-by or
a paper by the same authors next) has a large effect on our ranking. Further,
we see that the value of α does not have much influence on our ranking. How-
ever, it does have influence on the convergence properties of the PaperRank. We
observed that higher values of α lead to a speedier convergence in the approx-
imation of the rank vector (as in Algorithm 1). As we mostly care about the

3. Ranking Scientific Publications 17

ranking itself, we simply choose α to be equal to 0.1, but higher values could
be chosen if one attaches more importance to the time needed to compute the
PaperRank.

Figure 3.4: The plot shows the average Kendall rank correlation coefficient and
its standard deviation computed for different pairs of PaperRanks. The parame-
ter values we used in the calculation of a pair of PaperRanks are the same for all
but one parameter. The x-axis indicates how much the value of this parameter
differs between the two PaperRanks. For reasons of readability the curves are
spread out.
The pairs of PaperRanks with varying α were calculated for all three modes,
β = 0.1, 0.2 . . . , 0.8 and γ = 0.1, 0.2, . . . , 0.8. The pairs of PaperRanks with
varying β were calculated for all three modes, α = 0.1 and γ = 0.1, 0.2, . . . , 0.8.
The pairs of PaperRanks with varying γ were calculated for all three modes,
α = 0.1 and β = 0.1, 0.2, . . . , 0.8. The pairs of PaperRanks with varying β
and γ were calculated for all three modes, α = 0.1, β = 0.1, 0.2, . . . , 0.8 and
γ = 0.1, 0.2, . . . , 0.8. Here the parameter values used to calculate the two respec-
tive PaperRanks differ in β as well as γ, but in exchange (1 − β − γ) was kept
constant (i.e. ∆β = −∆γ).

3.6.3 Discussion

Our evaluation reveals that there is a noticeable correlation between our confer-
ence ranking, computed using PaperRank, and the two other conference rankings
if one uses the right parameters. However, the correlation coefficient is not strik-
ingly high. An explanation for this could be that in the CORE and the Microsoft

3. Ranking Scientific Publications 18

rankings theoretical conferences (like STOC or FOCS) have a high rank. Com-
pared to conferences of a more practical nature (like INFOCOM or SIGGRAPH)
theses conferences have a smaller number of publications and cited-bys. Unlike
in the CORE and Microsoft rankings, this most likely results in a lower rank in
our own conference ranking. Also, if we had more data (e.g. more papers and
references of the respective conferences) we expect even better results.

Further the relatively high values for γ that produce good results, suggest that
CORE and Microsoft put a lot of weight on how “good” the authors publishing
in a conference are.

Nonetheless our evaluation enables us to choose a best parameter configura-
tion. For α = 0.1, β = 0.2, γ = 0.5 and Mode 1, Table 3.2 lists the ten papers
with the highest PaperRank. All ten papers seem to be important in their field as
they all have a high citation count and many of them are written by well-known
authors.

Citedbys according to
Title PaperRank Google Scholar [Goo]

A method for obtaining digital signatures
and public-key cryptosystems 8.622e-05 14275
Bagging predictors 6.422e-05 11221
A relational model of data for large shared
data banks 6.388e-05 8650
Learning internal representations by error
propagation 6.249e-05 16666
The anatomy of a large-scale hypertextual
Web search engine 6.173e-05 11864
Distinctive Image Features from Scale-Invariant
Keypoints 5.775e-05 24476
Support-Vector Networks 5.772e-05 13922
Time, clocks, and the ordering of events
in a distributed system 5.499e-05 8557
Fast Algorithms for Mining Association Rules
in Large Databases 5.370e-05 16300
Induction of Decision Trees 5.233e-05 13311

Table 3.2: This table shows the ten papers with the highest PaperRank calcu-
lated with the parameters α = 0.1, β = 0.2, γ = 0.5 and Mode 1 and their
number of cited-bys according to GoogleScholar [Goo].

Chapter 4

Finding Relevant Papers

So far, we have only been concerned with the absolute importance of a paper: We
know for instance which of all the papers in the database is the most important.
In order to find related papers, however, the absolute importance is not the only
information we need. After all, the most important paper is not necessarily the
most relevant one for every single paper.

In this section, we introduce our search algorithm, whose goal is to find
papers that are related to some papers specified by the user of our program.
The challenge lies in defining related in this context.

We start with a brief informal description of how we choose related papers
(Section 4.1). We then introduce formally our search algorithm (Section 4.2),
and describe its implementation (Section 4.3). Finally, the search results are
compared to those of other engines (Section 4.4).

4.1 Overview

We use the directed graph GP = (P,E) of papers, where E = Er ∪ Ec ∪ Ea,
from Section 3.4.1. For a paper p ∈ P , we consider the neighbors of p as being
related to p. After all, this set contains all the papers that p cites, all the papers
that cite p, and all the papers written by the authors that wrote p, apart from p.
Intuitively, these papers can be considered related to p because: references exist
to cite previous or related work in the area. Also, future papers on a similar
topic might cite the paper. And authors are likely to write more than one paper
in one area of research, meaning that some of their papers should cover similar
topics.

However, only looking at the immediate neighborhood is not sufficient. Not
all related papers are directly cited by the input paper or are written by the same
author. Therefore, relevant papers appear not only in the immediate neighbor-
hood of all input papers, but also in its extended neighborhood.

What exactly this means is introduced formally in the next section.

19

4. Finding Relevant Papers 20

4.2 Formal Description

Definition 4.1. Let p ∈ P be a paper. We define:

R(p) :={q ∈ P : (p, q)r ∈ Er} (references of the paper p)

C(p) :={q ∈ P : (q, p)c ∈ Ec} (papers citing p)

A(p) :={q ∈ P \ {p} : (p, q)a ∈ Ea} (papers sharing an author with p)

We introduce the notion of a weighted set of papers as follows:

Definition 4.2. Let P? ⊆ P and w be a mapping

w : P → R+ such that w(p) = 0 ∀ p /∈ P?. (4.1)

The pair (P?,w) is called a Paper Weight Tuple and w(·) is called its weight
function. For some paper p ∈ P?, w(p) is called the weight of p1.

We refer to w(·) as the weight function, but initially it can also be thought
of as a rank function: the initial weights of papers will be chosen to be their
PaperRanks.

To be able to set the initial weights to PaperRanks, we introduce the rankP?

function. It differs from the default PaperRank function in that it adheres to
Equation 4.1. It can therefore be used as the weight function of some Paper
Weight Tuple.

Definition 4.3. Using the rank(·) function from Equation 3.1 that assigns to
all papers p ∈ P a PaperRank, we define a function that maps to a PaperRank
only for papers in some P? ⊆ P :

rankP? : P → R+

p 7→

{
rank(p) if p ∈ P?
0 else

We introduce T to refer to the space of all Paper Weight Tuples and use it
to define some useful operations on Paper Weight Tuples:

Definition 4.4. Let n ∈ N. The bestn function on some T ∈ T is the function
that returns the Paper Weight Tuple with the n papers from T that have the n
highest weights.

1For functions, we use the same notation as [Lap09]: If a function has a name, the name is
written in bold as in f. Alternatively, we sometimes denote a function f as f(·). We write f(t)
for the result of applying the function f to t.

4. Finding Relevant Papers 21

Definition 4.5 (Scalar Multiplication on T).

· : R+ × T → T
(α, (P?,w)) 7→ (P?, α ·w)

We define union and intersection of two Paper Weight Tuples as one would
expect intuitively: The sets of papers get united or intersected and the weight
functions get added together.

Definition 4.6 (Union or ∪ on T).

∪ : T × T → T
((P1,w1), (P2,w2)) 7→ (P1 ∪ P2,w1 + w2)

Definition 4.7 (Intersection or ∩ on T).

∩ : T × T → T(
(P1,w1), (P2,w2)

)
7→
(
P1 ∩ P2,w : p 7→ I{p ∈ P1 ∩ P2} · (w1(p) + w2(p))

)
(Note the use of the indicator I(·) from Section 3.4.3 to make sure that w adheres
to Equation 4.1.)

Definition 4.8. For some T = (P?,w) ∈ T , we denote with |T | the number of
elements in P?.

4.2.1 Search Algorithm

Fetcher
Input
Papers

Output
Papers

Accumulator

Figure 4.1: Schematic of the Search Algorithm

We now describe the actual search algorithm. Figure 4.1 gives a schematic
overview. We start with two important components of our algorithm: the Fetcher
and the Accumulator.

The Fetcher is an operation that returns relevant papers for the papers in
a given input Paper Weight Tuple. It formalizes the intuition introduced in
Section 4.1 that the outgoing neighbors of a paper are relevant to it, but that not
all of them are equally relevant: We introduce weight parameters wR, wC , wA ∈

4. Finding Relevant Papers 22

[0, 1] to reduce the ranks of references, citations and/or papers by the same
authors.

The parameters bR, bC , bA ∈ N0 are used to specify how many references,
citations or papers by the same authors are to be returned, b stands for best.
This allows us for instance to return more references than papers by the same
authors.

More precisely, the Fetcher is a function fetcher(·) with parameters wR, wC , wA ∈
[0, 1] and bR, bC , bA ∈ N0:

fetcher : T → T

(P?, w) 7→
⋃
p∈P?

[
bestbR

(
(R(p), wR · rankR(p))

)
∪

bestbC
(
(C(p), wC · rankC(p))

)
∪

bestbA
(
(A(p), wA · rankA(p))

)]
The Accumulator first reduces the weights of the output of the Fetcher by

some parameter ρ. It then merges the output with the previous output: it
accumulates output. The parameter b ensures that only the best b papers are in
the output.

More precisely, the Accumulator is a function accumulator(·) with parameters
ρ ∈ [0, 1] and b ∈ N0.

accumulator : N0 × T × T → T

(s, F (s), A(s−1)) 7→ bestb

(
(ρs · F (s)) ∪A(s−1)

)
We can now introduce the search algorithm, Algorithm 2. It takes as input

a set of input papers Pin ∈ P and outputs a Paper Weight Tuple Tout ∈ T .
In addition to the parameters of the Fetcher and the Accumulator, it uses the
following parameters:

• maxs ∈ N0: The maximum number of steps before the algorithm stops.

• minchange ∈ N0: The minimum number of papers that need to change in
each step for the algorithm to keep running.

4. Finding Relevant Papers 23

Algorithm 2 Search Algorithm

F (1) ← (Pi, rankPi)
A(0) ← (∅, rank∅)
s← 1
while s < maxs do

F (s) ← fetcher(F (s))
A(s) ← accumulator(s, F (s), A(s−1))
if |A(s) ∩A(s−1)| ≤ minchange then

break
F (s+1) ← A(s)

s← s+ 1

return A(s)

Reduction ρ and Termination

The Accumulator reduces the weights of the result of each step by multiplying
ρs and only keeps the best b papers. This means that after a certain number of
steps, the weights of the newly fetched papers will be too low to make it into
the output, and therefore the condition |A(s) ∩A(s−1)| ≤ minchange will be met,
causing the algorithm to terminate.

Reducing the weights makes sense because in each step, the distance from
the input papers grows, and therefore one probably fetches papers that are less
and less relevant. After all, with ρ = 1 and maxs → ∞, one would accumulate
almost2 all the papers in the database.

Merging

An important aspect of our algorithm is how papers from different sources are
merged. We defined intersection and concatenation such that merging two tuples
T1, T2 ∈ T adds up the weights of all the papers that are in both. This has
consequences for the Fetcher and the Accumulator:

For the Fetcher, this means that if a paper pA is written by one of the
authors of a paper pB and if pA also cites pB, the Fetcher yields pA once, but
with a rank – here it makes more sense to refer to the weight as rank – equal to
rank(pA) · (wR + wA), i.e. possibly larger than just rank(pA). This makes sense
because pA sharing an author and a citation with pB is a stronger indication that
pA is from the same field as pB than if they just shared an author for instance.

For the Accumulator, this means that if a paper pA was previously fetched
and is now fetched again, its rank is increased. This is justified in that this
means that pA has been reached by multiple paths in the graph.

2GP is not necessarily connected.

4. Finding Relevant Papers 24

4.3 Implementation with a GUI

4.3.1 GUI

We implemented the search algorithm with a graphical user interface, or GUI for
short. For this, we used Python3 and the Tkinter framework4. Appendix A.1
shows a few screenshots of the GUI.

4.3.2 Local Paper Titles Search Index

In order to provide the search algorithm with input papers, we use a local
database of all paper titles and a search index on that database. This allows
users of the GUI to quickly find a paper by title. The search polls results as the
user types, so that partial search queries are sufficient to find most things. We
use the whoosh framework5 for this

4.3.3 Search Algorithm

We implemented the search algorithm as presented in the previous section. The
main challenge was to execute the searching on a background process so that
the GUI would not become unresponsive. However, Python allows to solve this
elegantly with the multiprocessing package6.

As for the parameters, we used: wR = 1, wC = 1, wA = 1, bR = 45, bC =
25, bA = 25, b = 95, ρ = 0.25,maxs = 10,minchange = 2. This was determined
by trial and error.

4.4 Evaluation and Comparison

To evaluate the results of our search algorithm, we compare them with Google
Scholar and Mendeley, as introduced in Section 2.1.2.

4.4.1 Google Scholar

Google Scholar has a Related Articles functionality that is similar to our search.
It can be accessed by first searching for a paper by title and then selecting the
Related Articles link. In contrast to our search engine however, only one paper
can be specified as input.

3https://www.python.org
4https://wiki.python.org/moin/TkInter
5https://pypi.python.org/pypi/Whoosh
6https://docs.python.org/2/library/multiprocessing.html

https://www.python.org
https://wiki.python.org/moin/TkInter
https://pypi.python.org/pypi/Whoosh
https://docs.python.org/2/library/multiprocessing.html

4. Finding Relevant Papers 25

We first select 9 different papers from our database at random. We then
run our search algorithm and the Google Scholar Related Articles functionality
on each of them. From the Google Scholar Related Articles, we remove all the
papers that we do not have in our database, because our result is never going
to contain them. Then we compare how many of the first 10 and of the first 20
papers of our search result are in Google’s results7. The result of this comparison
can be seen in Table 4.1.

References Google Scholar Related Articles
Paper in our database in our database in our Top 20 in our Top 10

A 96 3 2 66% -
B 24 7 4 57% 3 42%
C 15 1 1 100% -
D 9 5 5 100% 5 100%
E 6 2 1 50% -
F 3 3 2 66% 2 66%
G 1 1 - -
H 0 7 - -
I 0 2 - -

Table 4.1: Comparison of the results of our search algorithm with Google Scholar.
The second column shows how many of the references of a paper are stored in
our database - not necessarily all the references of the paper. The next three
columns show how many papers of the result of the Google Scholar Related
Articles search are in our database, in the Top 20 and in the Top 10 of our
search.

The results allow for the following observations:

• If there are a lot of citations stored in our database, and if a lot of the
Google results are in our database as well, the results match to a certain
degree. For instance for paper D, our Top 10 contains all the papers from
Google Scholar.

• If there are no citations in our database, our search performs poorly in
comparison to Google Scholar. Citations seem to be quite important for
finding papers that Google Scholar also considers relevant.

A problem of the comparison is that Google finds a lot of papers that are not
in our database, and therefore comparison is not very meaningful. Also, for a
lot of papers, our database does not store sufficient metadata for a good search.

7We chose 10 because Google shows 10 Related Articles and 20 because the first 20 results
of our search seem to be most relevant.

4. Finding Relevant Papers 26

4.4.2 Mendeley

In comparing our results to Mendeley, we came to the conclusion that their
Related Articles function uses title comparison and is therefore not comparable
to our algorithm. For instance, when looking for Related Articles for “The
PageRank citation ranking: Bringing order to the web.” we get these results:

• “InstanceRank: Bringing order to datasets”

• “Citation counting, citation ranking, and h-index of human-computer in-
teraction researchers: A comparison of scopus and web of science”

• “Object-Level Ranking : Bringing Order to Web Objects”

• “Bringing order to the web: Automatically categorizing search results”

• “The PageRank citation ranking:bringing order to the web.” (Same as
input paper but without a space after the colon.)

• “TextRank: Bringing order into texts”

• “PostingRank: Bringing order to web forum postings”

Chapter 5

Conclusion and Outlook

In this paper we have shown how PageRank can be adapted to rank scientific
papers, resulting in PaperRank. We have implemented a search algorithm that
provides a means of finding relevant papers to a set of input papers. While we
have shown that PaperRank ranks papers in a meaningful way and that our
search algorithm produces useful results, there are ways to improve both the
rank and the algorithm. We present some ideas here.

Apart from citations and information about authors, information about con-
ferences could also be used in ranking the papers: papers that were presented
on the same conference are likely to be related. Moreover, a more thorough
evaluation of the PaperRank would be desirable. For instance, similar to how we
used conference rankings as a measure of quality, an author ranking (for example
based on the h-index) could be used to further assess the PaperRank.

The search process could be facilitated by including the title search index in
the database and have everything online. As with the PaperRank itself, the re-
sults of the search algorithm could be evaluated in a more sophisticated manner.
Firstly, better papers from our database could be used, i.e. papers with a lot of
neighbors. However, it is not trivial to find such papers. Secondly, more than
just the first page of results of Google Scholar could be used. If this was to be
done with a lot of papers, a scientific evaluation of the results would be feasible.
With a better comparison, the parameters of the algorithm could be fine-tuned
in a more scientific fashion. To prevent the results from becoming a replica of
other search engines’ results, one could try to identify more elaborate ways of
finding good values for the tuning parameters.

Another area for improvement is the database itself. While the ACM database
already provides a lot of information, it still has some flaws. For example,
there are references missing and some authors that appear multiple times in
the database, with different spellings of their name.

27

Bibliography

[Abd07] Abdi, Hervé: Chapter: The Kendall Rank Correlation Coefficient
1 Overview, in Encyclopedia of Measurement and Statistics (by Neil
J. Salkind). Sage, 2007. – 508–510 p.

[BG92] Bertsekas, Dimitri ; Gallager, Robert: Data Networks (2nd
Ed.) Appendix A Review of Markov Chain Theory. Prentice-Hall,
Inc., 1992. – 259–261 p.

[COR] CORE: ”Core Ranking”, [online]. core.edu.au/index.php/

categories/conference%20rankings/1. – last access 28.05.2014

[Goo] Google: ”Google Scholar”, [online]. www.scholar.google.com. –
last access 12.06.2014

[Hav02] Haveliwala, Taher H.: Topic-sensitive PageRank. In: Proceedings
of the 11th International Conference on World Wide Web, ACM,
2002 (WWW ’02), p. 517–526

[Lap09] Lapidoth, Amos: A Foundation in Digital Communication, Chap-
ter: Some Essential Notation. Cambridge University Press, 2009. –
1–3 p.

[Men] Mendeley: ”Mendeley Reference Manager”, [online]. www.

mendeley.com/research-papers. – last access 28.05.2014

[Mic] Microsoft: ”Microsoft Ranking”, [online]. academic.research.

microsoft.com/RankList?entitytype=3&topdomainid=

2&subdomainid=0&orderby=6. – last access 28.05.2014

[PBMW99] Page, Lawrence ; Brin, Sergey ; Motwani, Rajeev ; Winograd,
Terry: The PageRank Citation Ranking: Bringing Order to the
Web. Stanford InfoLab, November 1999 (1999-66). – Technical
Report

[SS01] Schickinger, Thomas ; Steger, Angelika: Diskrete Strukturen
(Band 2) Chapter: Prozesse mit diskreter Zeit. Springer-Verlag,
2001. – 169–185 p.

28

core.edu.au/index.php/categories/conference%20rankings/1
core.edu.au/index.php/categories/conference%20rankings/1
www.scholar.google.com
www.mendeley.com/research-papers
www.mendeley.com/research-papers
academic.research.microsoft.com/RankList?entitytype=3&topdomainid=2&subdomainid=0&orderby=6
academic.research.microsoft.com/RankList?entitytype=3&topdomainid=2&subdomainid=0&orderby=6
academic.research.microsoft.com/RankList?entitytype=3&topdomainid=2&subdomainid=0&orderby=6

Appendix A

Appendix Chapter

A.1 Screenshots of the GUI

Figure A.1: Screenshot of the Search Window

Figure A.2: Screenshot of a List of Papers

A-1

Appendix Chapter A-2

A.2 Additional Data

Figure A.3: This figure shows the Kendall rank correlation coefficient between
our conference rank (see Section 3.6.1) and the CORE ranking [COR] from three
different angles, plotted as a function of β and γ, using Mode 1 and α = 0.1.

Appendix Chapter A-3

Figure A.4: This figure shows the Kendall rank correlation coefficient between
our conference rank (see Section 3.6.1) and the CORE ranking [COR], plotted
as a function of β and γ, for all three modes using α = 0.1.

Appendix Chapter A-4

Figure A.5: This figure shows the Kendall rank correlation coefficient between
our conference rank (see Section 3.6.1) and the Microsoft ranking [Mic], plotted
as a function of β and γ, for all three modes using α = 0.1.

Appendix Chapter A-5

Modes Kendall’s τ̄ σKendall’s τ̄

Mode 1 vs Mode 2 0.4313 0.1452
Mode 1 vs Mode 3 0.5404 0.1352
Mode 2 vs Mode 3 0.7060 0.0671

Table A.1: The plot shows the average Kendall rank correlation coefficient and its
standard deviation respectively computed for two PaperRanks that only differ
in the Mode used. The two respective PaperRanks have been calculated for
α = 0.1, 0.2 . . . , 0.8, β = 0.1, 0.2 . . . , 0.8 and γ = 0.1, 0.2, . . . , 0.8.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Google Scholar & Co.
	2.1.1 Bibliographic Databases
	2.1.2 Search Engines

	3 Ranking Scientific Publications
	3.1 Preliminaries
	3.2 The PageRank Algorithm
	3.2.1 Web Graph
	3.2.2 Random Surfer Model

	3.3 Adapting the PageRank Algorithm
	3.3.1 Graph of the Web vs. Graph of a Citation Network
	3.3.2 A Random Literature Searcher

	3.4 The PaperRank Algorithm
	3.4.1 Setup
	3.4.2 The Algorithm
	3.4.3 Treating Dangling Papers
	3.4.4 Approximating the Rank Vector

	3.5 Implementation
	3.6 Evaluating PaperRank
	3.6.1 Comparison with Conference Rankings
	3.6.2 Adjusting the Parameters
	3.6.3 Discussion

	4 Finding Relevant Papers
	4.1 Overview
	4.2 Formal Description
	4.2.1 Search Algorithm

	4.3 Implementation with a GUI
	4.3.1 GUI
	4.3.2 Local Paper Titles Search Index
	4.3.3 Search Algorithm

	4.4 Evaluation and Comparison
	4.4.1 Google Scholar
	4.4.2 Mendeley

	5 Conclusion and Outlook
	Bibliography
	A Appendix Chapter
	A.1 Screenshots of the GUI
	A.2 Additional Data

