
OppNet:
An Energy Optimized Service
Platform for Opportunistic
Networking on Android

Master Thesis

MA-2014-01

Fabian Brun

14.08.2014

Advisor: Sacha Trifunovic
Supervisor: Prof. Dr. Bernhard Plattner

Computer Engineering and Networks Laboratory, ETH Zurich



Abstract

Opportunistic networking can offer connectivity even when no traditional infrastructure
(e.g., cell towers or hotspots) is available. It exploits direct links between wireless devices
in range and the mobility of nodes to distribute messages towards their target, using
a store-carry-forward approach. There is an ever-expanding number of mobile devices
capable of establishing opportunistic connections, yet no major operating system allows
to automatically take advantage of it today. To change the status quo two very important
aspects need to be covered: The solution must be very energy-efficient, and it must allow
other developers to easily build apps upon it. Both aspects have mostly been ignored in
research prototypes, so in this thesis we present a service platform for Android devices
which features energy-efficient opportunistic neighbor discovery.

The platform is derived from an existing opportunistic discovery solution based on
WLAN, but with a strong focus on optimizing its power consumption. We introduce
duty-cycling and the use of Bluetooth to the discovery process. The effectiveness of these
optimizations is measured, and policies are established to let end-users impose energy
constraints on the platform. Evaluating the chosen policies shows a power consumption
which allows for long-term operation of the platform.

Finally, the service layer enables developers to write rich applications without the
need to handle single connections or to perform service discovery on their own. The
platform is complemented by built-in elliptic curve cryptography, a graphical interface
to control the platform, a small library which hides away the additional complexity of
interacting with the core platform, and a proof-of-concept application demonstrating the
usage of said library.
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1. Opportunistic Networking

Modern communication systems usually require some kind of infrastructure (e.g., the
Internet) to deliver messages or connect devices, even if they are all in close proximity to
each other. This central infrastructure represents a single point of failure – if it fails, any
communication fails as well. Even though today’s smartphones feature the technology
needed to establish ad-hoc networks with neighboring devices, this way of peer-to-peer
networking is not widely used. By exploiting the dynamic nature – people moving around
with their devices – of such opportunistic networks, many new applications would be
possible:

• In case of a natural disaster, such as an earthquake, which destroys communication
infrastructure, opportunistic networking may help to uphold communication relay
calls for help, and allow for the coordination for rescue operations.

• In regions where no infrastructure exists yet, opportunistic networking could con-
nect locals nevertheless.

• When infrastructure is shut down (either deliberately, such as to oppress free-
speech movements, or simply overloaded), opportunistic networking allows people
to organize themselves.

• Multiplayer games or messaging apps can use opportunistic networks to find other
participants without the need of an intermediary server.

Mobile operating systems such as Android have built-in support for some of the tech-
nologies one could use to build opportunistic networks, but there is no common interface
to easily incorporate ideas based on opportunistic communication into third-party apps.
This thesis tries to fill this gap by delivering an Android platform which enables devel-
opers to focus on the high-level principles of opportunistic networking without having
to care about low-level chores.

1.1. Goals

Opportunistic networking is in a typical chicken-or-egg situation: The technology will
only be adopted if a critical mass is using it (delivering sufficent connectivity everywhere).
The critical mass only installs such a solution if the ecosystem proves to be useful to
them (available apps, amongst other things). However, developers prefer to build apps
for ecosystems where they can reach the most users.
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All existing approaches provide basic connectivity, but this only satisfies part of the
usefulness requirement. Unfinished products repell end-users, so this thesis seeks to solve
the higher-level problem of user acceptance by pursuing the following three goals:

Goal 1: Optimize energy footprint.

The dynamic environment implicit to opportunistic networking (i.e., discover and
connect to neighbors when they come in range) calls for always-on operation in the
background. This comes at the cost of constant energy consumption. Smartphone
batteries are already challenged to cope with the average daily usage, and users
will just turn off features which drain their batteries above a certain threshold. It
is therefore crucial to keep energy consumption as low as possible, especially in
situations where opportunistic networks do not deliver benefits.

Goal 2: Provide a service layer.

A platform for opportunistic networking must also be useful to developers. While
handling the discovery of neighboring nodes is a good starting point, the power of a
good platform lies in giving the developer a different view on the network, i.e., the
capabilities of surrounding devices. Connecting neighbors makes the most sense if
they run the same applications and services. How the real connection between such
neighbors is made is then no longer relevant. A service layer allows developers to
take advantage of opportunistic networks on a much higher level: It allows them
to offer (and interact with) services instead of handling low-level communication.

Goal 3: Support as many devices as possible.

Limiting the supported devices means limiting the potential of the whole platform,
because it means less devices supporting the network. Therefore modification of the
operating system must not be required. Android ships in many different versions,
most of which are still in use. As of February 2014, 80% of all active devices were
at least running Android 4.0, and 99% were at least running Android 2.3.3 [2].
Figure 1.1 shows that the adoption rate of Android 4.0+ is not fast enough to
justify dropping support for Android 2.3.3 yet: In August 2014, still about 14%
were running this older version of Android. A number of test devices (listed in
Table 1.1) are used to ensure compatibility with all major Android versions.

Vendor/Device ROM

Samsung Galaxy S Android 2.3.6 (Samsung TouchWiz UI)
LG Optimus 4X HD (P880) Android 4.0.3 (LG Optimus UI)
Samsung Galaxy Nexus Android 4.1.1 (Stock, rooted)
Samsung Galaxy Nexus Android 4.2 (Stock)
Samsung Galaxy Nexus Android 4.3 (Stock, rooted)
Asus Nexus 7 Android 4.4 (Stock)

Table 1.1.: Devices used to test Android compatibility
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Figure 1.1.: Android distribution per month in 2014 [1]

1.2. Related Work

This thesis is mainly building upon WLAN-Opp, an Android platform created by the
Communication Systems Group (CSG)1 of the Computer Engineering and Networks
Laboratory (TIK)2 at ETH Zurich. The fundamental idea, as developed by Trifunovic
et al. [3], has been implemented into an Android application [4]. It achieves opportunistic
neighbor discovery with WLAN, using the access point mode (which is available since
Android 2.3) or public hotspots when available. Based on a study conducted at Aalto
University [5], which investigated ways to use link-local communication on commercial
hotspots, WLAN-Opp then received connectivity improvements. Of special interest was
the neighbor detection performance when using public hotspots, which was assessed with
real hotspots found all across Zurich [6].

While the platform so far focused on delivering good connectivity (finding as many
neighbor nodes as fast as possible), the energy consumption only got little attention. A
comparison between different wireless peer-to-peer technologies by Trifunovic et al. [7]
hints at areas where and how to improve the energy consumption of the platform (see
Section 3.2 for details).

The service layer is losely inspired by Multicast DNS [8] and DNS Service Discov-
ery [9] to provide a decentralized, zero-configuration service discovery mechanism. The
cryptography parts are built using Dan Bernstein’s crypto library NaCl [10], which fea-
tures a ready-to-use cryptosystem providing authenticated public-key encryption.

1http://www.csg.ethz.ch
2http://www.tik.ee.ethz.ch/
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Aside from WLAN-Opp, there are a few other projects which offer opportunistic
networking platforms on mobile devices:

• The Serval Project emerged in response to a catastrophic earthquake in Haiti in
2010, with the goal to bring opportunistic communication to people suffering from
disaster situations [11]. The project’s mesh network technology covers multi-hop
communication, encrypted voice calls and file transfers. It uses the WLAN client
mode, access point mode, and on rooted devices additionally WLAN ad-hoc mode.
The software is not specifically designed to save energy, as its primary focus are
emergency scenarios. It is available as open-source, although it is not targeted at
third-party app developers.

• SCAMPI, a EU-funded project, is a service platform with a HTML5 application
development framework [12]. It runs on WLAN as well as on Bluetooth and is
platform-independent (e.g., not tied to Android). The development stopped with
the end of the EU project.

• PodNet is a platform for content dissemination in an opportunistic way. It also
features a secure version [13] which allows for finer grained control over content
channels (e.g., read-only access to a channel) and a reputation system to fight
unsolicited electronic messages (i.e., spam). It is not under active development
anymore.

There also exist some Android applications leveraging opportunistic networks with-
out providing a full-stack platform:

• FireChat is a messaging app which allows users to chat “off-the-grid” with other
users in the neighborhood. It is also available for (and interoperable with) iOS.
It uses a proprietary mesh networking framework which is built on top of WiFi
Direct and Bluetooth.

• The messaging app TinCan solely uses opportunistic communication, where users
need to subscribe to other users before receiving their messages. It uses the WLAN
access point mode and requires Android 4.0.

• Uepaa describes itself as “outdoor safety app”. It is not a purely opportunistic
app, but has a feature to contact neighboring devices in case of an accident. The
proprietary discovery mechanism is based on WLAN-Opp.
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2. WLAN-Opp Platform Description

The basis of this thesis is the WLAN-Opp platform, as explained in Section 1.2. The
first part of WLAN-Opp is the core, an Android application package which contains all
the code for actually performing opportunistic neighbor discovery. This package also
includes a graphical interface to change operational settings of the platform. The second
part of the platform is a library, which enables other programmers to integrate the
opportunistic features provided by the core into their own apps (also called client apps).
It encapsulates all inter-process communication between the client app and the core.

The rest of this chapter briefly summarizes the key operation of WLAN-Opp and
highlights its main limitations for reaching the goals as stated in Section 1.1. To help
distinguish WLAN-Opp from the service platform developed in this thesis, the extended
platform has been renamed to OppNet. Another reason for renaming the platform is that
the extensions in this thesis break compatibility with apps developed for the original
platform.

2.1. Basic Principles

To enable opportunistic discovery of neighbor devices, WLAN-Opp takes advantage
of the WLAN access point mode. Discovery is performed in two operation modes,
Infrastructure mode and Tethering mode, which are depicted in Figure 2.1.

The Infrastructure Mode is used as long as there is any connectable WLAN network
available (e.g., open networks in urban areas). Note that such a network does not need
to provide internet connectivity - it is only necessary that the connected devices can
reach each other locally.

In case there is no pre-existing WLAN infrastructure to use (or no neighbor discovery
was possible), the platform can switch into Tethering Mode. Here, one of the WLAN-Opp
enabled devices takes over the role of the access point, using a feature called tethering
which is supported by Android since version 2.2 [14]. Other WLAN-Opp devices will
detect such an access point through its name (the platform uses a special SSID) and
then connect to it eventually.

After having connected to a WLAN network (in either modes), other devices are
discovered by broadcasting beacons. When receiving a beacon from a neighboring device
(or node), WLAN-Opp notifies listeners (the client apps) on the device it is running

12
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Figure 2.1.: Operation modes of WLAN-Opp

about the new neighbor. These client apps can then use this information, e.g., to send
data to the neighbor.

To increase the likelihood of discovering neighbors, the platform periodically scans
for other available networks or becomes an access point itself.

2.2. Core Components

The WLAN-Opp platform core consists of five main components:

• The NetworkManager handles all network-related management operations (e.g.,
turning on/off WLAN). This component is a layer on top of several regular Android
networking APIs. It also allows access to some officially hidden APIs in the Android
framework, such as manipulating the tethering mode of the device.

• The BeaconingManager handles creating and sending as well as receiving the dis-
covery beacons. The data sent in such a beacon includes information about the
current network connectivity, which is delivered by the NetworkManager.

• The WlanOppCore manages the lifecycle (starting/stopping) of the whole platform.
Additionally, its API mirrors most the APIs of both the NetworkManager and the
BeaconingManager, providing a single API to control every aspect of the platform.

• A Strategy contains the actual logic to establish an opportunistic network (e.g.,
when to switch networks, or in which intervals discovery beacons should be sent).

13
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Figure 2.2.: Essential components of WLAN-Opp

It heavily uses the unified API delivered by the WlanOppCore to access both the
NetworkManager and the BeaconingManager. There are a few strategies available
to choose from, most of them disabling or forcing one certain feature of the platform
(e.g., never turn on the access point mode). These usually extend a default strategy,
which uses all possible features in the most efficient way for overall connectivity.

• The Content Provider controls all accesses to platform data (reading as well as
writing, especially sanitizing input data). It is based on a native Android com-
ponent, which also allows to automatically be notified of changes in the database.
When for example a new neighbor device was found, and the library was set up
to subscribe to this kind of data changes, then the client app gets an instant
notification of the new neighbor.

Figure 2.2 demonstrates the dependencies between these components.

2.3. Limitations

Strategies are the most powerful piece of code in WLAN-Opp and were usually the
starting point when extending WLAN-Opp. However, achieving the goals specified in
Section 1.1 demand a different kind of flexibility in the overall design.
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First of all, WLAN-Opp is not specifically designed to save on the device’s battery.
This is largely due to the way its lifecycle is managed: Switching it on needs interaction
from the user (through the graphical interface) or a client app requesting it (through
a specific library call). After that, the chosen strategy is constantly executed, until
either the user or a client app stops WLAN-Opp again. The WlanOppCore has no way
of pausing its operation or otherwise managing the energy consumption, as this is under
the running strategy’s control. Having a seperate strategy which just does nothing is
not going to work: Switching between strategies requires the platform to be stopped and
restarted again. WLAN-Opp cannot do this on its own.

Secondly, WLAN-Opp has no intrinsic concept of client apps. For the data exchange
layer to be useful the platform must know about the presence and capabilities of installed
client apps. For the data exchange to be efficient it additionally needs a way to learn
about client apps on its neighbors. For data security purposes it is crucial that the data
on the device can be protected from different client apps. A mechanism to help the
platform recognize the calling client app is missing in WLAN-Opp. Instead, it considers
providing security and privacy being the job of client apps.

Ultimately, WLAN-Opp’s graphical interface offers good options to developers, but
is too complex for an end-user. It should primarily display information about the current
platform state. The end-user should not need to perform extensive configuration to get
the platform running.

15



3. Energy Optimization

The constant energy consumption of platforms like WLAN-Opp is one of the biggest
barriers for their adoption, as discussed in Section 1.1. The major contribution of this
thesis is the introduction of duty-cycling to the discovery process. The concept refers to
having a system which is only active for a portion of its complete runtime. For OppNet
this is a substantial lever for the energy saving efforts. Additional savings result from
carefully fine-tuning the techniques used to establish opportunistic connectivity and
optimizing the overall design of the platform. This chapter explains all the energy-
related modifications the OppNet platform received compared to its predecessor outlined
in Chapter 2. Furthermore the final performance is evaluated and the collected data is
presented. The chapter is rounded off with a discussion of the evaluation results and
their implications.

3.1. Duty-Cycling

Enabling the platform to put itself to sleep is a fundamental change in the design of
OppNet opposed to WLAN-Opp. First and foremost, the platform needs to handle its
lifecycle by itself. A client app may request that the platform should start looking for
neighbors, but it must be the platform’s own choice when this happens. In addition,
the platform should pause all activities when sleeping to get the most out of the duty-
cycling. Therefore OppNet introduces the Supervisor, an Android background service
which ultimately controls the platform’s execution.

The main purpose of the Supervisor is to make sure that the rest of the platform is
only fully awake during a 1-minute discovery period, which is initiated by the Supervisor
itself in wake-up intervals of tcycle ∈ {2, 5, 10} minutes. This works under the assumption
that all participating devices have synchronized clocks (in the order of seconds). Thanks
to network synchronization protocols (NITZ [15] or NTP [16]), this is mostly true for
Android devices recently connected to the internet or a cellular network. To cope with
unsynchronized devices, the wake-up interval can be randomized.

The Supervisor is a lightweight layer below the BeaconingManager (which existed
previously, but has been revamped as detailled in Section 3.2). Figures 3.1a and 3.1b
show the state machines for each layer, while Figure 3.1c describes the dependencies
between them1.

1The DataExchangeManager layer will be introduced in Chapter 4
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Figure 3.1.: Overview of the components used in OppNet duty-cycling
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1 Android is instructed to automatically launch the Supervisor before starting any
other part of the platform, putting the Supervisor into the IDLE state.

2 The now initialized Supervisor starts the BeaconingManager in the STOPPED

state. The platform is now ready to be activated (e.g., by the user switching
it on through the admin interface).

3 Eventually the Supervisor gets activated (or woken up from sleeping), which in
turn puts the BeaconingManager into the ACTIVE state (via the PASSIVE state, if
it was STOPPED before). This results in neighbor discovery being performed.

4 After neighbor discovery finishes (after 1 minute the latest), the BeaconingManager
transitions back into the PASSIVE state. The Supervisor is notified as well: A
wake-up alarm is registered with Android, and everything is put to sleep.

5 When the platform gets switched off, the Supervisor stops the BeaconingManager
and returns to its own IDLE state. Unless the platform is reactivated later by the
user, it will not do any neighbor discovery.

3.2. Optimizing Discovery

OppNet inherits the WLAN-based discovery mechanism from its predecessor, and ad-
ditionally uses Bluetooth as a secondary discovery channel. While the latter already
features a reasonable low energy consumption for discovery, the former should partic-
ularly profit from duty-cycling: As Trifuovic et al. pointed out [7], the WLAN access
point mode consumes a lot of energy and scanning is also rather expensive, compared to
Bluetooth. OppNet allows for more flexibility in chosing the energy penalty by seperat-
ing the WLAN client mode from the access point mode feature: The first allows a device
to switch only between networks found through WLAN scans, the second allows a device
to turn into an access point. Both features can be freely combined with the Bluetooth
feature to form policies. A policy describes the energy budget the OppNet platform is
allowed to use for discovery, and along with the usable features it defines the wakeup
interval.

Note that from a connectivity point of view, both technologies have reason to co-exist:
WLAN covers longer distances and achieves higher throughput, and Bluetooth promises
low energy consumption for the discovery process. Using both also enhances the chance of
mutual discovery, as there are situations where one technology fails to discover neighbors
(e.g., between devices running different Bluetooth stacks). The BeaconingManager uses
both technologies in different ways during the 1-minute discovery period.

18



3.2.1. WLAN Discovery

WLAN discovery splits the 1-minute period into four equally long slots of 15 seconds
each. In the beginning of each slot the BeaconingManager picks the best action for this
slot based on the previous slot. The general rules are:

• If neighbors have been found in the previous slot, stay on the same network.
Otherwise (and if permitted by the policy in effect) connect to the next best
available network (OppNet access points before other open networks, ordered by
signal strength).

• If no more networks are available (or switching networks is forbidden), and if per-
mitted by the chosen policy, turn on the access point mode. Otherwise, terminate
WLAN discovery.

• When in access point mode, if no neighbors have connected after two slots, turn
access point mode off again.

Connecting to a network can sometimes take a long time. The slot length of 15
seconds ensures that in most cases the WLAN adapter will have enough time to connect
to a network and send a few beacons before the end of the slot.

The discovery cycle is terminated after at most four slots. Figure 3.2 shows two
exemplary WLAN discovery cycles:

N1 N2 N3 N3 N1 AP AP

t [s]Tk+0 Tk+60

Tk+15 Tk+45

Tk+30 Tk+1+0 Tk+1+60

Tk+1+15 Tk+1+45

Tk+1+30

Figure 3.2.: Example of WLAN discovery process

1. At Tk, the BeaconingManager starts discovery by connecting to network N1. Be-
cause no neighbors can be found in the next 15 seconds, it switches to network
N2, where also no neighbor can be found in the following 15 seconds. As a result
network N3 is tried, where finally neighbors are found, so the device stays on N3
until the discovery cycle is terminated at Tk + 60s.

2. At Tk+1, the discovery is started again on network N1. Again, no neighbors could
be found, but this time also no other networks are available (i.e., the device was
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moved). The policy allows to switch to access point mode, which is what the
BeaconingManager does at Tk+1 + 15s. It stays in this mode, but because no
neighbors have connected, it turns off access point mode at Tk+1 + 45s. Since
there are still no other networks around, the discovery cycle is terminated early
after 45 seconds, causing the platform to go back to sleep.

Note that when using the previous rules there is a possible race condition that all
devices simultaneously turn on access point mode, leading to no device discovering any
neighbor. OppNet tries to circumvent such situations by only turning on access point
mode with a certain probability.

3.2.2. Bluetooth Discovery

If using Bluetooth is enabled, the BeaconingManager performs a full scan (enabling the
Bluetooth adapter first if necessary). This takes around 12-15 seconds and finds all
discoverable devices nearby. After finishing the scan the BeaconingManager connects
to each discovered device one after another and checks if it is also running OppNet. If
so, both devices exchange their discovery beacons, and the connection is closed. After
all discovered devices have been contacted the Bluetooth discovery is terminated. This
whole process rarely takes more than 30 seconds.

3.3. Evaluation of Power Usage

Goal 1 from Section 1.1 requires OppNet to operate as energy-efficient as possible, while
respecting the environment of a user. But instead of turning on (or off) single features,
a typical end-user should only need to decide on a rough energy budget for the platform.
The discovery features presented in the previous section should therefore be combined
into reasonable policies. The user could then chose one of them based on the alleged
energy use of each policy. One main factor in composing the policies is the power
consumption of each single feature. This section quantifies each feature’s power usage
related to the different duty-cycles.

3.3.1. Power Monitoring Setup

The energy consumption is measured with the help of a power monitoring device [17]
as shown in Figure 3.3. The power monitor (PM) bypasses the internal battery of the
device under test (DUT). As a result, the PM supplies the DUT with a constant voltage
(adjustable between 2.1 V and 4.5 V), delivering the DUT with a current of at most
4.5 A. This current flow is recorded up to 5000 times per second, and the measured data
points (minimum and maximum currents) are sent to the power monitoring tool (PMT),
a software running on a seperate computer. The software is used to control the PM’s
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   PM USB

DUT

+–
PMT

data

Figure 3.3.: Setup for the power measurement experiments

Figure 3.4.: Screenshot of the power monitoring tool
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operation as well as to graph either the measured current or the electric power, derived
from P = Imeasured ∗ Uconst. Figure 3.4 shows a screenshot of the reporting software.
The graph exemplarily illustrates two periods of high current demand (i.e., phases of
activity by the device) seperated by periods of low current flow (i.e., sleeping phases).

3.3.2. Methodology

All measurements in this thesis were performed with the PM outputting a constant
voltage of Uconst = 4.2 V (representing a fully charged smartphone battery). Since the
PM measures the consumption of the whole DUT, the following steps have been taken to
minimize the influence of the operating system (or other apps) on the measurement:

• The DUT is always a Samsung Galaxy Nexus running on a factory-reset Android
4.3. It contains no SIM card and is in flight mode.

• None of the pre-installed apps are running (except system apps), and no additional
apps are installed.

• If possible, the OppNet platform is freshly installed on the DUT before every test
run. The only exception is when a test run needs some preconditions to be met
(e.g., when the device should already know some neighbors).

• In any case the platform is completely restarted for each test run (using the “Force
Stop” feature in the apps settings of Android). After restarting, the system is
given at least one minute to settle before a test run is started.

• After setting up the platform for the next test run (i.e., activating the proper
feature), any debugging connection is torn down and the display is switched off.
The test run is not started until the platform is back into its sleeping state (this
can only be indirectly observed by looking at the live output of the PM).

A test run covers one full duty cycle, and at least four test runs are performed per
test scenario. Some test scenarios are additionally run with two neighbor devices. These
neighbor devices are set up according to the same rules as the DUT. To avoid a bias
towards a certain configuration of neighbors, they are randomly selected from the pool
of available devices (see Table 1.1) for every test run.

The average power consumption Pavg for a scenario is calculated through the average
electric current Iavg,cycle consumed per run, which in turn is the arithmetic mean of all
measured currents Imeasured from n runs:

Pavg = Uconst ∗ Iavg,cycle = Uconst ∗
(

1

n

∑
Imeasured

)

Some scenarios are also evaluated in terms of battery rundown time trundown, based
on the battery in the DUT, which contains Qbattery = 1751 mAh of electric charge. It
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can be calculated from the average electric charge consumed per cycle, which is derived
from the average electric current Iavg,cycle during a cycle tcycle:

Qavg,cycle = Iavg,cycle ∗ tcycle

trundown =
Qbattery

Qavg,cycle
∗ tcycle =

Qbattery

Iavg,cycle

The battery rundown time is an upper limit which most likely will not be reached in
real-world experiments – the OppNet platform is never the only consumer. However, it
does allow for a better qualitative comparison between the scenarios.

3.3.3. Test Scenarios

The test scenarios can be grouped into three categories:

1. Each of the reference scenarios turn on a single basic Android function. The
results are used to compare against the energy savings of the OppNet platform
using duty-cycling.

2. The feature scenarios test the single power saving features (Bluetooth, WLAN
client mode, WLAN access point mode) in isolation.

3. From the results of the feature scenarios five policies are formed, which are then
evaluated.

The feature scenarios are measured for all three wakeup intervals tcycle ∈ {2, 5, 10}
(see Section 3.1). They are also measured both with and without neighbors, as are
the policy scenarios. All the different test scenarios will be described in more detail
along with the measurement results in the next section. The raw data can be found in
Appendix A.

3.4. Results

This section showcases the results for the different scenarios. Table 3.1 contains the
results of the reference measurements, which help assess the measurements for the iso-
lated features. From the results in Table 3.1 one can see that keeping Bluetooth (and
WLAN to some extent) enabled all the time does not add much to the average power
consumption. Note that the scenarios only measure the wireless radio being turned on
constantly, without performing any scans. As expected, an always-on WLAN access
point will drain the battery very fast. The values for the Idle and WakeLock scenarios
will be plotted as horizontal lines in most graphs throughout this chapter.
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Note that the experimental setup always leaks a constant amount of current, which
can be seen by turning off the DUT: The PM will still measure a tiny amount of leakage
current. It has been subtracted from all measurements done for this thesis.

3.4.1. Isolated Features

The following subsections present results for each of the three discovery features.

Bluetooth

Figure 3.5 shows the results for the feature scenarios with Bluetooth. In the first scenario
on the left the platform is actively searching for neighbors via Bluetooth, but without
any neighbors around – they are added in the second scenario (middle), resulting in a
higher power consumption. This is expected, as connecting to neighbors means staying
awake longer and involves sending actual data packets over the air.

In the third scenario (on the right) Bluetooth is still turned on, but the platform
does not itself search neighbors and instead waits to be discovered by other neighbors.
This saves even more energy than in the first scenario as no scan is performed. However,
this is not a sustainable strategy in itself due to fairness reasons.

WLAN Client Mode

As described in Section 3.2, the WLAN discovery process is highly dependent on the
environment: The amount of open networks, the order they are visited and the number
of neighbors can result in completeley different discovery periods. Thus, there are a few
more scenarios to analyze for WLAN client mode.

Figure 3.6 shows scenarios without neighbors present. In all scenarios the platform
is active, but the number of available networks increases from left to right. The scenario
on the left side only has one network available to connect to, which means it stays awake

Scenario Power

mW

Android Idle 12.50

Bluetooth 13.15

WLAN 14.78

WakeLock 41.38

AccessPoint 225.48

Table 3.1.: Average power consumption of reference scenarios
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Figure 3.5.: Results for the feature scenarios with Bluetooth

10min 5min 2min

Active P [mW] 21.26 25.93 41.78

(0 neighbors) σ [mW] 0.68 1.69 0.80

Runs 4 4 8

Active P [mW] 28.79 33.77 49.87

(2 neighbors) σ [mW] 1.97 0.84 1.35

Runs 4 4 4

Passive P [mW] 20.28 22.40 26.95

(2 neighbors) σ [mW] 1.60 1.15 2.39

Runs 6 4 7

Table 3.2.: Average power consumption of feature scenarios with Bluetooth
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Figure 3.6.: Results for the feature scenarios with WLAN (without neighbors)

10min 5min 2min

Active, P [mW] 24.97 27.88 39.56

no switching σ [mW] 1.28 0.54 1.94

(1 network) Runs 4 8 8

Active, P [mW] 40.46 60.18 125.02

switching σ [mW] 1.37 1.70 1.13

(2 networks) Runs 4 4 10

Active, P [mW] 54.20 85.20 176.56

switching σ [mW] 0.40 1.02 0.85

(4 networks) Runs 4 4 6

Table 3.3.: Average power consumption of feature scenarios with WLAN (without neigh-
bors)
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Figure 3.7.: Results for the feature scenarios with WLAN (two neighbors)

10min 5min 2min

Active, P [mW] 31.11 46.25 82.58

no switching σ [mW] 1.66 1.00 1.89

(1 network) Runs 8 4 8

Active, P [mW] 42.65 69.38 152.68

switching σ [mW] 2.01 5.64 3.86

(2 networks) Runs 4 4 4

Passive, P [mW] 37.42 57.69 104.46

Reply-Only σ [mW] 1.10 5.35 6.87

(1 network) Runs 4 8 7

Table 3.4.: Average power consumption of feature scenarios with WLAN (two neighbors)
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only for one slot (15 seconds). With two networks there will be a 30 second activity
period. Energy-wise, the scenario on the right is the worst case: The platform will try
to discover neighbors on all networks, staying awake for the full discovery cycle.

The graph confirms that WLAN discovery is more expensive than Bluetooth discov-
ery. On the other hand, using WLAN client mode with a 10 minute wakeup interval
still seems to be a good choice: Even in the worst case the energy consumption is only
marginally higher than keeping the CPU awake all the time (the WakeLock reference
scenario). Using the minimal interval of 2 minutes reveals that Android has difficulties
to go to sleep in the one minute period OppNet is sleeping itself.

A second batch of scenarios is shown in Figure 3.7, this time always with two neigh-
bors. The first two scenarios are basically the same as in the no-neighbor case. But
when there are neighbors involved, switching through four networks is not possible (as
the platform will stay on one network if it found any neighbors there). Therefore the
third scenario with neighbors is similar to the Bluetooth case: The platform is only pas-
sively listening for discovery beacons, staying on the same network all the time. There
is a small difference between this scenario and the first one with active searching and
only one network as well: If the platform is passive, it replies to each and every beacon
it receives. If it is active, it never directly replies, but rather sends out regular beacons
every few seconds. With two neighbors, the device in passive mode will produce twice as
many beacons as the one in active mode. This explains the increased power consumption
of the rightmost scenario compared with the leftmost one.

All in all, using WLAN client mode in 10 minute intervals still looks promising when
neighbors are involved.

WLAN Access Point Mode

Using the access point (AP) mode alone does not make a lot of sense: If all devices
are only in access point mode, nobody would find anyone else. Nonetheless it is useful
to measure some basic scenarios for AP mode itself: If nothing else, then at least the
data can give clues when to add it to a policy (and what impact it would have) or when
not.

In Figure 3.8, the scenario on the left shows an OppNet device without neighbors
turning into an access point node every 2, 5 and 10 minutes, respectively. The energy
consumption is more reasonable as one might think, but having no neighbors also means
no traffic to handle. In this case the AP mode is turned off rather quickly. The scenario
on the right adds two neighbors which connect to the tested device, so it now has to
handle traffic. This scenario results in a power consumption similar to the WLAN client
mode scenario without neighbors, but four available networks.
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Figure 3.8.: Results for the WLAN access point mode

10min 5min 2min

Active P [mW] 29.52 43.85 87.00

(no neighbors) σ [mW] 1.40 1.43 1.16

Runs 6 6 8

Active P [mW] 55.66 94.34 205.82

(2 neighbors) σ [mW] 0.53 1.42 2.64

Runs 4 4 6

Table 3.5.: Average power consumption of feature scenarios with WLAN access point
mode
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3.4.2. Policies

Figure 3.9 compares the results of the single feature scenarios to each other. Some
combinations look promising to form an energy-efficient policy which can then be used
in the final OppNet platform:

• Bluetooth always seems to be a good choice. There is only one caveat with using
Bluetooth in general: Since it only makes sense when the device is discoverable,
OppNet must ask for the user’s permission to activate this. Smartphone users are
rather reluctant to keep Bluetooth activated all the time, so there should be an
equivalent alternative to policies using Bluetooth.

• WLAN client mode in 10 minute intervals is the next best choice.

• Concerning WLAN access point mode, there is no clear answer. Long intervals
seem to be quite efficient, but using client mode alone is likely still more efficient.

From these observations the five policies as seen in Table 3.6 have been formed.
Passive is a baseline policy which does not actively scan for neighbors, but replies when
detecting neighbors. It takes advantage of the fact that users sometimes keep their
WLAN or Bluetooth connected when they do not use their phone (e.g., in the office).

Figure 3.9.: Comparison of results for isolated feature measurements

30



WLAN WLAN

twakeup Client mode AP mode Bluetooth

Passive 10 min ? ?

LowPower 10 min x

LowPower+ 10 min x x

HighConnectivity 5 min x x

Disaster 2 min x x x

Table 3.6.: Policies

The LowPower policy actively uses WLAN client mode to find neighbors, providing a
fallback for users who do not like to keep Bluetooth on (which is the only addition in
the LowPower+ policy). The Disaster policy tries to find as many neighbors as soon
as possible and is intended for emergency situations – power efficiency is not the main
objective. Finally, the HighConnectivity policy occupies the spot between LowPower
and Disaster.

Ultimately, the power consumption of the resulting policies was measured, each with
and without neighbors. The results are shown in Figure 3.10, with Table 3.7 contain-
ing the corresponding battery rundown times. The Passive, LowPower and LowPower+
policies deliver on their promise and save enough energy to consider running them con-
stantly in the background. The expectation in real-world scenarios is that the power
consumption is even less than what has been measured here: The user will be interacting
with his device every now and then – if the user is using the phone, the platform will
only perform discovery steps which do not disturb the user (e.g., not switching away to
other WLAN networks) and therefore conserve even more energy.

In the end, the HighConnectivity policy increases the probability of connecting to
neighbors by halving the duty cycle period to five minutes. This however comes at the
cost of increased energy consumption. The Disaster policy primarily aims for other goals
than energy efficiency. They are both not suitable to be used as always-on policies unless
the device is externally powered.

Policy Battery Rundown Time [h]

0 neighbors 2 neighbors

Passive 501.09 190.16

LowPower 213.92 148.72

LowPower+ 202.86 138.20

HighConnectivity 107.90 97.58

Disaster 49.18 34.27

Table 3.7.: Battery rundown times for OppNet policies
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Figure 3.10.: Results for the final policies

P σ BRT Runs

mW mW h

Passive
0 neighbors 13.43 0.07 501.09 4

2 neighbors 37.42 1.10 190.16 4

LowPower
0 neighbors 33.13 6.53 213.92 4

2 neighbors 48.20 1.63 148.72 6

LowPower+
0 neighbors 35.00 0.47 202.86 4

2 neighbors 51.96 2.66 138.20 4

HighConnectivity
0 neighbors 66.91 6.59 107.90 4

2 neighbors 74.11 1.86 97.58 5

Disaster
0 neighbors 148.30 3.94 49.18 5

2 neighbors 213.32 4.05 34.27 4

Table 3.8.: Average power consumption of policies
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4. Service Platform

The second significant contribution of this thesis is the introduction of a complete service
layer on top of the existing discovery layer. It offers a simple but powerful way for app
developers to build rich apps utilizing the opportunistic communication principle. The
OppNet service layer is built on three essential blocks:

1. Service Announcement : The component where apps can publish the services they
support and subscribe for updates.

2. Service Discovery : The mechanism employed by the platform to get to know what
neighbor understands which protocol.

3. Data Exchange: The component which actually transmits service-related data be-
tween neighbors.

Easing developer life is the main motivation behind the integration of the service layer
into the platform. Using it is completely optional, but it offers quite a few benefits: The
platform automatically handles all the communication between neighbors, so the third-
party app does not need to care about network sockets. This is especially handy when
neighbors suddenly disappear and later reappear. The platform also already knows best
how to communicate with a certain neighbor, and abstracts away the wireless technology
used to do so. The final bonus is that the platform can transparently encrypt and
authenticate data during exchange.

Easy access to the service layer is provided to third-party apps through a small
Android library, which is covered in detail in Section 5.1. The rest of this chapter
explains how each part of the service layer works.

4.1. Client Apps

One of the limitations described in Section 2.3 was the missing concept of client apps. In
OppNet, a client app must supply a receiver for an OppNet-specific broadcast message,
and expose it to other applications, to be considered compatible by the platform.

Client apps are automatically discovered by the platform. Figure 4.1 shows the
process when the platform has already been installed prior to the installation of the
client app: The platform is notified by Android when a new app is installed. The Client
App Registration Service then checks if the new app fulfills the contract of an OppNet
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Figure 4.1.: Registering an OppNet client app

client app. This is done by querying the Android package manager for the new app
and inspecting the exported broadcast receivers. If there is such a receiver, a new API
key is sent. The API key must be stored by the client app and is required whenever
communicating with the platform later. The platform keeps track of the mapping from
issued API keys to client apps.

To issue such API keys even to client apps which have been installed prior to the
platform, there is a similar process: After installation the platform queries the apps
installed on the device and issues API keys to those who appear to be OppNet client
apps, again by inspecting the exported broadcast receivers.

4.2. Service Announcement

As soon as a client app possesses an API key, it can publish its services to the platform.
To do so the client app hands over protocol descriptions to the platform. A protocol
describes a service and how its data should be handled by the platform. The only
required field in the description is a unique name – service discovery will be based on
that name. Additional fields are interpreted as metadata about the service: Whether
data should be encrypted and/or authenticated when being exchanged, or an expiry time
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(in seconds) after which data is considered outdated and not exchanged anymore. An
example protocol description in XML could look like the following:

<protocol>

<!-- required, should use a unique namespace -->

<name>ch.ethz.csg.oppnet.example.chat</name>

<!-- defaults to ’false’ if omitted -->

<encrypted>false</encrypted>

<!-- defaults to ’false’ if omitted -->

<authenticated>true</authenticated>

<!-- no default value -->

<defaultTTL>3600</defaultTTL>

</protocol>

Figure 4.2 illustrates how a client app typically publishes services with the platform.
After the app is started and connected to the Client Connector Service of the platform

OppNet Client App

App is stopped

OppNet Platform

Cl
ie

nt
 C

on
ne

ct
or

 S
er

vi
ce

bind to
platform

register 
protocols<protocol>

  <name>...
</protocol>

access 
tokens

unbind from
platform

Service 
Implementations

App is started

Lookup

Storage

Figure 4.2.: Publishing services to the OppNet platform
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T1 T2 T3 T4 T6

T1 Source Node ID     T2 Target Node ID     T3 Protocol     T4 TTL     T5 MAC     T6 Payload

T5

required optional

Field Types:

Figure 4.3.: Wire format of the TransportData packet

it can start registering protocols. OppNet records each combination of client app and
protocol (internally called service implementation) with a unique access token. This
token is sent back to the client app, and is required later to publish data and subscribe
to data updates. Client apps can register as many services as they want.

4.3. Service Discovery

After the platform learned about apps and services present on the same device, it needs
a way to learn about services on other devices. OppNet currently uses a very sim-
ple approach: It directly combines service discovery with neighbor discovery. To keep
the discovery beacon small in size, only SHA-1 [18] hashes of the protocol names are
transmitted – this only adds 20 bytes per supported protocol.

The service layer always keeps a registry of currently connected neighbors with their
announced services in memory. Client apps can subscribe to this registry to be notified
when a new neighbor for a specific protocol connected (or disconnected).

4.4. Data Exchange

The service layer only has one requirement when it comes to how client apps must
deliver data to be exchanged between devices: It must be a serialized binary blob of
data. How the serialization is done is completely up to the client app – the platform
does not need to know anything about the data structure. To actually transmit this raw
data to other devices it is wrapped by the TransportData packet shown in Figure 4.3.
The platform has an incoming, outgoing and forwarding queue where it stores data as
complete TransportData packets (they can be in more than one queue simultaneously).
The wrapper packet adds the following metadata:

T1: The ID of the node the data originates from. This is not necessarily the ID of the
node the data was created. The field is only set when the data transmission is
authenticated.
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T2: The ID of the node the data is targeted at, if the data has a final destination.

T3: The SHA-1 hash of the protocol the data belongs to.

T4: The time until when the data is valid.

T5: A message authentication code, when the protocol requires data transmission to
be authenticated.

When receiving TransportData packets, malformed and outdated packets are di-
rectly discarded. Other reasons to discard packets are a) authenticated packets where
verification fails; b) encrypted packets which can not be decrypted; and c) when no client
app is registered with the platform for the protocol of a targeted packet.

Finally, the decision of what data is sent to which neighbor is the duty of the
DataExchangeManager. The process gets triggered in two situations:

1. When a client app pushes new data to be exchanged and neighbors are currently
connected. In this case the DataExchangeManager checks whether any neighbor
supports the data’s protocol. If so, the data is wrapped and sent.

2. The platform discovered a new neighbor. The DataExchangeManager then inspects
the new neighbor’s supported protocols and checks the outgoing queue if it contains
matching data. It also checks the forwarding queue for suitable packets.

The DataExchangeManager transports data over UDP/IP, operating on port 3109.

4.5. Security

Together with the service layer, the OppNet platform got equipped with a new identity
mechanism. What has been randomly chosen 8 bytes is now a cryptographically usable
public key. It is based on elliptic curve cryptography (ECC), which has one major
advantage over the classic RSA-based cryptography: A 256-bit (32-byte) ECC public
key provides the same level of security as a 3072-bit (384-byte) RSA public key. The
small size of such a public key allows to include it as the node identity into each discovery
beacon.

The underlying cryptosystem is powered by libsodium1, a portable version of Dan
Bernstein’s original NaCl library [10]. OppNet uses libsodium’s cryptobox for authen-
ticated public-key encryption, which is built around the Curve255192 elliptic curve.
Signatures are created with Ed255193, which uses the same elliptic curve. This enables
OppNet to use a single public key for both operations (encryption and signatures).

1http://doc.libsodium.org/
2http://cr.yp.to/ecdh.html
3http://ed25519.cr.yp.to/
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4.6. Proof of Concept Client App

To demonstrate how to use the new service layer a proof of concept app has been built.
OppNetChat is a simple chat app which broadcasts messages to neighboring devices.
There is only one single chat room with no moderation. The app does not include an
own identity layer, but reuses the one from OppNet: Usernames are the hexadecimal
representation of the sender’s public key (i.e., the node ID).

OppNetChat registers one protocol with the platform, which asks for authenticated
but unencrypted data exchange. To serialize the actual message it is treated as a se-
quence of bytes (instead of characters). Deserializing converts this byte string back into
a real string.

Figure 4.4 shows OppNetChat in action: The user interface (screenshot on the left)
displays received messages and allows the user to send a new message. In the screenshot
on the right the list of generated packets to be sent by OppNet can be seen.

(a) OppNetChat screenshot (b) Packets registered with OppNet

Figure 4.4.: Screenshots of example client app
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5. OppNet Platform Interface

There are two main interfaces to interact with all the features of the platform: An
Android library which allows developers to build apps on top of the platform, and a
graphical user interface for the device owner running the platform. This chapter gives an
overview over the capabilities of both interfaces, and additionally describes the structure
of the discovery beacon. The latter is an external interface which allows clients on other
platforms than Android to understand these (otherwise useless) packets.

5.1. Android Library

The OppNet library is a collection of convenience objects to use the platform from
third-party client apps. Its first feature is the broadcast receiver required by OppNet to
qualify as a client app (see Section 4.1), and a TokenStore which handles all the tokens
involved in communicating with the platform. The latter only needs to be touched when
the client app registers more than a single protocol with the platform.

The starting point for including the library into a client app is the OppNetConnector.
It handles all inter-process communication with the platform (after explicitely binding
to it). If the platform is not installed, the bind operation will return an error. In this
case the client app could notify the user to download the platform to use all features of
the app.

The library features a parser for the XML format of the service descriptions. If
they are available as XML resources from the client app1, the OppNetConnector has
a shortcut to register them directly with the platform. Registering a protocol through
the library also registers a callback for notifications when new data is available for the
registered protocols.

The library additionally offers convenience functionality when not using the service
layer: With a NeighborObserver a client app can get notified when new neighbors
connect.

1https://developer.android.com/guide/topics/resources/providing-resources.html
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5.2. Management GUI

Most of OppNet happens in the background. The only part visible to the user is the
graphical management interface. OppNet’s predecessor already had such an interface,
but it was targeted at platform developers. In a complete overhaul the graphical user
interface (GUI) now puts the regular end-user in control. Figure 5.1 shows screenshots
of the two main screens:

(a) The start screen lets the user control the operation of the platform. It presents
the list of available policies to chose from together with a short description of each
policy, and a button to activate the platform. Policies can be switched on the fly
by selecting a different one and hitting the green button again.

(b) Swiping to the right from the start screen reveals four (purely informational) list
views: the currently connected neighbors (visible in the screenshot), all client apps

(a) Policy selection (b) Current neighbors

Figure 5.1.: Screenshots of OppNet management GUI
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installed on the device, all protocols registered with the platform, and the most
recent packets received or to be sent.

Located in the top right corner is a master switch which allows to start/stop the
platform from any subview. The GUI provides the same clean, modern look even on older
Android devices. Note that technically the GUI is completely optional: The platform
also runs without it.

5.3. Discovery Beacon

The discovery beacon is OppNet’s way of telling other devices about its presence. In
IP-based networks it is sent to the multicast addresses 224.0.0.251 and ff02::fb on
port 5353 over UDP. These are the same addresses as used by Multicast DNS, however
OppNet beacons have a fundamentally different packet structure. In some cases discovery
beacons are also sent as UDP unicasts to port 3108.

A discovery beacon carries information about the sending device, and potentially
similar information about other neighbors it already knows. Figure 5.2 depicts the wire
format of such a beacon. It is basically composed of five fields:

B1: The beacon type can be either “original” (default) or “reply”. The implication is
that upon receiving a beacon of type “original” an OppNet client should always
send a beacon of type “reply” back, and never send anything back upon receiving
a beacon of type “reply”.

B1 B2 B3 B4 B5

N1 N2 N3 N4 N6 N7 N8 N9

B1 Beacon Type
B2 Beacon ID
B3 Time Sent
B4 Sender Node
B5 Neighbor Nodes

N1 Node ID
N2 IPv4 Address
N3 IPv6 Address
N4 Bluetooth Address
N5 Multicast-Support

N5

N6 Last Seen SSID
N7 ΔTime Last Seen
N8 Protocols
N9 AP Likelihood

required conditional optional

Field Types:

Figure 5.2.: Wire format of discovery beacon
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B2: When receiving multiple beacons with the same beacon ID an OppNet client may
consider them duplicates of the original one, and discard them.

B3: The time when the beacon has been sent, in seconds elapsed since 01.01.1970
00:00:00 UTC.

B4: Information about the sender of the beacon, in the form of a Node sub-message
(explained below).

B5: This field contains Node sub-messages for each neighbor known to the sender of
the beacon.

A Node message contains contact information and other metadata about a device.
The presence of certain fields depend on what device the message describes (i.e., the
sender of a beacon or its neighbors). All in all it can consist of up to nine fields:

N1: The public key as introduced in Section 4.5. This field must always be set.

N2: The IPv4 address to reach the described node.

N3: The IPv6 address to reach the described node. Only one IP address is required to
be set.

N4: The Bluetooth address of the described node, if available.

N5: A boolean flag whether the described node is able to receive multicast messages
when it is asleep (defaults to “true”). On some Android devices the networking chip
drops multicast packets when in energy savings mode (i.e., the device is asleep).

N6: The name of the WLAN network on which the described node has been seen last.
Only relevant when the node describes a neighbor, and only if it is on a different
network than the beacon sender.

N7: The difference between the time the node has been seen last and the time the bea-
con has been sent. This field is only required when the node describes a neighbor.

N8: A list of SHA-1 hashes of the protocol names a node supports (see Section 4.3).

N9: If the nodes are communicating via an OppNet access point, this field signals
the likelihood for a node to become an access point. The node with the highest
likelihood is expected to take over the access point role in the next discovery cycle.
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6. Conclusion

The goal of this thesis was to deliver a service platform for opportunistic network-
ing under Android which is both energy-efficient, developer-friendly and backwards-
compatible.

The first goal has been pursued by introducing duty-cycling to the WLAN-Opp dis-
covery mechanism, giving devices the possibility to sleep and therefore saving a signif-
icant amount of energy. A second strategy was to allow for finer-grained control over
the energy budget by selecting single technology features to be used in the discovery
process. This also included adding Bluetooth to the technology pool. The different
combinations of duty-cycles and technology features have then been evaluated. From
the results five distinct policies have been proposed, and their final power consumption
has been measured. The results prove that energy-efficient opportunistic discovery is
indeed possible.

With the addition of a full-blown service layer developers now have a more pow-
erful tool at hand to build apps leveraging opportunistic principles. With service an-
nouncement, automatic service discovery and opportunistic data exchange built into the
platform, the developer has less to take care of. The service layer is complemented by
strong elliptic curve cryptography, which developers can take advantage of on the data
transport layer.

Great care has been taken to keep OppNet compatible with most Android devices:
The minimum requirement is version 2.3.3 (“Gingerbread”). Finally OppNet will soon
be available as open-source software.

6.1. Future Work

The OppNet platform already is a reasonable foundation for opportunistic applications,
yet there is still room for improvement in some areas:

• The energy consumption can and should be further optimized, especially for WLAN
discovery. A good starting point is the WLAN beaconing frequency, as producing
and sending such beacons is the major energy consumer during discovery: Each
beacon costs around 100 mJ, which is equivalent to waking up the CPU for 2.5
seconds.

43



• Policies were a big step forward, but they fail to automatically adjust to changing
environments. It seems worth to investigate adaptive discovery techniques, for
example by extending the sleep periods when a device does not move (and vice
versa). Another step would be trying to detect patterns: When the user is at work,
expect to meet specific neighbors and tune the discovery process accordingly.

• OppNet’s Bluetooth support is still in its infancy. Bluetooth proved to provide low-
energy discovery, and could save some more energy in passively listening devices.
Furthermore it is only utilized in the discovery process yet.

• On the service layer a more sophisticated packet distribution algorithm than “flood-
ing” can minimize the exchange of already transmitted data. Adding a pull-based
mode would make exchanging of big files more efficient: Devices could announce
the mere existence of such a file instead of directly pushing it towards the target.
If the target is interested in the file it would initiate the download itself.

• The platform itself could be extended with a more comprehensive identity layer,
adding concepts like friends or social trust. This would simplify building apps for
OppNet even more, while also giving the platform a way to enforce privacy.
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A. Energy Optimization Measurements:
Raw Data

The following tables contain the average power consumption measured per run, grouped
by feature and scenario as presented in Chapter 3.

Scenario P10min P5min P2min

mW mW mW

Active
(0 neighbors)

21.99 24.73 41.55

20.53 25.15 40.16

21.66 25.41 42.46

20.86 28.44 41.93

42.07

41.47

41.71

42.86

Active
(2 neighbors)

26.00 33.51 48.84

30.41 34.95 49.52

28.86 33.63 49.29

29.89 32.99 51.85

Passive, Reply-Only
(2 neighbors)

19.15 22.52 29.24

20.06 23.20 24.36

18.59 23.13 29.31

19.48 20.73 28.81

21.58 26.52

22.80 27.09

23.32

Table A.1.: Raw data per run for average power consumption
of feature scenarios with Bluetooth
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Scenario P10min P5min P2min

mW mW mW

Active, no switching
(0 neighbors, 1 network)

24.04 27.89 39.30

25.69 27.04 38.82

26.38 28.22 39.86

23.74 27.61 39.18

27.95 37.30

27.38 38.09

28.16 40.16

28.76 43.80

Active, switching
(0 neighbors, 2 networks)

38.81 59.41 124.56

42.11 58.32 126.30

40.76 60.73 125.86

40.18 62.27 126.51

126.03

123.89

124.58

125.04

123.12

124.29

Active, switching
(0 neighbors, 4 networks)

54.68 85.61 176.50

53.81 83.74 176.10

53.93 85.38 176.74

54.36 86.08 175.24

177.04

177.75

Table A.2.: Raw data per run for average power consump-
tion of feature scenarios with WLAN client mode,
without neighbors
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Scenario P10min P5min P2min

mW mW mW

Active, no switching
(2 neighbors, 1 network)

32.70 47.46 80.41

31.39 45.09 80.63

32.99 45.93 81.14

33.23 46.53 81.36

29.93 84.44

29.68 83.60

29.64 83.94

29.34 85.13

Active, switching
(2 neighbors, 2 networks)

40.53 61.58 150.27

44.84 72.63 158.43

43.80 69.06 151.29

41.44 74.26 150.71

Passive, Reply-Only
(2 neighbors, 1 network)

37.69 58.31 109.56

35.81 59.19 112.43

37.98 59.00 107.75

38.21 60.43 96.74

60.64 103.58

61.23 93.80

57.98 107.39

44.76

Table A.3.: Raw data per run for average power consumption
of feature scenarios with WLAN client mode, with
two neighbors
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Scenario P10min P5min P2min

mW mW mW

Active, no switching
(2 neighbors, 1 network)

31.04 43.94 88.06

30.42 43.17 85.49

28.51 42.64 86.11

27.25 42.33 87.13

30.17 45.08 88.60

29.71 45.96 85.76

86.78

88.06

Active, switching
(2 neighbors, 2 networks)

54.97 95.19 209.04

55.94 95.78 202.25

56.19 93.74 204.08

55.54 92.65 207.32

204.33

207.91

Table A.4.: Raw data per run for average power consump-
tion of feature scenarios with WLAN access point
mode
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Policy P0neighbors P2neighbors

mW mW

Passive

13.49 37.69

13.48 35.81

13.33 37.98

13.40 38.21

LowPower

28.29 50.01

33.50 47.97

28.49 47.82

42.23 46.99

50.26

46.16

LowPower+

35.13 54.13

34.47 49.47

35.57 54.39

34.83 49.86

HighConnectivity

64.47 73.05

70.53 76.75

73.75 75.30

58.89 73.26

72.21

Disaster

154.20 207.55

148.52 216.40

149.09 213.49

145.98 215.85

143.69

Table A.5.: Raw data per run for average power consumption
of policies, without and with neighbors
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B. Installation Guide

The following chapter contains the instructions to setup the platform for development
with the official Android Developer Tools (ADT). Throughout the guide the following
directory structure is assumed:

$HOME

android

ndk

sdk

eclipse

OppNet

src

lib

core

deps

android-switch-backport

libsodium

The android folder will contain the development tools for Android (the sdk and
eclipse subfolders will be created while installing the ADT), while the OppNet folder
contains everything else to build OppNet. Besides the OppNet source code in the src

subfolder, the deps subfolder will contain the dependencies which are not directly in-
cluded in the OppNet source distribution. Before moving on, put the source code for
the OppNet library and the OppNet core into the lib and core directories (e.g., with
svn checkout).

B.1. Eclipse/ADT Setup

To setup the Android Developer Tools, download the suitable “ADT Bundle” from the
Android Developers website1. Unpack the retrieved ZIP file to the $HOME/android folder,
which will create the sdk and eclipse subfolders. Start the development environment,
Eclipse, with the executable located in the $HOME/android/eclipse directory.

1https://developer.android.com/sdk/index.html
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Launch the SDK tools (from Eclipse via “Window” → “Android SDK Manager”)
and make sure that at least the SDK platform for Android 4.4 (API level 19) and the
Android Support Library (under “Extras”) are installed.

Both OppNet projects can easily be imported into Eclipse. Select “File”→ “Import”
and choose “Existing Android Code Into Workspace”. Choose $HOME/OppNet/src as
the “Root Directory” and select both lib and src to import. Your Eclipse view should
now contain the two OppNet projects, with the core project containing compile errors
because of missing dependencies.

B.2. Dependencies

This section lists the dependencies for the OppNet platform, and how to resolve them.

B.2.1. Library

The OppNet library only has one dependency:

Guava 16.0.1 Already included in the source distribution, no action needed.
https://code.google.com/p/guava-libraries/

B.2.2. Core

The OppNet core depends on the library, plus the following libraries:

Protobuf 2.5.0 Already included in the source distribution, no action needed.
https://code.google.com/p/protobuf/

Android Support Library v7 appcompat See below for instructions.
https://developer.android.com/tools/support-library/features.html#v7

Android Switch Widget Backport 1.3.1 See below for instructions.
https://github.com/BoD/android-switch-backport

To resolve the Support Library dependency, follow the guide on the Android Devel-
opers website to “add libraries with resources”2. The source to include is located in the
$HOME/android/sdk directory.

The Android Switch Widget Backport dependeny can be resolved by download-
ing the source code (either with git clone or downloading and unpacking into the
$HOME/OppNet/deps/android-switch-backport folder). Next, import the ”library“
project into Eclipse. You should now see two library projects along with the two Opp-
Net projects in Eclipse, and the errors should have disappeared.

2https://developer.android.com/tools/support-library/setup.html#libs-with-res
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B.3. Protobuf

When changing the Protocol Buffer message definitions in the ch.ethz.csg.oppnet.protobuf
package of the OppNet core, they have to be recompiled. To do so, download and install
the Protocol Buffer compiler from the website3 or the package manager of your operating
system. Take care to use the compiler for the same protobuf version as the included JAR
(i.e., 2.5.0). To regenerate the Java classes from the message definitions, run the following
command:

cd $HOME/OppNet/src/core

protoc --java_out=src/ \

src/ch/ethz/csg/oppnet/protobuf/PacketDescriptions.proto

B.4. Native Code

The OppNet core contains C code for the cryptographic functions mentioned in Sec-
tion 4.5. The source distribution already contains the compiled shared library, which is
automatically detected by Eclipse/ADT and included in the compiled Android applica-
tion package (APK).

If the C source ever needs to be updated, the shared library has to be recompiled. To
do this, the Native Development Kit (NDK) is needed. Download the appropriate NDK
build from the Android Developers website4 and unpack it into the $HOME/android/ndk

directory. Also install SWIG5, a generator for wrappers around code in other languages
(in this case generating Java wrapper classes for C code).

The cryptographic functions originate from libsodium6. Download a copy into the
$HOME/OppNet/deps/libsodium folder, then cross-compile shared libraries using the
build scripts supplied by libsodium (in the dist-builds subdirectory). Copy the cross-
compiled statically linked libraries (libsodium-android-<arch>/*.a) into the corre-
sponding subdirectories in the $HOME/OppNet/src/core/jni/<arch> folder, and one
set of header files into the $HOME/OppNet/src/core/jni/include folder.

In the jni directory there is a file called sodium.i, which is a SWIG interface file. It
tells SWIG for which parts of the native code it should produce wrapper code, and it may
need to be updated. If so, the C wrapper file sodium_wrap.c needs to be regenerated:

cd $HOME/OppNet/src/core/jni

swig -java -package org.abstractj.kalium \

-outdir ../src/org/abstractj/kalium sodium.i

3https://code.google.com/p/protobuf/downloads/list
4https://developer.android.com/tools/sdk/ndk/index.html#Downloads
5http://www.swig.org/
6https://github.com/jedisct1/libsodium
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Finally, the NDK can glue together the SWIG wrappers with the shared libraries:

cd $HOME/OppNet/src/core/jni

$HOME/android/ndk/ndk-build

The NDK places the resulting shared libraries in the $HOME/OppNet/src/core/libs

directory, where they are picked up by Eclipse/ADT when compiling the APK the next
time.
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