
Institut für
Technische Informatik und
Kommunikationsnetze

Master Thesis
at the Department of Information Technology

and Electrical Engineering

Mapping Optimisation of Streaming
Applications on Heterogeneous Platforms

FS 2014

Felix Wermelinger

Advisors: Lars Schor
Andreas Tretter

Professor: Prof. Dr. Lothar Thiele

Zurich
5th September 2014

— II —

Abstract

Due to physical limitations of processor speed, modern computing devices
feature inherent parallelism. A modern computing architecture is often com-
posed of multiple computing devices, each featuring a different degree of
parallelism. This thesis analyses how a streaming application, specified as
a Synchronous Data Flow graph, can be mapped onto a modern architec-
ture, such that its performance is optimal. This mapping includes both the
binding of processes to devices, as well as parallelisation parameters for each
process. We use the throughput as the primary performance metric, while
aiming to keep the latency within a given boundary.

Our general approach is to first have a calibration algorithm, which ana-
lyses the given application and architecture and extracts benchmark data
characterising the execution of the given application and architecture. In a
second step, this data can be used by an estimation algorithm, which can
estimate throughput and latency for any given mapping. This estimation
algorithm is suited to be used by a design space exploration algorithm in
order to find an optimal mapping for a given architecture and application,
while only requiring one initial execution of the calibration algorithm.

For synthesis and execution we use the Distributed Application Layer (DAL)
framework. This framework allows to specify a streaming application as
a Synchronous Data Flow graph and synthesises it onto various hardware
devices, using the Open Computing Language (OpenCL) or POSIX threads.
We develop profiling tools on top of this framework, which allow us to analyse
throughput and latency of a network and each process within the network.
We propose a model of how performance of a single process depends on
its parallelisation parameters. We have developed a calibration algorithm,
which will calibrate the process models for any given application and archi-
tecture. Experimental evaluation results match very well with the calibrated
models. These calibrated process models proof to be useful for estimating the
throughput and latency of the entire network, as we show by implementing
such an estimation algorithm.

— III —

— IV —

Acknowledgements

I would like to thank Prof. Dr. Lothar Thiele and the Computer Engineering
Group for giving me the opportunity to write this master thesis as well as
providing good working conditions.

Also I am grateful for the continued support of my advisors Andreas Tretter
and Lars Schor, as we have spent many hours discussing the theoretical
results of this thesis, as well as determining the focus of my work. Their
advice and their knowledge of the research field at hand was a big help in
writing this thesis.

— V —

— VI —

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contributions . 2
1.4 Outline . 2

2 Background 5
2.1 OpenCL . 5
2.2 Distributed Application Layer 6

3 Problem & Approach 9
3.1 Problem Description . 9
3.2 Approach . 10

4 Performance Evaluation Tools 13
4.1 Profiling . 13
4.2 Analyser . 14
4.3 Summary . 15

5 Performance Models 17
5.1 Process Execution Model . 17

5.1.1 Execution Time . 19
5.1.2 Transfer Time . 20
5.1.3 Time per Volley . 20

5.2 Process Network Model . 21
5.2.1 Process Network Specification 21
5.2.2 Assumptions . 23
5.2.3 Steady State . 23
5.2.4 Throughput . 25
5.2.5 Latency . 28

5.3 Summary . 36

— VII —

6 Experimental Evaluation 39
6.1 Setup . 39

6.1.1 Hardware . 39
6.1.2 Application . 40

6.2 Process Execution Model . 40
6.2.1 Average Execution Time per Firing 41
6.2.2 Average Time per Firing 43

6.3 Summary . 45

7 Conclusion and Outlook 47
7.1 Conclusion . 47
7.2 Outlook . 48

A Appendix 49
A.1 Presentation Slides . 49

— VIII —

1
Introduction

1.1 Motivation

Due to physical constraints, the technology for processing devices has shif-
ted towards parallel architectures. Hardware gets better optimized for its
primary purpose over time and is nowadays developed with a specific use
case in mind. The result is that a modern computer is a so called hetero-
geneous system, i.e. a system of multiple compute devices, usually a Central
Processing Unit (CPU) and a Graphic Processing Unit (GPU). While most
conventional programming is limited to the CPU, GPUs require a lot of ef-
fort to program efficiently, due to their complexity and the necessary manual
handling of low level details. However recent developments have tried to
make programming on GPUs. These developments are also starting to get
a foothold in embedded computing, with new hardware which has GPU and
CPU integrated on one chip.

In modern programs, which are focused on efficiency, it might be beneficial to
move parts of an application to these other devices, as their parallel structure
can be beneficial for some processes.

When implementing streaming applications for heterogeneous systems, it
has been seen, that it is feasible to specify the application in form of a pro-
cess network, i.e. a connected network of small programs, called “processes”,
streaming data to each other over fifo channels. While there exists a frame-
work, which allows to map a process network onto a heterogeneous system,
it has so far not been explored, how mapping of a given application can be

— 1 —

CHAPTER 1. INTRODUCTION

optimised. This thesis strives to discover how different parallelisation and
mapping of separate processes to different devices affects performance.

1.2 Related Work

Even though throughput optimisation for heterogeneous systems has been
considered before [1], so far the consensus was to assume a given constant
performance metric for a given binding of a process to a device. This thesis
however, will also consider that modern devices allow to parallelise a pro-
cess and will use the parallelisation parameter as an additional design space
dimension, which can be used for optimisation.

Latency has been considered previously as an optimisation goal [2] while
optimising the scheduling of processes. This also included a calculation of
the latency on a synchronous data flow, when using said scheduling. This
thesis will also consider latency optimisation, but has to calculate latency
using an undeterministic unchangeable scheduler.

1.3 Contributions

In this thesis we have made the following contributions:

• Development of profiling tools, which allow a programmer to analyse
the performance of his mapped process network an a specific target
architecture.

• Discovery of a mathematical model, which describes the performance
of a process network mapped onto a heterogeneous system.

• Experimental evaluation of the model, by testing it against the results
of practical test runs.

1.4 Outline

In Chapter 2 we will introduce the basics on which our thesis builds upon,
namely the Distributed Application Layer (DAL) framework and the lan-
guage used for implementation, Open Computing Language (OpenCL).

We specify our problem and what our approach to solve said problem looks
like in Chapter 3.

Chapter 4 introduces the developed profiling tools, which allow to evaluate
the performance of a mapped process network running using DAL.

— 2 —

1.4. OUTLINE

In Chapter 5 we will try and model the behaviour of a process network, again
with focus on the performance of said network.

In Chapter 6 we will test our models against some sample applications,
comparing the measurements obtained through the profiling tools, with the
models.

Lastly Chapter 7 will have a short conclusion, summarising the results of
the thesis, as well as a short outlook, suggesting some possible future tasks
within the field of this thesis.

— 3 —

CHAPTER 1. INTRODUCTION

— 4 —

2
Background

In this chapter we will review the OpenCL and DAL frameworks. These
are the foundations of this thesis, since we use the DAL framework for per-
formance evaluation and our mapping algorithm is designed with OpenCL-
compatible systems in mind.

2.1 OpenCL

The OpenCL standard was developed by Khronos [3] in order to allow open,
cross-platform, parallel programming for a variety of computing devices, such
as CPUs and GPUs. Due to the parallelism implemented in modern archi-
tectures, the language has to supply a generic way to specify low level par-
allelism. This is even more important for Single Instruction Multiple Data
(SIMD) parallelism, as it is used in GPUs. The OpenCL standard has done
this in form of the two terms work groups and work items on the level of
programming, while introducing compute units and processing elements on
the hardware level. The idea is that a fixed set of processing elements is
grouped as one SIMD compute unit, i.e. all processing elements within the
compute unit can only execute the same operation at the same time. Each
device usually contains several compute units.

On the programming level, we call the programs written for execution on
OpenCL devices kernels. One work group is the set of all work items that
get executed on one compute unit. One work item will execute the kernel

— 5 —

CHAPTER 2. BACKGROUND

on one processing element within the compute unit that the work group is
mapped to. As such, the work items within a work group normally run in
SIMD fashion. However, since there can be more work items in a work group
than there are processing elements in a compute unit, part of the work items
must sometimes be stalled and be executed as soon as there are work groups
free. This measn that it is not run in true SIMD fashion. The set of work
items that get executed consecutively, form a so called wavefront.

The OpenCL framework is responsible for mapping work groups to compute
units and work items to processing elements. The programmer can specify
the number of work items and work groups as well as the device to map
to for each kernel. However one has no control over which work group is
mapped one which compute unit.

The hardware that does all of the invoking is called the host and is usually one
CPU core. The host will invoke kernels by submitting them to a command
queue. The device bound to said command queue will then process the
kernels in order. The programmer may register a function as callback, such
that it gets executed after the command has finished its execution. This
can be used to then enqueue other kernels, which have dependencies on the
finished one or to retrieve information about the finished kernel.

The OpenCL standard includes a profiling functionality, which allows to
configure any OpenCL command to log important timing information, which
can be obtained by registering a profiling callback function.

2.2 Distributed Application Layer

The DAL framework [4] has been developed in order to simplify the develop-
ment of parallel computing software and to show that implementing paral-
lelism implicitly by specifying a kernel as process network (see Figure 2.2 on
page 7) is feasible, compared to the classic explicit method of parallel pro-
gramming through multithreading. It has been shown, that specifying an
application as process network can be beneficial, as the processes are inher-
ently parallel and only coupled over the channels. Later the framework has
been extended to be able to map these process networks on a heterogeneous
system using OpenCL [5]. The framework will handle all low level details of
memory management, scheduling and dependencies, while the programmer
only has to supply the functional part of the separate processes in the pro-
cess network. This allows to run different parts of the network in parallel on
different hardware.

The framework requires a specification of the process network in simple
XML-form, which specifies all processes and all channels in between them.
The user then has to supply source code for the implementation of the pro-

— 6 —

2.2. DISTRIBUTED APPLICATION LAYER

Application specification
(Process network)

P1 P2

P3

P4

Figure 2.1: Example of a simple process network.

cesses themselves, while the framework will generate all code concerned with
the data transfer and invocation management of processes. In the OpenCL
environment, one process firing is implemented as one work group invocation.
Because the overhead for scheduling and transferring data from and to the
device can be quite large, the framework forms a collection of multiple firing
operations, which get executed together, to have less relative overhead. We
call such a collection a volley and it is implemented as a set of work groups
implementing the same kernel. The programmer can specify the number of
work groups which are grouped together in one volley for each process.

Application specification
(Process network)

P1 P2

P3

P4

WorkGroup 1
WorkItem 1

W
o
rk

 i
te

m
 c

o
u
n
t

Work group count

Volley

WorkItem 2

WorkItem 3

WorkItem 4

WorkGroup 2
WorkItem 1

WorkItem 2

WorkItem 3

WorkItem 4

Workitems
share the load
of one
workgroup

Compute
unit 1
PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

Device

P1 P2

P3

P4

Compute
unit 2
PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

Figure 2.2: Illustration of how DAL maps a simple process network onto the
OpenCL structure.

The channels, which have to transport data in between different processes

— 7 —

CHAPTER 2. BACKGROUND

are implemented as fifos with OpenCL kernels explicitly handling the syn-
chronisation of the fifo content over multiple devices. These kernels are called
push and pop kernels and get enqueued in the same fashion as the kernels
of volleys. The framework ensures correct ordering of their execution.

The framework also needs an architecture file, detailing the available hard-
ware devices, as well as a mapping file, which statically maps processes to
devices and parametrizes the process code itself. These files have to be gen-
erated manually. Note that in this context mapping includes the binding of
a process to a device as well as setting the paralellisation parameters. This
means that the mapping specifies the nubmer of work groups within a volley
as well as the number of work items within a work group.

— 8 —

3
Problem & Approach

In this chapter we will describe the problem our thesis is trying to solve. We
also detail our general idea and the approach of our solution.

3.1 Problem Description

This thesis has used the DAL framework in order to analyze how the mapping
can be used to optimize the performance of a specified process network. The
first goal was to extend the DAL framework to analyze the performance
of a process network and to enhance our understanding which parameters
affect the performance. We are interested in the throughput that a mapped
process network may achieve, while keeping the latency bounded. The idea
is to develop an estimation, which can predict the performance of a specific
mapping for a given process network. This allows the use of an evolutionary
algorithm, which will find the Pareto-front using the given estimation.

In order to achieve this it was imperative to develop a performance model
of a process network, which captures the architecture, the mapping and the
parallelization of the application, and shows how these factors influence the
performance.

— 9 —

CHAPTER 3. PROBLEM & APPROACH

3.2 Approach

Our approach to obtain a performance estimate starts by calibrating our
models for the given application and architecture. We call the collection
of our calibrated models the performance characteristics table. With the
calibrated models, we can then run an estimation algorithm, which estimates
the performance for any given mapping. Such an estimation could then be
used by a design space exploration algorithm, which is then able to find
an optimal mapping without having to run tests for each mapping. This
concept can be seen in Figure 3.1.

Application Architecture

Calibration

Performance
Characteristics
Table

Performance
Estimation

Mapping

Performance
Estimate

Design Space
Exploration

Optimised
Mapping

1x

For each mapping

Figure 3.1: Illustration of our approach on how to obtain a reasonable estim-
ate of the performance of a given application and architecture as well as an
overall concept on how to find an optimised mapping using said performance
estimation.

For calibration we developed profiling tools, which extract runtime informa-
tion from a running process network. We focused on obtaining measurements
meaningful for throughput and latency, as these are the measures we were
later interested in. The important measures are the time a process takes to
execute a firing and how long it takes until the process may execute the next
firing, as these measures are then later useful for determining the overall
throughput and latency of the process network.

For obtaining our models, we analysed the behaviour of processes separately
at first. The idea was to develop a mathematical model of the measures
mentioned above, which captures their dependencies on all factors, such as

— 10 —

3.2. APPROACH

the binding and the parallelization of the process. However there remain
some parameters which are normally not known, since they depend on the
device architecture, the exact source code or the driver implementation. To
obtain these, we execute a small set of tests, using different mappings and
parallelizations, to obtain some measures with our profiling tools. Now that
we know some measures, we can fit our model to the measured values and
find the previously unknown parameters. We call this step the calibration
of the models.

After this is done for all processes in the network, we have to concern
ourselves, how the overall performance is affected by the separate processes.
We model the behaviour of the process network as a whole, based on the
individual process models. In this model there is no additional calibration
necessary, as it only depends on the performance of the separate processes.
So the calibrated process models in combination with our process network
model, allows us to predict the performance of a given mapped process net-
work.

— 11 —

CHAPTER 3. PROBLEM & APPROACH

— 12 —

4
Performance Evaluation Tools

In this chapter we will introduce the developed profiling tools, which were
used for evaluating the performance of a process network running on the DAL
framework. First we have a look at the profiling, which extracts some raw
timing information from each process and then we will look at the analyzer,
which interprets the data from profiling and extracts meaningful measures.
We will then use these tools later to calibrate our model of the process
network performance.

4.1 Profiling

The profiling tools were integrated directly into the DAL framework (as
shown in Figure 4.1 on page 14). When running a process network using
DAL, each OpenCL process in the process network has its own profiler,
which extracts timing values (see Table 4.1 on page 14) for each volley of
said process. OpenCL supports the extraction of the values as listed in
Table 4.1 on page 14. Figure 4.2 on page 15 illustrates the timing values
which can be obtained.

In this implementation, a volley is always executed as a group, so even
though some firings can be finished earlier, they have to wait for the last one
to finish, before informing the host about their termination.

Note, that the time in between submit and start will only transfer commands
and execution parameters and not the actual data to process. The transfer-

— 13 —

CHAPTER 4. PERFORMANCE EVALUATION TOOLS

DAL execution

Process
Network

Profile
log

PN analysis

Analysis Table

Figure 4.1: Illustration of how the profiling of a process network works.

ring of data from host to device and vice versa is done in a separate kernel,
which has again the four timing values. This is called the pop operation,
as it pops the tokens from a channel fifo onto the device to use in the next
firing. In the same manner there is also a push operation, which will push
the tokens from the device onto a channel fifo.

Name Value in nanoseconds
QUEUED Time when the command is enqueued into a command queue

on the host
SUBMIT Time when the command leaves the host and is submitted to

the device
START Time when the command starts execution on the device
END Time when the command ends execution on the device

Table 4.1: Table of the timing values that are extracted by the profiler

For accurate profiling, we will simulate a process network for a long time
and each profiler will accumulate a long profiling log, which contains all the
timing values from Table 4.1 of the respective process. These profiling logs
can then be interpreted by the analyser.

4.2 Analyser

The analyser is a modular implemented program, which consists of a mul-
titude of measurers (illustrated in Figure 4.3 on page 16), which are tasked
with interpreting the profile logs from the profiling and extracting some
meaningful measurements, characterising the execution of the process net-

— 14 —

4.3. SUMMARY

Host Device

Fi
ri
n
g

Queued

Ti
m
e

Submit

Start

End

Queued

Figure 4.2: Illustration of the points in time during execution, that the
profiler allows us to extract. Note that the scale is not representative and
that some timings might be much larger than others.

work. These measurers can either be process-measurers, which extract a
reasonable measure about a single process (e.g. the average execution time
needed for one firing of said process), or a network-measurer, which tries to
extract a characteristic about the process-network as a whole by interpreting
data about all processes (e.g. the overall latency). There exists a separate
process measurer instance for each process, while there exists only one in-
stance of each process-network measurer. The results are saved in analysis
tables which are then appended together. The tables are designed to allow
multiple measurements from different test runs to be accumulated in a single
analysis table.

4.3 Summary

In this chapter we have shown, which timing values the profiler can provide
us with. We have also seen how the analyser can interpret the profiling
data in order to produce measures, which characterise the execution of the
profiled process network.

— 15 —

CHAPTER 4. PERFORMANCE EVALUATION TOOLS

Profile
log 1

Profile
log 2

Profile
log 3

Reader Reader Reader

Process 1
measurer A

measurer B

Process 2
measurer A

measurer B

Process 3
measurer A

measurer B

ProcessNetwork
networkMeasurer A

networkMeasurer B

Process 1
analysis
table

Processnetwork
analysis table

Process 2
analysis
table

Process 3
analysis
table

Figure 4.3: Concept of the analyser, that processes the profiling logs.

— 16 —

5
Performance Models

In this chapter we will develop a model of how a process network performs,
when executed using the DAL framework. Our goal is to model the overall
throughput of a process network. This depends on the network specification,
the mapping and the hardware architecture. In a first step we develop a
general process model, which models the throughput of a single process. In
a second step we will analyse the overall throughput of the network as well
as the latency, i.e. the time that a token needs to traverse the network.

The idea is to get a mathematical expression of how performance depends
on various parameters, including some unknown constants, which depend on
the drivers, source code or hardware architecture. These unknown constants
cannot be broken down further, as in depth knowledge of drivers and hard-
ware would be necessary. However we can calibrate these models by running
a network multiple times, using different parametrisations (different choices
for number of work groups, number of work items and mapping of each pro-
cess) and use our performance evaluation tools (chapter 4 on page 13) to
obtain the performance of these runs. As such we can fit our models to the
obtained measurements.

5.1 Process Execution Model

In the following we will model the execution of a single process with a focus
on its performance, explicitly its throughput. This means we are interested
in how long it takes to execute said process.

— 17 —

CHAPTER 5. PERFORMANCE MODELS

As discovered in [5] the execution model looks like Figure 5.1. Each volley
has to be accompanied by push and pop operations, which transfer the tokens
from and to the device. As illustrated, the total time for each volley can be
split in 2 distinguishable parts:

tpV = ttransfer + texecution (5.1)

Where the time per volley tpV is given as the sum of the transfer time
ttransfer, the time needed to transfer the commands and tokens to and from
the device, and the execution time texecution, the time spent actually execut-
ing the volley on the device.

Host Device

Po
p

Fi
re

P
u
sh

transfer

execution

transfer

Figure 5.1: The used execution model. Note that the size relations are
not representative and that some of these timings can be negligibly small
compared to others.

Assumption 5.1.1. We neglect the time that push and pop operations need
to execute on the target device.

Reasoning. Experiments have shown, that these times are always very small
in comparison to execution times of the firing operation and other timing
values. Since it makes our upcoming equations easier to understand we will
neglect these.

In the following we study different factors which influence the timing values
in our model. It is our goal to develop a mathematical description of the
model, which can then later be used to develop a model for the whole process

— 18 —

5.1. PROCESS EXECUTION MODEL

network. For the sake of simplicity we will first only create a model for
texecution and ttransfer to then combine these two into a model for tpV .

5.1.1 Execution Time

By only looking at the execution time texecution of a volley we can develop
a fairly simple model. We can split up the execution time further into the
constant overhead toverhead for memory and binding management on the
device and the actual time used for calculation tcalculation.

texecution = tcalculation + toverhead (5.2)

To determine tcalculation we have to first consider all parallel work groups.
These work groups are executed in parallel, as long as there are enough
compute units available, otherwise a serialisation into

⌈
#WG
#CU

⌉
sequential

executions is necessary. The calculation time of a single work group is defined
as tCpWG.

tcalculation =

⌈
#WG

#CU

⌉
· tCpWG (5.3)

The calculation of a work group is then parallelised in SIMD fashion onto
different work items. Again executing in parallel as long as there are enough
processing elements available. Should there be less processing elements avail-
able than there are work items, then

⌈
#WI
#PE

⌉
wavefronts are formed, which

are executed sequentially within the work group.

tCpWG =

⌈
#WI

#PE

⌉
· tCpWI (5.4)

We assume, that the process is implemented using a loop, iterating multiple
times over the same source code. Since the number of iterations per work
group #IpWG must be constant for a given source code, the number of iter-
ations per work item are given as

⌈
#IpWG

#WI

⌉
. Additionally there is usually a

constant overhead for memory accesses, called tmem. Thus, the calculation
time of a work item tCpWI can be calculated depending on the calculation
time per iteration tCpI .

tCpWI =

⌈
#IpWG

#WI

⌉
· tCpI + tmem (5.5)

Both the calculation time per iteration tCpI and the memory overhead tmem
now only depend on the source code of the process, the device it is run on and

— 19 —

CHAPTER 5. PERFORMANCE MODELS

the tokens processed. These values cannot be further broken down without
intricate knowledge of the used hard- and software.

If we re-substitute the above equations into Equation (5.2) on page 19, then
the resulting execution time model is given as

texecution =

⌈
#WI

#PE

⌉
·
⌈

#WG

#CU

⌉
·
(⌈

#IpWG

#WI

⌉
· tCpI + tmem

)
+ toverhead .

(5.6)

This means, that if we later want to estimate the execution time texecution
we only have to measure tCpI and toverhead. This is easy, since these values
only depend on the source code and the device the process is bound to. Thus
we only have to measure these values once and we can then extrapolate the
execution time for all possible choices of number of work groups #WG and
number of work items #WI.

5.1.2 Transfer Time

The transfer time ttransfer scales primarily with the number of tokens trans-
ferred, since each token has to be read, transmitted over the bus and stored.
The amount of tokens is proportional to the amount of work groups used,
since the amount of tokens processed by a single work group is given by a
constant. The amount of work groups increases transmit time linearly, be-
cause we need more tokens for more work groups. However we also have a
constant part needed for setting up communication, compiling kernels and
scheduling on the device and the host. We call this overhead toverhead2 .

ttransmit = tTpWG ·#WG+ toverhead2 (5.7)

Where tTpWG is the transfer time per work group, which can be estimated as
a constant for each process and device, since the amount of tokens per work
group is constant. toverhead2 is again assumed to be a constant. The values
for tTpWG and toverhead2 can be obtained using our developed profiling tools
(chapter 4 on page 13).

5.1.3 Time per Volley

For our calculations of the time per volley tpV we consider again Equa-
tion (5.1) on page 18:

tpV = ttransfer + texecution (5.1 revisited)

By just substituting Equations (5.6) and (5.7) we get our final model in
Equation (5.8) on page 21:

— 20 —

5.2. PROCESS NETWORK MODEL

tpV =

⌈
#WI

#PE

⌉
·
⌈

#WG

#CU

⌉
·
⌈

#IpWG

#WI

⌉
· tCpI

+

⌈
#WI

#PE

⌉
·
⌈

#WG

#CU

⌉
· tmem + toverhead

+ tTpWG ·#WG+ toverhead2 (5.8)

Note that the constant toverhead2 can be absorbed into toverhead, when trying
to calibrate this model.

5.2 Process Network Model

In this section we define our model of a process network. We will then
determine the best achievable throughput and the worst case latency of the
process network. Later we will need these metrics for our mapping algorithm,
since it strives to maximise throughput, while keeping the worst case latency
bounded.

5.2.1 Process Network Specification

We define our process network as the dataflowgraph g = 〈P,C〉 with the
process set P and the set of channels C. Each process p ∈ P is defined as
p = 〈Ip, Op〉|Ip ⊆ C,Op ⊆ C, having an associated set of input channels
Ip and a set of output channels Op. Each channel c ∈ C is defined as
c = 〈ic, oc, cc〉|ic, oc, cc ∈ N, ic ≤ cc, oc ≤ cc where ic and oc denote the input-
and output firerate of the channel in bytes, while cc represents the capacity,
i.e. the number of bytes the channel can hold at a time. The channel is
assumed to be implemented as fifo channel, this means, that no token may
leave the channel until all tokens that have arrived before this token have
also left.

We model our architecture specification as a = 〈D〉 where the device set D
consists of all devices d ∈ D available in the architecture. An exact model
would also contain the communication-busses, which connect these devices,
but we will neglect their resource limitations in this thesis.

We now define the mapping, which binds each process of the process network
to a device of the architecture: d = m(p) : P → D

A schedule s is an ordered list of n process firings s ∈ Pn, n ∈ Z+. The
ordering represents the order of the processes finishing. i.e. si finishes be-
fore sk if and only if i < k|i, k ∈ Z+. We are only interested inadmissible
schedules, that means schedules, which are executable without violating any

— 21 —

CHAPTER 5. PERFORMANCE MODELS

constraints of resources or our assumptions. This means, that no process
firing may overlap with another firing from the same process, the resource
constraints of the devices have to be fulfilled and no channels may overflow
or underflow with tokens at any time during the execution.

Definition 5.2.1. We define a process firing to be ready, if there is no other
firing of the same process scheduled, there are enough tokens on all input
channels and there is enough free space on all output channels. A firing may
only be scheduled to be processed after it has reached ready status.

We define the buffer state as a ordered list b ∈ N|C|, where bi, 0 < i ≤ |C|,
denotes the number of bytes contained within the i-th channel. We introduce
the shorthand bc as the current amount of bytes stored within channel c ∈ C.

When developing models for each separate process in Sections 5.1.1 and 5.1.3
on page 19 and on page 20, we discussed two separate measures, time per
firing tpF and execution time per firing tepF , for each process on each device.
We formalise this as the functions tpF (p, d) : P,D → R+ and tepF (p, d) :
P,D → R+

As suggested in [6] we introduce the topology matrix Γ, where the entry Γi,j
represents the amount of tokens that a firing of process j reads from/writes
to channel i (reading being represented by negative numbers). We define
the firing vector q = {q1, 12, · · · , q|P |} as the positive normalised solution to
Γq = 0| ||q||2 = 1, with qp denoting the normalised firerate of process p . If
each process p in the network fires qp times, then all channels in the network
will hold the same amount of tokens before and after the firings. We call the
collection of these firings a round of a PAPS (periodic admissible parallel
schedule). We can express each paps round as a scaled version of the firing
vector q · l.

The throughput of a process will be specified by the function θ : P → R+|P |,
which maps each process to a rational number representing the number of
firings per time this process is executed.

Definition 5.2.2. We define the throughput of a process as the number of
firings per second of said process.

From theory we know, that knowing the amount of firings of one process
per time, implies knowledge about the firings of any other process, since the
firerates of processes are coupled over the firing vector q in a PAPS round.

Thus we can specify the throughput of our process network as the function
θ(p):

θ(p) = qp · l | l ∈ R+ (5.9)

where l is the scalar optimisation factor.

— 22 —

5.2. PROCESS NETWORK MODEL

5.2.2 Assumptions

In this thesis we have only confronted ourselves with a subset of process
networks. Thus our analysis will reside on the fulfilment of the following
properties:

Assumption 5.2.1. The process network is loop and state free, this means
that the execution of a process firing only depends on its current input tokens.

Assumption 5.2.2. The process network is connected.

Reasoning. It is easy to extend our arguments to unconnected networks, by
viewing each component as its own process network. The only interaction
is that processes from different components might be bound to the same
device, which would essentially transform the problem to a multi objective
problem, where optimising throughput of one component might decrease the
one of the other component. However we will not concern ourselves with
this.

Assumption 5.2.3. The execution time of a process is largely independent
of the tokens it reads, or if not, the deviation of the execution time is small
enough that arguing with the average time is sufficient.

Assumption 5.2.4. The scheduler is fair. All firings which are executed on
the same device will be enqueued and executed in FIFO fashion.

Assumption 5.2.5. The network is run for a long time. We do not pay
special attention to effects when starting up or shutting down the network
and are also not interested in the notion of initial tokens on channels.

Assumption 5.2.6. The communication capacity in between devices is never
fully utilised and does not constrain the throughput of the application.

Assumption 5.2.7. The channel capacity cc of a channel c is divisible by
its inputrate ic and outputrate oc.

Reasoning. Channel capacities which do not fulfil this assumption would be
less efficient, since the full capacities could not be utilised. This is also the
reason why the DAL framework requires this property.

5.2.3 Steady State

In this section we model the steady state, which is the state of the network
after running the network long enough.

After starting the network, it will converge towards a specific steady state.
This is because all processes will always be scheduled as soon as they are

— 23 —

CHAPTER 5. PERFORMANCE MODELS

ready and eventually a network will always be throttled by at least one
bottleneck. The throttling will be distributed over the network, because a
throttled process will not consume enough tokens for its unthrottled prede-
cessors and not generate enough tokens for its unthrottled successors. Thus
eventually these neighbouring processes will also be throttled (because they
cannot receive enough tokens or do not have enough space to write their
tokens to), in turn eventually throttling their neighbours and so on. Once
the whole network has reached a state, where all processes are throttled,
such that we can run the network infinitely long without ever needing to
make adjustments to the speed of processes, we are in the steady state.

Definition 5.2.3. The steady state is a state of the network, where the
processes have throttled each other, such that the network can be executed
indefinitely.

Assumption 5.2.8. Assuming a network is in the steady state, then letting
the network run for an arbitrary amount of time will preserve the current
buffer state.

Reasoning. In the steady state we assume the firing rates to be constant,
thus all channels will have exactly as many tokens written to them over time
as read, preserving the buffer state.

Definition 5.2.4. A bottleneck process is a process, which limits the overall
throughput of the process network in the steady state. This can be either
due to its maximal achievable firing rate or due to resource limitations on a
device.

Note, that there may be multiple bottenecks within a process network in the
steady state. This is due to definition 5.2.4, which defines, that a process may
become a bottleneck due to the device it is bound to. If multiple processes
share a device and this device’s resource limitations are fully utilised, then
this implies, that all processes bound to said device must be bottlenecks.

Definition 5.2.5. A process p is a predecessor of process r in the loop-free
network graph g = 〈P,C〉 if and only if there exists a directed path from p
to r. Vice versa, r is called the successor of p. Direct successors and direct
predecessors are processes, which are immediately adjacent to the respective
processes.

Definition 5.2.6. A channel is called drained if it has not enough tokens
on it in the steady state to allow the process, which reads from the channel,
to fire.

This means, that the process writing to the channel cannot provide enough
tokens for the reading process to be executed as much as the reading process

— 24 —

5.2. PROCESS NETWORK MODEL

would be able to. This will force the reading process to throttle its firing
rate to only consume as many tokens per time as the writer provides.

Drained channels generally occur after bottlenecks, since the bottlenecks are
throttled and their successors can consume more tokens than the bottlenecks
can produce. However they can also occur at other locations in the network,
as illustrated in Figure 5.2.

a
bottleneck c

drained

b ddrained

Figure 5.2: Illustration of the buffer states of a steady state. Bottleneck a
throttles process c by not providing enough tokens for it to consume. In turn
process c throttles process b by not reading as much tokens per time as b
writes and thus process b cannot write as many tokens as process d would
be able to consume, draining the channel in between b and d.

5.2.4 Throughput

In the following we try to find the best achievable throughput of a given
process network, given dataflow graph g, architecture a and mapping m(p).
We may also use the obtained measures from the process models tpF and
tepF . We will later use this knowledge to find an optimal mapping for a
given architecture and dataflow graph.

We want to choose the scalar optimization factor l as large as possible, but
we have some limitations:

1. Each process p has a maximal achievable firing rate
1

tpF (d, p)
on each

device d, which determines how often the process can run per time.
This is because a new firing of the same process can only be enqueued
after the last one has terminated and tpF (d, p) denotes the time needed
for one firing if we use the best case scenario, where we always enqueue
the next firing as soon as the last finished. Thus this fire rate cannot
be exceeded.

2. The device resources are finite and a process may have to wait for other
processes to finish, to access a device.

— 25 —

CHAPTER 5. PERFORMANCE MODELS

3. The bandwidth to the device is limited. The transfer of data and com-
mands of one process to the device may be stalled by other transfers.

As we have already mentioned in the model, we assume, that the bandwidth
limit is never reached. Thus we have to only consider optimising l for the
two former cases:

Case 1 We know the maximal achievable average time for a firing of a
process p ∈ P as tpF (p, d). This measure cannot be exceeded by the actual
firing rate:

qp · l ≤
1

tpF (p,m(p))
|∀p ∈ P (5.10)

optimising l yields

l = min
p∈P

1

qp · tpF (p,m(p))
(5.11)

Case 2 We define the utilisation U(d) of a device d ∈ D as the percentage
of time that the device is processing tasks. We can calculate the utilisation
by summing up how much time each process bound to the device needs.
The time needed by one process we call the usage of the process on the
device. We know the amount of firings per second of a process p as qp · l
and the amount of execution time spent per firing as tepF (p,m(p)) yielding
Usage(p, d) = qp · l · tepF (p, d) and thus also Equation (5.12).

U(d) =
∑

p∈P |m(p)=d

qp · l · tepF (p, d) (5.12)

By definition we have to fulfil that the utilisation may not be larger than
100%:

U(d) =
∑
p∈R

qp · l · tepF (p, d) ≤ 1|∀d ∈ D (5.13)

Where R is the set of processes bound to device d.

After factoring l out and optimising l this yields:

l = min
d∈D

1∑
p∈P |m(p)=d

qp · tepF (p, d)
(5.14)

In this case all processes mapped to device d are bottlenecks of our mapped
network.

— 26 —

5.2. PROCESS NETWORK MODEL

Solution So our problem can be written as the maximisation problem of
l such that Equation (5.10) on page 26 and Equation (5.13) on page 26
hold. For the maximal l, we can just unify Equation (5.11) on page 26 and
Equation (5.14) on page 26 by looking which boundary condition is limiting.
We do this by taking the minimum of all boundaries once more, yielding:

l = min

min
p∈P

1

qp · tpF (p,m(p))
,min
d∈D

1∑
p∈R

qp · tepF (p,m(p))

 (5.15)

where R is the set of processes bound to device d.

Note On our testing environment we have some additional considerations
to make:

• In our execution, firings are grouped together into volleys. However
volleys in our environment have the same properties as firings do in
general graph theory. One has to simply adjust all aforementioned
formulas to use volleys as firings.

• A volley does not necessarily occupy all resources of a device at a time.
This means that there may be multiple processes running on the same

time simultaneously. The usage of the device is scaled by factor
#WG

#CU
,

with #CU the number of compute units which are available to execute
one work group, and #WG the number of work groups to be executed.
The other compute units remain available.

However this works only for #WG ≤ #CU . The correct modifier in

general is
#WG⌈

#WG

#CU

⌉
·#CU

. This is because
⌈

#WG

#CU

⌉
·#CU are the

amount of work groups which could be processed during the execution
time (as many as there are work groups rounded up to the next multiple
of #CU), while the firing actually uses only #WG many.

This changes Equation (5.13) on page 26 to Equation (5.16) and also
changes Equation (5.15) to Equation (5.17):

U(d) =
∑
p∈R

qp ·l ·tepF (p, d)· #WG(p)⌈
#WG(p)

#CU(d)

⌉
·#CU(d)

≤ 1|∀d ∈ D (5.16)

l = min

min
p∈P

1

qp · tpF (p,m(p))
,min
d∈D

⌈
#WG(p)

#CU(d)

⌉
·#CU(d)∑

p∈R
qp · tepF (p,m(p)) ·#WG(p)

(5.17)

— 27 —

CHAPTER 5. PERFORMANCE MODELS

where R is the set of processes which are bounded to device d.

5.2.5 Latency

In the following we try to estimate the latency in the system. These findings
can later be used to find the Pareto front for different mappings optimising
throughput and latency.

Definition 5.2.7. The latency lat(s, t) of a process pair (s, t) is defined as
the time difference from a token being generated at the source s, just after it
has been generated until the last tokens which were generated depending on
said token have been consumed by the target t.

Definition 5.2.8. The latency lat(g) of a process network specified by data-
flow graph g = 〈P,C〉 is defined as the longest time any token spends on the
network and is mathematically defined as

lat(g) := max
s,t∈P

lat(s, t) + tpF (s) (5.18)

For the overall latency we have to add the time that the source process s needs
to produce the token, as its existence starts at the beginning of its execution.

We are interested in the latency of the system in the steady state, i.e. we
neglect any effects that may occur when starting the network up.

To solve this problem, we will first solve an easier sub-problem and then try
to generalise the solution. Thus we will for now assume, that our process
network has only 1 bottleneck process and that the token in- and output
rates are 1 for all channels.

Definition 5.2.9. tokψ(s, t) is the amount of tokens that process t has to
consume in the steady state to empty all channels on a path ψ connecting s
and t if s never fires.

Assumption 5.2.9. The latency latψ(s, t) in between two processes s and t
connected over a path ψ can be calculated as

latψ(s, t) = tok(s, t)
1

qt · l

if the last channel c on path ψ is not drained.

Reasoning. Because we are in the steady state, we know that the average
firing rates are defined by the firing vector q · l. Since we assume, that
channels are implemented as fifos and never empty, we know, that process t
has to process all other tokens in between s and t before reading anything
new. Because we know the tokenrate to be 1 token per firing and that t has a

— 28 —

5.2. PROCESS NETWORK MODEL

firing rate of
1

qt · l
firings per second, we know that process t processes

1

qt · l
tokens per second. So to obtain the time needed to process tokψ(s, t) tokens

is given as latψ(s, t) = tok(s, t)
1

qt · l
. This counts the time from when the

token exists on the very first channel leaving s until it has been processed
by t.

Assumption 5.2.10. The latency latψ(s, t) in between two processes s, t
connected over a path ψ can be lower bounded by

latψ(s, t) =
∑
p∈Π

tpF (p)

if the channels on ψ are all drained. Where Π denotes the set of processes
along the path ψ including t but excluding s.

Reasoning. If the channels are drained, then the time a token takes to travel
through is no longer spent waiting in channels, but instead it is mostly spent
being executed within the processes. tpF (p) denotes the time of a firing of
process p, the token needs to be processed by each process in sequence, so the
time the tokens spends executing is given as the sum thereof:

∑
p∈Π tpF (p).

Note, that we neglected any latency introduced by busy devices. However,
since these processes are not bottlenecks, these additional latencies are nor-
mally fairly small. Thus we will use this lower bound as an estimation of the
real latency for now.

Theorem 5.2.1. Each path ψ(s, t) can be split into two joining paths ψ1(s, r)
and ψ2(r, t), such that ψ1(s, r) has an undrained channel at the end and
ψ2(r, t) consists only of drained channels. The paths ψ1 and ψ2 may also
have a length of 0.

Proof. There are 3 possible constellations of drained and undrained channels
on ψ(s, t):

• There are only drained channels on ψ:
In this case we choose ψ2 = ψ and ψ1 as empty.

• The last channel on ψ is undrained:
In this case we choose ψ1 = ψ and ψ2 as empty.

• There is at least one channel c ∈ ψ undrained and the last channel on
ψ is drained: In this case we look for the last undrained channel cl on
ψ and choose ψ1 as the path from the start up to and including cl and
ψ2 as the rest of ψ.

— 29 —

CHAPTER 5. PERFORMANCE MODELS

Theorem 5.2.2. The overall latency over a path ψ(s, t) in a steady state
can be calculated as the sum of one path ψ1 with a undrained channel at
the end of it and a path ψ2 consisting only of drained channels and is thus
mathematically defined as

latψ(s, t) = tok(s, r)
1

qr · l
+
∑
p∈Π

tpF (p) (5.19)

where r is the process, where the two paths join and Π is the set of all
processes of the second path, which is .

Proof. This follows directly from theorem 5.2.1 on page 29, since we simply
add the latency for path ψ2 (assumption 5.2.9 on page 28) and the latency
for a path of drained channels (assumption 5.2.10 on page 29) up.

However we actually do not yet know the amount of tokens in between two
processes tok(s, t) in the steady state. Thus the next step will be to introduce
an algorithm, which finds the amount of tokens on each channel in the steady
state.

Definition 5.2.10. A process p ∈ P is called blocked, if it cannot fire, due
to missing tokens on an input channel or not having enough space to write
to on a output channel.

We know, that in the steady state, the whole process network has been
throttled due to the limitations of the bottleneck process. We can artificially
reconstruct such a state by running the network without ever executing the
bottleneck. As such, the bottleneck (and later other blocked processes) will
start blocking its direct predecessor processes, as soon as the connecting fi-
fos are full. Similarly blocked processes will block direct successor processes,
when the connecting fifo is empty. Thus eventually the whole process net-
work will be blocked. In this state, the whole network has been throttled
down to the firing rate of the bottleneck (this rate being zero firings) and
is thus representative of the steady state. So we will use this technique in
algorithm 5.2.1 on page 31, in order to find the steady state of a process
network.

Assumption 5.2.11. Algorithm 5.2.1 on page 31 terminates and returns
the steady state of the associated process network.

Reasoning. It can easily be seen, that the algorithm terminates, since our
loop-free process network, which contains a blocking process b, that is never
fired has only a limited amount of overall space to store tokens. Because b

— 30 —

5.2. PROCESS NETWORK MODEL

Algorithm 5.2.1 Algorithm to find a steady state of a process network with
only one critical process.
Require: All channels are empty
1: P : set of processes
2: b ∈ P : the bottleneck process
3: U ← ∅: the set of processes which are certainly not ready
4: while |U |+ 1 < |P | do
5: p ∈ P\{U ∪ b} randomly chosen
6: if p is ready then
7: while p is ready do
8: fire p
9: end while

10: U ← p //Remove all other processes from U as they might be
ready again

11: else
12: U ← U ∪ p
13: end if
14: end while
15: return current fillstates of all channels

prevents the network from consuming all tokens, we must reach an iteration
where no process (except for b) is ready anymore, because all are blocked by
full or empty channels. This means that all processes but b are not ready and
thus in U , yielding |U | = |P | − 1 and terminating the algorithm. Because
all processes but b are blocked, the network has been throttled down to the
firing rate of b and we thus obtain a steady state.

Now that we have obtained the steady state using algorithm 5.2.1 we now
know which channels are drained and can apply theorem 5.2.2 on page 30
to determine the latency. Thus we have now solved our simplified problem
with only one bottleneck process and tokenrates of 1.

We will now consider what happens if we allow multiple bottleneck processes.
We have to realise, that there is not necessarily one true solution to this
problem, since we cannot predict the fillstate of a channel, which connects
two bottleneck processes. This is because these processes are supposedly
running at the exact same speed, generating and consuming the exact same
amount of tokens per second. Thus if in reality one runs just slightly faster
than the other, the channel could be completely emptied or completely filled.
Thus there are actually multiple steady states possible and we will show
algorithms to determine the most extreme cases: The one where all channels
in between are empty (algorithm 5.2.2 on page 32) and the one where the
channels are full (algorithm 5.2.3 on page 33). Also note the illustrated
example in Figure 5.3 on page 37.

— 31 —

CHAPTER 5. PERFORMANCE MODELS

Algorithm 5.2.2 Algorithm to find a steady state of a process network
with multiple bottleneck process. This state is the one containing the least
amount of tokens for any steady state and thus yields the shortest latency.
Require: All channels are empty
1: P : set of processes
2: B ⊆ P : the set of all bottleneck process
3: U ← ∅: the set of processes which are certainly not ready
4: while |U |+ |B| < |P | do
5: p ∈ P\{U ∪B} randomly chosen
6: if p is ready then
7: while p is ready do
8: fire p
9: end while

10: U ← p //Remove other processes from U as they might be ready
again

11: else
12: U ← U ∪ p
13: end if
14: end while
15: return current fillstates of all channels

Theorem 5.2.3. Algorithm 5.2.2 terminates and finds the steady state with
the least amount of tokens of the associated process network.

Proof. If we block execution of all bottleneck processes, we simulate the case,
where the first bottlenecks throttle the ones in the back, as this simulation
leaves the channels in between bottlenecks empty.

Theorem 5.2.4. Algorithm 5.2.3 on page 33 terminates and finds the steady
state with the most amount of tokens of the associated process network.

Proof. This time the algorithm assumes the bottlenecks later in the process
network to be the limiting factors, first filling the channels in between them
and earlier bottlenecks, which will then throttle the bottlenecks.

We will now consider the changes of the algorithm if we allow tokenrates to
be greater than 1. Assumption 5.2.9 on page 28 is no longer valid, because a
process may consume multiple tokens per firing. However we can still relate
the number of firings of a process to the amount of tokens on the separate
channels on paths leading to said process:

— 32 —

5.2. PROCESS NETWORK MODEL

Algorithm 5.2.3 Algorithm to find a steady state of a process network
with multiple bottleneck process. This state is the one containing the most
amount of tokens for any steady state and thus yields the longest possible
latency.
Require: All channels are empty
1: P : set of processes
2: B ⊆ P : the set of all bottleneck process
3: T ⊆ B: the set of bottleneck processes, which have no path starting

from them, leading to another bottleneck process
4: U ← ∅: the set of processes which are certainly not ready
5: while |U |+ |T | < |P | do
6: p ∈ P\{U ∪ T} randomly chosen
7: if p is ready then
8: while p is ready do
9: fire p

10: end while
11: U ← p //Remove other processes from U as they might be ready

again
12: else
13: U ← U ∪ p
14: end if
15: end while
16: return current fillstates of all channels

— 33 —

CHAPTER 5. PERFORMANCE MODELS

Theorem 5.2.5. The latency latψ(s, t) in between two processes s, t connec-
ted over a path ψ can be calculated as

latψ(s, t) =
∑
c∈ψ

bc
oc
· 1

qu · l

where u represents the process, which has c as input channel. bc denotes the
number of tokens on channel c in the steady state. This holds if the last
channel c on path ψ is not drained.

Proof. Similar to assumption 5.2.9 on page 28 we try again to count the
number of firings, that t has to execute, to consume all tokens. We do this
for each channel c ∈ ψ separately. We know the number of firings of u which
are necessary as bc

oc
, consuming oc tokens per firing. Since the number of

firings of different processes are correlated over the firing vector, we know the
number of firings of t as bc

oc
· qtqu . Now we just have to multiply the number of

firings by the period of a firing of t, which is 1
qt·l , yielding

bc
oc
· qtqu ·

1
qt·l = bc

oc
· 1
qu·l .

Now it only remains to sum over each channel c ∈ ψ

However assumption 5.2.10 on page 29 is still a fair assumption, as a token
travelling through a path of drained channels should still not have to wait on
the channels long. It may indeed happen, that due to mismatching tokenrates
of reading and writing process, the token has to wait some time on a channel,
however we assume this time to be small.

For theorem 5.2.2 on page 30 to still hold we have to replace Equation (5.19)
when tokenrates are bigger than 1, since it is based on assumption 5.2.9 on
page 28, which is no longer valid. The new equation is an addition over both
paths exactly the same as described in the original theorem and given as:

latψ(s, t) =
∑
c∈ψ1

bc
oc
· 1

qu · l
+
∑
p∈Π

tpF (p) (5.20)

where u is the process which reads from c, r is the process where the two
paths join and Π is the set of all processes of the second path ψ2. bc denotes
the number of tokens on channel c in the steady state.

Also we have to consider, whether we can still use the algorithms 5.2.2
and 5.2.3 on page 32 and on page 33 to obtain the steady state, since we
have to find the number of tokens on each channel bc to utilise determine
the latency.

Assumption 5.2.12. Algorithms 5.2.2 and 5.2.3 on page 32 and on page 33
return valid steady states, which determine good bounds for the set of all
possible steady states, even if tokenrates are greater than 1.

— 34 —

5.2. PROCESS NETWORK MODEL

Reasoning. Theorem 5.2.3 on page 32 and theorem 5.2.4 on page 32 do
not require the tokenrate to be 1 and thus the algorithms still return a
valid reachable steady state. However, now there can be a multitude of
additional possible steady states, because if the tokenrates from and to a
channel mismatch, there might be tokens left behind or token capacity, which
is unusable. But it can be seen, that the amount of tokens which we miscount
are upper bounded by the input- and output tokenrates. This is because a
process will fire as soon as its input channels have enough tokens for one
firing. All the same, a process will fire as soon as there is enough space on
its output channels. While our error is upper bounded by the tokenrates,
the total space in a fifo must be a multiple of its input and output rates
(assumption 5.2.7 on page 23). Thus it is fair to say, that the error we
introduce by not checking the other steady states is negligible.

Note, that it would be possible to obtain the additional states. Instead
of finishing, when a steady state is found, you would simply execute the
bottleneck once and then rerun the algorithm to obtain another steady state.
However this can become highly complicated with multiple bottlenecks, since
one would have to try every constellation of different bottlenecks firing a
certain nubmer of times.

Solution Given a dataflow graph g = 〈P,C〉, an architecture a =< D >
and a mapping m : P → D, we find the latency of the mapped process
network as follows:

1. Find the worst and best steady states using algorithms 5.2.2 and 5.2.3
on page 32 and on page 33.

2. For each of the obtained steady states:

(a) For each directed path ψ in the network:

i. Find the last channel cr on ψ, which is not drained and has
process r as consumer.

ii. split ψ in a path ψ1, which has the undrained channel cr at
the end and a path ψ2, consisting of only drained channels.
These two paths join at process r

iii. determine the latency of the path as latψ(s, t) =
∑

c∈ψ1

bc
oc
·

1

qu · l
+
∑

p∈Π tpF (p) , where u is the process which reads from
c.

(b) Maximise over all discovered latencies to obtain the estimate of
the process network latency.

— 35 —

CHAPTER 5. PERFORMANCE MODELS

Note that we can optimise this procedure in multiple ways:

• We do not have to check all paths within the network, since a path
ψa, which is sub-path to another path ψb cannot yield the worst case
latency, as latency may only increase for longer paths.

• We can thus easily compute the subset of possible end processes of such
a path, by searching for all processes which have no output channels.

5.3 Summary

In this chapter we have shown how to model a process network execution in
the DAL framework. We did this by first only considering the execution time
of one volley on a device texecution and developing a separate model for it.
We were then able to build a model of the overall time needed for one volley
tpV based on the model for the execution time texecution. Properly defining
the scope of our network model enabled us to model throughput and latency
of a process network.

— 36 —

5.3. SUMMARY

d
bo

ttl
en

ec
k

e

po
te

nt
ia

lly
dr

ai
ne

d

g
po

te
nt

ia
lly

dr
ai

ne
d

m
bo

ttl
en

ec
k

o

dr
ai

ne
d

a
b

dr
ai

ne
d

ci
l

k

n

r

dr
ai

ne
d

p
dr

ai
ne

d

q
dr

ai
ne

d

s

t
dr

ai
ne

d

h
po

te
nt

ia
lly

dr
ai

ne
d

f

dr
ai

ne
d

po
te

nt
ia

lly
dr

ai
ne

d

po
te

nt
ia

lly
dr

ai
ne

d

po
te

nt
ia

lly
dr

ai
ne

d

dr
ai

ne
d

F
ig
ur
e
5.
3:

Il
lu
st
ra
ti
on

of
th
e
bu

ffe
r
st
at
es

of
a
st
ea
dy

st
at
e
of

a
fa
ir
ly

co
m
pl
ex

pr
oc
es
s
ne

tw
or
k
w
it
h
tw

o
bo

tt
le
ne

ck
s.

N
ot
e

th
at

th
e
ch
an

ne
ls

la
be

lle
d
“p
ot
en
ti
al
ly

dr
ai
ne
d”

w
ill

be
dr
ai
ne

d,
if
w
e
as
su
m
e
th
e
bo

tt
le
ne

ck
d
to

no
t
qu

it
e
ge
ne

ra
te

en
ou

gh
to
ke
ns

fo
r
m

to
co
ns
um

e
(T

hi
s
st
at
e
is
ob

ta
in
ed

by
ru
nn

in
g
al
go

ri
th
m

5.
2.
2
on

pa
ge

32
).

T
he

ch
an

ne
ls
w
ill

be
no

t
dr
ai
ne

d,
if

w
e
as
su
m
e
m

to
co
ns
um

e
sl
ig
ht
ly

m
or
e
th
an

d
m
ay

ge
ne

ra
te

(T
hi
s
st
at
e
is

ob
ta
in
ed

by
ru
nn

in
g
al
go

ri
th
m

5.
2.
3
on

pa
ge

33
).

— 37 —

CHAPTER 5. PERFORMANCE MODELS

— 38 —

6
Experimental Evaluation

In this chapter we will run some experiments to test against our developed
process execution model from chapter 5 on page 17. This means we will
create some sample application process networks and evaluate them on dif-
ferent heterogeneous systems. In parallel we will calibrate our models of the
processes for each heterogeneous system and compare the calibrated model
to the measurements obtained by our profiling tools (chapter 4 on page 13).

6.1 Setup

In this section we will shortly describe the surrounding conditions of our
testing environment. At first we will have a look at the used hardware
systems and then shortly explain our sample applications, that we used for
testing.

6.1.1 Hardware

The considered hardware platform consists of two CPU’s, and a GPU. There
are two Intel CPU’s “Xeon(R) CPU E5” with a total of 8 cores using the Intel
driver version 1.2.0.82248, which is OpenCL 1.2 compatible. The GPU is an
AMD graphics card “Radeon HD 7900 Series”, with 32 work groups, each
containing 64 work items using the AMD driver version 1445.5 (VM), which
is OpenCL 1.2 compatible.

— 39 —

CHAPTER 6. EXPERIMENTAL EVALUATION

6.1.2 Application

We will now shortly describe the functionality of our used testing example.

Single Modifier Example

This example is a simple process network, consisting of one OpenCL process,
the modifier, as well as two POSIX threads, the generator and the consumer.
The generator has an internal counter and each firing will send the counter
value as an integer token and increment the counter. Because this would
generate a lot of firings with little tokens, the generator can be configured
to send a vector of multiple integer tokens per firing.

The modifier will distribute the integer tokens evenly among its assigned
work items and each integer will be multiplied multiple times with its original
value. The number of multiplications can be chosen freely, but should be
chosen as a prime number, since according to Eulers theorem [7] it holds
that:

aφ(n) ≡ 1(mod n) (6.1)

where φ(n) is the Eulers totient function. If n is chosen prime, then φ(n) =
n − 1 which can be reformulated as an ≡ a(mod n). This means that the
modifier will execute a lot of division and multiplication functions, but in
the end its result, i.e. an mod n, will be the same as its input a. So the
modifier will be busy and always output its input values. The modifier can
fully profit from parallelization, since each output token only depends on a
single input token and is independent of all others.

The consumer will read the integer tokens produced by the modifier and has
an internal counter, which predicts the value it is supposed to receive. It will
always check whether the received values are correct when consuming them.

The generator and consumer are synthesized as POSIX threads, because
their internal counter requires these processes to be stateful. The modifier
is synthesized with OpenCL and can be executed on graphics cards. In our
experiments we will thus always analyze the modifiers performance.

6.2 Process Execution Model

In the following we will test whether our process execution model reflects
the reality.

— 40 —

6.2. PROCESS EXECUTION MODEL

6.2.1 Average Execution Time per Firing

In the following we will evaluate the average execution time per firing, that
a separate process needs. Note that we observe the execution time averaged
over many firings. Since multiple firings are executed in parallel as a volley,
this average execution time depends on the number of work groups used. In
Section 5.1.1 on page 19 we have modelled the execution time per volley, so
dividing Equation (5.6) on page 20 by the number of work items yields the
estimation Equation (6.2).

tepF =

⌈
#WI

#PE

⌉
·
⌈

#WG

#CU

⌉
·
(⌈

#IpWG

#WI

⌉
· tCpI + tmem

)
+ toverhead

#WG
(6.2)

In the following we show an experiment using the single modifier example
(see Section 6.1.2 on page 40) on the server architecture on the GPU. We
are focusing on the impact of the number of work items and thus leave the
number of work groups constant for each experiment.

In Figure 6.1 on page 42 we see an example, where the number of tokens
per firings has been chosen large, as 512. This corresponds to #IpWG in

Equation (6.2), which means that the term
⌈

#IpWG

#WI

⌉
looks like a hyperbola

function for small #WI, while the term
⌈

#WI

#PE

⌉
is just constantly equal

1. This results in the observed overall hyperbola function. We see, that the
measurements of the real system fit very closely to our model.

In Figure 6.2 on page 42 we see an example with a much smaller number
of iterations per firing of 32, but instead we have artificially increased the

time it takes per iteration tCpI . Now the term
⌈

#IpWG

#WI

⌉
is not a smooth

function anymore, but jumps, whenever #WI is a divisor of 32. Again we
see, that the measurements match our theoretical model very closely.

These experiments show, that increasing the number of work items can im-
prove throughput heavily, especially, when the number of work items is smal-
ler than the number of available processing elements per compute unit. Also
latency profits from the additional work items, as the overall execution takes
less time. However, we also see that processes, which do not feature enough
internal parallelism cannot profit from this and are thus less suited for devices
with parallel architectures.

— 41 —

CHAPTER 6. EXPERIMENTAL EVALUATION

0 10 20 30 40 500.
00

00
0.

00
10

0.
00

20

Number of work items

A
ve

ra
g

e
ex

ec
ut

io
n

tim
e

pe
r

fir
in

g

real estimate

Figure 6.1: Test-run of a single process on the AMD GPU with 32 compute
units and 64 processing elements per compute unit, working on 1 work group,
spanning 512 iterations.

0 20 40 60 80

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

Number of work items

A
ve

ra
g

e
ex

ec
ut

io
n

tim
e

pe
r

fir
in

g

real estimate

Figure 6.2: Test-run of a single process on the AMD GPU with 32 compute
units and 64 processing elements per compute unit, working on 16 work
groups, each spanning 32 iterations.

— 42 —

6.2. PROCESS EXECUTION MODEL

6.2.2 Average Time per Firing

We will now look at the average time used for a firing. This includes the
time for the memory transfer and can be inferred from the model of the time
per volley in Equation (5.8) on page 21 by again dividing by the number
of work groups, see Equation (6.3). Note, that the number of work items
actually has no influence on the additional transfer and overhead times at
all, which is why we focus our observations on the number of work groups.

tpF =

(⌈
#WI

#PE

⌉
·
⌈

#WG

#CU

⌉
·
⌈

#IpWG

#WI

⌉
· tCpI

+

⌈
#WI

#PE

⌉
·
⌈

#WG

#CU

⌉
· tmem + toverhead

+ tTpWG ·#WG+ toverhead2

)
· 1

#WG
(6.3)

The first experiment will execute the single modifier example (see Section 6.1.2
on page 40) on the Intel CPU, varying the amount of work groups. With a
fixed amount of 32 work items per work group, we can clearly see the effect

of the term
⌈

#WG

#CU

⌉
causing spikes, whenever #WG reaches a multiple of

#CU = 8. We can see, that our estimate is fairly close to the actual values.

In a second experiment, executing the same single modifier example on the

AMD GPU, we can see that the term
⌈

#WG

#CU

⌉
has no large impact anymore,

since the number of compute units is now 32. Thus we can see the effect,
that with increasing number of work groups, the time per firing decreases
diminishingly. Our model seems to match the measurements quite accurately
once more.

In these experiments we see, that an increase in the number of work groups
can improve throughput significantly, as the transfer time is a constant time
used for all work groups together. We also note that choosing the number
of work groups as a multiple of the number of compute units is beneficial,
because otherwise some work groups have to wait for others to finish, even
though there are additional compute units available. However the drawback
is, that the latency increases with the number of work groups, because the
execution of an entire volley takes much longer.

— 43 —

CHAPTER 6. EXPERIMENTAL EVALUATION

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
g

e
tim

e
pe

r
fir

in
g

[s
]

Number of work groups

real estimate

Figure 6.3: Test-run of a single process on the Intel CPU with 8 compute
units and 32 processing elements per compute unit, working on 32 Work
Items per Work Group.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
g

e
tim

e
pe

r
fir

in
g

Number of work groups

real estimate

Figure 6.4: Test-run of a single process on the AMD GPU with 32 compute
units and 64 processing elements per compute unit, working on 64 Work
Items per Work Group.

— 44 —

6.3. SUMMARY

6.3 Summary

In this section we have seen the setup used for experimental evaluation, as
well as the comparison of our experiments and the calibrated models. In our
experiments, we note that the calibrated models are a very close match to
the measured values from our experiments.

It can be seen, that increasing the number of used work groups or work items
can be very beneficial up to some point, but that the throughput gained will
decrease logarithmically. In the case of the number of work groups, we
noted a trade off between latency and throughput, as both increase with
larger amounts of work groups.

— 45 —

CHAPTER 6. EXPERIMENTAL EVALUATION

— 46 —

7
Conclusion and Outlook

7.1 Conclusion

In this thesis we proposed an approach, which uses a calibration algorithm
for extracting performance characteristics for a given application and archi-
tecture, based on which we could perform an accurate estimation for any
given mapping. We have considered both the binding and the parallelisation
parameters as part of our mapping.

We have developed profiling tools, which allow analysis of a given Synchron-
ous Data Flow graph and its separate processes.

The calibration algorithm, which extracts the data needed for estimation,
has been implemented. We have also performed experimental evaluations ,
which show that its calibrated performance models match the test results
very well. Thus we know that the created models for the execution time and
the time per volley are very accurate.

We have developed an algorithm, which can estimate throughput and latency
of any mapping. We have proposed methods for determining the throughput
and latency of a process network, only knowing the execution time and the
time per volley of each process.

— 47 —

CHAPTER 7. CONCLUSION AND OUTLOOK

7.2 Outlook

As this thesis provides the tools to find an optimal mapping it would now be
easily possible to use a design space exploration algorithm in order to find
an optimal mapping for a given architecture and application.

Additional research into the exact mechanics of memory management could
yield some further improvements to our process models, which might enable
further improvements in performance.

Testing the algorithms with real applications and experimentally evaluating
the estimation algorithm would also further improve the usefulness of this
thesis.

— 48 —

A
Appendix

A.1 Presentation Slides

— 49 —

 Institut für Technische Informatik
 und Kommunikationsnetze
 Computer Engineering and
Networks Laboratory

Mapping Optimisation of Streaming Applications on Heterogeneous
Platforms
Master Thesis

Felix Wermelinger

Advisers: Andreas Tre�er & Lars Schor

3rd September 2014

Motivation

Modern architectures feature multiple devices

Modern devices feature inherent parallelism

How can we use these devices e�iciently?

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 1 / 27

Goals

Analyse performance of di�erent mappings of streaming applications on heterogeneous platforms
É What parameters of mapping a�ect performance?
É Can we model the dependency?

Perspective

Find a mapping which optimizes performance
É Find it within reasonable time

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 2 / 27

Approach
Calibration creates data table, characterizing performance

Estimator calculates performance for a given mapping

Design space explorer explores mappings to find optimised mapping

Application Architecture

Calibration

Performance
Characteristics
Table

Performance
Estimation

Mapping

Performance
Estimate

Design Space
Exploration

Optimised
Mapping

1x

For each mapping

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 3 / 27

Contributions
Developed calibration

Developed estimation

Experimental evaluation of implementations

Application Architecture

Calibration

Performance
Characteristics
Table

Performance
Estimation

Mapping

Performance
Estimate

Design Space
Exploration

Optimised
Mapping

1x

For each mapping

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 4 / 27

Problem Description
Streaming application given as Synchronous Dataflow Graph (SDF)

Architecture is a set of devices with multiple levels of parallelism

The returned mapping has to include binding of processes to devices and se�ing of parallelism used

Application (SDF)

P1 P2

P3

P4

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 5 / 27

Problem Description
Streaming application given as Synchronous Dataflow Graph (SDF)

Architecture is a set of devices with multiple levels of parallelism

The returned mapping has to include binding of processes to devices and se�ing of parallelism used

Application (SDF)

P1 P2

P3

P4

Core 1

CPU

Core 2 Cluster 1

GPU

S
IM

D
 u

n
it

s

S
IM

D
 u

n
it

s

Heterogeneous system

Cluster 2

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 5 / 27

Problem Description
Streaming application given as Synchronous Dataflow Graph (SDF)

Architecture is a set of devices with multiple levels of parallelism

The returned mapping has to include binding of processes to devices and se�ing of parallelism used

Application (SDF)

P1 P2

P3

P4

Core 1

CPU

Core 2 Cluster 1

GPU

S
IM

D
 u

n
it

s

S
IM

D
 u

n
it

s

Heterogeneous system

Cluster 2

Use 1 thread, 20 SIMD threads

Use 1 thread, 2 SIMD threads
Use 2 threads, 10 SIMD threads

Use 4 threads, 8 SIMD threads

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 5 / 27

Context
The Distributed Application Layer framework was used for synthesis and execution
É Uses OpenCL or POSIX threads for processes
É Manages scheduling and memory transfer

application
specification

architecture
specification

mapping
specification

OpenCL
synthesizer

POSIX
synthesizer

OpenCL runtimePOSIX Threads

DAL Synthesizer

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 6 / 27

Performance Estimation
Optimized performance: maximal throughput with minimal latency

Throughput: the number of tokens processed per second

Latency: longest time a token may need to traverse the network

Application Architecture

Calibration

Performance
Characteristics
Table

Performance
Estimation

Mapping

Performance
Estimate

Design Space
Exploration

Optimised
Mapping

1x

For each mapping

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 7 / 27

Performance Estimation - Throughput

a
9 firings/s

b
5 firings/sfull

d
9 firings/s

empty

c
7 firings/s

empty

e
16 firings/s

full

The bo�leneck limits overall throughput

Bo�leneck thro�les all other processes→ Steady state

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 8 / 27

Performance Estimation - Throughput

a
9 firings/s

b
5 firings/sfull

d
9 firings/s

empty

c
7 firings/s

empty

e
16 firings/s

full

The bo�leneck limits overall throughput

Bo�leneck thro�les all other processes→ Steady state

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 8 / 27

Performance Estimation - Throughput
Processes are bound to devices

Devices: U V W X

a
9 firings/s

b
5 firings/s

d
9 firings/s

c
7 firings/s

e
16 firings/s

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 9 / 27

Performance Estimation - Throughput
Processes are bound to devices

Devices: U V W X

a
9 firings/s

b
5 firings/s

d
9 firings/s

c
7 firings/s

e
16 firings/s

4.5 firings/s

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 9 / 27

Performance Estimation - Throughput

Time per firing batch 6= Execution
time

Device can execute multiple threads
in parallel

For throughput estimation we
need to know

Execution time

Time per firing batch

Controller Device

Send
data

Execute
firing

Retrieve
data

Tim
e
 p

e
r fi

rin
g
 b

a
tch

E
xe

cu
tio

n
 tim

e

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 10 / 27

Performance Estimation - Throughput

Time per firing batch 6= Execution
time

Device can execute multiple threads
in parallel

For throughput estimation we
need to know

Execution time

Time per firing batch

Controller Device

Send
data

Execute
firing

Retrieve
data

Tim
e
 p

e
r fi

rin
g
 b

a
tch

E
xe

cu
tio

n
 tim

e

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 10 / 27

Performance Estimation - Throughput

Time per firing batch 6= Execution
time

Device can execute multiple threads
in parallel

For throughput estimation we
need to know

Execution time

Time per firing batch

Controller Device

Send
data

Execute
firing

Retrieve
data

Tim
e
 p

e
r fi

rin
g
 b

a
tch

E
xe

cu
tio

n
 tim

e

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 10 / 27

Performance Estimation - Latency

Number of tokens on channels in steady state is known

a
9 firings/s

b
5 firings/s

full
10 tokens

d
9 firings/s

empty

c
7 firings/s

empty

e
16 firings/s

full

Latency to traverse channel: determined by number of tokens in steady state on channel

Latency to traverse process = Time per firing batch

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 11 / 27

Performance Estimation - Latency

Multiple bo�lenecks→ unknown channel fillstates

a
9 firings/s

b
5 firings/sempty

d
9 firings/s

?

c
7 firings/s

empty

e
16 firings/s

full

Steady state is unknown
É We can still give boundaries for latency

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 12 / 27

Performance Characteristics Table

Application Architecture

Calibration

Performance
Characteristics
Table

Performance
Estimation

Mapping

Performance
Estimate

Design Space
Exploration

Optimised
Mapping

1x

For each mapping

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 13 / 27

Performance Characteristics Table

For throughput estimation we
need to know

Execution time

Time per firing batch

Controller Device

Send
data

Execute
firing

Retrieve
data

Tim
e
 p

e
r fi

rin
g
 b

a
tch

E
xe

cu
tio

n
 tim

e

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 14 / 27

Calibration

Application Architecture

Calibration

Performance
Characteristics
Table

Performance
Estimation

Mapping

Performance
Estimate

Design Space
Exploration

Optimised
Mapping

1x

For each mapping

Goal:
Create table with timing values for each mapping (binding & parallelisation) of each process
É This design space is still very large

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 15 / 27

Calibration - Concept

Test each process binding separately

Measure needed timing values
É Time per firing batch
É Execution time

Instead of exploring whole design
space:
É Only execute few test cases
É Interpolate values according to

process model

Application Architecture

Performance
Characteristics
Table

Test runs

Process Model

Model Calibration

Measurements

Calibrated
Process Model

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 16 / 27

Process Performance Model - Execution Time
Controller Device

Send
data

Execute
firing

Retrieve
data

Tim
e
 p

e
r fi

rin
g

 b
a
tch

E
xe

cu
tio

n
 tim

e

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 17 / 27

Process Performance Model - Execution Time
We can configure multiple threads to be executed together

1 Thread Cluster 1

3 Threads Cluster 1

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 18 / 27

Process Performance Model - Execution Time
We can configure multiple threads to be executed together

1 Thread

3 Threads

Cluster 1

Cluster 1

Cluster 2

Cluster 3

Cluster 2

Cluster 3

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 18 / 27

Process Performance Model - Execution Time
We can configure multiple threads to be executed together

Cluster 2

Cluster 1

1 Thread

3 Threads

Cluster 1

Cluster 2

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 18 / 27

Process Performance Model - Execution Time
We can configure multiple threads to be executed together

Cluster 2

Cluster 1

1 Thread

3 Threads

Cluster 1

Cluster 2

Cluster 2

Cluster 14 Threads

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 18 / 27

Process Performance Model - Execution Time
Work of a cluster gets split onto SIMD units

SIMD unit 2

SIMD unit 3

1 SIMD Thread

3 SIMD Threads

SIMD unit 1

SIMD unit 1

SIMD unit 2

SIMD unit 3

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 19 / 27

Process Performance Model - Execution Time
Work of a cluster gets split onto SIMD units

SIMD unit 2

SIMD unit 1

1 SIMD Thread

3 SIMD Threads

SIMD unit 1

SIMD unit 2

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 19 / 27

Process Performance Model - Execution Time
Work of a cluster gets split onto SIMD units

SIMD unit 2

SIMD unit 1

SIMD unit 2

SIMD unit 1

1 SIMD Thread

3 SIMD Threads

4 SIMD Threads

SIMD unit 1

SIMD unit 2

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 19 / 27

Process Performance Model - Execution Time

The thread cannot be segmented arbitrarily

1 SIMD Thread

2 SIMD Threads

SIMD unit 1

SIMD unit 1

SIMD unit 2

Operation =3

Operation 1 Operation 2 Operation 3

Operation 1 Operation 2

Operation 3

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 20 / 27

Process Performance Model - Execution Time

Execution time=
¡

#Threads
#Clusters available

¤
·
¡
#SIMD threads
#SIMD units

¤

·
�¡

#Operations
#SIMD threads

¤
+ tmem

�
· time per Operation+ toverhead

All values but our parallelisation variables are constant for a given binding.

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 21 / 27

Process Performance Model - Time per Firing Batch

Additional time for communication
& data transfer
É Most timeintervals only depend on

device binding
É “Send” & “Retrieve” scale with data

transfered

Controller Device

Send
data

Execute
firing

Retrieve
data

Tim
e
 p

e
r fi

rin
g
 b

a
tch

E
xe

cu
tio

n
 tim

e

Time per firing batch= Execution time+ toverhead + ttransfer ·#Threads

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 22 / 27

Overview

Application Architecture

Calibration

Performance
Characteristics
Table

Performance
Estimation

Mapping

Performance
Estimate

Design Space
Exploration

Optimised
Mapping

1x

For each mapping

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 23 / 27

Experimental Evaluation - Setup

Hardware:
É 2 CPU’s “Xeon CPU E5”

Æ 8 cores in total

É AMD graphics card “Radeon HD 7900 Series”
Æ 32 clusters
Æ 64 SIMD units each

So�ware

Generator Modifier Consumer

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 24 / 27

Experimental Evaluation - Process Performance Model

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 20 40 60 80 100 120 140

A
ve

ra
ge

 ti
m

e
pe

r
fir

in
g

Number of threads

Measurements

Figure: Test-run on the Intel CPU with 8 Cores
Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 25 / 27

Experimental Evaluation - Process Performance Model

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 20 40 60 80 100 120 140

A
ve

ra
ge

 ti
m

e
pe

r
fir

in
g

Number of threads

Measurements Estimation

Figure: Test-run on the Intel CPU with 8 Cores
Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 25 / 27

Experimental Evaluation - Process Performance Model

0 20 40 60 80

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

Number of SIMD threads

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
pe

r
fir

in
g

measure

Figure: Test-run on the Nvidia GPU with 64 SIMD units per cluster and 32 instructions

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 26 / 27

Experimental Evaluation - Process Performance Model

0 20 40 60 80

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

Number of SIMD threads

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
pe

r
fir

in
g

measure estimate

Figure: Test-run on the Nvidia GPU with 64 SIMD units per cluster and 32 instructions

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 26 / 27

Summary

Performance estimation is possible if execution time and time per firing batch known

Execution time and time per firing batch can be modelled

The developed models match experimental evaluation

Conclusion

Throughput depends logarithmically on parallelism

Latency scales linearly with parallelism

Felix Wermelinger Mapping Optimisation of Streaming Applications on Heterogeneous Platforms 23th June 2014 27 / 27

A.1. PRESENTATION SLIDES

— 61 —

Bibliography

[1] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping applications
to tiled multiprocessor embedded systems,” in Application of
Concurrency to System Design, 2007. ACSD 2007. Seventh
International Conference on. IEEE, 2007, pp. 29–40.

[2] A. H. Ghamarian, S. Stuijk, T. Basten, M. Geilen, and B. D. Theelen,
“Latency minimization for synchronous data flow graphs,” in Digital
System Design Architectures, Methods and Tools, 2007. DSD 2007. 10th
Euromicro Conference on. IEEE, 2007, pp. 189–196.

[3] Khronos. Opencl documentation. [Online]. Available:
http://www.khronos.org/opencl/

[4] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele,
“Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems,” in Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded
systems. ACM, 2012, pp. 71–80.

[5] L. Schor, A. Tretter, T. Scherer, and L. Thiele, “Exploiting the
parallelism of heterogeneous systems using dataflow graphs on top of
opencl,” in Embedded Systems for Real-time Multimedia (ESTIMedia),
2013 IEEE 11th Symposium on. IEEE, 2013, pp. 41–50.

[6] E. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data
flow programs for digital signal processing,” Computers, IEEE
Transactions on, vol. 100, no. 1, pp. 24–35, 1987.

[7] G. H. Hardy, E. M. Wright, D. R. Heath-Brown, and J. H. Silverman,
An introduction to the theory of numbers. Clarendon press Oxford,
1979, vol. 4.

— 62 —

http://www.khronos.org/opencl/

	Introduction
	Motivation
	Related Work
	Contributions
	Outline

	Background
	OpenCL
	Distributed Application Layer

	Problem & Approach
	Problem Description
	Approach

	Performance Evaluation Tools
	Profiling
	Analyser
	Summary

	Performance Models
	Process Execution Model
	Execution Time
	Transfer Time
	Time per Volley

	Process Network Model
	Process Network Specification
	Assumptions
	Steady State
	Throughput
	Latency

	Summary

	Experimental Evaluation
	Setup
	Hardware
	Application

	Process Execution Model
	Average Execution Time per Firing
	Average Time per Firing

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Presentation Slides

