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Abstract

This thesis presents a wireless synchronization protocol, which is able to
disseminate a pulse signal through a network with an accuracy in the
sub-µs range. The protocol is based on Glossy, a flooding architecture
for wireless networks, which allows a packet to be transmitted through
the whole network in a highly reliable and fast manner. Various
techniques are used to enhance Glossy’s implicit synchronization process
and compensate for non-deterministic timing behaviours. The final
design distributes a pulse-per-second (PPS) of a single GPS device and is
thereby able to synchronize the observers in the FlockLab network with
an average synchronization error below 100 ns.

A recently developed enhancement for FlockLab, the data acquisition
unit (DAQ), improves the current limitations on event handling of the
FlockLab services. Further, it features a timing module, which allows to
apply accurate timestamps to events. The internal clock of the DAQ
is synchronized to an external PPS. This thesis develops a hardware
implementation of the DAQ, the FlockDAQ board, which is integrated
into the current FlockLab setup. The board combines a Spartan-6 FPGA
and an SRAM memory with a CC430 system-on-chip with integrated
RF transceiver, which runs the synchronization protocol and provides
the DAQ with an accurate PPS. The final design of the FlockDAQ in
combination with the synchronization protocol is able to trace a highly
accurate GPS PPS with an average synchronization error of 163 ns.
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1
Introduction

Testbeds are a powerful tool in the development of wireless embedded
systems. They are used for debugging, testing and evaluating
applications by conducting controlled tests. Conventional debug tools
like logic analysers, power analysers or serial data loggers are expensive
and limited in their application for large-scale networks. A testbed
overcomes these limitations and combines such services in a distributed
context.

FlockLab [9] is a wireless sensor nodes (WSN) testbed at ETH Zürich.
It offers the facilities and tools for elaborate testing in a sensor network.
The FlockLab network employs 30 distributed nodes, each of them is
represented as an observer-target pair. The observer is a hardware unit
consisting of an embedded Gumstix computer and a FlockBoard, which
can control up to four different target nodes. The target is the actual sensor
node, currently employed are for instance the Tmote Sky platform from
Moteiv or the MSP430-CCRF from Olimex. The observers are connected
to a back-end server, which coordinates distributed tests and collects and
stores the test results.

During a FlockLab test an observer can monitor one target per observer
and offers data collection for various services:

• GPIO tracing: The observer can capture GPIO signal changes of up
to five target pins.

• GPIO actuation: Three GPIO target pins can be controlled (set, clear,
toggle) by the observer at either predefined times or in periodic time
intervals.
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• Power profiling: An analog-digital converter (ADC) on the
FlockBoard measures the current consumption of the target. The
service can be turned on during predefined time windows.

• Serial I/O: The observer can communicate (transmit and receive
data) over the serial port of the target.

These four services can run simultaneously on all the observers.

Motivation

In order to provide meaningful test results, the distributed measurements
need to be synchronized to a global time. The current solution is
the operation of a network time protocol (NTP) server. The observers
synchronize their time to the server over Ethernet or Wi-Fi. The average
and maximum pairwise error of timestamped events is shown in table 1.1
(according to [9, Table 2]). This error is mainly due to non-deterministic

average maximum
only Ethernet 36µs 394µs
Wi-Fi included 166µs 1170µs

Tab. 1.1.: Error of time-stamped FlockLab events

NTP packet delays, which are higher, when transmitted over Wi-Fi than
Ethernet. Therefore FlockLab is not suited for tests, which require a
synchronization accuracy in the small µs range or below.

For example Glossy [3], a flooding protocol for wireless networks,
allows multiple nodes to concurrently transmit packets. The time when
these packets are received at listening nodes varies in the sub-µs range.
To capture timing information about the distributed communication
sequence, the FlockLab observers need to be synchronized with an
accuracy in the sub-µs range as well.

The work in [2] presents an enhancement for FlockLab, called the data
acquisition unit (DAQ). The current setup limits the rate of events which
can be detected by the Gumstix due to the interrupt handling. The DAQ
overcomes this limitation and provides a higher detection rate (10 MHz).
In addition it features a time calibration module, which is synchronized to
a GPS pulse-per-second (PPS) and therefore provides accurate timestamps
with high resolution. The prototype of the DAQ uses a LEA-6T GPS device
as PPS input. These devices can generate a timepulse with an accuracy
[20, Figure 2] below 15 ns. Due to the limited GPS signal availability
for the indoor observers and the high acquisition cost for the whole
network, a wireless protocol is needed, which distributes a PPS from
a single GPS device to all the observers in the network. Because the DAQ
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requires a highly accurate timepulse to synchronize its internal clock, the
distributed timepulse must be emitted on all observers with high accuracy
and reliability.

Further, the existing prototype needs to be integrated into the current
FlockLab setup. A hardware solution is needed, which combines all the
necessary hardware modules for a successful implementation of the DAQ.

Challenges

The goal is a synchronization protocol, which is able to synchronize all
the observers in FlockLab with an accuracy in the sub-µs range. It must be
able to disseminate a time pulse through the whole network in a reliable
and fast manner. The hardware implementation of the DAQ requires
multiple interconnected integrated cuircuits (IC) combined on a compact
printed circuit board (PCB), which can be integrated into the existing
FlockLab setup.

Contribution

The thesis designs a synchronization protocol which is able to
disseminate a timepulse through a wireless network in a highly
accurate and fast manner. The protocol enhances Glossy, a wireless
network flooding architecture, with various adaptations of the implicit
synchronization algorithm. The improvements consist of rounding
divisions appropriately, considering packet transmission delays and
suppressing significant reference time outliers. The final design is able
to calculate a globally synchronized reference time and simultaneously
trigger a pulse on all FlockLab observers. The protocol is finally used to
disseminate a highly accurate PPS by a single GPS receiver and is able to
synchronize the observers with an average synchronization error below
100 ns.

Further, the project designs a hardware implementation of the DAQ,
the FlockDAQ board. The board features all required hardware modules
of the DAQ and to run the synchronization protocol, but pays also
special attention to a successful integration into the existing FlockLab
setup. The FlockDAQ board is placed between the FlockLab observer
and the Gumstix, where the DAQ enhances the current limitations on
the event capturing and uses the synchronization protocol to apply
synchronized timestamps to the events. The hardware units are controlled
and programmed through a single USB to serial converter and use a
specific power supply to power the FlockDAQ from the FlockBoard.
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Outline

The remainder of this thesis is structured as follows:
Chapter 3 describes the implementation of the synchronization

protocol. The basis of Glossy and its limitations are described and the
improvements by the protocol are elaborated as well as how a PPS by a
single GPS device can be distributed through the FlockLab network.

In chapter 4 the hardware implementation of the DAQ, the FlockDAQ,
is presented with emphasis on the requirements for an integration into
the existing FlockLab setup.

The work concludes in chapter 5 with an extensive evaluation of the
synchronization protocol for the FlockLab network by measuring the
synchronization error of single observers as well as the performance of
the FlockDAQ board.



2
Related Work

Clock synchronization is an eminent task in networks consisting of
multiple nodes, both wired and wireless. A global common time
available on each individual node is required for a consistent operation of
various applications like distributed sensing, communication or network
controlling.

Wired Networks

A popular and widely used protocol is the Network Time Protocol
(NTP) [11]. Network nodes synchronize their time to an NTP server by
exchanging timestamped packets. These timestamps are used to calculate
the round-trip delay and offset. In order to filter outliers and improve the
synchronization accuracy, NTP uses an external PPS signal to adjust the
system clock.

Global Positioning System (GPS)

GPS devices are highly accurate PPS signal generators. They periodically
generate a 1 Hz signal, which is synchronized to the atomic clocks of
the GPS satellites. The accuracy of that PPS is normally around a few
nano-seconds and therefore provides an ideal synchronization source,
e.g. the u-blox LEA-6T [21] [20]. Therefore GPS is often used for
network synchronization, for instance in cellular networks. Base stations
of the global system for mobile communications (GSM) are using PPS
signals by GPS receivers to synchronize the communication data [5].
However, due to limited GPS signal availability for indoor deployments
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and high acquisition costs for large networks, GPS PPS signals need to be
distributed through the network in an efficient and accurate way.

Wireless Networks

The Flooding Time Synchronization Protocol (FTSP) [10] is a synchro-
nization protocol developed for wireless networks. It uses radio-driven
message flooding by a dedicated root node to multiple clients. The
packet contains the sender’s timestamp at the start of its transmission
and is locally timestamped at reception by each listener. In order to
synchronize each node to the root’s global time, the protocol uses multiple
techniques and statistical tools to reduce non-deterministic timing metrics
and to compensate for clock drift. FTSP achieves a synchronization
accuracy within the µs range. Glossy [3] is a wireless flooding protocol,
which is able to distribute a radio-packet through a network within a
few milliseconds and with a reliability above 99.99%. This is done
by exploiting constructive interference of overlapping packets, which
enables their concurrent transmission. Due to a highly deterministic
timing behaviour of the flooding sequence, Glossy is able to synchronize
nodes with high accuracy. In fact, Glossy achieves a significant higher
synchronization accuracy and a smaller flooding latency than FTSP.

This work presents a synchronization protocol based on Glossy, which
disseminates a PPS signal, generated by a single GPS device, through a
wireless network. By exploiting Glossy’s timing behaviour, the presented
protocol compensates for clock drift, packet propagation delay and
measurement inaccuracies . Hence, the distributed PPS signal achieves a
synchronization accuracy in the sub-µs range.



3
Synchronization Protocol

This chapter presents a synchronization protocol for FlockLab. Section
3.1 describes Glossy, the basis of the protocol, and section 3.2 three
improvements to the synchronization algorithm. In section 3.3 an
overview is given, how a GPS time pulse can be disseminated through
the FlockLab network based on the details in the previous sections.

3.1. Glossy
The basis for the synchronization protocol is a flooding architecture for
wireless sensor networks, called Glossy [3], which provides wireless
communication for a multi-hop network in a highly reliable and
fast manner. Glossy is able to achieve a flooding reliability over
99.99 % by exploiting constructive interference of broadcast packets,
i.e. concurrently transmitted signals can still be detected with high
probability under certain conditions. This effect usually occurs, when
multiple signals with the same frequency overlap in time and space
and their temporal displacement does not exceed an upper bound. For
example, the IEEE 802.15.4 [1] modulation scheme requires a temporal
displacement of at most 0.5µs. More details on constructive interference
can be found in [3].

Glossy Flood

In order to meet the requirement for the temporal displacement and
therefore to achieve a high flooding reliability, Glossy follows a specific
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communication pattern. A network usually consists of multiple nodes,
where one is assigned to be the initiator (or root) node and the rest are
receivers. Fig. 3.1 shows a typical flood through a network with 4 nodes.
A flood is started by a first packet transmission (TX) from the initiator
node. Any nearby receiver will capture the packet and immediately
retransmits it after successful reception (RX). Receivers, which are 2 hops
away from the initiator node, capture the relayed packet and follow the
same procedure. This is done until all nodes transmitted a packet for
a predefined number of times N. The immediate retransmission of the

Fig. 3.1.: Example of a Glossy flood with 4 nodes and N = 2

received packets allows, that even nodes multiple hops away from the
initiator receive a packet within short time.

Synchronization

Besides the fast propagation of a packet through a network, Glossy
includes also the feature to synchronize nodes to a global reference time.

As shown in Fig. 3.1, each flood consists of multiple slots. A slot is
defined as the time Tslot between the start of a packet transmission and the
start of the consecutive one. All the slots during a flood are enumerated
using a relay-counter c, i.e. the first transmission by the initiator is slot
with c = 0. This is done by sending the current relay counter with every
transmission. Nodes are therefore at any time aware how many times
a packet has been relayed and most importantly how many slots have
passed, before they received their first packet. By locally estimating Tslot,
which is highly constant, and with the knowledge of the relay counter c it
is possible for a node to trace back the time at which the initiator started its
first transmission. Therefore, after each flood all the nodes can calculate a
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common global reference time Tre f = ttx,initiator(c = 0). More details behind
these calculations are given in the next section.

Reference Time Calculation

The whole flooding process is controlled by radio-events, e.g. after the
end of a packet is signalled by the corresponding radio interrupt, the CPU
triggers the next transmission. Each radio event1 is precisely timestamped
at the occurrence of its interrupt. Fig. 3.2 shows the most important timing

Fig. 3.2.: Timing relations between two nodes

metrics of a sequence of TX and RX packets between an initiator I and a
receiver R:

• Ttx and Trx describe the time it takes to transmit or receive a packet,
respectively.

• Ttr and Trt are the time distances between the start of a transmission
and the start of a reception, and vice versa.

• τ1 defines the delay between the start of a transmission at the
transmitter and the end of the reception at the receiver, τ2 describes
the same behaviour but relating to the end of a packet.

As mentioned in the previous section a node needs to calculate Tslot

in order to calculate the reference time Tre f with the knowledge of c.
Therefore, at the first reception each node saves the timestamp trx,0 and
the current relay counter c0. According to Fig. 3.2, Tre f can be calculated
as follows

Tre f = trx,0 − τ1 − c0 · Tslot (3.1)

1Start and end of RX/TX and RX/TX error
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There are two ways to calculate Tslot:

1. Using only timestamped events

Tslot =
Trx + Trt + Ttx + Ttr

2
(3.2)

This approach has the disadvantage that the calculations are only
possible, if a successful RX → TX → RX consecutive sequence
occurred, which might fail due to packet loss.

2. From Fig. 3.2, the relation between τ1,2 and the timing of events can
be described as following equations{

τ1 − τ2 = Ttx − Trx

τ1 + τ2 = Ttr − Trt
(3.3)

Combining (3.2) and (3.3) will give{
Tslot = Trx + Trt + τ1

Tslot = Ttx + Ttr − τ1
(3.4)

These calculations are possible after each RX → TX or TX → RX
sequence, but on the other hand require the knowledge of τ1.

Due to the non-deterministic Trx values, a node applies the second method
to estimate Tslot as many times as possible and uses the average value over
all estimations at the end of the flood to calculate Tre f . With a maximum
number of transmission N a node can calculate up to 2 · N − 1 estimated
Tslot,i values, which leads to a final Tslot:

Tslot =
1

2 ·N − 1

2·N−1∑
i=1

Tslot,i (3.5)

Therefore each node calculates its local reference time as follows:

Tre f = trx,0 − τ1 −
c0 ·

∑n
i=1 Tslot,i

n
(3.6)

Both equation (3.4) and (3.6) depend on the variable τ1, elaborate details
on this parameter are given later in section 3.2.2.
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3.2. Synchronization Protocol
The current Glossy implementation simplifies its synchronization
algorithm by assuming, that the timing behaviour is highly deterministic
and does not consider any influence on the synchronization accuracy
by non-constant time relations. In fact, all the previous presented timing
metrics show a non-deterministic behaviour, which need to be considered
for an in-depth synchronization protocol:

• The reception time Trx is not constant, this is mainly caused by a
non-deterministic packet transmission delay between two nodes.
Fig. 3.3 shows the time between the start of a TX packet at one
node and the start of the corresponding reception at a second node.
Reasons for this behaviour is the limited resolution of the CC430’s
clock frequency, which was set to 13 MHz during the measurements,
compared to the 868 MHz carrier frequency of the packet and the
possible phase offset of the oscillators between the two nodes. In
other words, it’s impossible to capture the exact reception-time of a
packet and as a result, Trx shows a non-deterministic behaviour, see
Fig. 3.4.

Fig. 3.3.: Packet delay between two nodes in clock ticks with a frequency
of 13 MHz, standard deviation ≈ 70 ns
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Fig. 3.4.: Duration of receiving a packet in clock ticks with a frequency of
13 MHz

• The transmission time Ttx is also not constant, even though the
packet size is always the same. But unlike Trx, it takes on only two
sequent values (e.g. 2965 and 2966 CLK-ticks with a 13 MHz timer
frequency). The main reason for this non-constant time is due to
asynchronous clocks of the timer unit and the radio module. A
frequency synthesizer re-samples the 26 MHz of the RF oscillator
with various techniques like phase-locked loop (PLL) to generate
the required radio frequency.

• On the CC430 the time to switch between the RX to TX mode and
vice versa, is constant ([15, Chapter 25.3.3.7.4 Timing]), but due to the
non-deterministic behaviours of Trx and Ttx, the captured transition
times are not constant either. Ttr shows the same behaviour as Trx

and Trt as Ttx.

These timing uncertainties influence the synchronization performance
and limit its accuracy. Therefore, in this section three improvements to the
current Glossy synchronization process are presented, which compensate
for following limitations:

• Rounding errors: The CC430 is always rounding the division
in equation (3.6) downwards due to the representation of the
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timestamps as integer variables. However, it is possible to detect,
when a division can be rounded upwards and therefore adapt the
calculated reference time Tre f .

• Packet delay: The transmission of a packet between two nodes is
delayed, mostly due to the time it takes to demodulate the preamble
of a packet. The current implementation assumes this value to be
constant, namely as τ1. However, the transmission time is also
affected by the propagation delay of the packet, which is not constant
over all nodes. Because τ1 is used to calculate Tre f with the use
of the first reception timestamp, the propagation delay needs to
be considered as well. Although the calculations are not straight-
forward, τ1 can be estimated under certain limitations.

• Outlier suppression: Timestamp uncertainties or limited number
of Tslot,i estimations due to packet loss have an direct influence on the
synchronization and might result in a reference time, which is not
as accurate as in most of the cases. These outliers can be detected by
estimating the current time with the previous one plus one second
and using the difference between the actual and the estimated one
as a metric for synchronization accuracy. With the use of this metric,
the current reference time can be adapted by applying a weighted
sum.

Mathematical background and further details on these three adaptations
are described in the following sections.

3.2.1. Rounding Correction
All the timestamps and other timing related values are defined as
unsigned integer values on the CC430. Every time a division is done,
the arithmetic logic unit is therefore not taking any decimal digits into
account, in other words the result is always rounded downwards. An
important division, which has a direct influence on the synchronization, is
the c0·

∑n
i=1 Tslot,i

n estimation. Representing this term as a float variable would
improve its resolution and the one of the synchronization. However,
a reference time which is not synchronous to the CPU clock is not
helpful, because setting pins (e.g. generating the globally synchronized
timepulse) is bound to the clock frequency. Further, the usage of float
variables requires more arithmetic instructions and is limited in precision.
Therefore, it’s not beneficial to represent any division results as floating
point variable.

However, it is possible to round upwards according to the common
rounding rules instead of always rounding downwards. In order to do
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so, it’s not required to perform the actual calculations with float’s, it’s
sufficient to check if the following condition is true:

c0 ·
∑n

i=1 Tslot,i

n
−

⌊
c0 ·

∑n
i=1 Tslot,i

n

⌋
≥

1
2

(3.7)

The condition checks if the decimal digits of the division are equal or
larger than 1

2 . Because only the integer part of the division is known, (3.7)
is formulated as follows:

⇒ c0 ·

n∑
i=1

Tslot,i − n ·
⌊
c0 ·

∑n
i=1 Tslot,i

n

⌋
≥

n
2

(3.8)

The CC430 can precisely calculate all terms of (3.8) except n
2 , if n is odd.

But because the left-hand side value of (3.8) is a natural number N, it is
sufficient to change the division on the right-hand side of (3.8) to

c0 ·

n∑
i=1

Tslot,i − n ·
⌊
c0 ·

∑n
i=1 Tslot,i

n

⌋
≥

⌊n
2

⌋
+ (n mod 2) (3.9)

Whenever this condition is true, a node can round Tre f upwards by adding
one CLK tick.

This correction is helpful on nodes which are more than one hop away
from the initiator, because c0 , 0. The effect of rounding upwards is an
improvement of the average synchronization error. Whenever the CC430
rounds downwards, Tre f will be too late by at most one CLK-tick, the
rounding corrects this for all the cases where the decimal part indicates
that c0·

∑n
i=1 Tslot,i

n was more likely to be larger. In fact, numerical analysis on
multiple synchronization results have shown, that in over 91 % rounding
upwards was beneficial to the synchronization accuracy. Experimental
results of the rounding correction are presented in chapter 5.2.1.

3.2.2. Packet Delay
The time between the start of a transmission at the sending node and the
start of the corresponding reception at a receiving node is delayed by a
short amount of time. This delay is mostly due to the time it takes to
demodulate the package and detect the sync-word, which depends on
the used data rate, modulation scheme and carrier frequency. Therefore
this time is constant on all nodes.

However, the delay is also influenced by the propagation delay of
the packet and depends on the distance between two nodes. Because
the network may not consist of equidistantly distributed nodes, the
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synchronization needs to compensate for this delay. E.g. for a distance of
10 m between two nodes, the propagation delay is approximately

δp =
10 m

c
= 33.4 ns (3.10)

with c = speed of light.

Revisiting equation (3.3) and Fig. 3.2, the relation between τ1 and τ2 is
specified as follows: {

τ1 − τ2 = Ttx − Trx

τ1 + τ2 = Ttr − Trt
(3.11)

By solving the system of linear equations, it is also possible to estimate τ1

and τ2: {
2 · τ1 = Ttr − Trt + Ttx − Trx

2 · τ2 = Ttr − Trt − Ttx + Trx
(3.12)

In other words, after a consecutive TX→ RX or RX→ TX sequence it is
possible to calculate the sum of the two associated τ1,2 values.

These estimated values can be used to improve the synchronization by
adapting the timestamp of the first received package trx,0, which is used
to calculate Tre f :

Tre f = trx,0 − τ1 − c ·
1
n

n∑
i=1

Tslot,i (3.13)

where τ1 = τ1 + τ̃1 is the sum of the constant part τ1 and the variable
propagation delay influence τ̃1.
τ1 is also needed to calculate the duration of Tslot:{

Tslot,i = Trx,i + Trt,i + τ1

Tslot,i = Ttx,i + Ttr,i − τ1
(3.14)

But because τ1 is alternately added and subtracted to Tslot,i and the final
value is the average over the sum of them, Tslot is not affected by τ1. Even
if the number of all Tslot,i is odd, the variable part τ̃1 is in general smaller
than the number of Tslot,i and hence is not affecting the average.
τ2 is not applied in the reference time calculations.

A maximum number of transmission N provides 2 ·N−2 different 2 ·τ1

values, which are averaged to get an estimation of τ1:

τ1 =
1
2
·

1
2 ·N − 2

2·N−2∑
i=1

2 · τ1,i (3.15)
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The estimation of τ1 is then applied in equation (3.6). The performance
of this adjustment is limited by the fact, that these calculations are based on
the communication between only two nodes, as seen in Fig. 3.2. However,
in the FlockLab network multiple nodes can communicate with each
other at the same time and due to the nature of Glossy it is not possible
to determine the exact communication sequence. In other words, it is
not clear from which node a packet was received. But in the end it is
still beneficial to estimate τ1 rather than using a constant value, which
is evaluated in section 5.2.2, but also how this limitation produces a
remaining error in the final implementation in section 5.2.4.

3.2.3. Outlier Suppression: Weighted Sum
Due to different error sources, like measurement errors, remarkable
packet loss etc., it might happen, that the locally calculated synchroniza-
tion pulse is far apart from the average accuracy. Under the assumption,
that the local clock rate is sufficiently constant, such outliers can be
detected when the difference between the calculated Tre f ,k at time k and
the old value at k−1 plus one second are remarkably far apart, illustrated
in Fig. 3.5.

Fig. 3.5.: Outlier detection based on the difference between Tre f ,k and
Tre f ,k−1 + ∆1sec

To counteract this, Tre f can be calculated as follows:

∆Tre f = Tre f ,k − (Tre f ,k−1 + ∆1sec) (3.16)

T̃re f ,k =
1
|∆Tre f |

· Tre f ,k + (1 −
1
|∆Tre f |

) · (T̃re f ,k−1 + ∆1sec) (3.17)

with

• Tre f ,k: reference time at time k.

• |∆Tre f |: absolute difference between k’th reference time and (k-1)’th
+ one second (which would be the perfect synchronization point at
time k in case of a perfect one at time k − 1).

• ∆1sec: #CLK ticks during one second.
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The weighted sum in (3.17) considers ∆Tre f as a local metric for
synchronization accuracy at time k, i.e. for small ∆Tre f the calculated
reference time is feasible. On the other side, a large ∆Tre f is caused by
an inaccurate calculation of Tre f ,k, assuming that Tre f ,k−1 + ∆1sec is accurate.
Therefore the weighted sum makes sure in case of a large ∆Tre f , that the
influence of Tre f ,k is lessened with respect to the magnitude of ∆Tre f . In
statistical terms this will demagnify the variance of the synchronization
error.

In order to generate a feasible result, an accurate calculation of ∆1sec

is required. This can be done by using a sliding window over a fixed
number M of Tre f and average the difference between two consecutive
Tre f values. Therefore the calculation on the CC430 looks as follows

∆1sec =
1
M

k∑
i=k−M+1

Tre f ,i − Tre f ,i−1 (3.18)

This sliding window is performed locally on each node and adapts,
depending on the size of M, to any possible clock drift in short time.

3.3. GPS pulse dissemination in FlockLab
The above presented synchronization protocol is used to synchronize the
30 FlockLab nodes. The initiator node is equipped with a GPS device and
captures the PPS pulse. As soon as a GPS pulse is captured, a new Glossy
flood is prepared and after a constant delay initiated. After all nodes have
relayed a packet N times, the flood is finished and each node calculates the
globally synchronized Tre f according to the above presented algorithm.
Based on this reference time, the function, which emits the pulse for the
DAQ, and the next Glossy flood, which will happen one second later, are
scheduled. The pulse for the DAQ is triggered with a predefined offset
after Tre f . Because this offset might be affected by any clock drift, each
node compensates for the drift by using the locally estimated second ∆1sec.
For figurative illustration of the whole synchronization process see Fig.
3.6.

To ensure that the timestamps and the corresponding calculations aren’t
effected by clock drift, a flood should be as quick as possible. The duration
of a flood can be controlled by setting different parameters, which are
associated with trade-offs concerning synchronization accuracy:

• Maximal number of transmissions: N determines how many times
a node relays a packet and therefore the more relays, the longer a
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Fig. 3.6.: Synchronization process for FlockLab

flood takes. But a small N limits the number of times Tslot,i in (3.5)
can be estimated and hence might affect the synchronization.

• Packet size: The slot length depends on how much data needs to
be transmitted. Therefore, it is best to keep the packet size as small
as possible.

• Modulation scheme and data-rate: The modulation scheme and the
data rate have a direct influence on how fast a packet is transmitted,
but also how reliable it can be received, since it might prevent from
exploiting the constructive interference.

• Initiator node location: To shorten the flooding latency, a
initiator node with a central position and multiple neighbours is
recommended. A central node is able to spread a packet in all
directions of the network and therefore minimize the maximum
hop-distance between the initiator and any node.

Glossy uses a 2-GFSK modulation with a data rate of 250 kbps. Because
only a header with no additional data needs to be flooded through the
network, the payload of the data packet is empty. The header is a 4-byte
field holding the initiator ID, a header type identifier and the current relay
count. Tests have shown that a reasonable value for N is 5. In the end
with these settings, the maximal duration for a node to execute a whole
flood is approximately 5 ms and over all nodes below 8 ms.

How the synchronization process performs for the FlockLab network,
is evaluated in chapter 5.



4
FlockDAQ Board

The FlockDAQ board is an extension for FlockLab, which improves the
current limitations on event tracing frequency and time synchronization.
This chapter presents an overview of the hardware design and its
requirements (section 4.1) as well as the most important components
and their purpose (section 4.2).

4.1. Requirements
The current FlockLab observer consists of an embedded Gumstix
computer and the FlockBoard, which connects the Gumstix to the target
nodes. This solution limits the rate of events, which can be detected and
their time-stamp accuracy. The data acquisition unit DAQ presented in
[2] proposes an improved model to handle the event tracing and time-
stamping. The DAQ is integrated into FlockLab by placing it between
the Gumstix and the FlockBoard, where it enhances the current data
acquisition process. Because the hardware implementation is integrated
into the existing setup, certain requirements and limitations are given.

The Gumstix is connected to the FlockBoard over a 60 pin Verdex
connector, which holds besides the target’s tracing and actuation lines
also an USB bus, an SPI bus to the ADC on the FlockBoard and various
other data, control and power lines. The FlockDAQ board, which
is placed between the connectors, needs to route the required signals
from the FlockBoard to the DAQ and from the FlockDAQ’s internal
interfaces to the Gumstix. The signals, which are not required, are traced
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Fig. 4.1.: FlockDAQ board block diagramm showing the most important
parts, data and power paths

directly through, so the existing configuration is not disrupted. Because
the hardware implementation of the DAQ needs multiple different
interrelated components and these must not interfere with the existing
setup, certain implementation aspects need special attention.

The FlockDAQ board combines all these components, the most
important ones are shown in Fig. 4.1. In broad terms, the board can
be parted into four specific modules:

1. Data acquisition unit: The DAQ is an FPGA based design, which
handles the three common FlockLab services: event tracing, pin
actuation and power profiling. To do so, the corresponding signals
are traced to GPIO pins, but also from further FPGA outputs to
the Gumstix. It is able to trace the mentioned signals with a high
rate by using an external memory, which serves as a buffer for data
packages. The DAQ transmits the packages over SPI to the Gumstix
or, if the DAQ’s services are not needed, routes all the signals directly
through.

Further it provides a highly accurate timestamp to each event,
which is achieved by the use of a synchronized internal clock. The
synchronization is based on a pulse-per-second (PPS) signal and is
received by the synchronization unit, which is described later.

The DAQ is configured and controlled over an UART connection
and a reset line.
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The FPGA needs to be reprogrammed after every power-cycle,
which is possible with various techniques such as JTAG, an external
flash memory or over an SPI bus.

To perform all the mentioned features, the FPGA must provide at
least 78 available GPIO pins.

2. Synchronization module: The FlockDAQ runs a synchronization
protocol to synchronize all nodes to a common global time. The
software is implemented on a CC430 [16] chip, a System-on-Chip
module, which combines an MSP430 micro-controller and a CC1101
radio core. The synchronization module is able to generate a PPS
signal with an accuracy in the sub-µs range as input for the DAQ,
but also to capture a GPS generated pulse and disseminate it over
the network. The radio module provides balanced radio frequency
signals and needs an external balun circuit and an antenna. For
optimal communication performance these two components should
be optimized for an application with the CC430.

The chip needs to be flashed with an image of the synchronization
algorithm, which is achieved by either using dedicated JTAG pins
or a bootstrap loader (BSL) over UART.

3. USB device: In order to simplify the communication with the FPGA
and the CC430, an USB to quad serial port chip is employed. It
allows the communication over USB to four individual ports, which
each of them can emulate different communication architectures.

However, only one USB bus is available from the Gumstix to the
FlockBoard. Therefore an USB hub needs to connect both the serial
converter and the existing connection with the Gumstix.

4. Power supply: The Gumstix is powered by a switching voltage
regulator on the FlockBoard over supply pins on the Verdex
connector. The regulator provides 5 V DC at a maximal output
current of 2 A. This supply can also be used to power the FlockDAQ,
but the operation of all these different modules requires a specific
power management solution.

On one hand the FPGA requires two different voltage levels (1.2 V
and 3.3 V) to power up its core and the I/O banks. On the other hand,
the CC430 and USB device are also powered by 3.3 V and therefore
the available output current must be large enough. The individual
components need to be powered up in a specific sequence to ensure
a successful booting process.
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4.2. Hardware Components

4.2.1. FPGA
The FPGA is a Spartan-6 XC6SLX9 device [23] by Xilinx. The chip offers
112 available I/0 pins, which are distributed over four I/O banks. The
remaining 30 pins are used for power supply and various services like
JTAG or internal pull-up resistor configuration.

Reasons for applying the LX9 FPGA are its sufficient GPIO pins and
logic cells to implement the DAQ design. The final design will roughly
use 50% of the available logical units and 78 of the 112 GPIO pins. A
second reason is the available Flat Pack TQG144 package type, which
features extending leads. This allows a manual and in-house soldering of
the chip onto the circuit board.

External SRAM

Data packets, which are generated by burst of events and therefore can not
transmitted to the Gumstix fast enough, are buffered in an external SRAM
memory [13]. The SRAM offers a 512k long and 16bit wide memory array
(equals a total of 1MB memory) and is also available as a flat pack package
type.

4.2.2. CC430
The synchronization protocol runs on a CC430F5137 [16], an ultra low-
power micro-controller of the CC430 family. The chip combines an
MSP430 architecture with a CC1101 radio core. The MSP430 16-bit CPU
offers up to 32 kB integrated programmable flash memory, 4 kB of RAM,
two timers, 30 available I/O pins and various other features. The radio
module supports three different frequency bands, a wide range of data
rate, output power up to 10 dB, various modulation schemes and on-
chip support for packet-oriented applications. The two architectures are
merged in a small and compact IC packet, which makes it a suitable tool
for the synchronization algorithm in a space-saving way.

Clock management

The CC430 offers three internal clock signals, provided by the unified
clock system (UCS). The UCS is sourced by a 26 MHz external oscillator,
which is required for the radio functionalities. The internal clock
signals are derived from the oscillator by dividing the frequency by
2x, x = {0, 1, ..., 5}. However the CPU and the peripheral driver support
only frequencies up to 20 MHz and therefore the maximal frequency for
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the internal clocks is 26 MHz
21 = 13 MHz.

It is also possible to use an additional oscillator to source the clock
signals, but due to limited space and a maximal CPU frequency of 13 MHz
is sufficient for the synchronization process, no additional oscillator is
applied.

Timing-Related Functions

The emitted PPS by the CC430 to the DAQ needs to be carried out in a
deterministic way in order to provide high accuracy. This can be done
by using a compare block of the timer. The basic mechanism is to control
output signals when a user-defined value in a dedicated register, the
compare block, is identical to the counter register. Therefore the PPS
signal line is connected to a specific pin, which is connected to a compare
block, and consequently the pulse can be set at an exact time.

A similar feature is used to detect the GPS time pulse. A capture
register records the current counter value, whenever a rising edge occurs
and hence the GPS pulse output used by the initiator is connected to such
a dedicated capture pin.

4.2.3. Radio Frequency Front End
Balun

The conversion of the unbalanced RF output of the radio module is
done by a balun from Johanson Technology [7], a single chip solution
specifically designed for the use in combination with the CC430, or the
CC1101 radio core in general. On the unbalanced output side a simple
filter circuit is placed between the balun and the antenna port. All the
circuit tracks are designed to meet 50 Ω impedance characteristics.

Antennas

In order to offer flexibility between a compact hardware solution and RF
performance, two different antennas can be used:

• PCB chip antenna: A 868 MHz ceramic chip antenna by Johanson
Technology [6]. For optimal performance the antenna needs a pi-
network tuner and a specific PCB trace layout.

• External antenna: An external antenna can be connected using an
UFL connector.

Indoor range test have shown, that the chip antenna is able to
communicate over a 60 m long hallway with high reliability. The MSP430-
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CCRF Olimex board, which serves as a reference, achieves the same
reachability, as well as an external antenna.

However during tests within the FlockLab, the chip antenna is not
able to reach a similar performance to the MSP430-CCRF Olimex board.
Reasons for this behaviour might be the polarity [6, Page 3] and the
position of the chip antenna. It is attached on top of the FlockBoard
where various power and ground planes can interfere with the RF
communication. The external antenna, which can be placed away from
the FlockBoard, achieves therefore a better performance.

The desired antenna can be selected by soldering capacitor C65
appropriately. Fig. 4.2 shows which pads need to be used to switch
between the antennas.

Fig. 4.2.: Left: Horizontal soldering for chip antenna. Right: Vertical
soldering for external antenna

4.2.4. USB
An USB hub on the FlockBoard connects the Gumstix with three external
USB ports and with a second hub in series to the four target slots. The
FlockDAQ adds another USB hub [18] between the Gumstix and the
FlockBoard, which makes it possible to control the FlockDAQ via the
Gumstix without interfering with the existing USB connections.

The FPGA has a volatile configuration memory, in other words after
every power-cycle the FPGA needs to be reprogrammed. This is achieved
by using the dedicated JTAG pins. Programming the FPGA over an
external flash memory or SPI would require additional hardware parts
and software modifications. The DAQ needs an UART connection for
configuration and to write out timing related parameters. Further the
CC430 needs to be flashed as well and offers debug information over
UART.

To manage all these tasks, an FTDI FT4232H USB to quad UART
converter [4] is applied. This single chip handles the USB protocol and
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offers various serial protocols on four individual ports. In this design
only three ports are used:

• Port 0: FPGA JTAG: The FTDI chip emulates the standard JTAG
protocol and therefore is able to reprogram the FPGA.

• Port 1: CC430 UART/BSL: On one side this port manages the UART
communication with the CC430 and on the other side exploits also
the bootstrap loader (BSL) functionality to flash the CC430 .

• Port 2: FPGA UART: The third port manages the UART
communication with the FPGA, which is needed to configure the
DAQ.

• Port 3: not used

How the FTDI chip can be used to perform all this actions is described in
the appendix A.1.

4.2.5. Power Supply
The power supply is managed by a dual-output, low-dropout voltage
regulator (LDO) [17]. It converts 5 V input voltage from the FlockBoard
down to two output channels:

• VOUT1: Fixed 3.3 V with up to 1A output current

• VOUT2: Fixed 1.2 V with up to 2A output current

The FPGA is powering its core unit, which is used for logical operations,
with 1.2 V and all its other functions with 3.3 V. All other components are
also powered by 3.3 V.

Decoupling Circuits

The power supply is a crucial factor for an FPGA-based PCB design in
order to provide high-speed I/O service. Each FPGA I/O bank has multiple
power supply pins, as well as the internal core unit and auxiliary services
like the clock management unit or JTAG. Each of these pins needs a
decoupling network to filter any noise in the voltage level.

In order to fulfil the recommended specifications for covering both low
and high frequency noise ranges, each power supply pin is decoupled by
using a 4.7µF ceramic capacitor with package type 0402. These capacitors
feature frequency characteristics (impedance |Z| and equivalent series
resistance ESR vs. frequency f , [14, Fig. 1]), which are suitable for an
appropriate decoupling.
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Similar to the FPGA, decoupling of the power supply pins of the CC430,
the FTDI chip and the LDO itself is an important aspect for optimal
functionality. Therefore the design follows the recommendations by Texas
Instruments [16, Figure 28][17, Page 34] and FTDI [4, Chapter 6.2 ].

Startup Sequence

The design follows a specific start-up sequence, see Fig. 4.3, which ensures
that all components boot correctly without interfering with each other. In

Fig. 4.3.: FlockDAQ startup sequence of the ICs

order to meet the requirements of the FPGA to power up the core first,
the LDO enables VOUT1 after VOUT2 reached 83 % of its output voltage.

Further the LDO features a reset indicator pin, which is connected to
the FTDI’s reset pin. It holds the FTDI chip in a reset state as long as the
two output voltages have not reached at least 95 % of their designated
output level and a 120 ms delay has passed.

The reset line of the CC430 is driven by an FTDI port, and consequently
the CC430 is also hold in a reset state, as long as the FTDI chip is not
ready.

4.3. Final Design

Fig. 4.4 shows the top layer of the FlockBoard. On the left side is the
CC430 with the chip antenna and UFL connector assembled, on the top
right-hand side the LDO and on the bottom right-hand side the FTDI USB
converter. On the far right side is the Verdex connector (female), where the
Gumstix is plugged in. The bottom layer of the FlockDAQ is displayed in
Fig. 4.5, in the center are the Spartan-6 and the external SRAM memory
and on the bottom the hub. On the far left side is again a Verdex connector
(male), which connects the FlockDAQ with the FlockBoard. In Fig. 4.6
the placement of the FlockDAQ board between the FlockBoard and the
Gumstix is shown.
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Fig. 4.4.: Top layer of the FlockDAQ board

Fig. 4.5.: Bottom layer of the FlockDAQ board

Fig. 4.6.: FlockDAQ board assembled between FlockBoard and Gumstix
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Power traces

For current measurements a power analyser is powering a FlockLab
observer with 12 V DC and tracing the current draw.

The FlockDAQ draws in idle mode 40 mA, and the whole FlockBoard
equipped with the FlockDAQ in idle mode 230 mA.

Fig. 4.7 shows the power trace during a test with the FlockDAQ
activated. The employed target executes a simple "blink" application,
where the three LEDs visualize a 3-bit counter. While the test is running
small changes due to the number of flashing LEDs are recognizable,
but in average the board draws 290 mA. When the test stops, the FTDI
communicates to the FPGA and the DAQ resets all its modules and clears
the FIFOs, which leads to a temporary rise in current up to 360 mA. After
the test is completely finished, the DAQ is in idle mode, the CC430 and
the target are still running and the current drops to an average of 265 mA.

Fig. 4.7.: Current draw at 12 V DC during a running test, stopping it and
with the DAQ in idle mode



5
Evaluation

In this chapter the presented synchronization protocol is evaluated based
on how accurate a pulse can be distributed through the network and
how the FlockDAQ board performs, using this pulse to synchronize its
timing module. Section 5.1 describes the testing setup and the metric for
benchmarking the synchronization. In section 5.2 the synchronization
accuracy is evaluated with emphasis on the three respective Glossy
improvements and the remaining errors in the final implementation. The
performance of the FlockDAQ board, in particular the synchronization of
the internal clock and a GPS pulse tracing test, is presented in chapter 5.3.

5.1. Setup
The evaluation of the synchronization protocol performance is conducted
by using all the available FlockLab observers. The protocol is running
on the MSP430-CCRF targets [12], which uses an on-board PCB antenna.
The targets on the four outdoor observer are equipped with an external
antenna.

For the test with the FlockDAQ board, observer 1 and 202 were
equipped with a PCB and used the external antenna for communication.

Synchronization Error

An important metric for the synchronization accuracy is the node-to-node
error of the generated reference time, Fig. 5.1 elaborates its definition. To
measure this error, a GPS device needs to provide a node with its PPS
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signal. Therefore, six u-blox GPS devices are distributed in the FlockLab
network according to the map in Fig. 5.2. These devices are able to
simultaneously emit a time pulse with an accuracy below 15 ns [20]. The
time of the PPS occurrence and the calculated Tre f are used to calculate
the error as follows:

d1 = T(R1)
re f − T(R1)

GPS (5.1)

d2 = T(R2)
re f − T(R2)

GPS (5.2)

⇒ error(R1)↔(R2) = d2 − d1 (5.3)

The error defines how accurate two nodes (R1 and R2) are synchronized
to each other. For the evaluation, the synchronization error of a node is
calculated with respect to the initiator.

Fig. 5.1.: Definition of synchronization error using GPS reference times

Tests

The following evaluations are based on test results over a total of six hours,
conducted at various times during a day and different weekdays. This
ensures, that influences of environmental conditions, like closed office-
doors, working people or temperature variations, are broadly covered.

In all the tests the CC430 CPU frequency was set to 13 MHz and the
maximal number of transmission N = 5.

Initiator Node

The choice of the initiator node has an influence on the synchronization
performance, mostly how fast and reliable a flood can be conducted. The
best node is one with a central position in the network and preferably
multiple direct neighbours. Therefore, the initiator for all tests was node
24.
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Fig. 5.2.: FlockLab map: 6 nodes equipped with a GPS device, node 202
is located outside and node 24 is the inititator
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5.2. Synchronization Accuracy
In this section the three improvements to the basic Glossy synchronization
process, the rounding correction (5.2.1), the packet delay (5.2.2) and
the weighted sum (5.2.3), as well as the final design and its remaining
errors (5.2.4) are evaluated. To show the benefits of the individual
improvements, the contemplated feature is turned off and the test results
are compared to the final design.

5.2.1. Rounding Correction
As mentioned in chapter 3.2.1, the synchronization protocol rounds the
division c0·

∑n
i=1 Tslot,i

n according to the common rounding rules. The term
is used to calculate the delay of the first reception after the global Tre f .
Assuming that the rounding correction is not used, the locally calculated
Tre f will be too late. If the rounding is adapting the reference time, this
lateness is counteracted and hence the accuracy of the synchronization is
improved, see Fig. 5.3. The histograms in 5.3 shows the error of node 1

Fig. 5.3.: Synchronization error of node 1, top: without rounding
correction, bottom: with rounding correction

with and without the correction. In mathematical terms the effect is an
improvement of the average synchronization error, table 5.1 shows the
average error for all evaluated nodes.
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Node Without rounding With rounding
1 1.18 0.46
7 1.33 0.56
16 1.86 1.07
17 0.9 0.71
202 0.43 0.12

Tab. 5.1.: Average error [CLK-ticks (13 MHz)] of all nodes without and
with the rounding correction, Initiator node = 24

For all evaluated nodes the rounding was beneficial to the average
synchronization error. Also for node 202, which can directly communicate
with node 24 and therefore most of the time does not apply the rounding
correction. Yet in some cases it may happen, that c0 , 0, for instance
because of a communication error, and hence the rounding is also applied.

5.2.2. Packet Delay

In the current Glossy implementation it is assumed that the delay τ1 of a
packet between two nodes is constant over the whole network. In fact τ1

consists of a constant part τ1 and a variable part τ̃1. The constant part τ1

depends on the data-rate and modulation scheme and is approximately
13.54µs. This equals 176 CLK-ticks at a frequency of 13 MHz.

The variable part τ̃1 is influenced by the propagation delay and hence
by the distance between two nodes. For instance the distance between
node 24 and 202 is approximately 30 meters and would roughly induce
a propagation time of 100 ns. But as already described in chapter 3.2.2,
calculating the actual τ̃1 with the given timing informations is not straight-
forward and only an estimation. In fact, the calculated values for τ̃1 vary,
see Fig. 5.4.

The variations can be traced back to the uncertainty of the timestamps,
multiple nodes sending at the same time and possible multi-path effects.
Yet in 40 % of the cases τ̃1 = 2, which is the delay that a propagation
time of 100 ns induces. And therefore using a non-constant τ1 = τ1 + τ̃1

is beneficial to the synchronization accuracy. Fig. 5.5 shows the error of
node 202 when the measured τ̃1 are used to correct the reference time.

Similar to the rounding correction, the effect is an improvement of
the average synchronization accuracy. Again Tre f is too late without the
correction and the effect is observable on all nodes, see table 5.2
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Fig. 5.4.: Measured variable part τ̃1 of node 202

Fig. 5.5.: Synchronization error of node 202, top: without τ̃1 correction,
bottom: with τ̃1 correction
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Node Without τ̃1 With τ̃1

1 2.81 0.46
7 2.32 0.56
16 2.97 1.07
17 2.24 0.71
202 2.30 0.12

Tab. 5.2.: Average error [CLK-ticks (13 MHz)] of all nodes without and
with the τ̃1 correction

5.2.3. Outlier Suppression: Weighted Sum
Various error sources like significant packet loss or the uncertainty of the
timestamps can have a remarkable effect on the synchronization accuracy.
The concept of a weighted sum in chapter 3.2.3 is removing outliers, i.e.
reference times which have a notable worse error than in most of the
cases. Fig. 5.6 shows the effect on the synchronization error for node 17,
if the weighted sum is used. The weighted sum is not only removing

Fig. 5.6.: Synchronization error of node 17, top: without weighted sum,
bottom: with weighted sum
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single outliers but also reducing the standard deviation of the error. Table
5.3 shows the standard deviation and the range of the error for all nodes.
The benefit on the error range for node 16 and 202 is not as extensive as

Node Without weighted sum With weighted sum
1 4.05, [-25,82] 2.07, [-9,9]
7 3.62, [-22,32] 1.83, [-7,9]
16 2.15, [-11,17] 1.66, [-6,9]
17 3.25, [-23,23] 1.84, [-8,10]
202 1.94, [-7,7] 1.57, [-6,8]

Tab. 5.3.: Standard deviation and range of the error [CLK-ticks (13 MHz)]
for all nodes without and with the weighted sum

for the other nodes. These two are both close to the initiator node and are
less affected by any packet loss, timestamp uncertainty or accumulating
errors.

5.2.4. Final Design: Remaining Errors
With the effect of the three improvements it was able to improve the
synchronization accuracy of the basic Glossy protocol. Table 5.4 shows
the metrics of the synchronization with all the three improvements turned
off. With a timer frequency of 13 MHz a clock cycle takes approximately

Node Average Standard deviation [Min.,Max.]
1 2.99 4.61 [-28,40]
7 2.18 3.14 [-31,24]
16 3.16 2.39 [-26,21]
17 3.39 1.96 [-11,11]
202 2.39 1.84 [-6,10]

Tab. 5.4.: Average error, standard deviation, error range o the basic Glossy
design

1
13∗106Hz = 77 ns. Therefore the average synchronization error of the basic
Glossy process is below 260 ns and achieves a maximal absolute error of
approximately 3µs. Table 5.5 summarizes the most important metrics for
the synchronization accuracy of the final protocol implementation. The
accuracy is remarkably improved, the average synchronization accuracy
for all nodes is below 100 ns with an absolute worst-case error of 770 ns.
In other words, compared to the basic Glossy synchronization the final
protocol achieves more than halve the average error and a four times
smaller worst-case error.
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Node Average Standard deviation [Min.,Max.] Hop distance
1 0.47 2.07 [-9,9] 3
7 0.56 1.83 [-7,9] 3
16 1.07 1.66 [-6,9] 1
17 0.71 1.84 [-8,10] 1
202 0.12 1.57 [-6,8] 0

Tab. 5.5.: Average error, standard deviation, error range and hop distance
to initiator for the final design

The performance between the single nodes differs in various and non-
intuitive aspects. With respect to the average error, the direct neighbour
202 of the initiator 24 performs best. However node 1 and 7, which are
both three hops away, have a notably better average error than node
16, which is only one hop away. It seems, that the hop distance has no
deteriorating effect on the average synchronization error. Concerning
the standard deviation, the more distant nodes perform worse than the
close ones. Their synchronization can be influenced by packet loss or
uncertainty in timestamps, but also accumulating errors. For instance, an
error in the first reception timestamp will be passed on to more distant
nodes and influence their first reception timestamp. Hence, such an error
can be accumulated per hop through the network.

Overall, various remaining error sources influence the final synchro-
nization behaviour and are discussed in the following section.

GPS Inaccuracy

Although the GPS devices provide an accuracy of their time pulse below
15 ns, the conditions for this performance are not clear. Measurements
with three LEA-6T devices have shown, that the difference between the
provided PPS signals can be up to 80 ns.

This inaccuracy is not an error in the synchronization protocol but in
the evaluation. A worst-case device-to-device delay of 80 ns can cause
an error of 2 CLK-ticks, which will worsen the standard deviation of the
evaluated synchronization error.

Timing Uncertainty

The non-deterministic packet transmission delay between two nodes
and the associated timestamp uncertainty have a remarkable impact
on the synchronization accuracy. Especially the timestamp of the first
reception, which is used as a starting point for the Tre f calculations,
contributes a direct error. Fig. 3.3 shows a Gaussian-like distribution
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of the transmission delay, which limits the precision of the first reception
and hence a Gaussian can also be recognized in the final synchronization
error. This non-determinism is not only affecting the first reception, but
also all the taken timestamps and hence the calculations in the algorithm
and can not be completely compensated for with the synchronization
protocol presented in this work.

Also other wireless synchronization protocols [8] mention this
Gaussian-like packet transmission delay as a fundamental limitation for
synchronization accuracy.

Inaccurate τ̃1 Estimations

Besides the timestamp uncertainty, another reason for inaccurate
τ̃1 estimations is the fact, that the calculations are based on the
communication between only two nodes. However, the FlockLab
network consists of 30 nodes, each of them having multiple neighbours.
Due to the nature of a Glossy flood, the exact communication sequence is
unknown and the assumption that always only the same two nodes are
exchanging packets may not be true. This fact produces an error in the τ̃1

calculations and is illustrated with an experiment:
Three nodes are connected to a signal splitter, one root node, one close

receiver over a 10 m cable and one far receiver over a 50 m receiver, see
Fig. 5.7. The splitter circuit connects the antenna outputs directly to each
other and makes sure that the RF signals are not interfering with each
other or are influenced by multi-path effects.

Fig. 5.7.: Signal splitter experiment, setup with three nodes

Table 5.6 shows the average synchronization error and the average τ1

value. Because τ1 is influenced by the propagation delay, the actual τ1
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Node Average error Average τ1

Close -0.51 177
Far 2.16 177

Tab. 5.6.: Average error and average τ1 [CLK-ticks(13 MHz)] for the close
and far node

value for the far node should be larger, e.g. for a distance of 50 m roughly
2 CLK-ticks. The problem is, that the packets transmitted by the far node
are not received by the initiator. The initial packet will first arrive at the
close node and the first relayed packet received by the initiator is the one
from the close node, because it takes notably longer to receive and relay
the packet by the far node. This process repeats for all following packets,
see Fig. 5.8. Hence the communication sequence is only influenced
by the close and the initiator node. The far node will always receive
packets, which are relayed based on the close node. In other words, it
receives packets too early compared to the case, when only the far node
is communicating with the initiator.

Fig. 5.8.: Packages of the far node are not received by the initiator and
therefore the communication is only based on the close node
and the initiator

In fact, if the close node is turned off, the average τ1 increases to
179.3 CLK-ticks and consequently the average error decreases as well.

With respect to the FlockLab network, where multiple nodes at the same
time can be affected by the communication of two close nodes and it is
unclear whose packet has been detected, the situation gets more complex
and induces a remaining error. If one node is relaying its packets too early,
all its neighbours, which receive these packages will also be influenced
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and the communication can be affected through the whole network.
This effect might be an explanation, why node 16 has a worse average

error than node 7. Node 16 has remarkably more direct neighbours with
unequal distances than node 7.

5.3. FlockDAQ Board Performance
The previous evaluation of the synchronization protocol shows, that it is
possible to synchronize nodes within sub-µs. However, the distributed
PPS has not the same precision as the one of a GPS device, which was used
by the prototype of the DAQ to synchronize its internal clock. This section
evaluates the DAQ performance, when the synchronization protocol is
used to provide the PPS.

5.3.1. Internal Clock Synchronization
The DAQ features an internal time calibration module, which is
synchronized to the distributed PPS. The internal time is based on the
100 MHz oscillator and derives a 2 M wide counter to represent the
duration of a second. After this counter reaches its maximum, the DAQ
provides some timing related information over UART.

One metric is the number of clocks between two consecutive PPS. Fig.
5.9 shows the histogram of this clock-count for node 202. The four major
peaks in the histogram are due the deviation of the Tre f calculation. The
peaks are roughly 80 ns apart, which is because of the smaller frequency of
the CC430 (13 MHz vs. 100 MHz) and equals approximately one 13 MHz
clock cycle.

Another important parameter is the offset between the internal full
second counter and the PPS occurrence. It defines how accurate the
internal time is synchronized to the global time. Fig. 5.10 shows the
cumulative distribution function (CDF) of this absolute offset for node
202. In 90% of the cases the DAQ is able to synchronize its internal
second within an error of ±200 ns to the PPS.

5.3.2. GPS Tracing
To test the DAQ’s functionality to trace and precisely timestamp a targets
tracing signals, a GPS PPS is connected to a target slot on the FlockBoard.
The DAQ traces the occuring pulses and records their time. An optimal
behaviour would be, that the timestamps are always one second apart.
Fig. 5.11 shows the difference of two consecutive PPS timestamps to the
optimal interval of 1 s. In over 80 % of all cases the time between two
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Fig. 5.9.: Difference between two consecutive PPS captures in CLK-ticks,
Node 202

Fig. 5.10.: Empirical cumulative distribution function of the absolute
offset between PPS occurence and internal full second counter
in ns, Node 202
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Fig. 5.11.: Difference of GPS PPS capture times to 1 second in µs, Node
202

pulses is exactly one second, in the remaining ones ±0.5µs. These small
differences are due to the limited accuracy of the synchronization protocol
but also the inaccurate GPS pulse.

The same test without using the FlockDAQ achieved differences in a
range of [−331µs, 254µs] with a standard deviation of 37.6µs.

The results show, that even with the more imprecise PPS of the
synchronization protocol compared to a GPS device, the DAQ is able
to provide accurate timestamps to the FlockLab events.
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Synchronization

The rising edge of the traced GPS pulse occured 60µs after a full second of
the internal DAQ time and the falling edge 0.8 s later. Fig 5.12 shows the
synchronization error of tracing both edges between the two nodes. The

Fig. 5.12.: Synchronization error of the traced GPS pulse between node 1
and 202

average synchronization error between the two nodes is 163 ns. There is
no notable difference between the two edges. This error is influenced by
the synchronization protocol error, the inaccuracy of the two GPS devices
and the limited precision of 500 ns of the DAQ’s internal timing module.
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Conclusion and Outlook

6.1. Conclusion

This work presented a synchronization protocol for wireless networks.
The basis for the protocol was Glossy, a flooding protocol for wireless
networks, which is able to distribute a packet through a network in
a highly reliable and fast manner. This is done by exploiting the
constructive interference of wireless signals and applying a distinctive
communication sequence. The highly deterministic timing behaviour of
a Glossy flood provides an implicit technique for synchronizing nodes
in a network. The implementation of Glossy on a CC430 system-on-
chip is completely radio event driven and capturing the timestamps of
these events is limited in precision. Especially due to a non-deterministic
packet delay between two nodes, which is for instance induced by
quantization errors between the local CPU and the re-sampled carrier
frequency of the signal. This non-determinism limits the synchronization
accuracy, therefore this work presented three improvements to the basic
Glossy synchronization algorithm. The first adaptation is a rounding
detection, which rounds a division to the common rounding rules,
because divisions on a CC430 with integer value based timestamps do not
consider decimal numbers and hence are always rounded downwards. A
further improvement is the consideration of propagation delays between
two nodes, the basic Glossy implementation assumes the time between
the start of a packet at a node and its reception at a second to be constant.
However, in a network with non-equidistantly nodes this delay is not
constant and can be estimated with the given timing behaviour. The
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last improvement is suppressing outliers, which might be induced by
remarkable packet loss, timestamp uncertainty or accumulating errors. A
weighted sum is adapting the current reference time, where the weight
is based on the difference between the current reference time and the last
one added by one second. The basic idea is to lessen the impact of any
non-feasible reference time based on the last one. The final design of
the synchronization protocol is used to disseminate a pulse-per-second
of a highly accurate GPS device through the FlockLab network. This
synchronizes each observer to a time pulse with an accuracy in the sub-µs
range.

In the second part of this work a hardware design for a recently
developed FlockLab enhancement, the data acquisition unit DAQ, was
designed. The DAQ improves the current limitations on event detection
rate and timestamping of these events. It uses an FPGA with high-
speed I/O to capture events and, if necessary, an external SRAM
memory to store data packages. For providing accurate timestamps,
the design features an internal timing unit, which is synchronized to a
PPS signal. The prototype of the DAQ used a GPS device as input for
the synchronization pulse. The hardware solution, the FlockDAQ board,
presented in this work, combined all necessary hardware components
for a successful implementation of the DAQ. Instead of a GPS device
on each single observer, the presented synchronization protocol is used
to provide the DAQ with a PPS, which is synchronized to one single
GPS device. The synchronization algorithm is running on a CC430
unit. The RF communication can be executed with either a chip antenna
or an external antenna. The integration of the FlockDAQ board into
the FlockLab setup was bound to certain limitations and requirements
for a successful implementation. For a compact communication and
programming solution of the hardware units, the existing USB line
between the FlockBoard and the Gumstix is extended with a USB hub to
the FlockDAQ, where it is controlling an USB to quad port serial converter.
This chip allows to program the FPGA over JTAG and the CC430 over
BSL and to communicate with both modules over UART in a compact
single-chip solution and without interfering with the existing USB line.
The FlockDAQ was integrated into the FlockLab on two observers and
evaluated based on the tracing of a GPS PPS.

The work concludes with an evaluation of the synchronization protocol
with respect to the synchronization error of each node to the initiator
and the performance of the FlockDAQ board. Multiple tests with five
distributed nodes and an initiator have shown the benefits of the three
Glossy adaptations. With the rounding detection and the packet delay
consideration it is possible to improve the average synchronization error
and the weighted sum removes outlier and lessens the standard deviation
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of the error. In the end the final design is able to synchronize the
nodes with an average error below 100 ns and an absolute maximum
error of 770 ns. In fact, it was possible to achieve more than halve the
average error and a four times smaller worst-case error compared to
the basic Glossy synchronization without the three improvements. The
remaining errors of the protocol are mostly due to the non-deterministic
packet delay between two nodes and the associated uncertainty of the
timestamps, but also the fact that the communication between two close
nodes might influence the timing behaviour of any node, which is more
distant and its transmitted packages are not affecting the communication
sequence. These errors can not completely be removed with the presented
synchronization protocol.

The evaluation has shown, that the DAQ was able to synchronize its
internal clock within an error of±200 ns in 90 % of the time and accurately
trace the PPS signal. Consequently, the final design of the FlockDAQ was
able to provide timestamps on two nodes with an average synchronization
error of 163 ns.

6.2. Outlook
Synchronization Protocol

The uncertainty of the timestamps has still a notable effect on
the synchronization error. To improve the protocol further, these
uncertainties need to be compensated for. For instance, with the
use of statistical tools or modelling the synchronization process as a
optimization problem.

FlockDAQ

To fully integrate the FlockDAQ board into the existing FlockLab setup,
a software adaptation is needed. The back-end server needs to be able to
run tests with the FlockDAQ and collect and handle the data.
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Appendix

A.1. Operation Manual
A.1.1. Programming CC430 and FPGA
The four FTDI ports can be found under /dev/flocklab/usb/daqX, where
X = {1, 2, 3, 4}.

CC430

As mentioned in section 4.2.4, port 1 (daq2) is connected to the CC430’s
UART, RESET and TEST pins. To flash a new image, the python-
based msp430-python-tools can be used, in particular the module
msp430.bsl5.uart.

For instance:
01 python −m msp430 . b s l 5 . uar t −p / dev / f l o c k l a b / usb / daq2 −e −S −V −P image . hex

FPGA

The JTAG pins of the FPGA are conected to port 0 (daq1). The application
xc3sprog is a possible tool to configure a bitstream. It’s a suite of utilities
especially designed for programming Xilinx FPGAs using an FTDI based
JTAG connection.

The following command configures the FPGA with the DAQ bitstream
file:
01 xc3sprog −c f t4232h −v −p 0 DAQ_1_3 . b i t
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For installing xc3sprog on the Gumstix, the library libftdi is required.
Both can be added by installing following packages:
01 opkg i n s t a l l l i b f t d i _ 0 .18− r0 . 9 _armv5te . ipk
02 opkg i n s t a l l xc3sprog_768−r0 . 9 _armv5te . ipk

A.1.2. FPGA UART
The DAQ can be configured and provides timing information over UART.

Configuration

The following sequence presents all steps to start a FlockDAQ test.

• Remove FlockLab and ADC modules
01 rmmod flocklab_gpio_monitor ;
02 rmmod f l o c k l a b _ o s t i m e r ;
03 rmmod flocklab_powerprof ;
04 rmmod ads1271 ;

• Reset DAQ
01 echo " out s e t " > / proc / gpio / GPIO76
02 echo " out c l e a r " > / proc / gpio / GPIO76

• Setting routing through off: An overview of all commands and data
packets for configuring the DAQ can be found in [2, chapter 4.2.2].
The python script fpga_daq_uart.py is a simple serial handler,
which writes the commands to the DAQ.
01 python fpga_daq_uart . py route o f f

• Configure the DAQ
01 python fpga_daq_uart . py conf igure <8 Tracing b i t s > <SampleDivider>

• Load the adapted ADC module
01 modprobe ads1271

• Start the test
01 python fpga_daq_uart . py s t a r t on

• After a test is done, the DAQ needs to be turned off and the direct
routing of the signals on
01 python fpga_daq_uart . py s t a r t o f f
02 python fpga_daq_uart . py route on
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Parameter Header Description
hccnt 0000’0001 CLK count between last and current PPS
offset 0000’0010 Difference between and PPS and full second
new diff 0000’0011 Current difference between PPS and

100MHz
avg diff 0000’0100 Average difference between PPS and

100MHz over 8 s
diff off cnt 0000’0101 Number of cycles to compensate
s_factor 0000’0111 Spread factor: number of cycles after a cycle

is compensated
full_s 0000’0110 Full second counter

Tab. A.1.: FPGA timing parameters and corresponding UART package
headers

Timing Debug Output

Everytime the DAQ receives a PPS, it writes some information about the
timing performance to the UART output. Each parameter consist of a 1
byte long header field and a 4 byte long data field. Table A.1 describes
all the parameters. After every header follow the data bytes, which are
indicated with a ’1’ at the MSB, the following 7 bits hold the data.

A.1.3. u-blox GPS Configuration
The GPS devices by u-blox, in particular LEA-6T and LEA-6P, offer various
options to configure their PPS output. There are two ways to change the
configurations of an u-blox device, either with the u-blox software u-center
or via writing commands to the device over a serial port.

u-center

u-center is an evaluation software, which can be used to write
configuration to a u-blox device. Of particular interest for this work are
the time-pulse settings, Fig. A.1 shows a screenshot of the configuration
window. Under the tab Timepulse5 (TP5) following parameters can be
set:

• Period: Specifies the period of the time-pulse in µs. Can also be
specified as frequency in Hz.

• Length: Defines the length of the active phase of the time-pulse.

• GNSS lock: If the GPS has no locked connections to any satellites,
it still outputs a time-pulse signal. Frequency and length for this
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Fig. A.1.: TP5 (Timepulse 5) configuration window
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case can be set separately.

• Time source: Selects the source on which the time-pulse depends,
GPS time is recommended (GPS time and UTC are not the same and
UTC provides a lower accuracy than the GPS time [19]).

• Pulse polarity: If "Invert pulse polarity" is set, the time-pulse is
indicated by a rising edge and is set back to GND after the time set
in "Length".

• User delay: A user-defined delay which will be added to the time-
pulse. Not needed, therefore set to 0.

• Cable delay: The device compensates for the delay induced by
the length of the cable. All the devices use a 5 m cable, which
approximately add a 50 ns delay to the time-pulse.

The LEA-6T and LEA-6P devices feature also a service called "SBAS
(Satellite Based Augmentation Systems)", a complex system to calculate
integrity and correction data for GPS devices. This service should
always be turned off to ensure a stable time-pulse, Fig.A.2 shows the
corresponding configuration window. To improve the performance and

Fig. A.2.: Left: SBAS (SBAS settings) configuration window. Right:
TMODE (Time Mode) configuration window

time-pulse accuracy even more, a service called "Survey-In" can be turned
on. Stationary GPS devices are able to calculate their position with
high accuracy, however this takes some time. Fig.A.2 shows the two
parameters for the survey-in mode:
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• Minimum observation time: This is the time window for calibrating
the GPS device. After this time window ends, the GPS receiver
uses the calculated position for an accurate time-pulse generation.
According to the manufacturer the survey-in calibration should take
at least 24 hours.

• Required position std dev: The survey-in is only completed if the
standard deviation of the position measurements is smaller than
this upper bound. A recommended value is 1 mm.

The problem with using the survey-in is the long time it takes to
guarantee an accurate time-pulse, because after every power-cycle the
calibration is reset. But in general the GPS is not turned off.

After all parameters are set and the GPS device is connected to a
computer, the configuration is transmitted by pressing "Send" in the
bottom left corner of the window, as in Fig. A.1.

Commands over serial port

Instead of using u-center, the configurations can also be transmitted to
the device by sending the corresponding commands over a serial port. A
description of the data structures and the individual commands can be
found in [22, chapter 22]. A much easier way is to use u-center and display
the binary console (press F7). The parameters can now be set under the
corresponding tabs and by sending the configuration, the packet will be
displayed in the binary console in hexadecimal format. This information
can now be send to the device with any serial port handler, e.g. a simple
python script.



A.2. Plots 55

A.2. Plots
Synchronization Protocol

For completeness: Histograms of final synchronization error for all nodes.

Fig. A.3.: Synchronization error, Node 1

Fig. A.4.: Synchronization error, Node 7
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Fig. A.5.: Synchronization error, Node 16

Fig. A.6.: Synchronization error, Node 17
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Fig. A.7.: Synchronization error, Node 202

FlockDAQ Performance

Histograms of the FlockDAQ performance for node 1.

Fig. A.8.: Difference between two consecutive PPS captures in CLK-ticks,
Node 1
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Fig. A.9.: CDF of the absolute offset between PPS occurence and internal
full second counter in ns, Node 1

Fig. A.10.: Difference of GPS PPS capture times to 1 second in µs, Node 1
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A.3. PCB Schematics
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PAU20111

PAJ1044
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PAU208
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PAU206

PAJ1021

PAU2016

PAU2015

PAM105

PAU2085

PAM104

PAU2087

PAM103

PAU2088

PAM102

PAU2092

PAM101

PAU2093

PAM1044 PAU20105

PAM1043
PAU20104

PAM1042
PAU20102

PAM1028

PAU2050

PAM1027

PAU2048

PAM1026

PAU2047

PAM1025

PAU2046
PAM1024

PAU2045
PAM1023

PAU2044
PAM1022

PAU2058
PAM1021

PAU2059
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PAU2061
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PAU2062

PAM1018

PAU2064
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PAU2083
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PAU2082

PAM109

PAU2081
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PAU2080
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PAU2079

PAM1014

PAU2078

PAM1015

PAU2075

PAM1016

PAU2067

PAM1029

PAU2051

PAM1030

PAU2055

PAM1031

PAU2056

PAM1032

PAU2057

PAM1035

PAU2094

PAM1036

PAU2095

PAM1037

PAU2097

PAM1038

PAU2098

PAM106

PAU2084

PAM1039

PAU2099
PAM1041

PAU20101

PAM1040
PAU20100

PAM1017

PAU2066
PAJ1049

PAU205

PAU202

PAJ1022

PAU2014

PAU2012

PAJ108

PAU2032

PAU2030

PAJ109

PAU2029

PAU2027
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PAU2024
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PAU2023
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PAR2402 PAU6019
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PAR2302 PAU6020

PAR2102 PAU6024

PAJ1058

PAR1501
PAU604

PAJ1059

PAR2501

PAU602

PAJ1011

PAR2601

PAR1201

PAU601

PAU2019

PAU2028

PAU2052

PAU2089

PAU20128

PAC6001

PAC6601PAC6701

PAC6801

PAC4601

PAC4701

PAC5302

PAC5801

PAL501

PAM1011

PAM1033

PAR102

PAR1202

PAU204

PAU2018
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PAU2031

PAU2036

PAU2042PAU2053PAU2063

PAU2076

PAU2086

PAU2090

PAU20103

PAU20122 PAU20125 PAU20129 PAU20135

PAU603

PAU6010PAU6014
PAU6018

PAU6022

PAU6025 PAU6026

PAJ1028
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PAJ1030
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Footprint Comment LibRef Designator Description Quantity

0402 10uF Cap C1, C4, C7, C14 Capacitor, Ceramic 4
0402 100nF Cap C2, C3, C6, C9, C10, C12, C13, C17, 

C19, C55, C57, C59, C61, C66, C67, C68, 
C69, C70, C71, C72

Capacitor, Ceramic 20

0402 2.2nF Cap C5 Capacitor, Ceramic 1
0402 470nF Cap C8 Capacitor, Ceramic 1
0402 2pF Cap C11, C18 Capacitor, Ceramic 2
0402 10pF Cap C15, C16, C62, C63 Capacitor, Ceramic 4
0402 0.1uF Cap C20, C52, C53 Capacitor, Ceramic 3
0402 0.22uF Cap C21, C23 Capacitor, Ceramic 2
CAP-TANTAL-
C

22uF Cap Pol1 C22 Tantalum Capacitor 1

CAP-TANTAL-
D

47uF Cap Pol1 C24 Tantalum Capacitor 1

0402 4.7uF Cap C25, C26, C27, C30, C31, C32, C33, C34, 
C35, C36, C37, C38, C39, C40, C41, C42, 
C43, C44, C46, C47, C48

Capacitor, Ceramic 21

0402 0.3pF Cap C49 Capacitor, Ceramic 1
0402 1.8pF Cap C50 Capacitor, Ceramic 1
0402 1uF Cap C51 Capacitor, Ceramic 1
CAPC3216M
P

4.7uF Cap Pol1 C54, C56, C58 Tantalum Capacitor 3

0402 3.3uF Cap C60 Capacitor, Ceramic 1
0402 3.9pF Cap C64 Capacitor, Ceramic 1
Antenna Cap-
Switch

100pF Antenna Cap-
Switch

C65 Antenna Cap-Switch, selection by 
soldering a Capacitor

1

CD2012-0805 RED LED2 D1, D2 Led with a specific color 2

0868AT43A0
020E

0868AT43A0020
E

0868AT43A0020
E

H1 Chip Antenna, 868MHz 1

UFL_SMD UFL Connector UFL Connector H2 1
Hirose60Verd
ex_R

DF12 (3.0)-
60DS-0.5V (86)

Hirose60Verdex
_R

J1 Verdex Connector Receptacle 1

Hirose60Verd
ex_H3

DF12D(3.0)-
60DP-0.5V(81)

Hirose60Verdex
_H

J2 Verdex Connector Header 1

MURATA_IN
D_0402

L-07C5N6SV6T Inductor L1 Inductor 1

0603 BK0603HS330-T Inductor L2, L3 Inductor 2

0402-A BLM15BD601S
H1D

Inductor L4, L5 Ferrite Bead 2

0402-A L-07C18NJV6T Inductor L6 Inductor 1
PTSB0044G
D-B_L

R1LV0816ASB-
5SI

R1LV0816ASB-
5SI

M1 R1LV0816ASB Series 8Mb Advanced 
LPSRAM (512k word x 16bit)

1

HDR1X4 DEBUG Header 4 P1 Header, 4-Pin 1
HDR1X6 Header 6 

SmallPlug
Header 6 
SmallPlug

P2 Header, 6-Pin, Socket for small signals 1

PIN1 GPS Plug Plug P3 Plug 1
HDR1X4 Header-

DebugPins
Header 4 P4 Header, 4-Pin 1

HDR1X4 Header 4 Header 4 P5 Header, 4-Pin 1
HDR1X2 Header 2 Header 2 P6 Header, 2-Pin 1
SOT95P230-
3M

FDV301N FDV301N Q1 MOSFET, N, Digital, 0.22A 1

0402 open Res2 R1, R13, R32 Resistor 3
0402 56K/1% Res2 R2 Resistor 1
0402 390 Res2 R3, R4 Resistor 2
0402 250K Res2 R5 Resistor 1
0402 1K Res2 R6 Resistor 1
0402 1K5 Res2 R7, R12 Resistor 2
0402 68 Res2 R8, R9, R10, R11 Resistor 4
0402 12K/1% Res2 R14 Resistor 1
0402 100k Res2 R15 Resistor 1
0402 10k Res2 R16, R17, R18 Resistor 3
0402 2k2 Res2 R19 Resistor 1
0402 3M3 Res2 R20 Resistor 1
0402 15k Res2 R21, R22, R23, R24, R29 Resistor 5
0402 27 Res2 R25, R26, R27, R28 Resistor 4
0402 330 Res2 R30, R31, R33 Resistor 3
RGZ48_4P1X
4P1

CC430F5137_R
GZ_4

CC430F5137_R
GZ_4

U1 CC430 1

TQG144_L XC6SLX9-
3TQG144C

XC6SLX9-
3TQG144C

U2 Spartan-6 LX 1.2V FPGA, 102 User I/Os, 
144-Pin TQFP (0.5mm Pitch), Speed 
Grade 3, Commercial Grade, Pb-Free

1

PWP24_4P6
8X2P4

TPS70345_PW
P_24

TPS70345_PW
P_24

U3 Dual Channel LDO (3.3V/1.2V) 1

CC110L_BAL
UN

0896BM15A000
1

0433BM15A000
1

U4 Johanson Technology 433MHz Balun for TI 
CC110L

1

LQFP-64_L FT4232HL-Reel FT4232HL-Reel U5 Quad High Speed USB To Multipurpose 
UART/MPSSE IC, LQFP-64, Tape and 
Reel

1

QFP80P900X
900-32M

TUSB2046BIVF
R

TUSB2046B U6 4 Port USB Hub 1

SOIC-SN8_L 93C46B-I/SN 93C46B-I/SN U7 1K, 64x16-bit, 5.0V Microwire Serial 
EEPROM, 8-Pin SOIC 150mil, Industrial 
Temperature

1

TSX-3225 TSX-3225 TSX-3225 Y1 Oscillator, Epson, 26MHz for CC430 1
SG-8002 SG-8002JF, 

100MHz
SG-8002JF Y2 Oscillator, Epson, Programmable 1

PBRC-H PBRC6.00HR50
X000

PBRC-H Y3 Crystal Oscillator, 6MHz, Internal Caps 1

FA-238V FA-238V, 
12MHz

FA-238V Y4 Crystal, Epson 1

133
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