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Abstract

In recent years, Android has gained a lot of popularity with smartphone users, making it a
target platform for malware. To protect the user, Android uses a permission system which limits
an application’s access to private data. However, the users have no fine-grained control over
which permissions are granted to the application. In order to mitigate this problem, this project
introduces a novel recommendation system which can find applications with similar functions,
but which are safer. Based on the accumulated information about a significant number of apps,
further research questions, such as which pairs of permissions are likely to be asked together,
are explored. These analyses lay the foundation of future warning systems which have the
potential of raising the user’s awareness about what the applications can do.
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Chapter 1

Introduction

1.1 Problem statement

The Android operating systems relies on permission enforcement in order to restrict access
to sensitive data or device capabilities. The current system design forces the user to decide at
install time whether she wants to grant the requested permissions or not. The user has no power
to grant the app only a subset of the requested permissions, at the expense of app functionality.

In this context, this project aims to provide users with recommendations of alternative apps,
which provide similar functions but which require a more favorable set of permissions.

Similarity between two apps can be evaluated in terms of a distance function defined on the app
descriptions written by their authors. The descriptions are represented as a mixture of topics
(i.e. app categories), a procedure known as topic modeling. The resulting model can be used
to determine the weight each topic has in the description of the app. The distance function is
computed based on the topic weights of every two apps, and then apps are sorted by similarity.
The sorted list of possible recommendations is filtered in order to remove apps which are more
dangerous.

1.2 Android permission system

Android is an operating system currently developed by Google. It is mainly targeted at mobile,
touchscreen-enabled devices, and it is reported to have reached a market share of about 84.6
percent during Q2 2014 [23].

Android is based on the Linux kernel, which manages the interaction with the device hardware.
Android applications are written in Java, and therefore are first compiled to bytecode for the
JVM; however, in order to better manage running the apps on devices with limited memory and
processing power (like a smartphone), this bytecode is translated to a special format which is
run by the Dalvik Virtual Machine. In order to facilitate development, a special Java framework is
provided for writing apps; this framework provides classes for different tasks, such as graphics,
internet access or phone calls. App distribution is facilitated by the “app-stores” – online sites
where developers publish their apps and which offer the app package to the users (e.g. Google
Play Store, Amazon Android Appstore). [13]

The Linux kernel performs access control using the user and group IDs each process or file is
marked with. Android takes advantage of this by creating a new user ID for each app installed
on the device. Therefore, apps run in a separated environment (they are “sandboxed”); their
files and memory locations are protected from the access of the other apps. Since the kernel
manages access to the drivers and inter-process communication, it therefore can limit an app’s
access to device components or its interaction with other apps. [13] [1]
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Sensitive data or device capabilities (which do not belong to the app’s sandbox) are therefore
accessible only after requesting the appropriate permission. The author of the app includes all
the permissions needed into the AndroidManifest.xml file of the app; on the other hand,
the user is notified about the permissions that an app requires at install time, and can decide
whether to continue the installation process or not. Therefore, the user cannot grant only a
subset of the permissions at the expense of the app’s functionalities. On the other hand, the user
can completely disable some functions of the device (e.g. WIFI, GPS, Bluetooth), thus limiting
the apps which have access to these components. At install time, after the user’s approval, the
system applies the permissions to the app; should the app access components it did not require
permission for, an exception is thrown, and usually the app is killed. [13] [1]

Inter-process communication is possible by several mechanisms implemented in the system.
One example is invoking Intents: they are messages which show that the app wants to per-
form a certain action; the system finds the appropriate message receiver, which can handle the
app’s Intent and perform the action. Since apps can provide data to other apps, or respond
to the Intents of other apps, the developers can declare their own permissions which protect
these components of their apps. [1]

1.3 Recommendation systems. LDA

In a traditional store, the owners have a finite shelving space, and therefore must decide which
products will be displayed and which will be stored in the warehouse. Their decision is based
on statistics made on data about consumer demand. On the other hand, a website has virtually
infinite space for displaying items, by allowing the user to browse from one page to the other.
However, the user still needs to be “driven” to products she might be interested in, otherwise
she might never find an appropriate item. [25]

Website administrators implement recommendation systems for different items, for example
products (Amazon, Google), or media (Youtube, Netflix, Spotify). Building a recommendation
system faces the challenge of predicting the preference of each user, based on data about
items they accessed before. These predictions can be made either by finding items with similar
properties (content-based), or by finding items preferred by other similar users (collaborative
filtering). Finally, the two approaches can be combined into a hybrid recommendation system.
[25]

In order to reduce the complexity of the similarity measure, this project focuses only on rela-
tionships between items, not users of the system. Therefore, the items are characterized into
item profiles, which can be regarded as their simplified representations. These item profiles can
be regarded as vectors, where each vector element contains the value of one of the properties.
Based on these vectors, one can define an appropriate distance (or similarity) measure. Popu-
lar distance measures include the Hamming distance (how many vector items differ), Euclidean
distance or cosine distance (both appropriate when all vector items are numbers). [25]

In [3], Blei et al describe an algorithm (Latent Dirichlet Allocation – LDA), which computes a topic
model based on the words in a document. In this model, each document is characterized by a
mixture of topics (i.e. a vector of topic weights), which in turn are represented by a distribution
over the set of words (i.e. each word has a weight in the profile of each topic). A word is not a
“label” for a topic (i.e. a keyword); it can have an important weight within many topics.

LDA uses the text documents and the number of topics to model as input. The algorithm can
be used to “train” a model over the documents (i.e. to determine the distributions of words and
topics). Based on these distributions, the topic mixture can be inferred for other, new documents.
LDA can be used in document classification (since it can be regarded as an effective method for
dimensionality reduction), or for collaborative filtering (relationships between users and items
are similar to relationships between words and documents). [3]
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1.4 Further research questions

Crawling an appstore with the purpose of creating a recommendation system also has the
benefit of retrieving app data which can be used in other analyses. This section contains the
description of the questions which could be answered in the scope of this project.

Correlation between app cost and in-app purchases App developers have several ways of
monetizing the apps they create. The straightforward alternative is making the app available for
a fee, which the user has to pay before being able to access the app. However, paid apps deter
users from installing, and are usually favored by communities whose trust has been built over
other channels (e.g. marketing, brand power etc).

Another alternative for the developer is to offer in-app purchases to the user. These purchases
can be used to unlock content (e.g. better weapons in games) or to extend access to the service
(e.g. Whatsapp Messenger is free for one year, after which it requires an yearly fee). Providing
in-app purchases does not necessarily entail that the app is free: a paid app might contain “pro
features” which can be unlocked upon further payment.

The two variables whose correlation is studied are “is free” and “has in-app purchases”. For
each app, these variables can be obtained from the price of the app, and from the presence of
the com.android.vending.BILLING permission in the list of required permissions.

Permission-permission correlation Individual required permissions might expose the user
to several threats. However, the severity of requesting different combinations of permissions is
considerably higher. For example, requesting access to the list of contacts is acceptable for a
contact-organizing app, but also requesting permission to access the Internet provides the app
the possibility to upload the contact list to a malicious server.

Although the risk of different permission combinations has been studied in literature [9], it is
also interesting to research what pairs of permissions are likely (or unlikely) to be requested
together. Apart from the suspicious patterns which might be identified, answering this question
might be the starting point of a warning system which can identify “unlikely” pairs of permissions
requested by an app.

Permission-topic correlation Android permissions restrict access to specific data or device
features. Furthermore, there are certain categories of apps which do not need access to some
of the data or the features a device has (e.g. a card game app would probably not need access
to the camera).

Since apps belonging to the same category have similar topic weights, finding a correlation
between permissions and topics can reveal interesting patterns. Similarly to the “permission-
permission” question, finding unlikely combinations of topics and permissions can help building
a warning system which finds the topic model of an app and then identifies suspicious permis-
sions which the app requires.
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Chapter 2

Methodology

2.1 Required data

In order to implement an operational recommendation system, the following minimum set of app
data was identified:

• Application description: the description text, supplied by the author of the app. The app
descriptions are used as input for identifying apps which are similar. App stores display
the descriptions in different sections (for example, Amazon Appstore has two sections,
“Product features” and “Product description”), but a concatenation of all the sections is
appropriate.

• Application permissions: a list of all individual permissions requested by the app. The
permissions are required to filter the recommended apps, such that the user sees only
apps which are “less risky”. It is expected that a majority of apps will only require default
Android permissions, but third party permissions might also be found. However, the app
stores show descriptions of the permissions which are easier to understand by the users;
it is therefore required to map these descriptions to a canonical form, e.g. the Android
permission string found in the Manifest.permission class.

• Application ID: the ID used by the store to identify the app. In an ideal case, the IDs
would be mapped to a canonical form, e.g. the application’s package name, which would
facilitate identifying the same app across different app stores.

The Google Play and Amazon Appstore for Android were analyzed with regards to the avail-
ability of this minimum set of data. Also, since the data would be collected automatically, the
complexity of writing a web crawler was taken into account.

• Google Play offers the description of the app directly on the webpage, and the package
name of the app can be identified in the URL. However, at the moment of writing the
crawler, Google allowed users to see the permissions required by the app only if they
were authenticated with a Google account, and if they clicked the “Install” button. The store
was subsequently changed, and the permissions could be retrieved in a pop-up dialog by
pressing the “View details” link on the page. Also, Google opted to present only a summary
of the data that the app can access to the users, and not with the exact permissions that
the app requires.

• Amazon Appstore for Android offers the description of the app and the permissions
directly on the webpage. The permissions are displayed as user-friendly descriptions of
what the app is allowed to perform, for the most frequently used permissions. The package
name of the app is not available, but the unique Amazon product identification ID can be
filtered from the URL of the page.

The Amazon Appstore was chosen as a primary data source, because it provides the required
data directly on the webpage. However, the web crawler was implemented with an extensible
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design, such that a special parser for Google Play webpages can be added later in the project.

Apart from the minimal set of app data described before, other information available on the
webpage was stored:

• Application name: stored for the user interface of the recommendation system.

• Application price: stored for further data analysis (e.g. verifying correlations between
in-app purchases and application prices).

• Webpage URL: stored for the user interface of the recommendation system.

• Webpage HTML: the raw HTML file processed by the crawler was stored to facilitate the
reproduction and the debugging of the crawling procedure.

2.2 System overview

The “Unix philosophy” encourages programmers to design small, robust tools which perform
a single job. Interoperability of these small tools is provided by a text-based interface and the
possibility to “pipe” the output of one program to the input of the next. It is therefore preferred
to compose several tools in order to perform a task, rather than write a monolithic application
dedicated only to the task at hand. [29]

The design of the recommendation system is following the “Unix philosophy”, by splitting the
project into several sub-components, which are implemented as standalone programs. The
communication between components can be made by accessing the database which backs
the project, and via Redis. Figure 2.1 provides an overview of the system pipeline, whereas a
detailed description of what each component accomplishes is provided in the following sections.

Figure 2.1: Overview of the system pipeline.

All the components load data from and store their output to the database, with the exception of
the Crawler (which has the input online, from the appstore webpages) and the User interface
(whose output is sent directly to the user). Each component relies on the output of the previous
component, either for a single app (i.e. the Word extractor instances can start processing each
app as soon as they are crawled) or for all the apps (i.e. the LDA component should run after all
the apps have been processed by the Word extractor instances).

Redis [26] is used to satisfy this type of synchronization requirements. Redis provides blocking
operations for several data structures, including (blocking) queues. For example, a redis client
can issue a BLPOP command (“Block Left Pop”) which will block execution until an element can
be popped from the left of a list. Given the fact that operations can be run atomically, redis can
be used as a synchronization mechanism between the several components of the system. For
example, the Crawler instances will fill a queue with app IDs which have been crawled; the Word
extractor instances consume this queue, processing the apps whose IDs are retrieved.
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2.3 System components

Crawler

The Crawler instances download webpages from the Amazon Appstore for Android and extract
information about the apps. There are two types of webpages on Amazon: pages which index
several apps (usually 60), and pages containing information about an app.

The Crawler must handle both types of pages: the ”index” pages are used to enqueue “app”
pages, while the “app” pages are used to extract app data. The redis queue contains URLs
to Amazon pages. The queue is initially seeded by a separate script with a number of “index”
pages.

In order to successfully record the app data from a store page, the Crawler should be able
to retrieve the HTML code of the web page, emulate the DOM in memory, and possibly run
the Javascript code which populates the page with dynamic data, if needed. NodeJS [21] is a
Javascript interpreter built on top of Google Chrome’s V8 Javascript engine. Since Javascript
is already used to dynamically update webpages, being able to write Javascript code for the
crawler represents an advantage (the “Javascript in the front-end, Javascript in the back-end”
argument).

NodeJS is bundled with a package manager (the npm [22]), which has access to a repository of
user-created libraries. The repository contains libraries which provide an easy way to bootstrap
a webpage’s DOM and run queries on it (e.g. jsdom [16] and cheerio [19]).

PhantomJS [14] provides a no-window (headless) full DOM and Javascript environment, which
can be manipulated by writing Javascript code. PhantomJS is therefore a more powerful envi-
ronment than using NodeJS and any of the DOM libraries; however, PhantomJS cannot run all
the libraries available via npm, and there is no library for communicating with a database. Using
PhantomJS would require a NodeJS wrapper script, which takes the output of the PhantomJS
scrapper and stores it in the database.

Given the extra layer of indirection required by PhantomJS, using only NodeJS is preferred.
Jsdom provides more functionality than cheerio. However, a documented memory leak has
been found in the library while running the Crawler in a prototype implementation. Since
cheerio provides the a set of features which is sufficient for implementing the Crawler, it has
been chosen for the final implementation.

Amazon Appstore “index” pages might contain duplicate apps. The Crawler can identify dupli-
cates only by the Amazon product ID. However, it can be assumed that an app author will not
submit the same app several times; apps which have a “lite” (free) version, and a “pro” (paid)
version, can be safely be considered different apps altogether.

Amazon discourages automated data collection from their store pages. To limit the access of
crawlers, Amazon uses CAPTCHAs whenever there are too frequent requests coming from the
same client IP address. Amazon replies with a CAPTCHA page and with HTTP response code
200, so the Crawler is able to identify throttling and back off (delay crawling) for a period of
time. Therefore, in order to avoid being throttled, a “Delayer” module was built. The Delayer
is responsible for ensuring that each Crawler instance has a minimum waiting time between
page requests (if scrapping one page takes longer than the cool-off, the next page is requested
immediately). This module tries to emulate the behavior of a human user, who follows the links
of the Appstore and spends some time on each page, reading its contents.

Word extractor

The LDA algorithm accepts as input documents in the bag-of-words format (i.e. each document
is represented by a vector of pairs (w, c), where w is a word appearing in the document, and
c is an integer representing the number of times word w appears in the document). The Word
extractor component is meant to process app descriptions into documents in the bag-of-word
format.



18 CHAPTER 2. METHODOLOGY

Since LDA produces a model based on the frequency of each word in each document, there
are some words which might lower the quality of the model. For example, short words such
as “a” and “of” appear frequently in English texts, and are therefore expected to interfere with
LDA. Also, words which appear frequently in the descriptions of Android apps (e.g. “facebook”
or “Android”) have a negative impact on the model. Therefore, words appearing in the list of
the most frequent approximately 5000 English words have been filtered, together with words
shorter than 3 characters).

The Appstore is expected to also contain apps with descriptions written in another language
than English. However, only a small fraction of such apps are expected to be crawled, and they
would not affect the results of LDA. Moreover, users looking for a recommendation for an English
app would likely disregard non-English apps. Given these reasons, the system would not treat
non-English apps separately.

An important observation is that the app descriptions contain different Unicode characters, used
by the app authors e.g. for creating textual bullet points or emphasis strings (see Figure 2.2).
The support for Unicode strings is better in Python than in Javascript/NodeJS, and therefore
the former language was preferred. Also, Python provides a regular expressions module with
support for Unicode strings: using \W+ as word separator would match any character which is
not alphanumeric based on the Unicode character tables.

Figure 2.2: Screen capture of the Amazon Appstore app page for “Talking James Squirrel (Free)”
(store ID B00B71SDV4, visited on Sep 03, 2014). Of interest are the special Unicode tick char-
acters.

Permission mapper

The Android permission system can be confusing even for app developers, as suggested in
[11]. Therefore, the app stores usually present the users with intuitive descriptions of what the
permissions allow an app to access or perform. Sometimes, app authors introduced spelling
mistakes of the permissions in the app manifest files, which does not produce a compile error
(the permission might be defined by another app), but which prevents the Appstore to provide a
user-friendly description.

The Permission mapper component maps the different permission strings recorded from the
app webpages to their canonical form (the Android permission as it appears in the manifest
files, also compensating for developer errors where possible).

To facilitate the creation of the mapping table, a script which downloads the Android permissions
(android.permission.*) was implemented. The script retrieves the manifest files from the
Android source code, and stores the permissions, together with their labels and descriptions,
into the database. Apart from the Android permissions, some other vendor-specific permissions
(e.g. the Google Play and Google Services permissions controlling push messages or in-app
purchases) were manually inserted into the database and the mapping table.

As presented in Section 7, Felt et al present in [10] a survey which measures the user’s concern
regarding the actions enabled by different permissions. The actions are not specific to Android,
but can be mapped to the Android permissions. The article includes a table with the results
of the study, which lists the percentage of users who were “very upset” with the respective
action. Therefore, the table was used as a starting point for evaluating individual permission
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risks. These risks (or “severity”) are stored in the table of the Android canonical permissions
(described earlier).

The study does not cover all the permissions which have been recorded from the Android man-
ifest files. The missing severity values were estimated by comparing each permission with the
other permissions (whose severity values were known from the paper). The comparison involved
the data or the capabilities which the permissions protected. For example, the severity of the
WRITE_SMS permission would be higher than READ_SMS, but lower than SEND_SMS; however,
the severity of WRITE_SMS should be closer to the severity of READ_SMS, because SEND_SMS
bears the risk of incurring costs to the user, which is more severe than the risk of deleting SMS
messages (note that the SMS-related permissions mentioned already had risk values included
in the cited paper, and are only used as an example).

The actual mapping between Amazon Appstore strings and canonical permissions is stored in
a manually created CSV file. The Permission mapper loads all the permissions for each app
and then looks for a match in the CSV file. If the match is found, the canonical string is added
to the table containing the entry of the permission; otherwise, the entry is left NULL.

LDA

The LDA produces a topic model for the apps in the database, by producing association weights
between apps and the topics. The input for LDA is represented by the app descriptions, pro-
cessed into the bag-of-words format.

One implementation of LDA is provided by the Gensim [7] python library. Gensim contains im-
plementation for several other topic modeling algorithms, and also support for running computa-
tions in parallel. Moreover, the LDA implementation provides access to several parameters (e.g.
the number of topics, the topic prior) and does not need outputting intermediary files to disk; the
internal representation of the model can be saved and training can be resumed at a later time
(e.g. when information about new apps has been downloaded from the store).

Computing the topic weights for the apps is performed in two steps. First, the documents (app
descriptions in the bag-of-words format) are used to train the model in several passes. Second,
each document is used as parameter for the inference function of the model, which will produce
an array of topic weights for the app. These arrays are stored in the database, to be used by the
next component.

The quality of the model depends on the number of documents which are used for training. Since
the number of apps which are available is an order of magnitude lower than the recommended
threshold, the algorithm passes through the documents several times.

Another important parameter for the algorithm is the number of topics which should be modeled.
The number of topics should not be too high (since similar apps might be “classified” into dif-
ferent topics), but also not too low (since different apps might be “classified” to the same topic).
The implementation of the LDA component uses 20 topics.

The models built by LDA are sensible to very frequent and infrequent words, and therefore they
should be removed from the bag-of-word documents. While the frequent words are already
filtered by the Word extractor component, the infrequent words should be handled by the LDA
component. This approach is preferred because the Word extractor has insufficient information
(cannot know if a word which appears only once in the description of an app will or will not
appear several times in the descriptions of the other apps). The LDA component will consider a
word to be infrequent if it appears in the description of less than 10 apps.

Close apps

The Close apps component computes the “similarity” between any two apps, given the topics
they are associated to. The LDA component saves for each app an array of weights, represent-
ing how correlated is the app to each topic. Any distance function based on these weight vectors
can be used to compute the similarity of the apps.
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Each instance of Close apps first loads the topic weight vectors for all the apps into memory.
Then the instances consume the queue of app IDs to be processed, and for each app they
compute the distance to all of the other apps in memory. Therefore, the complexity of the com-
putation is O(N2), where N is the number of apps; the complexity of computing the distance
function based on the two vectors is not included. However, the computation is highly paralleliz-
able, and therefore having a high number of instances speeds up the computation considerably.

For two apps, given the weight vectors ai and bi, the distance can be computed in several ways:

• compute the Euclidean distance: d =
√∑

i(ai − bi)2

• compute the angle between them: d = arccos a·b
‖a‖‖b‖

• any other vector metric ‖ · ‖ can be turned into a distance metric by d = ‖a− b‖

For the Close app component, the angle between the two vectors has been implemented. The
complexity of computing the distance function is O(T ), where T is the number of topics, leading
the complexity of running the algorithm to O(N2T ).

Loading the topic weight vectors into memory for all the apps is feasible since for each app, at
most T float values are needed. The vectors can be represented in memory using pairs 〈t, w〉,
where t is the topic index and w is the weight of the correlation between the app and topic t.
Keeping these pairs sorted by t allows a linear computation of the distance function, using an
algorithm similar to the one for merging two vectors.

Given the current implementation design, where each instance of a component is a separate
process (possibly running on a different machine), the same memory amount is needed for each
instance to store the weight vectors. Parallelization of the computation can be implemented
also by using a shared-memory model, where several worker threads process the apps within
a single process; this design is identical to the one which has been chosen, except for the
possibility to run the worker threads on different machines (at least without building a framework
for sharing memory over the network).

For each app, the Close apps component generates a list of similar apps, ordered by distance.
These relations are then stored to the database, to be processed by the next component. The
user expects only relevant recommendations, so the apps can be filtered by a distance upper
threshold. Apps which are at the maximum distance allowed by the distance function (in the
angle case, arccos 0 = π/2) can be filtered, since they represent totally unrelated apps.

Storing the distance values in the database requires three numbers: the IDs of the two apps,
and the value of the distance between the apps (a standard procedure to represent many-to-
many relations). This results in O(N2) data to be stored, which for a large N is undesirable.
Since the user is expected to only inspect a few recommendations that the system provides, the
Close apps instances were programmed to store only the closest L apps for each app (L can
be set via a parameter, here: L = 200; if parameter is left out, all the O(N2) pairs are stored).

Cousins

The recommendation system under design aims to highlight apps which are safer to use than
the query app, from the point of view of the permissions required. Therefore, the list of apps
sorted by distance is filtered by the Cousins component, to remove apps which are not safer
than the query app.

There are several ways to define when an app is safer than another. The two definitions imple-
mented in the Cousins component are:

• If app a requires a set of permissions Sa and app b requires set Sb, then app a “is safer”
than b iff Sa ⊂ Sb; that is, a requires only some of the permissions which b requires, but
not all of them.

• If app a requires a set of permissions Sa, then its risk level can be defined as risk(a) =∑
p∈Sa

risk(p), where p is a permission in the set, and risk(p) is the evaluated risk of the
permission. Therefore, app a “is safer” than b iff risk(a) < risk(b). The risk assessment
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of each individual permission has been presented for the Permission mapper component
(see Section 2.3). If a permission cannot be mapped to a canonical permission by the
Permission mapper, then it will not be included in the risk of the app.

The Cousins component instances first load up the permission risk table, then start processing
the apps in the queue. For each app, the list of apps produced by the Close apps component is
loaded. Then, the cousins are filtered from the list, using the two definitions. The apps resulted
from applying the two filters are stored into two different tables of the database.

User query interface

The purpose of the User query interface is to allow end users to retrieve the cousins of an app
easier. The interface can either be a website, a mobile app or a desktop app; at the moment, a
website has been implemented in NodeJS, using the Bootstrap UI library [4].

The interface allows the user to explore the available topics (see Figure 2.3). The individual page
for each topic shows the word weights for the topic, and the apps ordered by topic weight (Figure
2.4). The user visits the page of an app, which shows the data retrieved from Amazon (i.e. price,
description, permissions), but also data computed by the system (topic weights, cousins ordered
by distance – Figure 2.5). Also, in order to facilitate finding an app, a full-text search index (on
app description and app name) has been created in the database; the user can therefore search
for an app using keywords (Figure 2.6).

Figure 2.3: Screenshot of the web interface showing the topic labels and the most relevant
words.

In order to limit burden on the database server, only the most significant results are shown on
most of the pages: for example, on the individual topic page, only the top 100 apps (by topic
weight) are displayed. The user can use the search function to access a particular app; if the
search results do not include the desired app, using more keywords from the description will
improve the results.

The interface is just a way to inspect data in the database, so there are very few computations
made in its code. However, the User query interface is the appropriate component to convert the
data into a user-friendly format. For example, the distance between two apps is converted to a
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Figure 2.4: Screenshot of the web interface showing the details of a particular topic: the words
(including weights) and the apps (ordered by weights).

Figure 2.5: Screenshot of the web interface showing the details of a particular app, as recorded
from the store page (price, description), or as computed (topics, cousins).
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Figure 2.6: Screenshot of the web interface showing the search functionality using keywords.

5-star similarity measure using a linear transform between the [0, π/2] angular distance interval
and {0, 1, 2, 3, 4, 5}, using the formula:

nr stars =

⌊
5

(
1− angle

π
2

)⌋

In the equation, b·c represents the floor function.

Synchronization between components

Most of the components use the queueing primitives offered by redis (e.g. BLPOP and RPUSH).
These commands enable the client to implement the producer-consumer synchronization pat-
tern, which is used for example between the Crawler and the Word extractor and Permission
mapper components (as soon as data becomes available, they start processing it). However,
some of the components require some more advanced synchronization techniques.

The LDA component needs all the app descriptions to be available in the bag-of-words format
in order to construct the model. Therefore, LDA waits for the queues of the Crawler and Word
extractor to become empty. Of course, one method to implement this check is polling, but this
form of busy waiting wastes resources (CPU). It is more efficient to be notified by the Crawler
and Word extractor, so the LDA component first issues a BLPOP command on two queues. The
Crawler and the Word extractor RPUSH a message once their queues are empty.

Redis ensures that the individual commands are atomic. This means that no two commands are
run in parallel, but if one client issues two commands in series, there is no guarantee that there
will be no other command (coming from a different client) executed between his commands.
Therefore, redis offers the possibility to issue several commands in an atomic transaction using
MULTI and EXEC. The Word extractor would then issue a BLPOP (to get the next app description
to split) and a LLEN (to check the length of the queue) in a transaction, and perform the logic
described in the previous paragraph. However, the BLPOP command loses its blocking property
when issued in a MULTI transaction, because otherwise the whole redis would block until an
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element is pushed to the queue (a deadlock, since the producer never gets the chance to RPUSH
to the blocked redis server).

Redis also has the EVAL command, which can be used to atomically evaluate a small script
written in a dialect of Lua. The atomicity (mutual exclusion) is granted between clients trying to
access redis objects which are acted upon by the script, and not all the keys in the server (i.e.
the EXEC command knows which objects will be affected and other clients trying to touch these
objects will be blocked). Therefore, redis can be used as a distributed mutex system ([30]). The
mutex can be “acquired” or released like a regular mutex (e.g. Posix); if a client wants to acquire
an already-locked mutex, it will be blocked (without deadlocking the whole redis server) until the
mutex is released. This allows a client to issue consecutive commands (of interest: BLPOP and
LLEN) without another client acting on the objects it wants to access. A similar mutex, called
the “redmutex”, was implemented for both Python and NodeJS, and is used by the Crawler and
Word processor.

Once the LDA finishes building the topic model and saving the topic weights to the database,
the Close apps component can load the topic table in memory and start computing distances
between apps. The component could re-load the table every time an app is processed, but
this would not only waste resources, but also burden the MySQL server (which has an impact
on the other components too). Therefore, the Close apps component is designed to have two
threads: one which consumes the processing queue (populated by LDA with all the apps when
it finishes processing), and one which listens for a signal from LDA. The signal is sent when the
topic table is filled in; the receiving thread locks the processing thread (a traditional mutex is
enough, since the threads share the same process) and re-loads the table into memory. Since
LDA’s message that the topic table is filled must reach all the available Close apps instances, a
publisher-subscriber pattern is used (as opposed to the previous case, where LDA had a single
instance running, so it could just block on queue). Redis offers the pub-sub functionality using
the PUBLISH and SUBSCRIBE commands.

Finally, the Cousins component needs data from two components: the Permission mapper and
the Close apps. It is expected that the former finishes processing the apps well before the latter
(since Close apps waits for LDA, which in turn needs all the apps to be already in the database).
However, in order to be sure that the apps processed by Cousins have the permissions mapped,
a hash is used. The hash(app) is true if the app has been processed by the Permission mapper,
and false otherwise. Redis can again be used for this synchronization problem, since it offers
the HSET and HGET hash functions. In the unlikely case when the Cousins component must
process an app whose permissions have not been mapped (i.e. hash(app) = false), the app is
added at the end of the queue so it can be processed later.

In conclusion, redis is a versatile application which provides commands for manipulating a wide
range of data structures. The atomicity of these commands can be exploited such that redis can
provide several synchronization mechanisms to the clients.

2.4 Data persistence

The first implementation of the system was designed to store the data into a NoSQL database.
NoSQL databases do not model data into the traditional, table-based format, but rather into
documents with any number of fields. A popular NoSQL implementation is MongoDB [18]. In
this implementation, the database documents were the apps (containing all the related data),
and the topics. MongoDB provides several benefits, including the possibility of a flexible schema:
should more app data be needed, the data could simply be added later to the documents by a
second run of the Crawler instances.

Despite its flexibility, MongoDB makes heavy use of memory-mapped files, which require virtual
memory to handle files which would not fit in RAM. The infrastructure used to test the system
provided servers with no virtual memory, which limited Mongo to databases at most as large as
the available RAM memory.

Since the required data for the analysis had been already defined, and the database had to
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grow larger than the available RAM, the system was switched to a table-based schema, stored
in a MySQL [20] database. The tables were defined as follows:

• permissions: this constant table is created by the SQL setup scripts. It contains data
about the Android permissions recognized by the system (e.g. permission name or cate-
gory).

• apps: stores information about the apps, such as name, description, price or store ID. To
facilitate debugging and allow the study to be reproduced, a MEDIUMBLOB column stores
the compressed HTML code of the app’s store page.

• app_words: after the description is fetched, it is transformed in the bag-of-words format
by the Word extractor component; the resulting pairs word-count are added to this table.

• app_permissions: contains the one-to-many mapping between an app and the per-
missions it requests. One column is used to keep the result of the mapping between the
user-friendly permission description string used by Amazon and the canonical Android
permission name.

• apps_index: is used to store the full-text search index needed in the query interface. The
app name and description are automatically added by the Crawler to the table.

• app_topics: after LDA computes the topic weights for each app, they are stored in this
table as tuples (app_id, topic_id, weight).

• topics: contains the mapping between topic ID and topic label (topic name).

• topic_words: contains the (word,weight) pairs generated by LDA for each topic.

• close_apps: the Close apps component computes the distance between every two apps,
and stores the closest pairs in this table, together with the respective distance.

• cousins_risks and cousins_sets: after the close apps are sorted by distance, they
are filtered either by total risk or by permissions set. The filtered lists of apps are stored in
these tables. They represent the recommendations offered to the user.

A UML diagram of the database schema is shown in Figure 2.7.

Setup scripts have been written to create the MySQL table schema. Also, in order to register the
changes made to the tables, the scripts have been split into migrations. It is possible to migrate
backwards or forwards by either applying the “up” script (forward) or “down” script (backward).

2.5 Further research questions

Answering the research question described in Section 1.4 is possible by counting how many
apps, permissions or topics satisfy the conditions of the question. For example, finding the
affinity of a permission towards other permissions starts with counting how many times does
an app request both permissions. These counts are then used to produce figures such as box
plots (for showcasing distributions) or histograms.

Correlation questions are answered using statistical tests, such as the χ2 test or the Fischer
test.

Both plotting and performing statistical tests is facilitated by Python libraries, such as
matplotlib [17] and scipy [27].
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Figure 2.7: UML diagram of the SQL schema.



Chapter 3

Evaluation

3.1 Data collection (Crawler, Word extractor and Permission
mapper )

The data collection system is organized in individual components that can be run as separate
processes. Using MySQL as central data store and Redis as synchronization server enables
the user to start the processes on different machines, which communicate via these two central
services.

Initially, the processing queue of the Crawler component must be populated with Amazon “index”
pages. The system is designed to require no other user intervention except the initial seeding
of the Crawler ’s processing queue and starting up the component instances. When all the data
has been processed, the user can query the system using the Query interface.

The components log errors and other events to a local syslog [12] instance. In the scenario
where the system is run on several different machines, it is desirable to use a centralized
syslog server, which facilitates log analysis. syslog must be configured to accept data from
LOG_LOCAL0 and to store the log messages to disk. Components implemented in Python use
the built-in logging module, whereas the NodeJS components use the winston [32] package
from the npm repositories.

In the following paragraphs, the performance of each component will be evaluated, from relevant
point of views.

Crawler: When Amazon is not throttling the Crawlers, the average crawling speed is of
1 app/s (given by 10 instances being limited at 1 request at every 10 seconds). The speed
is influenced by network-related factors, but most importantly by the cool-off period used be-
tween requests (used by the “Delayer” module). Whenever the crawling of an app page fails
to deliver essential data (e.g. the app name or description), the app is added at the back of
the queue for reprocessing. Therefore, no apps missing essential information are added to the
database. If a Crawler instance failed, the only lost information would be the URL to the app’s
store page (i.e. the app will never appear in the database). However, the impact of this event is
minimal, since the system is expected to store data for a large number of apps.

Word extractor: The Word extractor instances filter words which are negatively affecting the
quality of the topics of LDA. Therefore, the filtering rules directly impact the output of LDA, and
hence the recommendation system. The documentation of the gensim implementation of LDA
recommends to trim the bags-of-words for the most frequent and most infrequent words [8].
Therefore, filtering the most common English words and other short words entails better results
for the LDA component, as could be seen by several experiments with the filtering methods.

27
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Permission mapper: Mapping the permissions revealed that approximately 6.3% of the per-
mission descriptions cannot be identified. Some of the permissions are Amazon-specific (e.g.
com.amazon.STORE_ACCESS), while others are defined by individual apps. However, these
permissions should not have a significant impact on the other results of this study, given the fact
that they represent such a small fraction of the total number of permissions.

3.2 Quality of data, relevance

The crawling run resulted in nearly 24,000 apps being recorded in the database, out of nearly a
quarter of a million apps available in the Amazon Android Appstore. Although the crawled apps
represent about 10% of the available data, the crawling was stopped because most of the apps
served by Amazon were duplicates (apps already existing in the database).

Amazon does not provide information regarding the number of downloads per app. However, the
index pages are by default sorted by the “New and popular” criterion. Therefore, crawling the
list from the beginning should provide the most popular apps, and thus the data set is relevant
for the analysis.

Amazon Android Appstore is mainly used by Amazon Kindle devices, which benefit from less
popularity than other Android devices [15]. Using the Google Play store would also provide
access to more apps, although the store might also be subject to repeating apps on index
pages. The only information regarding apps which Google Play provides and Amazon Android
Appstore does not is the (approximate) number of downloads; however, this data is not used in
answering the research questions of this thesis.

3.3 Efficiency of LDA

LDA is designed to analyze and model efficiently a number of documents in the order of millions.
Gensim provides the opportunity to process the same document corpus in several passes, to
emulate a higher number of documents [6]. Therefore, 200 passes were performed through the
dataset, resulting in nearly five million (virtual) documents being modeled.

The recommendation system defines the similarity (or “distance”) between app as a function of
the topic weights for the app. Therefore, the LDA algorithm has a direct impact on the quality of
the recommendations (i.e. how related are the recommended apps to the query app).

In order to measure the efficiency of the LDA component and of the distance function employed
in the Close apps component, the following experiment was performed:

1. A sample of 50 pairs of apps was taken from the pool of 24,000 available apps. The pairs
consisted of a random app and the closest app that could be found in the database, given
the distance function and the topic weights.

2. The apps were listed as pairs of descriptions. A user read the descriptions and rated the
similarity of these descriptions on a scale from 1 to 4 (where 1 is “not similar”, and 4 is
“very similar”).

The results show that 48% of the pairs received a score of at least 3, while 30% of the apps
received a perfect score of 4.

3.4 Efficiency of the recommendation system

The close apps are filtered such that the user observes only more secure recommendations.
The apps which are not filtered away are called “cousins”. The filtered list of apps should be
presented to the user ordered by distance, and therefore the first recommended app is called
the “closest cousin”.
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The filtering based on permission sets is straightforward, since it does not depend on the
users’ personal assessment of risks delivered by each permission. The efficiency of this fil-
tering method can be quantified by the number of permissions that the user can “save”, which
is defined as the difference between the number of permissions that the query app and its clos-
est cousin have. Figure 3.1 provides a histogram of the distribution of the number of “saved”
permissions. The distribution has a mean of 3.78, and a mode of 1.
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Figure 3.1: Histogram illustrating the distribution of the number of permissions saved using the
set-based filtering.

A different way to visualize how many permissions can be saved is by plotting the average
number of permissions of the closest cousin against the number of permissions of the original
app (see Figure 3.2).

The “risk” of an app, as defined in Section 2.3, can be used in defining how much safer is a
recommended app than the query app. For this purpose, the difference between the two risk
values is called “saved risk”, and its distribution is depicted in Figure 3.3b. The distribution has
a mean of 154, and a mode of 5. For comparison, Figure 3.3a depicts a histogram of app risks
(mean 316, mode 88, 870 apps with 0 risk).

Similarly to Figure 3.2, the average risk of the closest cousin can be plotted against the risk of
the original app (see Figure 3.4). Since risk is not a discrete quantity, a line plot with standard
deviation bands is used.
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Figure 3.2: Average number of permissions of the closest cousin plotted against the number of
permissions of the average app. For comparison, the dotted line has slope 1.
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Figure 3.3: (a) Histogram illustrating the distribution of risks of the apps. (b) Histogram illustrating
the distribution of app risk saved using risk-based filtering.
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Figure 3.4: Average risk of the closest cousin plotted against the risk of the original application.
For reference, the dotted line has slope 1. x-axis risks are grouped between every tenth integer,
averaged, and used as a point on the graph. The blue band represents one standard deviation
of the averaged group.
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Chapter 4

Results

4.1 Topics

The LDA algorithm outputs both topic weights (indicating the strength of association between
an app and a topic), and word weights (indicating the strength of association between a word
and a topic). The number of topics that LDA models is therefore influencing the word and topic
weights, since a lower number of topics lump different apps together, and a higher number of
topics might split similar apps apart.

Identifying the real-world class of apps which is modeled by a topic (for example, “productivity
apps” or “sport simulator games”) is hard without human intervention. Upon inspecting the re-
sults that the LDA component produced, the topics where re-labeled as depicted in Table 4.1.
For an app, the topic with the highest weight is called the “topic of the app”; for each topic, the
number of such apps is counted and listed in the column “Topic apps” of the table.

Topic id Topic name Total weight Topic apps
201 GPS, maps, (city) guides, dating 1048.92 996
202 Virtual friends, picture games 773.66 656
203 Flappy bird clones and other games 651.72 579
204 Image, email, social networking apps 2166.66 2499
205 Puzzle games 780.77 696
206 Magazines, how-to apps 872.97 755
207 How to draw, radio apps, DINOSAURS 545.73 377
208 Lifestyle, pets, cupon and product apps 758.07 711
209 Babies, kids, programming 1167.29 1396
210 Girl games 812.81 947
211 Slots and other betting games 820.06 793
212 Mahjong, Zuma, ball games 2492.00 3056
213 Hidden object games 668.51 418
214 Misc. games 1121.33 990
215 Recipes, sound generators, how to draw 887.55 850
216 Word and logic games, BMX, simulators 590.11 522
217 Movies, lyrics, news 1747.70 2102
218 Children books, coloring 711.02 719
219 Bible apps, language apps, file explorers 500.18 364
220 Racing, zombie and combat games 1798.47 2503

Table 4.1: Listing of topics produced by LDA. “Topic name” contains the labels applied by human
inspection of apps related to the topic. “Total weight” contains the sum of all the topic weights
of apps for that topic. “Topic apps” contains the number of apps whose highest topic weight is
associated to that topic.

The total weights are plotted in Figure 4.1a. Also, the number of topic apps for each topic is
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plotted in Figure 4.1b. Finally, the total weights for the most important 20 words is plotted in
Figure 4.2.
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Figure 4.1: (a) Sum of weights all apps have for each topic. (b) Number of apps having the
biggest weight corresponding to each topic.
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4.2 Permission distribution

Figure 4.3 displays the distribution of number of permissions per app. The mean number of
permissions required is 5.7, whereas the mode of the distribution is 3. There are 870 apps
which require no permissions.
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Figure 4.3: Histograms of the distribution of number of permissions requested by apps. Figure
(b) has a logarithmic y-axis.

The “popularity” of a permission can be measured by the number of apps which request it,
or by the percentage of apps which request it. Therefore, the most popular permission is
android.permission.INTERNET, which allows an app to open network sockets. The most
popular 20 permissions are shown in Figure 4.4.
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4.3 Further research questions

Correlation between app cost and in-app purchases The χ2 test is commonly used for
independence tests. The test resulted in several topics yielding p-values lower than the threshold
of 0.05. However, since the data set was split into 20 separate “groups” (topics), the threshold
should also be divided by 20 (i.e. the probability of observing the effect by mere chance should
include the probability of randomly picking a sample of our “group”, which is 1

20 ).

A particular topic in this case is “Bible apps, language apps and file explorers” which returned
p < 5× 10−4, and a negative correlation (i.e. free apps are not correlated to in-app purchases).

In order to address the issue of too few samples, an F-test was also performed on the data.
The results were similar to the χ2 test: only “Bible apps, language apps and file explorers”
(p < 5× 10−4) and “Movies, lyrics, news” (p < 2× 10−3) topics scored below the threshold, both
suggesting a negative correlation.

Permission-permission correlation The number of occurrences of a pair of permissions for
an app is depicted in Figure 4.5a. The permissions are sorted in descending order of popularity,
as presented in Section 4.2. Figure 4.5b presents the same correlation, where the occurrences
are normalized for each permission on the x-axis; however, the permissions are sorted by as-
sociated risk. In both cases, only the top 20 permissions are included.

Permission-topic correlation Similarly to the permission-permission correlation, Figure 4.6a
presents the number of occurrences of a permission-topic pair, whereas Figure 4.6b presents
the counts normalized per-permission. The former figure contains the top 20 most popular per-
missions, whereas the latter contains the top 20 most risky permissions.
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Figure 4.5: (a) 2D histogram of the number of occurrences of each pair of permissions; only
top 20 permissions by popularity are included. (b) 2D histogram of number of occurrences of
each pair of permissions, normalized per permission column; only top 20 permissions by risk
are included.
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Figure 4.6: (a) 2D histogram of number of occurrences of each topic-permission pair; only top
20 permissions by popularity are included. (b) 2D histogram of number of occurrences of each
topic-permission pair, normalized per permission column; only top 20 permissions by risk are
included.



Chapter 5

Discussion

5.1 Recommendation system

An important observation regarding the reported results is that they characterize a snapshot of
the data gathered from Amazon. More exactly, should the user want to reproduce this study,
several of the results would be different, mainly because the Amazon Appstore is a dynamic
website, with new apps being published or app descriptions being updated. On the other hand,
the user could decide to use the compressed HTML source-codes of the webpages; while this
method eliminates the changes which appeared online, the routine for storing this data con-
tained a bug at the moment of data collection, and this study does not benefit from the feature.
The bug has been fixed, and a subsequent run of the whole system would make it possible to
reproduce the study based on the new HTML data present in the database.

Speed of the system: The Crawler component can gather app data at an average speed of 1
app per second. This speed is forced by the "Delayer" module, and hence it is under the control
of the user. However, the "Delayer" was implemented to circumvent access limitations imposed
by Amazon. An improved speed should be recorded if the Crawler instances were run on differ-
ent machines (such that Amazon observes different IPs); however, a better understanding of the
throttling algorithms used by Amazon would reveal the best access strategy. The other speed
bottleneck is the LDA component, which needs all the app descriptions in order to produce a
topic model; however, gensim provides the possibility to add documents to the model online,
which could be translated in adding app descriptions to the model as they are processed by
the Word extractor component. Making use of this online functionality of gensim also requires
implementing special logic for creating snapshots of the model periodically in order to address
the possibility that in a distributed environment nodes can fail. Furthermore, periodic snapshots
require a way of keeping track which apps have been added to the most recent saved model,
because otherwise any apps crawled after making a snapshot would be ignored if the LDA node
failed and a snapshot were restored.

Amount of data: Crawling the Appstore for a longer period should increase the number of
apps which are stored in the database. However, due to the way Amazon implemented its “index
pages”, fewer new apps are displayed as the user browses the Appstore. A different crawling
strategy, which visits the recommended apps for each app, might solve the problem of the “index
pages” method (this strategy is similar to performing BFS using the “recommended apps” as
links). However, this strategy depends on the initial seed (the app or apps where the crawling
starts), because some apps might never be visited since they do not appear as recommended
for any app. Therefore, a hybrid strategy is likely to provide the best results.

Relevance of data: Even if the whole catalog of Amazon were crawled, the number of apps
published on Amazon is much lower than Google’s Play Store. While more data would trans-
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late in both better quality of the LDA model and in a higher probability that the recommended
apps are satisfactory, the 24,000 apps currently analyzed represent the most popular apps on
Amazon, which are therefore more likely to be downloaded by the user.

The relative popularity of apps varies over time. Crawling the Appstore once provides the op-
portunity to research phenomena between apps and permissions, but the system should peri-
odically crawl for new, fresh data, such it stays relevant to the users.

LDA model: Choosing 20 topics to be modeled by LDA provides a good balance between
fragmentation of similar apps and creating large topics which contain different apps. Evaluating
the adequacy of this number is made by sampling apps from each topic and judging if they are
similar. This strategy, although subjective, provides the most reliable decision without knowledge
of the ground truth (i.e. what category each app belongs to). Also, the experiment described in
Section 3.3 resulted in a high fraction of the pairs being similar. This result is a strong proof that
the LDA model is facilitating good recommendations.

Several of the topics produced by LDA are labeled as games (e.g. “Mahjong, Zuma, ball games”
or “Racing, zombie and combat games”; see Table 4.1). However, this can also be observed
in the way app stores organize the apps: for example, Google Play Store treats “apps” and
“games” as top-level categories, with both of them further split into functional sub-categories.
Furthermore, splitting the games into several topics allows the user to find an app which is
related to her query, not totally unrelated games. On the other hand, Table 4.1 contains topics
which apparently group together unrelated apps (e.g. “How to draw, radio apps, dinosaurs”);
however, the advantage of LDA is that an app (document) is not characterized by a single topic-
weight, but by weights for all the topics. In combination with the angular distance function used
in this implementation, apps which have the largest weight in the same topic are not necessarily
close together – the distance depends on the complete mixture of topics, and therefore the
recommendations are expected to be reliable.

It is interesting to observe that the most popular topics contain app types including Mahjong
and Zuma clones, zombie and racing games, and social apps. This finding can be correlated
to the popularity of some representative apps (e.g. Facebook and Twitter, the original Mahjong
and Zuma games), which encourage developers to implement similar apps, expecting users to
prefer familiar themes. The fact that the distributions of total weights, and of the number of apps
which have highest weight for a certain topic (Figure 4.1), are not uniform is also normal, and
attributed to the different popularity each different type of app has.

Distance function: The similarity between two apps, and consequentially the recommenda-
tions, are depending heavily on the choice of the distance function. However, whether one app
is “more similar” than another app depends on the personal perception of each user. It is ex-
pected that the user of the recommendation system would browse through the first couple of
suggestions and pick the app which best suits her needs. The experiment described in Section
3.3 proves also that the distance function implemented in this system is adequate. Also, the
distance function can be analyzed for the following two cases:

• Two apps have a high weight for the same topic: in this case, the high weight produce a
high dot product between the two vectors, which results in a low arccos (angle).

• Two apps have a high weight two different topics: in this case, the angle between the two
apps will be high, since the dot product is small.

Since the two apps belonging to the same topic are more likely to be similar than the two apps
belonging to different topics, the distance measure is satisfactory. Furthermore, one can also
observe that this distance function allows apps belonging to the same topic (i.e. with highest
weight for the same topic) to be functionally segmented, based on the mixture of weights they
have for other topics: for example, two apps with the highest weight for topic t1, but with the
second-to-largest weight for different topics t2a and t2b (with t2a 6= t2b) would not be as close
together as two apps having similar highest-weight topics (t2c = t2d).
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Filtering method: It is hard to decide which filtering method (set-based or risk-based) pro-
duces better results. For example, one user might use the recommendation system to find sim-
ilar apps which do not use a particular permission (in which case the set-based filtering is more
appropriate), whereas another user might look for an overall less risky app (so she should use
the risk-based filtering). However, since the user is considered a subjective agent whose risk-
adversity is not known, the risk evaluation of an app might be perceived as wrong; therefore, the
risk-based filtering might exclude similar apps which would suit some users.

Permission risk evaluation: As stated in the previous paragraph, the risk-adversity function
is unknown for every user of the system. As presented in [10], the users can be surveyed
in order to construct a model of the average user and his sensitivity toward different risks. The
cited work stays as a basis for evaluating each individual permission’s risk value. The estimation
procedure for unknown values by evaluating each permission against permissions which control
similar data provides adequate results, with a plausible risk hierarchy of the permissions, where
cost-incurring permissions (e.g. CALL_PRIVILEGED) stay at the top, and permissions which
could only annoy the user (e.g. VIBRATE) stay at the bottom.

Users might also challenge the definition of the risk of an app (see Section 2.3). Summing the
individual permission risks might not capture the risks at which the users are exposed by some
apps: for example, a hypothetical app which requires BLUETOOTH and BLUETOOTH_ADMIN
(which are usually requested together anyway) and also FLASHLIGHT would have a risk higher
than an app which can send SMS messages; however such an app clearly can do less damage
than the SMS-sending app. An alternative way to define the risk of app a with set of permis-
sions Sa is risk(a) = maxp∈Sa risk(p). This definition only takes into account the maximum
impact that the app can have. However, this definition also fails to identify “permission syner-
gies” (combinations of permissions which have little impact individually, but which pose a higher
risk when requested together) [9].

Saved permissions and risk: The “number of permissions saved” and “risk saved” were
described in Section 3.4. They can be used as measures of the efficiency of the overall system.
However, these measures also depend on the way they are defined: for example, the definition
from Section 3.4 involved the closest cousin, but the measures can also be defined in such
a way that they are maximized (e.g. the “saved risk” becomes the difference between the risk
of the query app and the lowest risk of the recommended apps). These alternative definitions
actually hide the fact that the recommended apps might not be similar to the query (i.e. more
importance is given to maximization of the “saving” rather than to the similarity of the apps), and
therefore should not be used in characterizing the system.

Figure 3.1 reveals a long tail, with some recommended apps saving up to 47 permissions. For
example, app “ooVoo Video Call, Text & Voice” (store ID B007BSPOG4) requests 36 permis-
sions, whereas its closest cousin “ChatZee” (store ID B00F560MP2) requests only 4; both apps
implement chatting functions, and therefore the recommendation is appropriate. On the other
hand, the authors of the former app advertise more functions than the latter (e.g. video and
photo messaging), which is a good reason for requesting more permissions.

Another relevant example is the pair “AVG Antivirus Security - FREE” (B0089XH38M, 49 permis-
sions) and “Android Trust Antivirus RW” (B00I1H8BIC, 5 permissions). Even if the apps seem
to be related judging by their description (they advertise standard antivirus features), the rec-
ommended app is most probably disguised malware: the app does not require any permission
which allows inspection of other apps, but it does require writing and reading SMS messages,
connecting to the internet and reading the list of accounts, a combination of permissions likely
to be used for nefarious purposes. In this case, even if the query app is “more dangerous”
from both the risk, and set-based definitions, it is in fact the more appropriate app to choose.
However, given the design of the recommendation system, it is impossible to avoid such corner
cases using automated computation; curating the database of apps, for example by marking
them as “dangerous” and/or excluding them from the cousin lists, is a possible solution. All
antivirus apps represent a special category of apps: it is expected for them to require several
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permissions, since their purpose is exactly to inspect other apps and prevent them from per-
forming malicious jobs; therefore, many of the “permission-hungry” antiviruses contribute to the
long tail of Figure 3.1 (other examples are “Kaspersky Internet Security for Android”, store ID
B00HYZBX9Q, and “Lookout Security & Antivirus”, store ID B00AQ398AY).

It can also be observed that apps which are unrelated appear on the list of apps with
most saved permissions. For example, “Security - Free” (B004U85D2S) and “Fast Facebook”
(B00IJ70T48); however, even though these two apps provide different functions, their descrip-
tions contain common words (e.g. “memory”, “network”, “install”), which influence the allocation
of topic weights. It is therefore reasonable to find functionally unrelated apps as close cousins
after the automated processing of the dataset; users’ input could be used to curate the recom-
mendations, which would help mitigating the problem.

In Figure 3.2, the point with x-coordinate 37 features a high standard deviation. The point corre-
sponds to apps which require 37 permissions, and to their closest cousins filtered by permission
sets. There are 3 apps in the list (“textPlus Gold Free Text + Calls for Android Phones, Tablets +
Kindle Fire”, store ID B004ZFK600, “Security - Complete”, store ID B007CJTIO6, and “Lookout
Security & Antivirus”, store ID B004QEFQIM), but only 2 of these apps have a close cousin with
fewer permissions. Therefore, the point with x-coordinate 37 corresponds to a set of two close
cousins which require 1 and 35 permissions; this set has a standard deviation of 17 and a mean
of 18. Therefore, the apparent glitch is related to a low number of samples.

Figures 4.3 and 3.3a reveal that the number of apps which require many permissions or which
have a high total risk decreases rapidly (nearly exponentially, with a long tail). This fact reduces
the likelihood that a high number of permissions are saved, or that a high risk value is saved by
using the recommendation system (these values were plotted in Figures 3.1 and 3.3b): given the
fact that the minimum number of permissions / risk of an app is 0, an upper bound of the “saved
permissions” or “saved risk” is the number of permissions or risk of the query app; therefore,
having a low number of apps with a lot of permissions or with high total risk translates into a
lower likelihood to “save” a high number of permissions or risk.

Figures 3.2 and 3.4 might seem to contradict Figures 3.1 and 3.3b (their histogram counter-
parts): it seems that the average number of permissions / average risk of the closest cousin
deviates much from the x = y line. However, the fact that fewer apps require many permissions
/ have high risk results in averaging of smaller lists, and therefore a higher probability that the
mean values are low: for example, there are many apps which require few permissions, so the
few apps requiring many permissions are more likely to have their closest-cousins among the
former set.

The distribution of “saved permissions” has a mean of 3.78, which means that a user can expect
to get a recommendation with 3 or 4 permissions less in average. Furthermore, the distribution
of “saved risks” has a mean of 154 (for comparison, the risk of an individual permission is a
value between 0 and 100). It is worth re-emphasizing that these values describe the case when
the user considers only the first recommendation provided by the system (most similar app);
it is however likely to find an even better alternative simply by considering more recommenda-
tions from the list. On the other hand, one could argue that apps which do not require more
permissions than strictly needed are likely to have no similar apps, which require the same set
of functionalities and require less permissions. Therefore, the possibility of saving in average 3
to 4 permissions, and up to 47 permissions in extreme cases, offers a significant benefit to the
user.

Permission distribution: Figure 4.3 shows the distribution of the number of permissions re-
quested by the apps, which is in concordance with the literature [31]. It is interesting to note that
about 3.5% of the apps do not require any permission at all. The list of apps contains several tod-
dler games (e.g. “Trains, Planes & Sea Vehicles - Puzzle for Toddlers”, store ID B008QMMEOE)
or calculators (e.g. “NeoCal Advanced Calculator”, B004S3MB2U). While it is expected that cal-
culators would not require any permissions, the authors of young children games could take
advantage of the fact that in-app purchasing libraries offered by an app store are tied to the
user’s account, and therefore a young child could be tricked into making purchases without the
need of physical access to a credit card.
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Other apps requiring no permissions might fail to provide the advertised functionality: for ex-
ample, “Onion Comic Viewer” (B0055184B6), should open comic files in different formats; it
is however unclear how could such an app access the files since it does not require the per-
missions needed to access external storage or the internet (such that it can download the files
for the comics). By default, any app has access to the “internal storage”, which is a folder cre-
ated specially for the app, and not accessible from other apps, and to the app cache, which
is also inaccessible from another app. Installing the app revealed that there is no easy way to
explore the files, and that the app has no access to the places where files are usually placed
by users (for example, the sdcard folder). The app could list the Android filesystem and ac-
cess some folders, but the user would need other apps with special permissions to place files in
these folders. To further analyze the behavior of the app, the utility APK Tool [5] was used
to decompile the APK file of the app. The tool produces source code similar to assembler
code, called “smali”; relevant smali commands include invoke-direct, invoke-virtual
and invoke-interface, which represent function calls. Listing all “invoke-*” commands
revealed no suspicious function calls.

The Trendmicro blog describes how an app which requires no permissions can still perform
malicious actions using different techniques [24]. An interesting technique mentioned in the
article involves creating Android Intents (one of the platform’s inter-process communication
channels) to invoke the default browser and navigate to a webpage. The app does not need
any permission to invoke the Intent, and the browser already has the permission to access
the internet. Decompiling the “Onion Comic Viewer” app revealed that the app is only invoking
Intents that allow the user to switch between the two Activities of the app, which pose no
security threat. In conclusion, no hidden, malicious behavior could be found implemented in the
app.

The most popular permission is android.permission.INTERNET (Figure 4.4), requested by
93.8% of the apps. This permission allows opening network sockets, which in turn allows the app
to retrieve updated content to the user. However, the internet connection can be used also for
malicious purposes, such as uploading sensitive user data to the attacker’s servers. Therefore,
the presence of this permission in the set of requested permissions of an app which does not
need content from the internet might be a warning sign. It should be noted that apps require an
internet connection also for serving ads.

The second most popular permission is ACCESS_NETWORK_STATE (84.7% of the apps), which
allows the app to retrieve information about the network (e.g. if the device is connected). This
information is usually used prior to making a request to a server. Since INTERNET is the
most popular permission, it is reasonable to have such a high number of apps requesting
ACCESS_NETWORK_STATE. The third permission on the list is WRITE_EXTERNAL_STORAGE
(58.2% of the apps), which allows the app to write files to the external storage.

It is also interesting to see how many apps require the most dangerous permissions. For ex-
ample, the BRICK permission (which would allow the app to disable the device, rendering it
inoperable), is not required by any app. The CALL_PRIVILEGED permission (which allows the
apps to place a phone call without going through the Dialer app, so the user can confirm the
call) is required only by 12 apps, all of which advertise functions such as internet calling, but
also placing regular phone calls if no internet connection is available (hence justifying the need
for the permission). Since there are not many apps who require the permission, human curation
of the database is possible, maybe even preferred: periodically, an administrator of the system
could test the apps (e.g. using static analysis) and determine whether the apps contain malware
or not. However, as the number of apps to manually analyze rises, the solution becomes less
feasible and an automated approach should be implemented.

5.2 Further research questions

Correlation between app cost and in-app purchases Since an app developer faces the
problem of a low (or lack of) reputation within the user-base, publishing an app for free and
subsequently providing restricted content for a fee (i.e. in-app purchases) would incentivize
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users to install the app. Another popular alternative is splitting the app functionality between a
base (“lite”) version, and a more advanced (“pro”) version. While the former method is popular
with game developers, the latter is more frequently found in utility apps (e.g. file explorers, music
players).

The tests prove that the there is no correlation between app cost and in-app purchases for most
of the app categories (topics). The evidence of negative correlation for “Bible, language and file
explorers” is expected: the “Bible apps” are meant to have a massive reach (transfer information
to many users), and therefore they need not incur any costs to the users; the “language apps”
and the “file explorers” might find the “lite/pro” monetization model more appropriate, since in-
app purchases are usually used to unlock content, not features.

The second topic with a significant proof of negative correlation is “Movies, lyrics, news”. The
apps belonging to this category do consume content, but the nature of the content is different.
Movies and lyrics apps resemble digital encyclopedias on the respective themes, and therefore
partially restricting access to the data is unlikely. News apps are usually meant to attract users to
a particular information source (e.g. a news agency) or to drive traffic to a website (e.g. Google’s
“News and weather” app, which opens web articles in the default browser); these apps are also
unsuitable for the in-app purchasing model.

The lack of correlation is unsurprising also for the apps belonging to game-themed top-
ics. On one hand, the “in-app purchasing” variable is defined in terms of requesting the
com.android.vending.BILLING permission, which is provided by the Google Play Services
SDK; it is expected that apps published in the Amazon Appstore are specifically recompiled for
the Amazon SDK. On the other hand, although the in-app purchasing method is effective, it
might not fit the theme of the game, or even the developer’s desire to monetize its apps.

Permission-permission correlation Figure 4.5a offers supporting evidence for the argu-
ment made in Section 5.1, regarding the popularity of android.permission.INTERNET and
ACCESS_NETWORK_STATE. It can be observed from the histogram that the two permissions are
most frequently found together, since it is a good practice to test for the availability of an internet
connection before making requests to a server.

The cells corresponding to ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION show
an increased likelihood to find these two permissions together. This result is expected, since
using cell-based localization is a reasonable fallback to GPS for apps which require the user’s
location. Similarly, the ACCESS_WIFI_STATE (which allows the app to get the ids of the WIFI
networks in range, among others) is likely to be requested together with the location permis-
sions, since WIFI networks have a fixed and usually known location and therefore can be used
as “landmarks” in determining where is the device located.

The CAMERA permission is likely to be requested together with RECORD_AUDIO, which can be
used in audio-video recording. CAMERA also is likely to appear in combination with the fine
and coarse location permissions, since the photo-shooting apps usually offer the option to tag
pictures with GPS coordinates, or general location.

Another likely pair of permissions is com.google.android.gms.permission.C2D_MESSAGE
(which allows an app to receive notifications using Google Cloud Messaging – Google’s push
notifications service) and GET_ACCOUNTS (which controls access to the accounts created
by the apps installed on the device). These two permissions are likely to be used in social-
networking apps, which usually implement chat functions. Furthermore, C2D_MESSAGE is also
frequently requested in combination with VIBRATE and WAKE_LOCK (which allows the app to
prevent the device to sleep), which are features usually provided by the chat apps.

Figure 4.5b offers the same type of likelihood analysis as Figure 4.5a, but for a different set
of permissions (the most risky); also, the histogram is normalized by column: for each x-axis
permission, the vector of occurrences of the y-axis permissions is normalized and then added
to the plot. It therefore reveals not the pairs of permissions which are likely to be generally found
together, but the permissions which are likely to be found together with each x-axis permis-
sion. For example, ACCESS_ALL_EXTERNAL_STORAGE is most likely to be found together with
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WRITE_EXTERNAL_STORAGE, which is reasonable, given the fact that both permissions restrict
access to the same functions of the device (namely, writing data to the SD card).

Some pairs of permissions expose the user to a great security risk. For example, the SMS-
related permissions (WRITE_SMS, RECEIVE_SMS and READ_SMS) are likely to be found in
pairs. Allowing an app to both write and receive SMS messages is usually used in device-
authentication procedures (e.g. the app receives an SMS with a token, to which it replies with
a computed message, completing the authentication); on the other hand, a malicious app with
both write and receive SMS permissions could exploit the connection at the expense of the user
(without her consent, or even knowledge).

Apart from the insights about which permissions are likely to be found together in the
app manifest files, the histograms also provide insights on permissions which usually
do not appear together. Of course, some pairs can be explained intuitively, for example
com.android.vending.BILLING (which provides in-app purchasing capabilities) is not of-
ten requested by apps which also need permission to access location (Figure 4.5a). Another
example would be the fact that CALL_PHONE does not necessarily require CALL_PRIVILEGED,
whereas CALL_PRIVILEGED is likely to require CALL_PHONE (Figure 4.5b), which also reflects
the difference between the two histograms. These insights can be used to identify unlikely pat-
terns occurring in apps, and warn the user that the app might not be trusted.

Permission-topic correlation Figures 4.6a and 4.6b show the likelihood for a permission to
be required by an app belonging to one of the topics. The histograms can also be interpreted
as a per-topic segmentation of the popularity of the permissions (i.e. in which topics is the
permission more popular).

It is interesting to observe that, generally, the “Image, email, social networking apps”, “Mahjong,
Zuma, ball games”, “Movies, lyrics, news” and “Racing, zombie and combat games” have the
highest probabilities (Figure 4.6a), which can be explained by the fact that the topics are more
popular (Figure 4.1a).

The BILLING permission is most frequently requested by games (topic ids 211, 212, 214, 220;
see Table 4.1), but also by apps targeted to children (topic ids 209, 218). The games are a
reasonable target for in-app purchases, but the apps for children can become target to incur
hidden costs to the users (usually, the parents).

The location-related permissions are distributed quite evenly among the topics. This could hap-
pen due to the fact that ad-serving services require the approximate location of the user in order
to serve effective ads. Furthermore, one could expect that the GPS and mapping apps (topic
201) have the highest probability to request access to the user’s location.

Figure 4.6b displays the probability to find each permission in the topics, normalized across
topics (not overall, as Figure 4.6a). This way to depict the data reveals several cells of interest.

First, the READ_INPUT_STATE permission appears to be requested most by the “Racing, zom-
bie and combat games”. The permissions allows the app to listen for key presses and touch
events, even when the user is using a different app. An attacker could use this permission for
harvesting passwords. It is unclear why apps belonging to this gaming category would require
the permission.

Second, the WRITE_PROFILE permission is strongly correlated to “Babies, kids and program-
ming” topic. The permission enables editing the personal profile of the user of the device.
The personal profile contains details such as the user’s name or photo. Furthermore, the
READ_PROFILE permission appears to have a weak correlation to the topic. It is also unclear
why this category of apps would require the permission. However, investigating the actions
which an app performs, which require the permission, would be possible only by static analysis
of the apps, which is outside the scope of this work.

Other combinations can be intuitively explained. For example, CALL_PRIVILEGED is required
by GPS apps and city guides (topic 201), which can be explained by the fact that the apps
provide the option to call the emergency services of the visited city (for city guides) or in case of
accident (GPS apps).



46 CHAPTER 5. DISCUSSION

The row corresponding to “Image, email, social networking apps” appears to have the highest
weight overall in Figure 4.6b, but this can be explained by the fact that apps belonging to this
category usually are permission hungry, asking for access to a lot of information. For example,
the Facebook app (store ID B0094BB4TW) requires 31 permissions, including reading SMS
messages.

It is troubling to discover that not only the apps belonging to topic 201 require the
CALL_PRIVILEGED permission, but also apps belonging to the “Mahjong, Zuma, ball games”
topic. The same can be said about the DELETE_PACKAGES permission (which allows an app
to uninstall other apps) and the “Slots and other betting games” topic. Apps requesting these
permissions and belonging to these topics should be avoided.

These histograms can not only be used in creating a warning system (which highlights unlikely
combinations of permissions and topics in an installed app), but also to help a curator of the
database to find strange combinations (as exposed above), and highlight the corresponding
apps as not trusted.



Chapter 6

Threats to validity

The LDA algorithm is designed to process massive datasets, with millions of documents. The
lack of data is compensated in this work by repeatedly processing the set of 24,000 apps in the
database. This technique could have a negative impact on the quality of the topics produced by
LDA.

The risk evaluation of each individual permission might be erroneous. However, it is clear that
the notion of risk is different for each user, which makes an objective risk assessment impossi-
ble.

Some Amazon-specific permissions are not handled by the Permission mapper component.
This also happens for some Google-specific permissions, and for any other permission which
is unknown (e.g. permissions defined by apps). While these permissions might have a small
impact due to their low frequency, some measures might be affected (e.g. the risk of an app
does not include the risk of the permissions which are not mapped correctly, and therefore is
lower than in reality).

The system is implemented to only crawl the Amazon Android Appstore. It was also presented
how the data is analyzed for patterns of likely or unlikely combinations. Using a single data
source might establish a dependency between the findings and the source (e.g. the frequency
of Amazon-specific permissions has an exacerbated impact). The system should crawl several
app stores, and consider an app published to different stores as two different apps (because they
might request different permissions). This will mitigate the hidden effects specific to individual
app stores and will provide a better overview of the Android app ecosystem.
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Chapter 7

Related Work

Barrera et al present in [2] a method to employ Self-Organizing Maps (a way to produce 2D
representations of a higher-dimensional space) in order to highlight app similarities with respect
to the permissions they used. The authors discover that although Android provides many per-
missions to the developer, only a small number of them are actually used. In concordance with
the findings resulted from this project, they reveal that android.permission.INTERNET is
requested by a majority of apps, and suggest that some permissions (especially INTERNET)
should be split into different permissions which provide finer-grained control to resources. Fi-
nally, they reveal that social and communication apps are requesting the most number of per-
missions in average (between 4.5 and 6.7), which also corresponds to the findings presented in
this study.

Kirin is an app certification service introduced by Enck et al in [9]. The system uses security
rules to identify potentially dangerous behavior in an app. The rules are defined on Android
permissions. Alone, some of the permissions pose no security risk; however, the combinations
of requested permissions might enable malware to exfiltrate sensitive data. The article uses as
example the combination of starting the app on boot (RECEIVE_BOOT_COMPLETE), access to
the user location and ability to access the internet, which signal a location-tracking app. The
system was used to test apps, and successfully signaled potentially dangerous behavior which
was not explained by the descriptions of the respective apps.

Over-privileged apps are those apps which request more permissions than they actually use to
provide their functionality. Felt et al study this type of apps in [11], where they present “Stow-
away” – a static analysis tool which maps the set of API calls made by an app to the permissions
restricting access to these calls. Their system reveals that about one third of the dataset used
in the study (940 apps) are actually overprivileged. While constructing “Stowaway” it was also
found out that the BRICK permission is actually used in the Android 2.2 source code only in an
unreachable area of code. The paper highlights common developer errors, such as requesting
the permission needed to perform an action when in fact the app only issues an Intent which
is handled by a different app (e.g. requesting INTERNET when opening an URL in the default
browser). The authors attribute these errors on developer confusion due to the poor documen-
tation of the Android APIs.

Felt et al also published in [10] the results of a survey they conducted on smartphone users.
The survey measured the users’ concern (“how upset would they be”) regarding the risks as-
sociated to granting different permissions to the apps. Their findings reveal that the lowest-
ranked risks include phone vibration or turning the flash on (correlated to Android permissions
VIBRATE, respectively FLASHLIGHT), while the highest-ranked risks were related to deleting
contacts (WRITE_CONTACTS), sending SMS (SEND_SMS) or make phone calls (CALL_PHONE,
CALL_PRIVILEGED) to costly numbers. As recommended in the article, the results were used
as a guide to evaluating the severity of different Android permissions.

A quantitative risk assessment of permissions was performed by Wang et al in [31], which
resulted in the definition of “risk of an app” as the sum of individual risks of the permis-
sions it requests. The authors split their data-set into benign apps and malign apps (mal-
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ware). The article reveals that the most requested permission is INTERNET (for both sets); mal-
ware apps have a preference towards changing device settings (e.g. WRITE_APN_SETTINGS,
CHANGE_WIFI_STATE) and accessing cost-incurring services (SMS and call related permis-
sions). It is also revealed that the distribution of number of requested permissions has an affin-
ity for higher values in malware. The results of the quantitative risk assessment show that the
highest-risk permissions include WRITE_SMS, SEND_SMS and DELETE_PACKAGE. Their soft-
ware, “DroidRisk”, can order the apps by risk and for each app identify the most risky permis-
sions.

In [28], Shabtai et al provide a risk analysis of the Android framework. They identify the threats
with highest risk: abusing cost-incurring services and functions, such as sending SMS/MMS or
placing phone calls. The authors propose a set of risk-mitigating strategies, such as installing
anti-malware or firewall software. They also propose solutions connected to the Android per-
mission system: allowing the user to selectively grant permissions to the app (as opposed to
granting all requested permissions), or the implementation of an app which scans the to-be-
installed app for requested permissions and present a detailed report of what the user would
agree to install.



Chapter 8

Future Work

There are several ways to improve the accuracy of a recommendation system. Probably the
most often implemented strategy is to integrate the user’s feedback into the system. For exam-
ple, the similarity of two apps can be evaluated using any scale (e.g. the 5-star scale); the user’s
input is used by the system to update the distance between the two apps. This strategy keeps
the automated nature of the system, and depends on the efficiency of the update procedure
(e.g. a one-star review should not change the distance between the apps completely). Unfortu-
nately, this strategy is threatened by the hostility of the reviewers: for example, the author of a
malicious app could try to remove any similarity between his app and all the recommendations
the system generates.

In order to compensate for all the drawbacks that a fully automated system possesses, human
curation should be implemented. For example, the administrators of the website could flag apps
as “dangerous”, which would remove them from the lists of recommended apps. Deciding which
apps to inspect can be facilitated by the topic-permission or permission-permission histograms,
as presented in Section 5.2. However, flagging an app as dangerous is prone to errors (legit
apps could be flagged, or malicious apps could be missed).

The histograms can also be used to identify unlikely combinations of permissions or permissions
requested by apps unlikely to belong to a topic. This information can be used to implement
a warning system, running on the devices. Upon installation, the program could inspect the
new app, classify it using the LDA model, and retrieve its permissions; this data would then be
checked, and should the app require some intriguing permissions, the user would be notified.

The recommendation system can be improved by extending the app database. More data would
not only allow LDA to produce better results, but would also increase the chances that a sim-
ilar and more secure app is available to be recommended. Therefore, the Crawler component
should be extended to also process Google Play Store. Also, to circumvent the problem that
Amazon (and possibly also Google) start repeating apps on the index pages, an extended
crawling strategy should be implemented. For example, the Crawler instances could follow the
“related apps” links which the stores provide, in an algorithm resembling breadth-first search.

The stores also provide some more information which could be analyzed. For example, Google
Play Store provides the approximate number of downloads of the app, which can be used
to measure the app’s popularity, and consequently in ordering the recommendations. Both
Google’s and Amazon’s app stores provide user reviews for the apps, employing a 5-star scale;
this information can be integrated in the “popularity” attribute of the app. Also, the “related apps”
links on their websites are the result of the recommendation systems built by Amazon and
Google; these links can be used as valuable hints of which apps are similar, and could be inte-
grated in the distance function (e.g. if two apps are recommended on the app store, the distance
should be low, even if the angle between the topic vectors suggests otherwise).

Finally, the system can be optimized, such that it processes the dataset faster. This improve-
ment would become valuable as the Crawler instances retrieve more data. For example, Twitter
describes in [33] a technique which computes all-pairs similarities using MapReduce. The tech-
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nique can be implemented in the Cousins and Close apps components. To generalize, the dis-
tributed design of the system suggests that it can be modified to take advantage of MapReduce
even further.



Chapter 9

Conclusions

A recommendation system has been built based on app data from the Amazon Android App-
store. The system processes app descriptions and creates a topic model, which is used to
compute the similarity between apps using the cosine distance function. Recommended apps
are filtered based on the permission sets they request, or on the risk they pose to the user.

Given the distributed design of the system, several synchronization schemes have been ex-
plored. The versatility of redis has been exploited, by implementing different patterns including
distributed mutexes, pub-sub systems and producer-consumer queues.

The system can provide recommendations which require in average 3 permissions less. It also
helps lower the risk of the apps by about 154 risk-points (where the maximum risk a single
permission can bear is 100). The assessment of these measures is based on the “most similar
app” among the recommendations, but in practice the user can browse through the whole list of
recommended apps and find a more suitable and safer app.

Using the data available, several research questions can be answered. No correlation could
be found between the price of the app and the availability of in-app purchases overall. If each
topic is treated separately, some significant negative correlations appear; however, they are not
extremely relevant in the context of the respective topics.

Investigating the relationships between permission pairs requested by the same app revealed
several interesting couples. None of these pairs could not be explained by common sense;
however, this does not rule out the possibility of malicious use of the respective combinations.
Furthermore, some risky pairs could be found (e.g. writing and reading SMS messages); apps
falling in this category should be avoided.

The same investigation was performed for the frequency of all the topic-permission pairs. In
this case, some unexplainable combinations were found (e.g. the permission allowing an app to
listen to input which is given even to other apps is most frequently asked by a certain category
of action games). The capability to reveal such suspicious cases stands proof to the benefits
brought by the system. Furthermore, should human curation be added to the database, the
histograms presented would provide a starting point for the curation process.

The system is designed to run on several machines, with little human interaction needed. The
implementation is production-ready, and the database can be queried via the website interface.
However, the project exposes some future work which could benefit from the current results,
which would result in a warning system: upon installation, any app is be checked, and should
an unlikely combination of permissions be met, the user would be warned and allowed to stop
the installation process.
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Appendix A

Running guide

The following README file is also available in the source file package. It describes the steps
necessary to setup the system and to run it. It also contains suggestions for the case where the
system gets stuck.

1 0. Introduction
2 ============
3
4 The system is designed to run in a completely decentralized setup: a
5 database machine, a synchronization machine (running redis), and one machine
6 for each component instance. Of course, all the software can be run from
7 the same machine without any special changes.
8
9 In order to ensure that the components can reach the MySQL and redis servers,

10 the source files must be edited to use the appropriate IP addresses.
11 The default configuration connects to localhost, on the default ports of the
12 servers.
13
14
15
16 1. Installing the prerequisites
17 ============================
18
19 * MySQL (>= 5.5.32)
20 * redis (>= 2.8.7)
21 * python (2.7.5)
22 * node.js (>= 0.10.26)
23 * rsyslog (>= 5.8.11, configure it to save LOG_LOCAL0 to a file)
24
25 Python packages
26 ---------------
27
28 * numpy (>= 1.8.1)
29 * scipy (>= 0.13.3)
30 * mysql-connector-python (>= 0.3.2-devel)
31 * gensim (0.9.1)
32 * redis (>= 2.1.10)
33 * matplotlib (>= 1.3.1 - easier via package manager on Ubuntu)
34
35 The packages can be easily installed using easy_install.
36
37 Note: numpy requires python-dev on Ubuntu (and its forks).
38 Note: scipy requires libatlas-dev, liblapack-dev and libblas-dev and a Fortran
39 compiler (e.g. gfortran) to be installed on Ubuntu (and its forks).
40
41 Node.JS packages
42 ----------------
43
44 The standard node.js installation comes with the npm (package manager).
45 Therefore, just naviagte to the Crawler or Interface root dir and run:
46
47 $ npm install
48
49 The latest version of NodeJS (0.10.31) comes packaged with an implementation of
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50 npm which is slow, and buggy. Please run "npm install" several times if you
51 encounter errors. Also, it might help to remove the "node_modules" folder if
52 installation or running the scripts fails repeteadly, and run "npm install"
53 again.
54
55 Getting the sources
56 -------------------
57
58 Although at this point you already have the archive with the source code, it is
59 still worh mentioning that you can download it from:
60
61 http://thesis.cotizo.net/source.zip
62
63 2. Preparing the database
64 =========================
65
66 * Navigate to the folder called "sql"
67 * Run the setup.sh file
68 * When prompted, insert the password for the root user of MySQL (enter if empty)
69
70 The SQL database is called "thesis", with password "thesis". Although the name
71 and password can be changed (in sql/migrations/create.mysql), remember to also
72 change them in all the source files and the sql/setup.sh file.
73
74 You can move from one migration to the next/previous one by applying "up" or
75 "down" scripts found in sql/migrations/.
76
77 3. Running the components
78 =========================
79
80 The source files of all the components should be edited to point to the machines
81 running MySQL and redis. By default, the scripts point to localhost and default
82 ports of the servers.
83
84 Some of the scripts use libraries placed in the util/ folder. It is therefore
85 mandatory to set up the library paths for node.js and python:
86
87 * NODE_PATH=/path/to/project/util/redmutex node app.js
88 * PYTHONPATH=/path/to/project/util/redmutex:/path/to/project/util/logging python app.py
89
90 You can find a bash script (util/mps.sh) which can be used to start several
91 instances of the same script. For example, for starting 4 instances:
92
93 * NODE_PATH=[...] /path/to/project/util/mps.sh "node app.js" 4
94 * PYTHONPATH=[...] /path/to/project/util/mps.sh "python app.py" 4
95
96 The bash script runs the processes in the background, and saves their PIDs. When
97 you stop the bash script (e.g. by CTRL-C), it will kill all the PIDs first.
98
99 Crawler

100 -------
101
102 * navigate to crawler/
103 * install the node.js dependencies using ‘npm install‘
104 * start the crawlers using ‘node app.js‘
105 * edit the file called "init.js" to set the number of Amazon pages to be crawled
106 (i.e. change the limit of the for loop) and run it with ‘node init.js‘. Wait a
107 bit and then you can kill the node process.
108
109 Note: you can run "init.js" after all the components are up and running.
110
111 Note: if the crawler does not start processing after init, it means that the
112 redis is locked. Please stop all the instances, and run:
113
114 $ redis-cli FLUSHALL
115
116 Then, restart the instances, and run init again.
117
118 Word extractor, LDA, Close apps, Permission mapper, Cousins
119 -----------------------------------------------------------
120
121 * navigate to the folder of each of the components: "word" (Word extractor),
122 "lda" (LDA), "similarity" (Close apps), "permissions" (Permission mapper),
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123 or "cousins" (Cousins)
124 * run the components using ‘python app.py‘ (or ‘python mapper.py‘ for the
125 permission mapper)
126
127 Note: Close apps component accepts a "--limit=N" parameter, which instructs it
128 to store only the closest N recommendations for each app. It is strongly
129 recommended to run the component with "--limit=200", otherwise the performance
130 of the User interface will have to suffer from JOINs over O(N^2) tables.
131
132 Note: If the LDA component is stuck at "Waiting for crawler and word to finish
133 processing...", even if the other two components have finished, then you can
134 force trigger LDA by:
135
136 $ redis-cli RPUSH /queue/lda-crawler 1
137 $ redis-cli RPUSH /queue/lda-word 1
138
139 The executable redis-cli can be found in the "src/" folder (if redis is compiled
140 from sources).
141
142 Note: if Close apps (similarity) does not produce any app distances, run from the ↪→

component’s folder:
143
144 $ python redis-inserter.py
145
146 Then re-run the component. The component can be kept alive while the previous
147 command is run.
148
149 Note: If there are no Cousins produced by the component, run the following
150 command from the folder of the component:
151
152 $ python redis-inserter.py
153
154 Then, re-run the Cousin instances.
155
156 User interface
157 ---------------
158
159 * navigate to webpage/
160 * install node.js dependencies using ‘npm install‘
161 * run the server using ‘node app.js‘
162 * navigate to localhost:8022
163
164 It is recommended to use install ‘forever‘ and use it to run the interface in
165 the background:
166
167 $ npm install -g forever
168 $ forever start app.js
169
170 The server’s port can be changed by setting the environment variable PORT or
171 editing the "app.js" file.
172
173 4. Experiments
174 ==============
175
176 Small plotting and data processing files, called "experiments", can be found in
177 the respective folder. Most of the scripts are controlled by different flags.
178 Please consult the headers of the scripts to see an explanation of what they do
179 and what flags are accepted.
180
181 5. Help, I’m stuck!
182 ===================
183
184 The system might get stuck (deadlock) because of the distributed mutexes, or
185 because a pubsub message is missed. Normally, re-running the whole system should
186 fix the problem. If it is not the case, try to remove everything stored in redis
187 using:
188
189 $ redis-cli FLUSHALL
190
191 Now all the synchronization primitives (e.g. processing queues, mutexes) are
192 removed, and you can start the components from scratch. Removing the data from
193 the database is not necessary, since the crawler will not process a page which
194 is already in the database, so you can speed up the crawling this way.
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195
196 If nothing works anymore, and the system deadlocks always, write an email to
197 csima@student.ethz.ch.
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