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Abstract

Today’s smartphones have several sensors incorporated within them. The An-
droid platform can support up to thirteen sensors, including accelerometer, gy-
roscope, pressure and magnetic field. For this project, we wanted to see if one of
those sensors could be useful in order to count how many repetitions a user does,
when he is doing some exercise at the gym or at home. After several analysis
steps, we realized that, using the magnitude of the acceleration vector recorded
by the accelerometer could fulfill our goal. The application we implemented can
count all the repetitions a user does during a specific exercise, if it is a simple
movement, and if they are good enough to be counted.
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Chapter 1

Introduction

1.1 Motivation

During the last few years, going to the gym became one of the most popular
hobbies. If one want to lose weight, strengthen the muscles (in order to be fit for
another sport), shape the body or just spend some time with friends and train
together, the reasons are many. But the purpose or final design is always the
same: improve ourselves. We can compete with others, to see who can do more
push ups or lift more weight. We can write in a piece of paper or a document
our achievements, in order to do better next time. Or we could ask a device to
do it for us. We can find several devices in the market. Let’s enumerate a couple
of them.

1.1.1 What already exists

One of the most popular of those devices is probably the pedometer. Simply
attached on the wrist or the ankle, it can count our steps, deduce a distance,
compute the speed. The sensors that can be used are the accelerometer (counting
a step) or the GPS (to compute a distance directly). The pedometer is, for
instance, implemented in the iPod Nano (with a Nike+ App) of Apple [1].

A more elaborated device is the Atlas Fitness Tracker financed by Indiegogo
[2] and developed by Atlas Wearables [3]. It can identify the exercises, count the
repetitions, deduct the calories and more. But it is also pretty expensive. Isn’t
there a way to do almost the same thing with something cheaper? Or maybe
something that we already have, for other purposes. Like a smartphone.

1.1.2 The Convenience of a Smartphone

Our society requires that we are reachable at any time. That’s why almost
everybody has a cell phone with him at any time and at any place. Moreover, a
lot of people have a smartphone. When we go to the gym, some of us just leave
the phone in a locker during their workouts, but other already use it to listen

1



1. Introduction 2

to music. It would be very convenient if there is an application that can count
and record our workout. This way, we could simply check results of previous
workouts and let the application do the counting and also verify that we do the
exercises properly.

What makes the smartphone an interesting choice is the list of sensors it has.
A bunch of applications use the movement of the phone as a controller. One
of the most famous is Doodle Jump1. Some smartphones have more than just
movement sensors (some can measure temperature, air pressure, etc), but we
are not interested in them here. The two sensors that we will look at are the
accelerometer and the gyroscope. The first measures the acceleration given to
the device (gravity included) and the other measures the rotation given to the
phone.

Our goal for this project was to develop such an application. Almost all
smartphones have an accelerometer or a gyroscope (or both) in it, that we can use
to record a motion. And the fact that we have almost every time the smartphone
with use was a major motivation to start the project. We will describe in this
document the development of the application.

1.2 Rest-to-Goal Movement

The application handle mostly what we called ”Rest-to-Goal” movements. This
name came from the description of the movement itself. We start from a rest
position (stand-up for squats, plank position for push-ups, etc) and make a simple
movement up to a goal position (sit position for squats, prone position for push-
ups, etc) and back to the rest position again (and so on).

Figure 1.1: Push up on plank position (left side) and on prone position (right side).

Here is a non exhaustive list of rest-to-goal exercises:

• Push-up

• Squat

1Doodle Jump on AppStore or Google Play

https://itunes.apple.com/us/app/doodle-jump/id307727765?mt=8
https://play.google.com/store/apps/details?id=com.lima.doodlejump
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• Pull-up

• Dips

• Biceps Curl

• Shoulder Curl

• · · ·

The list is pretty large. It can include almost every exercises that we can do on
a machine at the gym or using dumbbells. For now on, we will refer to this kind
of exercise as rest-to-goal movement.

1.2.1 First Intuition on Movement Analysis

The first question we may ask is the following: Could we make an algorithm
that could count rest-to-goal movements? The answer is yes. Assuming we
have an ideal accelerometer2 within a device, placed somewhere, so that the
device will sense a motion (it depends on the kind of exercise). In the rest
position, the sensor does not record any movement. The user then starts and
it records, assuming he will continue at a constant speed, an acceleration as a
Dirac function3 with amplitude a (the length of the acceleration vector) and
shifted to the current time. As we assume the speed of the user to be constant,
the acceleration will be null, until he reaches the goal position and continues
backwards up to the initial position. At this time, we will have a new Dirac
function with amplitude −a and shifted to the current time. This intuition is
depicted in Figure 1.2.

Using this intuition, the number of peaks (positive or negative) is equal to the
number of repetitions done by the user. We will see in Chapter 2 how this
intuition is applied in the real case.

1.3 Overview of the Thesis

The main part of the document (Chapter 2) will describe the analysis that was
made from the very beginning (First experiments) to the end, including obser-
vations and conclusions that were used in the practice.

2Assumed to be perfectly precise and correct
3A Dirac function is a special kind of time function, which is equal to zero at all points of

time except on t = 0. One can shift this function with a constant, to have all values 0 except
on a specific point of time.
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a

-a

Figure 1.2: How an ideal movement recorded could look like. Each red arrow cor-
respond to a Dirac impulse, which means that the value of the function is equal to 0
except under one of those arrows, where the value is the length of the arrow (a or −a,
here).

In next chapter (3), we will see how all the observations made in the anal-
ysis are used and how the application is designed, in order to be as efficient as
possible. A sketch of the algorithms used will be described, mostly using state
machines.

We will see (in Section 3.2) that the testings gave pretty good results. We
gave 0% of false negative, meaning that, if a repetition is considered as ”bad”
by the application, it implies that the user did it badly. The false positives are
not so few. We can still say that a really bad repetition (half the repetition) is
never counted. However, a slightly bad one (roughly 75% of the movement) will
almost always be counted.



Chapter 2

Movement Analysis and
Observations

In this chapter, we will explain the analysis we made in order to decide what
kind of algorithm could or could not be useful, for recognizing a rest-to-goal
movement. We started with some simple experiments on push-ups and squats
and look at the accelerometer and gyroscope data recorded during the exercise.
We then did the same with another subject and analyzed the recorded data.
We will then come out with a first solution to count the repetitions of a given
exercise. The next section will be about the principle component analysis, that
we used on our data. Finally, we will describe how we handled with the noise
that can be recorded during the exercises.

2.1 First Analysis on Push-ups

Our first goal was to see if there is a difference between a ”proper” and a ”bad”
exercise. For a rest-to-goal movement, we can consider a repetition to be bad
(and therefore not to be counted) if one does not reach the goal position or do
not go back to the rest position. For the push-ups, for instance, a repetition
is bad when one does not go deep enough or, after having reached the prone
position, do not go back high enough to the plank position1. Figure 1.2 shows
how such a push-up should look like.

Our first experiment consisted in this: record 10 ”proper” push-ups, 10 push-
ups, where the goal position is not reached, and 10 push-ups, where, after that
the goal position is reached, the rest position is not. The data has been recorded
on .csv files, for both the accelerometer and gyroscope and for each exercise
(total of 6 files). Let us first take a look on the accelerometer data.

1This is just how we defined a push-up. But we can consider, during a workout, to make a
different version of that exercise doing just half of the movement, when we go back to the rest
position (after one repetition). This version is not ”bad”, but it is different to our definition of
”proper” push-ups in this exercise.

5



2. Movement Analysis and Observations 6

2.1.1 Accelerometer

The accelerometer records the acceleration that is applied to the device at a fixed
point of time. This acceleration is computed in the 3-dimensional axes x-y-z,
like depicted in the next figure.

Figure 2.1: Coordinate system (relative to a device) that is used by the Sensor API.
Source: Android API Guide, Sensor Coordinate System [4]

Figure 2.2: The accelerometer data of a ”proper” push-up. It represents the acceler-
ation applied to the phone in the x-, y- and z-axis against time.

In Figure 2.2, we can see what the accelerometer recorded for the ”proper”
push-up. For this experiment, I was the subject2 (1.73 meters tall). From now
on, we will mention me as Subject 1. The first thing to notice in this plot is the
position of the y-axis at time t = 0. As we can see, we have roughly 10m/s2 of

2We will see later, that the subject can be relevant for the analysis.
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acceleration at time 0. We can also notice that the z-axis has an initial value of
roughly −2m/s2 and if we look carefully, we can notice that the x-axis has as
well a very small initial value under 0. This is due to the gravity, applied to the
phone. Here is a first thing we can state.

Assumption 2.1. The data recorded by the accelerometer at time t = 0 can be
considered as the gravity vector.

So far so good, let us now take a look at the whole plots. We can notice
that all the values go first down, than up again, and so on. Probably because
the movement goes down, during a push-up. The most interesting thing is how
the three axes make the same movement. The maxima and minima are at al-
most the same point of time. The only difference is the amplitude of each axis.
This means that we clearly cannot take just one axis to count the repetitions,
because we could pick the wrong one. If in this example we look the plot of the
acceleration in z, we cannot differentiate the peaks from the noises. But, if we
take a look at all the plots together, we can count the peaks. There are 10 major
peaks, representing the 10 repetitions of the push-ups. The plots do not really
look like the first intuition that we made in Chapter 1.2.1, but it is pretty close.
And we could count the repetitions easily.

Let us now take a look at the ”bad” data, depicted in Figure 2.3. First,
let us take a look to the first plot (first kind of bad push-up: goal unreached).
We can see that there is still an initial value, representing the gravity. Like for
the proper push-up case, we cannot look at one specific axis separately from the
other two. If, for instance, we look at the y-axis, we clearly cannot tell anything,
but that there was a movement at the beginning and a go-back at the end. But
why are the values in this axis so small? Well, if we look at the x-axis, we can
see that the maximum value is a bit less than 10m/s2 (maybe 7 or 8)3. Which
is smaller than the maximum values of the same axis for the proper push-up
case. Excepting for the z-axis, all values are smaller in the bad push-up than in
the proper one. We can pretty much say the same thing for the second kind of
bad push-ups (start position not reached back). The only difference, is that the
values are deeper, like shifted by 2 or 3m/s2 to the bottom. That make sense,
because the aim of the exercise was to first reach the floor and than raise half
the way from the prone position to the plank position.

We can make a first conclusion: we can recognize bad push-ups from proper
push-ups. Let us now take a look at the gyroscope data.

3If we consider the absolute value of the maxima, this holds. But, as the values are negative,
they are actually greater.
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Figure 2.3: The top figure shows the plot of the acceleration (in the same 3-dimensional
axes as before) of the first kind of bad push-up (goal not reached). The bottom figure
shows the plot of the second kind of bad push-up (start not reached).

2.1.2 Gyroscope

The gyroscope measures the angular acceleration, rather than the tangential
acceleration. Which means, the accelerometer measures some data when the
device moves and the gyroscope measure some data when it rotates around one
of the three axis x, y and z (Figure 2.1). This time, the data are measured in
rad/s2, rather than m/s2.

Let us first take a look to the data for the proper push-up. It is depicted in
Figure 2.4. The first thing to notice, is that the gyroscope is way more sensitive
than the accelerometer, even though, in the Android application they were set
to the same rate value4. This make it much more noisy, as we can see in the plot.
Even though it makes sense, notice that there is no initial value, like it was the
case for the accelerometer data. Which means, that the gravity does not affect

4According to the Android Sensor API Guide (Monitoring Sensor Events [4]), each sensor
listener has a rate value, which is the smaller rate at which the sensor will listen to.
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Figure 2.4: The gyroscope data of a ”proper” push-up. It represents the angular
acceleration applied to the phone around the x-, y- and z-axis against time.

the gyroscope sensor. Ones again, we can not really rely on the data of just one
axis. Like the y-axis, which seems to follow some kind of pattern, but it is not
really reliable to what happens in the x- and z-axis. If we look at those two,
it looks like we have some kind of sinusoidal function, with again 10 peaks (the
10th in the x-axis is not really visible, but we can see some kind of peak at the
beginning of the plot).

Let us now look at the data of the bad push-ups, depicted in Figure 2.5. We
can say almost the same things as the data of the proper exercise, except that
the amplitudes are smaller. For both of them, the y-axis is pretty messy and we
cannot do anything with it.

If we think about it, though, the device do not rotate much, during a push-up.
Analyzing the data of the gyroscope does not make a lot of sense, comparing to
what the accelerometer data can show us. We will describe another experience
later in this paper, where we tested the gyroscope data (Section 2.4).

2.1.3 First Conclusion

Let us sum up what we said in this section. Apparently, we can count the
number of repetitions, when we do push-ups, proper or bad once. There is also
a difference between proper and bad push-ups. The accelerometer seems enough
to count the exercises, at least for the push-ups. For now, the gyroscope is put
apart. We can, therefore, make those two assumptions:

Assumption 2.2. Using the accelerometer, we can count the number of push-
ups during an exercise. As it is pretty similar to the first intuition, we can assume
that this is valid for similar exercises

Assumption 2.3. There exists a difference between proper and incomplete ex-
ercises, which is the maximum acceleration reached.



2. Movement Analysis and Observations 10

Figure 2.5: The top figure shows the plot of the angular acceleration (in the same
3-dimensional axes as before) of the first kind of bad push-up (goal not reached). The
bottom figure shows the plot of the second kind of bad push-up (start not reached).

Now, a question may rise. If there is a difference when I do my push-ups
deeper or when I do not, what happens if another person (taller or smaller) do
the same exercise?

2.2 How about another Subject?

According to what we saw in the first experiment and the Assumption 2.3, there
is a difference, when one make a deeper push-up or when he does not. What
about a taller or smaller subject than Subject 1? He would stand higher in the
plank position, which means that he would go deeper, if he does a proper push-
up. That is why we did the same experiment as before, but with another subject
(a friend of mine, 1.83 meters tall). We will call him Subject 2. We will just look
at the accelerometer data. As we saw in the previous section, the gyroscope is
not very useful, in this kind of exercise.

The data are plotted in Figure 2.6. Apparently, this plot and the one of
the push-ups of Subject 1 (Figure 2.2) look the same. We start with an initial
acceleration (the gravity, Assumption 2.1) and have 10 peaks visible at almost
all axes. Let us take a closer look. The average (absolute) peak value in Figure
2.2 are 10 for the x-axis, 8 for the y-axis and 7 for the z-axis. The same values
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Figure 2.6: The plot shows the acceleration recorded by Subject 2 when he was doing
push-ups.

for the data of Subject 2 are respectively 10, 15 and 4. In average, the values of
Subject 2 are higher, but it is hard to tell. We need a way to compare the two
data in a more efficient way, than looking to plots and approximate some values.
We will look deeper in it in the next section.

2.2.1 Second Conclusion

The question was the following: is there a difference in the data between two
different people, with different heights. We cannot make any true assumption
yet, but intuitively, there may be a difference. We just need a formal way to
compare the data. One thing we can tell for sure, Assumption 2.2 is confirmed,
here, as we can, once again, count the peaks and get the number of repetitions.
The only disturbing thing may the noise. How can we say if a peak has to be
counted as a repetition or as noise? This part will be handled in the last section
of this chapter.

2.3 The Acceleration Vector

In order to find a way to compare the data of two different experiments, let
us first make a more formal definition of what the accelerometer records. We
mentioned earlier that the accelerometer measures the acceleration applied to
the device in the 3-dimensional coordinates depicted in Figure 2.1. But what is
it, that we recorded, exactly? We can see the data recorded by the accelerometer
as the evolution of the acceleration against time. And this is what it clearly is,
an acceleration vector. This could be intuitively deduced, but we never stated
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that clearly. For now on, we will consider the data of the accelerometer as a
vector that evolves with the time.

2.3.1 The Magnitude

What can we say abut this acceleration vector? It is hard to imagine how this
vector evolves by just looking at the data we collected so far. But let us think
about the meaning of this vector. A vector is defined with its direction and its
length. The first would just tell us at which direction the velocity is going to
swerve, but we do not need that to count a repetition. How about the length?
The magnitude of the acceleration can tell us how fast the device moves. We
can suppose that the device does not move, at time t = 0, which means that the
velocity is null, when the sensor starts. What if we could use the magnitude in
order to decide how far the user goes?

Figure 2.7: The plot shows the evolution of the magnitude of the acceleration vector
against time of the first experiment (Figure 2.2). We removed here the gravity vector,
defined as the acceleration recorded at time t = 0 (Assumption 2.1).

Figure 2.7 shows the plot of the magnitude of the acceleration vector applied
to the phone during a push-up by Subject 1. The gravity vector has been sub-
tracted, before computing the magnitude. This means that this is the magnitude
of the acceleration vector produced by the push-ups. Let us now take a closer
look to this plot. We can really easily recognize and count the number of rep-
etitions. There are 10 peaks that are clearly greater than the others (which we
can consider as noise). We can, therefore state a new assumption:

Assumption 2.4. Using the magnitude of the acceleration vector recorded by
the accelerometer (subtracted by the gravity vector), we can count the number
of repetitions.

The 10 peaks have approximately the same value, around 12 and 14 m/s2.
In the last section, we asked if we can depict a difference between the results of
two different subjects. Let us see if we can answer it now.
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2.3.2 Comparing Subjects

In last subsection, we have seen the magnitude of the acceleration realized by
Subject 1 during push-ups. Let us see how does this magnitude looks like for
Subject 2.

Figure 2.8: The plot shows the evolution of the magnitude of the acceleration vector
against time of the first experiment, realized by Subject 2 (Figure 2.6). We removed here
again the gravity vector, defined as the acceleration recorded at time t = 0 (Assumption
2.1).

Figure 2.8 shows the plot of the magnitude for Subject 2, doing push-ups.
We can make the same remarks we did for Figure 2.7. We can count the 10
repetitions without any trouble, confirming Assumption 2.4. But let us now
compare the two figures. It is pretty evident, that the peaks realized by Subject
2 are greater. And also more constant (16m/s2). There is a difference of at least
2m/s2 between the two plots. The next two assumptions follow directly from
our remarks:

Assumption 2.5. We can compare the results of two different subjects, by
looking at their magnitude.

Assumption 2.6. The magnitude of the acceleration realized by different sub-
jects during the same exercise may differ with a non negligible value.

By Assumption 2.6 we can deduce that there can be a difference, also for
different exercises. In order to make an algorithm to count the repetitions in
real time, we have to store in a variable the magnitude value that the user has
to achieve, in order to make his repetition to be counted as one. This value has
to satisfy the following restrictions:

• it can not be too small, or the algorithm will count too much repetitions;

• it can not be too large, or the algorithm will miss a few repetitions;

• by Assumption, 2.6 it will depend on the subject and the exercise (may be
smaller or larger).
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We will see in Chapter 3 how the app generates this value and how it deals
with it. We have collected enough information, in order to count repetitions.
We still have to see how to deal with noise (Section 2.6), though, and we haven’t
discussed much about the gyroscope.

2.4 Further Analysis on Gyroscope—Analyzing Squats

In the previous sections, we mainly discussed about the accelerometer. We de-
cided to leave the gyroscope apart, and make more experiments later. To see how
the gyroscope behaves, we need an exercise, where the device rotates. Assuming
a device placed in the leg, above the knee. If the user does some squats (see
Figure 2.9), it will make a rotation of 90 degrees.

Figure 2.9: The left hand side figure shows the position of the user at start (stand-up
position). The right hand side figure shows the position of the user at the end of the
exercise (sit position).

The aim of this experiment is to have a more meaningful set of data of the
gyroscope. For this exercise, the device should rotate 90 degrees. We want to
detect this difference.

2.4.1 Gyroscope data of Squat

Like we mentioned, the device is placed at the bottom of the thigh, just above
the knee. The data is recorded by Subject 1.

The data recorded by the gyroscope for proper squats (executed by Subject
1) are depicted in Figure 2.10. Excluding the crash of the application at the
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Figure 2.10: The plots describe the evolution of the angular acceleration around the
3 axes (as depicted in Figure 2.1). The aim of the exercise was to do 10 squats, but
the application that records the data crashed at the end, this is why we can only see 9
peaks.

end, let us analyze the data. We can first notice that the data on the x-axis is
pretty messy and noisy. The y-axis is better, but it is not very reliable either. It
pretty much follows the same pattern as the data on the z-axis, but not always
and not very well. So, let us look at the z-axis (green plot). We can count the 9
repetitions (the 10th is not visible because of the crash). Which is good, so far.
One can count the number of repetitions, even though we have to decide wisely
which axis to pick. But let us now compare this data with the incomplete squat.

Figure 2.11: The plots describe the evolution of the angular acceleration around the
3 axes (as depicted in Figure 2.1). The aim of the exercise was to do 5 squats (to avoid
the app to crash again), which are incomplete. The sit position was not reached.

Figure 2.11 shows the plots of the gyroscope data (angular acceleration)
around the 3-axes x, y and z (see Figure 2.1). We can pretty much say the same
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thing as last figure for the x and y axes. The z-axis is similar to the one of
the complete squats, with one difference. The value reached by the incomplete
squats is globally smaller. However, there is an issue, here. The smallest value
of the good squats is not greater than the greatest value of an incomplete squat.
So, if we record some data in real time, we cannot differentiate the two kind of
squats.

2.4.2 Accelerometer data of Squat

The application used to record the data, remember, records the data of both
sensors, accelerometer and gyroscope. As the gyroscope didn’t get the result
we expected (no real difference between incomplete and complete squats), let us
look at the accelerometer data again.

Figure 2.12: Magnitude of the acceleration vector applied to the device during com-
plete squats. Here again, we should see 10 peaks, but the application crashed at the
end.

Because of what is stated in Assumption 2.4, let us look directly to the
magnitude of the acceleration (again, the gravity has been omitted from the
computation). In Figure 2.12, we can see the magnitude for complete squats.
Like for push-ups, we can count the repetition without any trouble. Moreover, it
seems like the noise is pretty low, here. Assumption 2.4 is confirmed for squats
and Assumption 2.6 is also confirmed for push-ups and squats. Remember, for
Subject 1, that the value of the peaks for push-ups was between 12 and 14m/s2.
For squats (and the same subject, of course) this value is 10m/s2.

In Figure 2.13 we can see the magnitude of the acceleration for incomplete
squats. Just like the push-ups, the difference between good and bad squats is
clearly visible in the magnitude of the acceleration applied to the device. For
squats, the smaller difference of the magnitude is near 2m/s2. We can therefore
imagine an algorithm that can count the repetitions of any rest-to-goal move-
ment 5. The only thing that differ from an exercise to another is this value
to reach. But this algorithm should be able to count the repetitions, without
knowing what kind of exercise the user is doing. It should only have to assume

5See Section 1.2 to see again how we defined such a movement.
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Figure 2.13: Magnitude of the acceleration vector applied to the device during 5
incomplete squats.

that the exercise is a rest-to-goal movement.
We wanted to pick an exercise where the performance of the gyroscope could

be emphasized, but it seems that the magnitude of the acceleration vector,
recorded by the accelerometer, is enough to make the counting. But is there
a way to analyze and differentiate two different exercises? It could be very
convenient, if one could just press a button and do any kind of exercise, the ap-
plication would recognize the movement and count the repetitions automatically
(maybe using the goal value of the exercise).

2.5 Principle Components Analysis

We already saw that we can count any kind of rest-to-goal movement using the
magnitude of the acceleration vector recorded by the accelerometer. Which is
enough, for the main goal of the project, but we want to extend the possibilities.
So, the question now is the following: is it possible, given some data recorded by
both accelerometer and gyroscope, to recognize a specific movement? Intuitively,
we would say that it is. But we have to prove it, or show it, somehow. This is
why we focus on the Principle Components Analysis in this section. The main
idea of this concept is to generate a list of vectors (called principle components),
in order to get the main behavior of a set of data. What does this mean for our
problem? Assuming we have a person doing push-ups. We want to retrieve the
vector that describes best this movement, which should be a vector going down.

If such a vector exists, this means that it should exist for any kind of exercises
and it could be, for each exercise, different. Plus, using the same analysis on the
gyroscope, we could probably differentiate every possible rest-to-goal movement.
If a device moves and rotates in the same way for two different exercises, this
probably means that the exercises are actually the same, or very similar.

As this concept of vector that describes the main behavior of a movement is
hard to imagine, we will separate the analysis in half. We will first look at 2-
dimensional data, before analyzing the 3-dimensional data that we have already
collected. After that, we will compare the principle components with other data,
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to see how they differ.

2.5.1 Principle Components of 2-dimensional Data

We said it many times so far, the data retrieved by the sensors are 3-dimensional.
In order to have a set of 2-dimensional values, we have to omit an axis and
only look at two of them. Which means, we will have three sets of data. The
projections on the x-y-axes, on the x-z-axes and on the y-z-axes. Ignoring the
time, we have, for each pair of axes, a set of points in a 2-dimensional plan. We
can see those data as the correlation between two axes.

We now have to generate the principle components for each pair of axes.
To do so, we used the algorithm on MatLab described on a paper of Jonathon
Shlens, A Tutorial on Principle Components Analysis [5]. The idea is to first
create a matrix, whose rows are the samples of each axis. We will get a (n×m)-
matrix, where n is the number of axis and m the number of samples. We then
subtract the mean value of each row of the matrix (generating data centered
on (0, 0)) and normalize the matrix. And we finally compute the singular value
decomposition (SVD)6 of that centered and normalized matrix, generating three
matrices S, U and V, such that our new data matrix is equal to U times S
times V. The rows of the unitary V are the principle components of our set of
data. For our 2-dimensional case, we will get two principle components, one that
should describe the data and one that is orthogonal to the first.
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Figure 2.14: The plots show the correlation between the acceleration on two axes and
their principle components. The blue dots are the data and the red line is the principle
component (rearranged, so that it is visible). The order of the figures are: x-y-axes,
x-z-axis and y-z-axis.

We applied this algorithm using MatLab on the push-up acceleration data of
Subject 1. The result is depicted in Figure 2.14. As we can see, there is actually

6Given a matrix A, we call SVD the decomposition generating the matrices S (of the same
size as A), the unitary U and V (meaning that, multiplied each of them with their complex
conjugates, we get the identity matrix), such that A = USV
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a vector that describes the data for each pair of axes. In theory, we should have
as well a vector for the 3-dimensional case.

2.5.2 Principle Components of 3-dimensional Data

In order to get the principle components of the 3-dimensional data recorded by
the accelerometer, we do the same thing as the 2-dimensional case. The idea is
the same, we want a vector that describes the data. This time, as we have data
on three dimensions, and therefore 3 rows on the data matrix, getting finally 3
principle components.
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Figure 2.15: The figure shows a red vector (linear combination of two principle
components) going through the push-ups data of the accelerometer. To have the main
behavior of the acceleration, we omitted the time and plotted the acceleration in the
x-y-z-axes.

This time, none of the three components could describe the data indepen-
dently, but we had to generate a new vector, which is a linear combination of two
principle components. Here, we could make some tests, to see what combination
to choose. But how could we do it using an algorithm? It does not look easy.
Before talking algorithms and automatization, let us first look at the component
for the gyroscope data.
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Figure 2.16: The figure shows a red vector going through the push-ups data of the
gyroscope . To have the main behavior of the angular acceleration, we omitted the time
and plotted the angular acceleration in the x-y-z-axes.

For the gyroscope data (Figure 2.16), one of the three components generated
was enough to describe the rotation. We did exactly the same thing in order to
get the principle components. The vector seems to fit pretty well in the data,
but it is pretty noisy, so we cannot tell for sure.

Now that we have the vectors that describes the accelerometer and the gy-
roscope data, let us look how they fit with another sample of data.

2.5.3 Comparisons

Squats

We started comparing the principle components of the push-ups (for the ac-
celerometer and the gyroscope) with the data recorded during squats. So, we
plotted the data of the squats together with the vectors that describe the ac-
celerometer and gyroscope behavior of a push-up (red vectors on figures 2.15 and
2.16). The result is depicted in Figure 2.17.

As we can see, the component of the accelerometer data for push-ups is pretty
much orthogonal to the data of the squats. We cannot say the same thing for
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Figure 2.17: The top figure shows the plot of the accelerometer data of squats with
the principle component of the push-ups. The bottom figure shows the same thing, but
for the gyroscope data, this time.

the gyroscope data, where the principle component of the push-ups just cut the
data. We could say that the principle component could be used to ”guess” what
kind of movement the user does. But, to be sure, two same exercises should look
alike, in their principle components.

Push-ups of Subject 2

We did here the same thing as we did for the squats. We got the data of the
push-ups of Subject 2 (for both accelerometer and gyroscope) and see if the
principle components of the push-ups of Subject 1 describe the data of Subject
2. See Figure 2.18 for the plots.

Unfortunately, the results are not as we expected. Even though for the
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Figure 2.18: The left figure shows the plot of the accelerometer data of Subject 2’s
push-ups with the principle component for the same exercise did by Subject 1. The right
figure shows the same thing, but for the gyroscope data.

gyroscope data, the component describes almost the data, we clearly cannot say
the same thing for the accelerometer data, where the component of Subject 1’s
push-ups is orthogonal to the data. We didn’t get enough time to deepen the
subject and see what we did wrong or what other solutions are possible. It would
have been nice to have an application that could recognize an exercise, before
counting the repetitions.

2.6 Handling with Noise

In the previous sections, we talked about a goal value (considered as the mag-
nitude of the acceleration), that the user has to reach, in order to complete an
exercise. To do so, we need some sort of algorithm, that would get the peaks
and generates the goal value using them. However, in order to count the peaks,
we need to differentiate a repetition from the noise. Not all increasings (or de-
creasings) that we can record have to be taken in count. To do so, we need an
error margin. We used two techniques, in order to handle the noise.

2.6.1 Noise Calibration

Asking the user to do some repetitions of an exercise, we can actually have an
idea about this noise value. To do so, we just can ask the user to make one
repetition, get the maximum value recorded and generate the noise using this
value. Some tests will show that a good coefficient is 0.15 × max where max
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is the maximal value recorded during one repetition. This can make sense, to
have a linear function that computes the noise. For small exercises, we do not
want the noise to ignore the real repetitions. And for large goal values, we want
a larger error margin.
This computation may be enough, but if the noise is too much present, we could
need a way to reduce it, before computing this value.

2.6.2 Laplacian Smoothing

The Laplacian Smoothing is a solution for last request. The idea is to take a
certain number of neighbors7 and compute the next point, averaging it with its
neighbors. This method is used for smoothing polyhedrons, but we can use it
for our problem. We simply store the first n values recorded by the sensor8,
and generate the (n + 1)th point averaging it with the n previous ones. At each
iteration, we change the set of n neighbors, removing the most recently added
and adding the new one. But it is important to store the actual value of the last
recorded point, not its smoothed value.

Figure 2.19: The figure shows the plots of the magnitude of the acceleration of the
push-ups of Subject 1 (see Figure 2.7) and its smoothed representation, using Laplacian
Smoothing.

Figure 2.19 shows the result of the Laplacian Smoothing of the acceleration
of the push-ups of Subject 1 using 5 neighbor points. As we can see, the noise
is pretty much reduced, but the peaks are also flattened. We have to chose the
number of neighbors wisely, in order to get the best result.

7This number has not to be chosen slightly. Too much neighbors will smooth the data too
much, reducing the value of the peaks, and just a few neighbors will not destroy the noise
enough.

8Remember that the accelerometer is enough to count the repetitions.



Chapter 3

Implementation

Up to now, we only talked about the analysis. We concluded that:

• The accelerometer is sufficient to count repetitions of a rest-to-goal move-
ment (Section 1.2)

• The magnitude of the acceleration vector recorded is a good way to compare
different exercises

• Given the goal value that the user has to reach, we can count the proper
repetitions and miss the incomplete one

From the above, we have to implement two things: some sort of calibrator,
in order to measure the goal value, and the counter itself. In the next section,
we will describe the two main algorithms and their state machines. After that,
we will make a list of tests, describe them, show the results and explain what
modifications we made to the application to correct the errors. In the last section
we will briefly explain how the application looks like and how to use it.

The application is developed using an Android plugin for Eclipse1. The
programing language is Java2, to which are included several classes from the
Android API3.

3.1 Algorithms

There are two main algorithms, that implement what we saw in the analysis: the
counter and the calibrator. We will start explaining the counter, assuming that
the goal value and the noise of the given exercise are stored in some variables.
We will next see how we managed to obtain those two values. We will describe
those two algorithms by looking at their state machines, without going through

1ADT Plugin: Installing the Eclipse Plugin.
2JavaTMPlateform, Standard 7th Edition: Java API.
3Android API: list of classes.

24

http://developer.android.com/sdk/installing/installing-adt.html
http://docs.oracle.com/javase/7/docs/api/
http://developer.android.com/reference/classes.html
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the code, neither show a part of it. We will just explain in a high level how the
counter and the calibrator work.

3.1.1 The Counter

Start

~g
:=
−−−
−→

va
lu
es

Increasing

Variables:

• mag : double

• peak : double

• noise : double

• goal : double

• ~g : double[3]

• −−−−→values : double[3]

mag := ‖−−−−→values− ~g‖

peak −mag < noise

mag > peak

Decreasing
mag := ‖−−−−→values− ~g‖

peak −mag >= noise

peak >= goal→ repetion()

mag − peak < noise

mag − peak >= noise

peak := mag

→ peak := mag

→ peak := mag
mag < peak

Figure 3.1: The state machine for the counter. The states are updated every time
the sensor detects a movement. The variable mag will store the current magnitude of
the acceleration vector (stored in the array values, depicted here as a vector); peak
will have the maximum (or minimum) value encountered so far in the corresponding
state (Increasing or Decreasing); noise is a constant, containing the noise value of the
exercise (computed during the calibration); goal is the constant for the goal value that
the user has to reach; and ~g (implemented as an array of doubles of size three in Java)
will contain the gravity vector. Each arrow represents a change of state (or not), where
the condition is given above it, and a possible action is written below it.

In Figure 3.1 we can see the state machine of the repetition counter for a
rest-to-goal movement. We want to point first out that the goal value and the
noise of the given exercise are stored in the variables goal and noise. This algo-
rithm is incorporated into a class that implements the SensorEventListener inter-
face4, that we simply called Counter. This interface have a method called void

onSensorChanged(SensorEvent event), into which we implement the state ma-
chine. This method is called every time the sensor detects a movement and store
the values of the acceleration vector into the attribute values (an array of dou-
ble) of the parameter event of type SensorEvent. We depicted it in Figure 3.1

as the vector
−−−−→
values. Like we said before, the goal value and the noise are known,

which means that they are constant attributes of the class Counter. As well as

4An example is presented by the Android Sensor API Guide [4]
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the array of double storing the gravity vector, depicted in the state machine as
~g. The variable peak in the figure is also an attribute of the class. As it may
change at each call of the method onSensorChanged(), it cannot be local. It is
not the case for the variable mag, which contains the current magnitude of the
acceleration, without the gravity component.

Now that we have set all those clarifications, we can start explaining the
state machine. Obviously, we start at state Start. It represents the first time the
sensor detects something. We can say, it is the state at time t = 0 in the plots of
Chapter 2. Like we mentioned it several times and stated in Assumption 2.1, in
this state, the current acceleration recorded is the gravity. So, we store a copy

of
−−−−→
values5 into ~g. As the user is just starting, the magnitude will increase. So,

we go into the state Increasing, waiting for the next time the sensor will detect
a movement. In this state, we initialize the variable mag with the length of the

vector
−−−−→
values−~g. After that, we check if peak−mag is smaller than noise. If it

is the case, we consider that we are still increasing, so we stay in the same state
and we update the peak value to be the current magnitude value of the vector,
if mag > peak (which means that the current magnitude value has to be the
new peak value, because greater than it). As peak store the greater magnitude
value, if mag is greater, peak-mag will be negative and therefore smaller than
noise. If it is not the case, but the difference is still smaller than the noise value,
we will not consider that we are decreasing yet, because it may be just some
noise. However, if peak−mag is greater or equal than noise, we go to the state
Decreasing. Moreover, if peak is greater or equal than the goal value6, we have
to count this as a repetition. We therefore call a method (called repetition),
which will handle it (see Section 3.3, later in the paper). In the state Decreasing
we do pretty much the same thing, with the difference that the condition for
staying in the state is mag − peak < noise and the condition to update peak is
mag < peak. Here, the current magnitude has to be greater than the previous,
to have a decrease. And again, we add this error margin of noise. As long as
we are in this state, we update the variable mag, the same way we do for the
Increasing state. If we consider that we are increasing (mag − peak >= noise)
we update the peak value and go to state Increasing.

The state machine does not seem to have a stopping state, because it is han-
dled in the method repetition, that we will explain later. This is how the
application count a repetition, basically. Let us now look at how to retrieve the
variables goal and noise with the calibrator.

5As in Java we implemented the 3-dimensional vectors as arrays of size 3, it is important to

make a copy of the elements of
−−−−→
values into ~g, instead of just making g = values;, because we

would store the references of the arrays, rather than their elements, which could cause errors.
6We added an error margin, first of 0.1, then to 0.5 ∗ noise (according to the results of the

tests, that we will see later), just in case. So, the real condition is if peak >= goal− 0.5 ∗noise
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3.1.2 Calibration

We splitted the calibration in half: another class counter, slightly different from
the one we saw just before (called CalibrationCounter) that still implements
the interface SensorEventListener, and a second class (called Calibrator) to
handle this new counter.

Start
calibration button pressed Do 1

Repetition

Do 5
Repetition Done

stop
but

ton
pre

ssed

stop button pressed AND 5 repetitions recorded

stop button pressed AND
NOT(5 repetitions

recorded) retr
ieve

nois
e

retrieve goal value

Figure 3.2: This is the state machine of the calibrator itself. At the first state (Start)
we wait the user to press the calibration button, and start it. We then ask the user to
do one repetition. At this state, the calibration counter is recording (the state machine
is depicted in Figure 3.3). When the user press the stop button (we assume that he did
at least one repetition) and we generate the noise value before going to the next state.
There, the user has to complete 5 repetitions (the counter is ones again running). When
he presses the stop button again, if the application counted 5 repetitions, we are done
and we generate the goal value. But if he does not, we stay in the same state.

In Figure 3.2 is depicted the state machine of the calibrator itself. The
calibration truly start when the user press a button (labeled ”Calibrate”). At
first, we ask the user to do one repetition, then to press a stop button (obviously
labeled ”Stop”). The CalibrationCounter is running, waiting the user to stop
it. Its state machine is depicted in Figure 3.3. We will talk about it just later,
but notice, still, that the noise value is null, for now. When we go to the next
state, we first generates the noise value (we will see later how, exactly) and store
it in the calibration counter. In the next state, the user has to do 5 repetitions.
This time, the noise is set, so the number of repetitions recorded has to be equal
to the number of repetitions that the user do. We do not talk about proper or
bad repetitions, here, which means that the repetitions are supposed to be done
correctly. We only count the number of repetitions. If this number is not exactly
equal to 5 when the user presses the stop button, we stay in the same state. If
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it is the case, we generate the goal value and we are done.

Start

~g
:=
−−−
−→

va
lu
es

Increasing

Variables:

• mag : double

• noise : double

• goals : Array[Double]

• ~g : double[3]

• −−−−→values : double[3]

• lapPoints[] : double[3]

• pos : int

• n : int

lapPoints[pos] :=

‖−−−−→values− ~g‖

peak −mag < noise

peak −mag >= noise

goals.insert(peak)

mag − peak < noise

→ peak := mag

mag − peak >= noise

peak := mag

pos := (pos+ 1) mod n

mag := ave(lapPoints)

If the there are less than n laplacian points in the array, just do mag := ‖−−−−→values − ~(g)‖
instead of mag :=ave(lapPoints).

Decreasing
lapPoints[pos] :=

‖−−−−→values− ~g‖
pos := (pos+ 1) mod n

mag := ave(lapPoints)

mag > peak

→ peak := mag
mag < peak

Figure 3.3: The state machine looks more complicated than the one of the counter
(Figure 3.1), but just a few things are different. Instead of storing the length of the
current acceleration in the variable mag, we store it in the array containing the n previous
points, by updating the array lapPoints (containing the neighbors for the Laplacian
Smoothing) at the current position (stored in the variable pos, whose value can change
from 0 to n − 1 at each step). In the variable mag, we store the average of the last
n points stored so far, to have a smoothed value at each iteration in the machine. If
there are not n elements in lapPoints yet, we just store the magnitude of the current
acceleration into it. The conditions to go from a state to another are the same as those
of the repetitions counter’s state machine. When we go from Increasing to Decreasing,
we add the current peak value in the list of goals, from which we will generate the goal
value.

In Figure 3.3 is depicted the state machine of the calibration counter. It
is very similar from the state machine of the counter (Figure 3.1), but there
is a difference that is not trivial. In the analysis chapter, more specifically in
the section where we discussed about noise and how to handle it (Secion 2.6),
we saw two methods. The first is to implement a calibrator, which is exactly
what we are explaining here. The second one was to smooth the data using the
Laplacian Smoothing, before generating any goal or noise value. This is exactly
what we implemented in this state machine. To store the n neighbors, we use
an array of size n. To access the elements of this array, we use a variable pos,
which has initially the value 0, and is incremented by 1, each time the sensor
detects a movement (or each time the method onSensorChanged is called by the
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system), and we use the modulo operator, so that, when we have more than n
elements in the array, we restore the position to be zero, and start again. In this

array we store the actual length of the current acceleration vector (
−−−−→
values− ~g),

not its smoothed value. If there are at least n values in the array, we set the
current magnitude to be the average of its n neighbors (as described by the
Laplacian Smoothing). If it is not the case, we just store the length of the
current acceleration. The conditions to go from the Increasing and Decreasing
state (and the other way around) is the same as in the counter’s state machine,
except for one detail. Instead of calling a method that will handle the repetition
counting, we store the current peak value into a list of goal (as a Java’s ArrayList
of doubles). We insert the values in such a way that the greater value is at index
0.

Let us look back at the calibrator’s state machine. When the user has finished
the first repetition, we say that we generate the noise value. To do so, we take
the first value stored in the array goals (which has to be the greater one, as
we said before) and set the noise to be 0.15 times this value. We store this in
the variable noise of the calibration counter, so that it can use it to count the
repetitions. And after the 5 repetitions are done, we check if the size of the
list of goals is equal to 5 (which will mean that we stored 5 values in it, i.e five
repetitions have been done). If it is the case, we generate the goal value as the
mean value of the 5 goals.

Notice that the peak value is set to be mag, each time we increase. Which
means that we store a smoothed value in the list of goals. This values are
probably smaller than their no-smoothed versions, so storing the smallest value
for the counting is not a good strategy. Using a mean value, we increase the
chances to have a more accurate value, without having it too large (like we
stated at the end of Section 2.3).

3.2 Evaluation

Before seeing how the application looks like, we will evaluate it. We made sev-
eral tests, some get good results, some didn’t. From some of those results, we
made some modifications to the application. We will explain all of this. Each
evaluation is describe by:

• A set of exercises

• A subject that executed them

• The calibration

• A sequence of repetitions, including proper ones, bad ones (1/2 of the
repetition) and slightly bad ones (3/4 of the repetition)
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Those evaluations have been made in the final version of the application. But
we tested the counter and the calibrator separately, before. At this point, the
noise value of an exercise was computed as 0.257 times the (smoothed) goal
value. The condition that has to be fulfilled in order to count a repetition was
peak >= goal−0.18. We will see later, why those two things have been modified.
For the calibration, the number of neighbors for the Laplacian Smoothing was 4
(which we never changed).

3.2.1 Test 1: First Time at the Gym

The user of the application was Subject 1 (1.73 meters tall). The exercises that
he executed were:

1. 10 repetitions on a strength machine for pectorals.

2. 10 abs

The first step was to calibrate the device and then execute, for each exercise,
this sequence of repetition : 2 proper, 1 bad, 2 proper, 1 bad, 1 slightly bad, 6
proper. Here are the results and the conclusion that we made:

1. For the pectoral machine, the calibration failed. The application counted
less than 5 repetitions (3 or 4). We couldn’t test the counter, though, so we
stopped at this point and realized that, if the counter for the 5 repetitions
failed it means that the noise value was too large.

2. For the abs, the calibration went well. The results of the repetitions se-
quence is the following:

• 2 proper → 2 counted

• 1 bad → 0 counted

• 2 proper → 0 counted

• 1 bad → 0 counted

• 1 slightly bad → 0 counted

• 6 proper → 2 counted

We got 0/3 false positives, but 4/8 false negatives.

It is pretty obvious that the first test was a fail, but this is why we changed
the algorithms, in order to correct those errors. First, we set the noise value to
be 0.15 times the goal value. If we look at Figure 2.19, more specifically the

7This coefficient was set according to the data, but it is pretty arbitrary.
8Arbitrary error value.
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smoothed plot (the red one), we can approximate the noise to be 0.75. And the
average goal value is roughly 11. Which means, that the noise value would be
set to be 0.15× 11 = 1.65, which a bit more than twice the actual noise deduced
from the figure. If the goal value is very low, we added the following condition:
if noise < 1 after the computation, we set it to 1. We will see later that this gave
us a better result for the calibration. We also changed the condition to count a
repetitions to be peak >= goal − noise ∗ 0.5, instead of peak >= goal − 0.1.

3.2.2 Test 2: Squats with Subject 3

The user of the application is Subject 3 (girl, 1.70 meters tall). The application
has been changed, using the modifications described in the first evaluation. Here
is the list of exercises that she did:

1. 10 squats, with the calibration of Subject 1 (as the two subjects have the
same height)

2. First calibrate, then do 10 squats with her own calibration.

The sequence of repetitions is the same for both exercises: 2 proper, 1 bad, 2
proper, 1 bad, 2 slightly bad, 5 proper.

1. With the calibration of Subject 1, we got:

• 2 proper → 2 counted

• 1 bad → 0 counted

• 2 proper → 2 counted

• 1 bad → 0 counted

• 2 slightly bad → 2 counted

• 5 proper → 5 counted

2. The calibration of Subject 3 went well. This are her results with her own
calibrated squats:

• 2 proper → 2 counted

• 1 bad → 0 counted

• 2 proper → 2 counted

• 1 bad → 0 counted

• 2 slightly bad → 0 counted

• 5 proper → 5 counted

Just for the first exercise, we got 2/4 false positives, but they were the slightly
bad ones (half way between a proper and a bad squat), plus the calibration was
not hers. The second exercise went well. The rate of false negatives for both is
0%, which is great. We didn’t changed any thing to the application, this time.
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3.2.3 Test 3: Second Time at the Gym

The user was Subject 1 again, to test how the application works at the gym.
The list of exercises is the following:

1. 10 pull-ups

2. 10 dips

3. 10 repetitions on a machine for pectoral (the same as in the first test)

4. 10 repetitions on a machine for legs

For each exercise, a calibration had to be done. Except for the pull-ups,
where the first calibration failed (but the second went well), it worked for each
exercise. Here are the results:

1. Pull-ups:

• 10 proper → 10 counted

2. Dips:

• 2 proper → 2 counted

• 2 bad → 0 counted

• 1 slightly bad → 1 counted

• 2 proper → 2 counted

• 1 bad → 0 counted

• 1 slightly bad → 1 counted

• 6 proper → 6 counted

The only problem here, was that slightly bad repetitions are counted as
proper ones. Once again, by ”slightly bad”, we mean that the repetitions
was not complete, but it was pretty close to it.

3. Pectoral Machine

• 2 proper → 3 counted (one repetition was counted twice)

• 1 bad → 0 counted

• 4 proper → 7 counted

The results may look bad, if some repetitions are counted twice. But notice
that, first, the goal value of the exercise was set pretty low (3.861), meaning
that the noise value was as well (set to 1, because too low, otherwise).
Moreover, on this kind of machine, I (Subject 1) usually stop, after I reach
the goal position. This may explain why it is counted twice, sometimes.



3. Implementation 33

4. Leg Machine:

• 2 proper → 2 counted

• 2 bad → 0 counted

• 1 slightly bad → 1 counted

• 2 proper → 2 counted

• 1 bad → 0 counted

• 1 slightly bad → 1 counted

• 6 proper → 6 counted

We can clearly say that the app has, once again, a rate of false negatives equal
to 0%. Unfortunately, 100% of ”slightly bad” repetitions are counted as good
repetitions. The problem is, if we change something on the algorithm, it may
not work, anymore. So, we reduced the error margin of the counter to be 0.5
times the noise value. Moreover, we added a hard mode selector, where the error
margin is set to be 0.2, if this mode is selected.

3.2.4 Test 4: Hard Mode

Once again, the user is Subject 1. The aim of this test is to see if the hard mode
reduces the number of false positives. We tested on abs and push-ups. Here are
the results:

1. Abs:

• 2 proper → 2 counted

• 2 bad → 0 counted

• 1 slightly bad → 0 counted

• 2 proper → 2 counted

• 1 bad → 0 counted

• 1 slightly bad → 0 counted

• 6 proper → 6 counted

2. Push-ups:

• 2 proper → 2 counted

• 2 bad → 0 counted

• 1 slightly bad → 1 counted

• 2 proper → 2 counted

• 1 bad → 0 counted
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• 1 slightly bad → 1 counted

• 6 proper → 6 counted

For the abs we have a perfect result, with neither false positives nor false nega-
tives. For the push-ups, we have still the same result. Maybe, the error margin
has to depend on the kind of exercise. Unfortunately, we did not have enough
time to check this assumption or to test it.

3.2.5 Conclusion

We only get false negatives in the first test, but given the results of the following
ones, we can say that this error is corrected. At the end, we have a false negative
rate of 0%. The false positives are harder to define, as we have have two types
of bad repetitions. The real ”bad” repetitions are never counted. However, if
we do a repetition that is close to be consider as ”proper”, it is always counted.
The hard mode seems to reduce this rate, but it still depends on the exercise.

The fact that we do not have any false positives, could come from this impre-
cision of the algorithm, that counts more repetitions that it should. But we prefer
this result from the opposite, where good repetitions could not been counted. A
user would probably prefer that the application counts the repetitions that are
not perfect, rather than a program that would not count the good ones.

3.3 The Application

This is a very small section, where we will see how to use the application and
how it looks like. Let us first take a look to the home activity (Figure 3.4). We
have three buttons. Each of them open a new activity. The first one, open a page
where we can pick and add exercises, for the workout. The second button leads us
in the calibration page, where we can add or update the calibration of an exercise.
The last one open an activity, where all the results of the workouts and their
exercises are listed. The application is called SimpleExerciseWorkout, because
the only exercises that the workout can have, in order to count the repetitions,
have to be a rest-to-goal movement, which can be defined as ”simple”.

3.3.1 Workout Selection

Figure 3.5 shows how the activity looks like, when the user presses on the first
button, in the home view. The user can pick an exercise and set how many
repetitions he wants to do. He can add another exercise and set the rest time
(in seconds) between two repetitions. As a result of the third test, we added the
toggle button, where one can set the workout to be ”hard” or ”easy”. The easy
mode will set an error margin to be 0.5 times the noise value of the exercise.
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Figure 3.4: Home activity of the application.

The hard mode, however, set it to 0.2. We can also decide if we want the sounds
notification during the counting or not. The Start button will start the counting.

The view of the counting is depicted in Figure 3.6. The list of exercises
and their goals, picked in the workout selection view, are stored in arrays. For
each exercise, we generate a counter (whose state machine is depicted in Figure
3.1), whose noise and goal value are retrieved in the database (stored during
the calibration). Each repetition that has to be counted (call of the method
repetition, that we already mentioned) will decrease the counter . When this
counter is null, we start the rest timer and then start the next exercise (if there
is one left to do) or the app will show the result of the user and store it in the
database. It will be visible in the result view, that we will describe later.

3.3.2 Calibration

The Calibration view is depicted in Figure 3.7. The main state machine of the
calibration is implemented here. After the first click on ”Calibrate”, the user will
start the calibration and has to do one repetition. After that, he has to press the
”Stop” button and the noise value will be generated. Second click on Calibrate
and he will start the second part of the calibration, doing 5 repetitions. When
he presses the Stop button, if the app counted 5 repetitions, the goal value will
be generated and the given exercise will be added or updated in the database,
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Figure 3.5: We can pick the exercises using the spinner (where all calibrated exercises
in the database are listed) and set he number of repetitions to do. If there are more than
one exercise, the user has to chose a rest time in seconds between two exercises. There
is an add button (labeled with ”+”), that add a field for the rest time, a spinner to pick
the exercise and a field to set the number of repetitions. We have two toggle buttons,
one to set the hard or easy mode, another to set the sounds during the counting to on
or off. Finally, the Start button open a new activity, where the counting is done.

with the computed noise and goal value.

3.3.3 Results

The view that appears after pressing the Result button on the home page is
depicted in Figure 3.8. For each exercise in the database, we show:

• The date and time at which the exercise has been inserted in the database

• The workout number, in which it was executed

• The name of the exercise

• The number of repetitions the user had to do

• The time the user needed to do those repetitions



3. Implementation 37

Figure 3.6: The left figure shows how the counting view look like. We can see the
name of the exercise (here Push-up) and the number of repetitions left to do. In the right
figure, we can see how the view looks like, between two exercises. We have a counter
showing the time left, before the next exercise counting will start.
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Figure 3.7: We have first, the list of exercises already calibrated. In the field, we can
write an exercise name. The button Calibrate starts the calibration, as described in the
state machine on Figure 3.2. If the exercise name already exists, it is updated in the
database, otherwise it is simply added when the calibration is done, with its goal and
noise value.
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Figure 3.8: This activity lists the results of the workouts.



Chapter 4

Further Development

4.1 The Application

Due to time restrictions, we were not able to develop a perfect application. We
saw that there are a few things that could be improved. For instance, we saw
in Section 3.2 that the repetitions that are slightly bad are still counted. This
could be avoided, probably by being more precise on the definition of the error
margin, when the algorithm count the repetitions. We set it to 0.2 for the hard
mode. But we saw that this margin could depend to the exercise. On the last
test, the counter on abs generated no false positives, but on push-ups it did.

Another possible improvement could be on the result page. We just listed the
results, without any further analysis. But we could think of a feature, where the
user could see if he improved himself, between two workout sessions. A search
option could be useful. For instance, one could want to see what were his results
for the push-ups.

Another nice feature, but that requests more attention and work, could be
a network implementation, where a user could compare himself with his friends
or with other users. We could also imagine some kind of list of goals or achieve-
ments, that any user could try himself to do. Or simply, someplace where there
are some lists of workout, that the user could import and try by himself on his
own app.

4.2 Further Research

We did not have enough time to deepen the principle component analysis, for this
project. We just could collect some data and retrieve their principle components,
but no other analysis could have been done with it.If one could define a typical
behavior for a given exercise, it should be possible to build an algorithm that
would recognize any kind of movement and differentiate an exercise with some
random movement. For instance, one could just press a button, then do some
push-ups, stand-up afterwards, walk a little bit, pick up a dumbbell, do some

40
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biceps curl, press a stop button, and the app will tell him how many push-ups
he did and how many biceps curls. Intuitively, we could imagine that this kind
of feature could be implemented using the principle component analysis.

Our application can only handle simple movements, like push-ups or abs. We
can imagine a more complex exercise, which could, for instance, be compound
of several rest-to-goal movements.
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