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Abstract

Speech recognition is today often based on hidden Markov models (HMM) more precisely on
continuous density hidden Markov models (CDHMM). That means the observation density is
continuously distributed. Unfortunately the use of a CDHMM needs a lot of processing power
and is therefore not well suited for systems with limited processing power or even with integer
arithmetic only. In these cases a discrete density hidden Markov model (DDHMM) is used.
The observation density can now only take on discrete values. Hence we need discrete-valued
features. One way to generate such discrete-valued features is by using a vector quantization
(VQ). A VQ with a full search (all vectors are compared with all codebook vectors) however
needs also a lot of processing power. Hence we need an efficient approach in order to use the
VQ and therefore the DDHMMs efficiently.

This semester thesis describes an algorithm to generate a hierarchical codebook which can be
used to make a hierarchical search instead of a full search. There exist a lot of algorithm to
generate a hierarchical codebook. Special to the algorithm described here is however, that we
start from an already existing full codebook and then decimate this codebook to get a tree-like,
1.e. a hierarchical codebook in the end. To do this we sequentially delete the codebook vectors
which lead to the least increase of distortion until the required number of codebook vectors for
the next higher tree level is reached. For every codebook vector on the new tree level we then
compute the frequency of the daughter nodes of the level below and make a connection if the
frequency value is higher than a given threshold. The decimation approach is iterated until the
root node is reached.

The decimation algorithm and other test and evaluation functions were implemented in MAT-
LAB. Also a second approach to generate the codebook vectors of every tree level was tested:
instead of decimation the codebook vectors were created using the LBG algorithm. In the end
the two methods to generate a hierarchical codebook were compared to a codebook with a full
search. As it turns out a new vector can now be quantized much more efficiently. The vector has
to be compared to a smaller number of codebook vectors if the tree-like codebook is used. This
makes the whole quantization algorithm a lot faster. However using a hierarchical codebook,
especially with higher values for the threshold used to determine the daughter nodes, leads to
some errors which results in bigger distortion values. An equality between a quantization with
a full and a hierarchical codebook is also nearly impossible.

What could be next steps? The algorithm should be implemented in a programming language
other than MATLAB (no efficient matrix or vector multiplication) to get real results regarding
required processing time and power. Also an application of the algorithm to a speech recognition
task with a lot of training and test data would be required to get consistent results.



1 Specifications

This section describes the given specifications. The original task description which contains
further information can be found in appendix B.

1.1 Problem Description

Statistical speech recognition today is mainly based on hidden Markov models (HMM) [1, chap-
ter 5] more precisely on continuous density hidden Markov models (CDHMM) [1, chapter 5.5].
CDHMMs have continuously distributed observation densities. Although CDHMMs lead to a
good speech recognition rate they are not well suited for systems with limited processing power
or integer arithmetic only. Therefore discrete density hidden Markov models (DDHMM) [1,
chapter 5.4] are used. Their observation distribution can only take discrete values. In a first step
the used features have therefore to be quantized to discrete values. For this often a vector quan-
tization (VQ) [1, chapter 4.7] is used. This leads to an other problem. A vector quantization
with a full codebook compares every test vector to every codebook vector and therefore also
uses a lot of processing power. In order to use a DDHMM on systems with limited processing
power the vector quantization has to be made less demanding in the first place. In this semester
thesis an approach to generate a hierarchical codebook is presented. With a hierarchical code-
book every test vector has to be compared only to a part of the codebook vectors and therefore
the whole vector quantization runs faster and more efficiently.

1.2 The Decimation Algorithm

The algorithm can be described as a hierarchical codebook generation by decimation and works
as follows:

1. We start with a full codebook (the initial codebook) and a sufficiently large number of
training vectors. The initial codebook can be generated using any algorithm (e.g. LBG [1,
p. 104]). These initial codebook vectors (named S;) form the lowest level (level 0) of the
tree, i.e. the leave nodes. The number of leaves nodes is described as M.

2. In a next step we move to the next higher tree level [ — [ + 1.

3. This higher level 1 only contains M; = M;_;/B nodes, where B denotes the decimation
factor. Therefore in every step we decimate the number of nodes by a factor B and form
the new set S; of nodes. To get these M, nodes we sequentially delete the nodes with
the least increase of distortion. To calculate the distortion values we use the given set of
training vectors.

4. Now we have reached a set of S; nodes of level [ but we also have to connect these nodes
with the lower level in order to get a tree. We therefore search for each node of level [ a
number of daughter nodes of level | — 1 with frequency values higher than a threshold
f+ In order to compute the frequency values we once again use the training vectors. The
frequency threshold f; is fixed at the beginning of the algorithm.



5. We now check if the number of nodes of level [ (M) is greater than the decimation factor
B. If that is the case we repeat the algorithm from step 2. Otherwise we can add the root
node on top of the generated tree and connect all nodes of level [ to the root node.

Figure 1 summarizes the algorithm in a flow chart. As we can see from this figure, deleting the
nodes of a level and finding the daughter nodes can be done separately. However in a actual
implementation this may not be the ideal solution. For an example tree with decimation factor
B = 3 see figure 2.
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Figure 1: The decimation algorithm represented in a flow chart.



Figure 2: An example of a hierarchical codebook of initial size 18 and decimation factor B = 3
created with the decimation algorithm.

1.3 Goal

The goal of this semester thesis is to implement and test the decimation algorithm. Does this ap-
proach to generate a hierarchical codebook work? How does the performance of the algorithm
(number of correctly distributed vectors, average distortion value and number of vector quanti-
zations) change with different values for the parameters B and f;? Can we use this algorithm to
train a DDHMM which then can be used in a speech recognition task?

2 Preconditions

2.1 Distortion and Distance Measurement

To describe the distortion, the error created through the vector quantization, a distance measure-
ment is needed which satisfies the following conditions [1, p. 101]:

0<d(x,y)<oo, Vx#y (1)
d(x,x) =0 (2)

A distance measurement which is often used and satisfies these conditions is the squared Eu-
clidean distance. Throughout this semester thesis the squared Euclidean distance is used and is

defined as follows:
D

dx,y) =|x—y|P=>_(x:i—u)° 3)

i=1

for two vectors x and y of dimension D). We can therefore say a training vector has the smallest
distortion value to a codebook vector or we can equally say a training vector has the smallest
distance to a codebook vector. The squared Euclidean distance is also used in a lot of real speech
processing tasks and is therefore well suited as a distance measurement.



2.2 Random Generated Data

To test and evaluate the created functions a lot of test data were needed. The number of avail-
able real speech data is however limited and not always well suited to test specific parts of an
application. Therefore random training and test vectors were used. This leads to the question
how to generate these data such that they are similar to real speech data and the results can be
compared. As it turns out multivariate Gaussian distributions [1, p. 113] can model real speech
data quite well. For example they are used to describe the observation densities of CDHMM.
Further information about the generation of the random test and training data can be found in
section 4.1.

2.3 Number of Initial Codebook Vectors

To generate the initial codebook vectors (see section 1.2 item 1) the LBG algorithm is used.
The LBG algorithm normally generates only codebooks with a size of a power of two. In every
iteration every codebook vector is split into two new vectors and these vectors are once again
“optimally” distributed. It is therefore not clear how to generate a codebook vector of arbitrary
size using the LBG algorithm. Which vectors do we split if the size of the requested codebook
vectors is not a power of two? Therefore the number of initial codebook vectors was restricted to
a power of two. This is often done in real applications (e.g. the number of different observations
in a DDHMM) and therefore not a big restriction. It is however important to note that the
algorithm with decimation would work with an initial codebook of arbitrary size.

3 Solution Process

In a first step some literature search was done in order to compare the given algorithm (section
1.2) with other algorithms which can be used to generate a tree-like codebook. As it turns out,
the idea to generate a tree structured search graph is absolutely not new. There are a lot of other
approaches. In the literature they are often called tree-structured vector quantizations. Some
algorithms start from one codebook vector (e.g. the centroid of all training vectors [2, p. 485])
and build the tree from the root node to the leaves. In most cases only a binary tree is generated
[2, p. 485], [3, p. 568], [4, p. 400]. The algorithm presented in this semester thesis however
starts from the leave nodes, i.e. an already given and optimized codebook and then builds the
tree up to the root. Every node can have an arbitrary number of daughter nodes.

In a next step a simple version of the decimation algorithm was implemented which recomputed
in every step all the required information and did not take advantage of previous calculated
values. Therefore the program needed a lot of processing time and only examples with a small
number of data (training and codebook vectors) could be used to test the program in a reasonable
time. This had the advantage that part of the calculated trees and, as well, the whole algorithm
could be easily checked. Beside the actual algorithm to generate the hierarchical codebook also
scripts and functions to generate the random training and test data and to quantize new data
using the tree-like codebook were programmed. Some basic functions (LBG algorithm for the
initial codebook and a function for a full vector quantization) were provided by the institute
TIK and only some minor changes were needed.



In order to check the created programs, a test function, which only uses the already given (and
assumed to be correct) vector quantization function to generate the tree, was implemented. Un-
fortunately the runtime of this program was quite bad and so only examples with a small number
of test and training vectors could be checked. However the created functions seemed to be cor-
rect. After verifying the correctness of the implemented programs a new version of the tree
generating algorithm was implemented. This time a lot of the computed data was temporarily
stored for the next steps and only the parts which changed from one to an other step were recal-
culated (see section 4.2 part 1). This program runs much faster and therefore bigger examples
can be computed.

Then a different way of implementing the tree generating algorithm was created. Instead of
deleting the nodes in every level by decimation, the LBG algorithm was used to create the
required number of nodes of the higher level. A node on level 1 is now completely independent
of the nodes on level [ — 1 and [ + 1. But perhaps it is better to distribute the codebook vectors
“optimally” (using the LBG algorithm) than keeping the old ones. With this the number of
codebook vectors increases, therefore also slight changes to the test programs were necessary.

Now big examples with millions of training and test vectors were computed and analyzed. The
results of these simulations can be found in section 5. In the end a hierarchical codebook was
created from real speech data and used to train DDHMMs. These were then used in a speech
recognition task.

4 Program Description

This section presents a description of the developped functions and scripts. The order of the
subsections represents the flow of the whole program.

4.1 Training, Test and Codebook Vector Generation

To test the programs excessively random training vectors were created (see section 5 for the
results and tests with real speech data). There are three different ways to generate the training
and test vectors:

1. The vectors are uniformly distributed over a specific area. Although this distribution is
perhaps not the most natural one, the implementation is quite easy. The MATLAB func-
tion rand was used to generate the required number of vectors. For different experiments,
different seed values for the rng function were used.

2. Mean vectors are uniformly distributed (using the rand function) and for every mean
vector a specific number of training and test vectors is generated according to a normal
Gaussian distribution (using the randn function). This can be seen as a fixed number of
training and test vectors for every codebook vector (represented by the mean vectors).

3. Mean vectors are uniformly distributed (using the rand function) and for every mean
vector a fixed number of training and test vectors is generated according to a multivariate
Gaussian distribution (using the mvnrnd function). This distribution was used for the
numerous simulations in the evaluation section.



The next step after the training and test vector generation was the creation of the initial codebook
vectors in the hierarchical codebook tree. For the given random training vectors a predefined
number of codebook vectors was generated using the LBG algorithm. For this an already exist-
ing function was used. Especially for larger examples the generation of the codebook vectors
with the LBG algorithm could take some time. Therefore the generated training and codebook
vectors were saved in a file. In the same way hierarchical codebooks with the same training and
initial codebook vectors but different B and f; parameters could be generated without recalcu-
lating the initial codebook every time.

4.2 Hierarchical Codebook Generation with Decimation

This function represents the main part of the whole program; the hierarchical codebook gener-
ation. After some initialization steps (determine the maximum level of the tree etc.) there are
two main parts: 1. The determination of the codebook vectors of level [ by decimation and 2.
the process of finding daughter nodes for every codebook vector.

Part 1: The decimation approach deletes the nodes with the least increase of distortion. There-
fore, in a first step, for every codebook vector the possible distortion increase is calculated
should this codebook vector be deleted. How can we find these values? Remembering the
calculation of the Euclidean distance (3) every training vector x adds d(x,y2) — d(x,y1)
to the distortion increase of codebook vector y; where y; is the codebook vector nearest
to x and y5 the codebook vector second nearest to x. To calculate these values in MAT-
LAB efficiently we can use the following “trick”: For every training vector x we first
create a matrix A which contains as many copies of x as there are codebook vectors. We
then build the difference L = A — B where B is a matrix which contains every codebook
vector one time (all vectors are row vectors). Now we multiply every entry of L with its
own (in MATLAB notation: L. xL) and sum all values in direction of the row of the result-
ing matrix. Now we just have to find the minimum value of the sum to get d(x, y1) and the
second smallest value to get d(x,y2). In MATLAB this is faster and more efficient than
using a loop over all codebook vectors. We can do this for every training vector and then
delete the codebook vector with the least increase of distortion. All his training vectors are
redistributed to the remaining codebook vectors. This leads to a change of the distortion
values for the remaining codebook vectors. Therefore their values have to be recomputed
in order to determine the next codebook vector, to be deleted. A simple approach to de-
termine the new distortion values is to recalculate all values for all remaining codebook
vectors. Although for this approach nearly no values have to be stored, the runtime be-
havior is quite bad. Therefore in a second implementation only the distortion values of
training vectors which lead to a change are recalculated. Those are all the training vectors
which are nearest to the deleted codebook vector, so to get these the distribution training
vector to codebook vector has to be stored. Also the training vectors which are second
nearest to the deleted codebook vector will now result in a different distortion value. So
also the second nearest codebook vector for every training vector has to be stored (see
figure 3 for a visual representation). We therefore have to save two additional values for
every training vector. For an example with a lot of training data this additional storage
space requirement could be problematic. Using this approach the algorithm to generate
the hierarchical codebook runs much faster.



Part 2: We now have to connect the two levels in order to get a hierarchical codebook. We
can also say we are looking for the daughter nodes of the codebook vectors of level /.
For every codebook vector of level [ (C'BV;) we do the following: First of all we count
the total number of training vectors which are nearest to C'BV; (= n;). This can be easily
done because we have stored the distribution training vector to codebook vector. Secondly
we determine for every codebook vector of level [ — 1 (C'BV,_;) how many of the training
vectors which were nearest to it are now nearest to C'BV]. For this a vector quantization
of all training vectors with the codebook vectors of level [ — 1 is needed. Should this
number related to n; (the frequency) exceed a predefined value f; a connection from
C BV, to C'BV,_; is made. The codebook vector of level [ — 1 is now a daughter node of
the codebook vector of level [.

As long as the number of remaining codebook vectors is bigger than B, the decimation factor,
we repeat this two steps. Afterwards we add the root node and add all remaining codebook
vectors as daughter nodes to the root.

Figure 3: Red dots represent codebook vectors, blue ones training vectors which lead to addi-
tional distortion values and black dots are training vectors which lead to no additional distortion
values. The codebook vector in the middle will be deleted. So only for the blue training vectors
the distortion values have to be recalculated!
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4.3 Hierarchical Codebook Generation with LBG

An other idea was to generate the new codebook on a next higher level with the LBG algorithm
instead of the decimation approach. The “optimal” distribution of the LBG algorithm could
perform better than the decimation algorithm. For this implementation some changes to the
code were needed. Part 1 of section 4.2 now uses an already given function to calculate the
LBG algorithm to generate the needed number of codebook vectors. Therefore in every level
new codebook vectors are generated, which were most likely not present in the tree levels below.
This is especially important for the test functions (see section 4.4). Part 2 works as in section
4.2.

The LBG algorithm normally generates only codebooks of size 2¢. In order to compare a hi-
erarchical codebook generated with the LBG approach to one generated with the decimation
approach, only decimation factors (B3) of size 2,4,8,... are possible.

4.4 Test and Quantization Programs

In order to test the created hierarchical codebook, a vector quantization function was needed
which could handle the hierarchical codebook. The quantization starts with the daughter nodes
of the root node. These codebook vectors are the same for all vectors which are going to be
quantized. But after this step for every vector the correct daughter nodes have to be used. The
function therefore saves the intermediate nearest codebook vector for all vectors and then com-
pares all vectors which are nearest to the same codebook vector to his daughter nodes. This is
iterated until all vectors reach the bottom of the tree. Compared to a vector quantization with
a full search, every vector has to be compared to less codebook vectors but this process is re-
peated multiple times for every level of the tree and some intermediate state has to be saved. If
the hierarchical codebook was generated with the LBG algorithm some adaptions were needed
because the codebook vectors of level [ > 0 are not present in the initial codebook vector set.

Also a function to compare the hierarchical codebook to a full one was created. It uses the vector
quantization from above but also quantizes every vector with the full codebook (the lowest level
of the tree). The function outputs: the time used to quantize all the vectors for both variants
(full and tree), the distribution for every vector quantized with the full codebook and with the
hierarchical one, the number of vectors which are distributed to the same codebook vector,
the average distortion value which results from the quantization and the average comparisons
vectors to codebook vectors which were needed to quantize the test vectors. These values are
used in the evaluation (see section 5).

5 Evaluation

In this section the main results are presented. For all computations with random values a multi-
variate Gaussian distribution (see section 4.1 item 3) was used. Information about the computer
specifications and the parameters to reproduce the results can be found in appendix A. In the
first subsection some general results regarding the hierarchical codebook are presented.
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5.1 General Results
5.1.1 Equality of a Vector Quantization with a Full and a Hierarchical Codebook

It is quite obvious that for bigger values of f; (the frequency threshold for the daughter node
determination) a vector quantization with a hierarchical codebook will lead to different results
than a quantization with the full codebook. Some connections in the tree are omitted and a
vector can not go back to a different branch of the tree once a decision is made. But is that also
the case if f; is set to zero? That means every codebook vector of level [ of the tree will make a
connection to every daughter node of level [ — 1 as soon as at least one training vector nearest
to the codebook vector of level [ — 1 is now nearest to the codebook vector of level [. Will the
hierarchical codebook in this case quantize every vector to the same value as a quantization with
the full, i.e. normal codebook? The answer is no! The problem is illustrated in figure 4 and 5. It
is important to note that the number of training and codebook vectors used for this example are
by no means comparable with a real application. This example just illustrates the problem.

In figure 4 the training vectors (green plus signs) and the initial codebook vectors (red crosses)
are plotted. The blue vector (not part of the training vectors) should now be quantized. If we
go through the created hierarchical codebook (generated using the decimation algorithm with
a decimation factor of 2 and a frequency threshold f; = 0) drawn in figure 5 we first have to
decide between codebook vector 4 and 6. Obviously codebook vector 6 is nearer to the blue
vector. We then look at the daughter nodes of codebook vector 6: vectors 1, 3 and 6. Codebook
vector 1 is nearest to the blue vector. Codebook vector 1 has only itself as daughter node. So
the blue vector will be quantized as 1. Would we now quantize the blue vector with the full
codebook, it would be quantized as 5. As we can see even though f; is zero the blue vector is
quantized to different values using the hierarchical codebook and the full codebook. Why did
that happen? In the first round of the decimation algorithm codebook vectors 2,5,7 and 8 are
deleted. Then their training vectors have to be distributed to the remaining codebook vectors.
Unfortunately all training vectors of codebook vector 5 are now distributed to codebook vector
3 none is distributed to codebook vector 1. Therefore codebook vector 5 is not a daughter
node of codebook vector 1. There is no connection in the tree. If there had been more training
vectors (especially in the region of the blue vector) this problem would not have happened. This
problem can however never be eliminated completely as can be also seen in the examples with
a lot of random training vectors in the following subsections. It is important to note that all the
training vectors would indeed be quantized to the same values as with a full codebook but this
is of course not a practical application, we want to quantize new vectors. The approach used to
generate the hierarchical codebook (decimation or LBG) does not matter.

12
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Figure 4: Training vectors (green plus signs), codebook vectors (red cross signs) and one test
vector (blue plus sign) in a small example to illustrate the inequality of a full codebook and a
hierarchical codebook.

root
4 6
1 3 4 6
1 2 3 4 5 6 7 8

Figure 5: A hierarchical codebook generated from the training and codebook vectors of figure
4 using the decimation approach with parameters B = 2 and f; = 0.
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5.1.2 Degenerated Trees

There are two cases in which special or incomplete trees can be generated.

Case 1: Figure 6 shows an example of the first case. A codebook vector of level | — 1 which is
not present in level [ (got deleted by the decimation step from level [ — 1 to level /) has
no parent node in level [. This is a consequence of the used algorithm. All the training
vectors nearest to the codebook of level [ — 1 are distributed to the codebook vectors
of level [. Unfortunately no codebook vector of level [ gets enough training vectors so
that the frequency is higher than the threshold f;. Therefore no connection is established.
For higher values of f; this can of course appear more frequently. This case leads to fewer
correctly quantized vectors (some initial codebook vectors can never be reached) but does
not lead to a general problem with the quantization algorithm. One way to solve this
problem would be to connect a codebook vector of level [ — 1 which has no parent node
to the nearest codebook vector of level /. It is important to note that this possible solution
was not applied to any of the simulations in the following subsections. This problem can
also appear in a hierarchical tree generated with the LBG algorithm.

Case 2: Figure 7 shows an example of the second case. This case is very rare but also more
common for higher values of f;. A codebook vector of level [ (I > 0) has no daughter
node in level [ — 1. This is a severe problem because the codebook tree is now incomplete.
A vector can be quantized up to the codebook vector in level [ but has then no possible
daughter nodes to be further quantized. This problem can occur if the number of the
training vectors nearest to the codebook vector in level [ — 1 is so small, compared to the
training vectors nearest in level [, that not even the codebook vector itself has a frequency
value higher than the threshold f;. At the same time the problem from case 1 occurs.
This problem is severe and has to be solved in order to quantize arbitrary vectors with the
hierarchical codebook. The simplest solution is to take itself always as a daughter node no
matter what the frequency value is. This solution is applied in the simulations below but
the problem did only appear once (marked in appendix A). This problem could possible
also appear in a hierarchical codebook generated with the LBG algorithm. However it
was never observed so far. In the LBG case codebook vectors of level [ are independent
of codebook vectors of level [+ 1 and [ — 1 a possible solution is therefore not so obvious.

14



Figure 6: The red nodes are examples for the case 1 degeneration of the tree.

Figure 7: The red node is an example for the case 2 degeneration of the tree.
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5.2 Evaluation for Different Values of Parameter f;

In this section the quantization performance of a hierarchical codebook generated with the dec-
imation or the LBG algorithm is analyzed for different values of the frequency threshold f;. For
every simulation 2°048°000 training vectors of dimension 12 were used to create a hierarchi-
cal codebook with 2’048 initial codebook vectors and a decimation factor B = 4. 2°048°000
different test vectors (generated with the same multivariate Gaussian distribution as the train-
ing vectors) were then quantized with the full and the hierarchical codebook. Every simulation
was repeated 8 times with different values for the random seed. Consult appendix A for all the
necessary values to repeat the simulations. For all the plots in this and the next section the MAT-
LAB function boxplot was used. The red line inside the box represents the median, the edges of
the box correspond to the 25th and 75th percentiles. The whiskers extend to the most extreme
data points, which are not considered as outliners. Outliners are separately marked with red plus
signs [5].

In figure 8 the percentage of equally quantized test vectors are plotted for different values of f;.
On the left side the hierarchical codebooks were generated with the decimation algorithm and
on the right side with the LBG algorithm. In general we can see that the number of correctly
quantized vectors decreases with higher values of f;. For f; values 0, 0.005 and 0.01 (zero, a
half or one percent) on average more than 97% of all test vectors are quantized correctly. Also
the variance between the different simulations is very low. There are no obvious differences
between the decimation and the LBG approach. For f; values 0.05 and 0.1 the variance between
the different simulations increases and the LBG algorithm performs better. The ”optimal” distri-
bution of the LBG algorithm on every level seems to lead to more daughter nodes and therefore
also more correctly distributed test vectors. Even with f; = 0 there was no example for which
all the test vectors were correctly quantized (see section 5.1.1).
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Figure 8: Percentage of correctly quantized test vectors for different f; values. The hierarchical
codebook was tested with 2°048°000 test vectors.
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In figure 9 the relative distortion increase is plotted for different values of f;. On the left side the
hierarchical codebooks were generated with the decimation algorithm and on the right side with
the LBG algorithm. Once again for f; values 0, 0.005 and 0.01 there are nearly no differences
between the two approaches and the different simulations (low variance). The distortion values
are also comparable to a codebook with a full search. For f; values of 0.05 and 0.1 the distortion
values are higher and the LBG algorithm performs better. These observations correlate with
figure 8: more correctly quantized test vectors lead to smaller average distortion values. This
correlation also shows that wrongly quantized test vectors are not quantized to an arbitrary
value. They are still near the correct codebook vector, i.e. the correct quantization value.
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Figure 9: Relative increase of distortion for different f; values. The total distortion values are
divided by the distortion values of a full codebook search.

An implementation in MATLAB is not comparable to an implementation in a programming
language which does not support fast matrix multiplications. The time used to quantize the
test vectors is therefore not an appropriate measurement for the efficiency of the hierarchical
vector quantization. Better suited is the following value: for every test vector the number of
comparisons with codebook vectors is measured. In a full codebook every test vector has to be
compared with every codebook vector. In a hierarchical codebook every test vector has to be
compared with only a part of the codebook vectors. In figure 10 the average number of com-
parisons for a test vector is plotted for different values of f;. On the left side the hierarchical
codebooks were generated with the decimation algorithm and on the right side with the LBG
algorithm. With higher values of f; the number of comparisons decreases. Interesting is the
number of comparison for f; = 0: Even though we take all possible nodes as daughter nodes
the number of comparisons is already quite low. Compared with a full search (2’048 compar-
isons for this example) more than a factor of 20 fewer comparisons are needed. For f; values 0,
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0.005 and 0.01 the LBG algorithm needs fewer comparisons. If we compare this to the results
from figure 8 and 9 we can conclude that the LBG approach produces nearly the same perfor-
mance values but achieves this with fewer comparisons! For f; = 0.05 both algorithms need
nearly the same number of comparisons and for f; = 0.1 the decimation algorithm needs fewer
comparisons. However that does not mean, that the decimation algorithm performs better since
it also leads to a lot less correctly quantized test vectors (see figure 8).
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Figure 10: Average number of comparisons (test vector to codebook vectors) for different f;
values. A quantization with a full codebook needs 2’048 comparisons for one test vector.

In general we can conclude: for small f; values 0, 0.005 and 0.01 both approaches to gener-
ate the hierarchical codebook lead to nearly the same number of correctly quantized vectors,
the LBG approach however needs less comparisons. Compared to a quantization with a full
codebook the hierarchical codebook performs quite well up to f; = 0.01 but needs a lot less
comparisons.

5.3 Evaluation for Different Values of Parameter B

In this section the value for the parameter f; is fixed at 0.01 but the decimation factor B changes.
All the values of B are a power of two. As in section 5.2 2°048’00 training vectors of dimension
12 were used to generated the hierarchical codebooks. Then 2°048°000 different test vectors
were quantized and the results with the hierarchical codebook were compared to a quantization
with a full codebook. Every simulation was repeated 8 times with different values for the ran-
dom seed. The same random seed values as in section 5.2 were used. The results for B = 4
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therefore correspond to the values with f; = 0.01 in section 5.2. Consult appendix A for all the
necessary values to repeat the simulations.

In figure 11 the percentage of equally quantized test vectors are plotted for different values of
B. On the left side the hierarchical codebooks were generated with the decimation algorithm
and on the right side with the LBG algorithm. For B values 2,4 and 8 the number of correctly
quantized test vectors behaves more or less as expected. The higher the B value the less tree
levels are generated and therefore less possibilities to distribute the test vectors exist. For B
values 16 and 32 the behavior seems strange. Why quantizes the hierarchical codebook with
B = 32 more vectors correctly? To understand this we first note that the hierarchical codebook
for B = 16 and for B = 32 in both cases consists of 4 tree levels (including level zero and the
root node). For B = 16 the number of nodes per level is 2’048, 128, 8 and 1. For B = 32 the
number of nodes per level is 2’048, 64, 2 and 1. The number of nodes on level [ — 1 for every
node on level [ is higher for the case B = 32. f; is equal to 0.01 for all simulations so a lot
of daughter nodes are possible. Therefore more daughter nodes for every codebook vector can
be created in the case B = 32 and hence a test vector can be better distributed. If we compare

these results to figure 13 we see indeed that the number of comparisons is higher for the case
B = 32.

For B = 64 we see a huge variance in the percentage of correctly quantized vectors for the
decimation approach. This is not the case for the LBG approach. For B = 64 only a total of
3 tree levels are generated. With the decimation approach the 2048/64 = 32 surviving nodes
of the first and only decimation round will often not be “uniformly” distributed over the whole
possible vector space. A vector quantization can then be difficult. The LBG approach tries to
distribute the codebook vectors optimally and will therefore lead to a more even distribution of
the 32 codebook vectors for every simulation. This leads to a much smaller variance.
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Figure 11: Percentage of correctly quantized test vectors for different B values. The hierarchi-

Decimation approach

B

cal codebook was tested with 2048000 test vectors.
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In general we can see that the percentage of correctly quantized test vectors depends much
less on B than on f; (see section 5.2). Even for B = 64 more than 70% of all test vectors
are correctly quantized. It is nonetheless interesting that the quantization performance does not
solely depend on f;. Also the number of tree levels and the ratio of nodes between two levels
are important.

Figure 12 shows the relative distortion increase for different values of B. On the left side the
hierarchical codebooks were generated with the decimation algorithm and on the right side
with the LBG algorithm. If we compare figure 11 and 12 we see a tight correlation between
the percentage of correctly quantized vectors and the relative distortion increase. The more
correctly quantized test vectors the smaller the distortion. This behavior was also observed in
figure 8 and 9. Once again we see that wrongly quantized test vectors are still near the real
codebook vectors.
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Figure 12: Relative increase of distortion values for different B values. The total distortion
values are divided by the distortion values of a full codebook search.

In figure 13 the average number of comparisons test vector to codebook vectors (see section
5.2 for more information) is plotted for different values of 5. On the left side the hierarchical
codebooks were generated with the decimation algorithm and on the right side with the LBG
algorithm. For B = 2 there is only a small difference between the decimation and the LBG
approach. To understand this we first note that B = 2 will lead to a total of 12 tree levels. This
is quite a high value. Between every two tree levels daughter nodes are created. Therefore even
the “optimal” distribution of the LBG algorithm will not drastically decrease the number of
daughter nodes. For all the other values of B the LBG approach needs less comparisons but
results in the same of more correctly quantized test vectors (compare to figure 11). This is once
again explained with the more uniform distribution of the nodes on every level when using the
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LBG approach. The huge difference between B = 16 and B = 32 is already explained in the
analysis of figure 11. For B = 64 only a total of 3 tree levels are generated. The number of
comparisons is nonetheless quite high. To understand this we have to remember that all the
nodes on the level below the root will automatically be daughter nodes of the root. In this case
every test vector will have 2'048 /64 = 32 predefined comparisons which do not depend on the
path the vector takes through the tree.

Overall we can not find a clear correlation between the value of B and the number of com-
parisons. Small values of B will lead to a lot of tree levels and high values of B will result
in a bigger number of initial comparisons (daughter nodes of the root). A value between the
maximal and minimal value of B will lead to the best results.
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Figure 13: Average number of comparisons (test vector to codebook vectors) for different B
values. A quantization with a full codebook needs 2’048 comparisons for one test vector.

5.4 Application to a Speech Recognition Task

In this section an application of the hierarchical vector quantization to a real speech recognition
task is described and evaluated. The goal was to recognize german digits from zero to nine and
”Zwo” (an other pronunciation for the digit two). For this test real speech data were used. Every
number was once recorded from 61 different speakers. From these data the mel frequency cep-
stral coefficients (MFCCs) [1, chapter 4.6] were extracted. These coefficients were then used
as training vectors for a hierarchical codebook. The coefficients quantized with the hierarchical
codebook where then used to train DDHMMs. One DDHMM for every digit was trained using

21



the Baum-Welch algorithm [1, chapter 5.4] with 30 iterative rounds. To test the DDHMMs dif-
ferent speech data were used. 15 speakers spoke every digit 5 times. In the end the recognition
rate of these data using the DDHMMs to recognize them were compared to the results using
CDHMMs which were trained with the same data. As it turns out the hierarchical codebook
generation works fine. The training of the DDHMMs seems also to be correct. If the training
data was once again used 670 of the 671 training digits were correctly recognized. Some prob-
lems arose when the test data were used. Unfortunately a lot of digits were then recognized by
none of the DDHMMs. This can happen if one of the quantized values of the MFCCs was not
present in the training data. The DDHMM was then not trained for this value and it has a zero
(minus infinity if the logarithm of the probabilities are used) value as an observation probability
for this quantization value. Therefore the Viterbi algorithm [1, chapter 5.4], used to find the op-
timal state sequence, will now output a joint probability of zero for the optimal state sequence.
An attempt to replace these zero values in the observation probability matrix with a small value
e did not really improve the recognition rate. For a hierarchical codebook with an initial code-
book size of 128 and parameters B = 4 and f; = 0.1 generated with the LBG approach the
recognition rate is only 64%. Compared to a recognition rate of the CDHMMs (94.5%) this
value is quite bad. On a positive note the vector quantization for the test data uses 10 times less
comparisons compared to a vector quantization with a full codebook. The hierarchical codebook
fulfill its purpose.

6 Conclusion

As we have seen, a vector quantization with a hierarchical codebook can quantize a vector with
a lot less comparisons compared to a vector quantization with a full codebook. It runs more
efficiently. An equality between a vector quantization with a full and a hierarchical codebook
is however nearly impossible. But that does not mean that a wrongly quantized vector will be
distributed to an arbitrary codebook vector. It is still near the correct value.

The decimation and the LBG approach start from an arbitrarily generated initial codebook (leave
nodes of the tree) and grow the tree up to the root. All vectors will be quantized to one of the
initial codebook vectors. This can be an advantage compared to other approaches to generate
a hierarchical codebook which start from the root node and will result in unpredictable leave
nodes.

For small values of f; the decimation and the LBG approach will result in nearly the same
number of correctly quantized vectors. The LBG approach can however do this with less com-
parisons. For higher values of f; and B the LBG approach leads to better results. This is due
to the more uniform distribution of the codebook vectors on every level when using the LBG
approach. The performance of a hierarchical codebook generated with the LBG approach is
therefore also less correlated to the used data. If the initial codebook is also generated with
the LBG algorithm, all the needed codebook sets for the higher tree levels are already created
during the initial generation. The hierarchical codebook generation is reduced to finding the
daughter nodes for every tree level. The LBG approach will then need less time compared to a
generation with decimation. The number of initial codebook vector and also the values of the
parameter B are restricted to a power of two when using the LBG approach. For the decimation
approach there are no such restrictions.
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7 Recommendation for Further Projects

There is still plenty of work to do. First the quantization function for a hierarchical codebook
could be implemented in a language other than MATLAB (e.g. JAVA or Python) which doesn’t
support fast vector and matrix multiplications. This would lead to better results regarding the
used processing power and time. Then the algorithm should be applied to speech recognition
tasks with a lot more test and training data to get meaningful results. One could use large col-
lections of speech data which are available in national or international libraries. There are also
some other open questions: does the correctness of the quantization of a hierarchical codebook
depend on the dimension of the training and codebook vectors? Could an other approach to
determine the daughter nodes lead to better results?
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A Parameters Used for the Simulations

In this appendix all the values to repeat the computed simulations are given.

For section 5.2 the following values were used: For every random seed value (seed_rng): 500,
510, 520, 530, 540, 550, 560 and 570 one simulation for every f; (ft) value: 0, 0.005, 0.01, 0.05
and 0.1 was made with the following additional parameters:

vy

N_tv N_cbv | N_tv_for_cbv | dim | type_rng | factor_rng | factor_rng2 | epsi
2°048°00 | 2°048 | 1’000 12 |3 500 5 0.001 | 4

Table 1: Used values for the simulations of section 5.2.

These simulations were made for the approach with decimation (version HCB = 1) and for the
approach with LBG (version HCB = 3). The simulation with random seed value 500 for the
hierarchical approach with f; = 0.1 led to the described degenerated tree case 2 (see section
5.1.2).

For section 5.3 the following values were used: For every random seed value (seed_rng): 500,
510, 520, 530, 540, 550, 560 and 570 one simulation for every B value: 2, 4, 8, 16, 32 and 64
was made with the following additional parameters:

N_tv N_cbv | N_tv_for_cbv | dim | type_rng | factor_rng | factor_rng2 | epsi | ft
2°048°00 | 2°048 | 1°000 12 |3 500 5 0.001 | 0.01

Table 2: Used values for the simulations of section 5.3.

These simulations were made for the approach with decimation (version . HCB = 1) and for the
approach with LBG (version_.HCB = 3).

All simulations were done with the following computer: MacBook Pro (15-inch, end 2011), 2.5
GHz Intel Core 17, 8 GB 1333 MHz DDR3, AMD Radeon HD 6770M 1024 MB, OS X 10.8.5.
The following MATLAB version was used: R2014a (8.3.0.532) 64-bit (maci64), February 11,
2014.
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Introduction

Statistical speech recognizers are commonly based on hidden Markov models (HMM).
Most of them use so-called continuous observation densities (CDHMM). These CDHMMs
fit well to the generally used speech features, i.e. the mel frequency cepstral coefficients
(MFCCs). The time-dependent statistics of these continuous-valued features can efficiently
be described with such CDHMMs.

For applications with limited proccessing power or even with integer arithmetic only,
discrete density HMMs (DDHMMSs) are much more desirable than CDHMMs. However,
DDHMMs require discrete-valued features. Such features can be obtained from a vector
quantization (VQ). A simple VQ with full codebook search needs also considerable pro-
cessing power. Hence, only with the availability of an efficient VQ search the approach
with DDHMMSs may become a good solution.

The task of this semester thesis is to investigate an idea of efficient VQ that is based
on a hierarchical search rather than on a full search. For that purpose we use a set of
tree-like ordered codebooks as illustrated in Figure 1. The codebook at level 0 is given
and has been optimized in some sense.! The codebook at the next higher level results
from decimating the codebook at the current level. This is continued up to the root node.

'This optimization is not relevant here, because only the computational efficiency is considered.

26



Level L

Level 0

Figure 1: Search graph for a codebook of size 27 and a decimation factor of 3

Each node of the search graph has a number of daughter nodes that is higher than the
decimation factor. We call this the splitting factor.

The important question in the context of this hierarchic approach is how to get the search
graph. More specifically: How to attain an appropriate decimation method and how can
the daughters of a node in the search graph be determined?

Constructing the search graph

The idea to construct the search graph for a computationally efficient VQ as sketched
above is based on a set of hierarchically ordered codebooks. Given a codebook and a
sufficiently high number of training vectors, a search graph with a decimation factor B
can be constructed as follows:

1. The given set of M codebook vectors Sy form the leaf nodes of the tree-like search
graph. We term these nodes as level [ =0 of the graph and level [ = L forms the
root. The number of nodes at level [ is denominated as M; and the corresponding
set of nodes is ;.

2. We move to the next level of the graph in direction to the root by incrementing .

3. In order to get the M; = M;_1/B nodes of level [, i.e. the node set S;, we sequentially
delete the nodes with the least increase of the distortion evaluated from the training
vectors.

4. For each node j of level [ we compute the frequency of the daughter nodes of level
[—1 and store the set of daughter nodes with a frequency higher than some minimum
value f; as D; ;. For this again the training vectors are used.

5. If M, is greater than B we loop back to step 2. Otherwise the root of the search
tree is added, i.e. the set of daughters of the root node Dy ; is set to Sp_1, where
L=1+1.

The height of the resulting search graph is determined by the selected value of the dec-
imation factor B. The average branching factor depends on also on B, but additionally
on the frequency threshold f;.

The computational efficiency of the search graph as compared with the full search ap-
proach depends on the decimation factor as well as on the frequency threshold. The
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goodness of the VQ in terms of quantization loss depends solely on the frequency thresh-
old.

Proposed workplan

It is recommended to proceed in this semester thesis as follows:

1. Read the chapters about linear prediction, feature extraction, vector quantization
and HMM fundamentals in the textbook [1] and perform the associated laboratory
exercises.

2. Look for the relevant literature and outline the basic approaches to hierarchical VQ
(often also termed as tree-structured VQ). What have known approaches in common
with the above sketched one and what are the differences?

3. Set up the detailed concept of the search graph construction in order to implement
it in Matlab and estimate the required processing time as a function of the codebook
size and the size of the training set.

4. Implement and test first a simplified approach: Instead of generating the hierarchical
codebook by decimation, use the LBG algorithm (cf. [1], chapter 4.7) to generate
it. Then determine the frequencies of the daughter nodes. Use the attained search
graph in the VQ and test the program with suitable data, i.e. preferably synthetic
low-dimensional test data.

5. If the estimated processing power (point 3) is within reasonable limits, implement
the complete search graph construction in Matlab and test it with the same synthetic
data. In case the required processing power is too high, discuss possible resorts with
the supervisors.

6. Apply the VQ) with search graph for a speech coding task as e.g. in the laboratory
exercise number 10 of the speech processing lecture but with more speech data.
Determine the efficiency gain as a function of the decimation factor and the fre-
quency threshold. Also compute the quantization loss in function of the frequency
threshold. Additionally test the subjectively heard speech quality as a function of
the frequency threshold and evaluate the reduction of the required processing power.

7. Apply the VQ also in a speech recognition experiment like the laboratory exer-
cise number 22 of the speech processing lecture. Compare the recognition rates for
CDHMMs and DDHMMs.

The work done and the attained results have to be documented in a report (see recommen-
dations [2]) that has to be handed in as PDF document. Furthermore, two presentations
have to be given: the first one will take place some two weeks after the start of the work
and is meant to give a short overview of the task and the initial planning. The second one
at the end of the project is expected to present the task, the work done and the achieved
results in a sufficiently detailed way. The dates of the presentations will be announced
later.
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