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Abstract

Media streams are becoming increasingly more important in the everyday use of the Internet.
The amount of real-time based services is growing while the underlying technology is still packet
switched.
TCP congestion control in the network layer can suffer from imperfections like delay and loss in
the OSI Layers 1 and 2. These can lead to severe performance decrease or even failure of media
streaming services over TCP. The reason for the suboptimal performance of TCP congestion
control lies in the fact that assumptions for the algorithms are violated frequently.
This thesis considers RTP media streams over TCP without RTCP, although RTP usually runs
over UDP. The uncommon protocol stack with RTP over TCP without RTCP is motivated by the
IPTV system of Swisscom which uses this exotic combination of protocols and shows some
performance issues due to the TCP congestion control.
The result of this thesis is a simulation environment for RTP media streams over TCP without
RTCP and the evaluation of different TCP congestion algorithms under various delay and loss
conditions for that specific situation.
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Chapter 1

Introduction

The Internet technology has revolutionized society and science during the past decades. The
ability to send datagrams from one host to another has led to an enormous amount of use-
ful services. Most of which did not have rigorous timing requirements. But as the bandwidth
increased and the machines got faster, people also started to use the Internet for real time me-
dia transport, which essentially is not what a packet switched network was designed for in the
first place. Nevertheless, the Internet has become a very important infrastructure for the trans-
port of media streams (e.g. VoIP, Videoconferencing and (High Definition) IPTV) because of the
economic advantages. The universal utilization of the network prevents the need for secondary
infrastructure but at the same time gives rise to new challenges.
The requirements for a media transport network seem to be simple at first sight. Since good
audio and video quality is very much appreciated, the bandwidth of a network, that should be
able to transport media streams, has to be large enough. A typical bandwidth of 10Mbit/s or
more is essential. Also, low delay is crucial for human conversations. A typical one-way latency
of 150ms or less is needed in VoIP. But these two things are not sufficient.
Since there are usually multiple nodes between two machines, a packet switched computer
network can suffer congestion collapse. A congestion collapse is the state of the network
when communication is barely possible due to overfilled buffers in the nodes. This happens
when incoming traffic exceeds the outgoing bandwidth for a specific node. The consequence is
bufferbloat or the drop of packets. Without congestion control the sender would just retransmit
the packets that are dropped which unfortunately would overload the node even more. In the
end, the network would collapse due to the positive feedback between packet loss and retrans-
mission. In order to prevent situations like that, TCP comprises congestion control that runs an
algorithm on the server-side and pursues the objective to find the optimal sending rate without
overloading nodes between the sender and the receiver.
In order for the sender to find out whether a TCP packet has reached the destination, the re-
ceiver sends an acknowledgement (ACK) back to the server. Of course, the server could wait
for an ACK after each packet that has been sent, but this would be terribly inefficient. So as to
use the capacity of the transmission line (delay is non-zero) more efficiently, the server sends
multiple packets at once.
The amount of unacknowledged packets on the sender side is called sending window. The
sender takes the minimum between the advertised window and the congestion window as a
sending window. The TCP congestion control algorithm determines the size of the congestion
window (cwnd). For the sake of completeness, it has to be mentioned that the receiver adver-
tises the so-called receiver window back to the sender. This mechanism enables the receiver to
inform the sender when it is overloaded by incoming data.
So as to adjust the congestion window, the sender has to probe the transmission line. The size
of cwnd is being increased until congestion is detected. Knowing the size of the cwnd when
congestion is detected enables a congestion control algorithm to act in a smart way (e.g. de-
crease cwnd in a certain way for a specific amount of time). But first it has to be able to find
out whether congestion happens. In general, there are two ways to detect congestion when
explicit congestion notification (ECN) is not available. The first class of algorithms assumes that
packets are dropped due to overfilled queues when congestion happens, therefore "loss-based"
algorithms like New Reno take packet losses as an indicator for congestion. The second class
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8 CHAPTER 1. INTRODUCTION

of algorithms assumes that the delay of a line changes when congestion is about to happen
because of buffers getting filled up. Therefore "delay-based" algorithms like Vegas take delay
variations as an indicator or predictor for congestion. The third class of algorithms is "hybrid"
like Illinois because they make use of loss and delay information at the same time.
The difficulty with all of those algorithms lies in the fact that losses and delay variations can not
only originate from congestion but also from imperfections in physical layers (e.g. DSL lines,
wireless and mobile networks). That is why assumptions of the congestion control algorithms
are frequently violated and the sender may misinterpret a loss or delay signal as a sign for con-
gestion. This leads to an unneeded decrease of the cwnd and causes a performance loss. If the
physical layer for whatever reasons drops some packets or produces variations in delay while
congestion is not the origin, the congestion algorithm cannot necessarily improve the situation
by decreasing the sending rate. Therefore, current congestion control can under some circum-
stances unnecessarily reduce the efficiency of a transmission line.
It should be mentioned that, additionally to the performance, also fairness between different
TCP sessions and different congestion control algorithms should be preserved, which is a chal-
lenge when designing new algorithms.
A very nice overview over the common congestion algorithms is the IEEE Survey: "Host-to-Host
Congestion Control for TCP" [1]



Chapter 2

The Problem

2.1 Motivation

The motivation to write this thesis lies in several meetings with Dario Vieceli, Swisscom IPTV
Lead for IPTV/OTT Software Development. He points out the potential for improvement in the
area of TCP congestion control.
Swisscom IPTV with over 1 million customers is wide-spread in Switzerland and runs over the
same DSL (just recently also over fiber) as the non-IPTV traffic. The IPTV media streams are
RTP over TCP (without RTCP). TCP was given preference over UDP for reliability reasons
meaning that no router or middlebox of the end user network blocks or impedes the media
stream traffic.
Also RTCP was not implemented in order to avoid the presence of two congestion control mech-
anisms at the same time. Hence RTP is used for synchronization and framing while the conges-
tion control part is taken over by TCP. It has to be mentioned that this combination of protocols
is rather exotic and is not the standard for RTP. Normally RTP runs over UDP and lets RTCP
control the transmission speed which is aware of the incoming media stream bitrate and can
adapt to it.
Dario Vieceli mentions the suboptimal situation of the congestion algorithms struggling with last
mile loss characteristics like random loss and burst loss. Performance issues like stalls in the
video playback are observed. These problems originate in the fact that the physical link is not
perfect. Current TCP congestion control algorithms do not seem to be able to cope well with
this. Therefore, some further investigations on this problem are advisable.

2.2 The Task

This semester thesis comprises the creation of a simulation environment with the purpose of
understanding the specific problem. Therefore, a test network has to be set up in order to evalu-
ate a couple of currently-implemented CC algorithms under a set of loss and delay profiles that
are close to the situation in the above mentioned case. The emulation tool Mininet is used as
an emulation environment and also an appropriate lab setup with real machines should be built
up. Different TCP congestion control algorithms should then be tested at different random loss
and delay conditions. Additionally a suitable media server has to be found and configured since
the original server is an appliance and is not available.
The outcomes are instructions of how to build the lab setup and a comparison between the
different congestion control algorithms based on measurements in the lab. A short insight into
the analysis of the real IPTV system stream is provided as well as a comparison between TCP
bulk data transfer and media stream transfer.
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Chapter 3

Simulation Methodology

In the interest of understanding the problem of TCP congestion control on RTP media streams
and evaluating different congestion control algorithms, a simulation/emulation environment is
inevitable.
The access to the IPTV network of Swisscom was obviously not possible during this project.
There are basically three different approaches when trying to get an insight into networks that
cannot actually be accessed. The first option is to simulate the network, the second one is to
emulate the network on one machine and the third alternative is to actually connect a couple of
real machines and setup a network in the lab. A disadvantage of all these techniques is that the
networks built are just models of reality and may not always reflect it perfectly.
In this thesis there is an attempt to emulate the network but performance issues lead to the third
alternative with real machines.

3.1 Emulation

This section presents the installation and use of network emulation software that is utilized dur-
ing this project. Network emulation provides a neat way to experiment with various network
topologies and different lines between nodes. The ability to control the whole emulated net-
work centrally is a huge advantage in the process of experimenting. A well known emulation
environment is called Mininet.

3.1.1 Mininet

What is it?

Mininet is a network emulator that can run multiple end-hosts on a single Linux kernel. Various
network topologies with different switches, routers and links can be created. Once a topology
is set up, each element of it runs the same kernel. Links can be set up at arbitrary bandwidth,
delay and loss. Furthermore each host in Mininet behaves just like a real machine. One can log
in via ssh or run any programs of the underlying Linux system. Also the network interfaces look
like a real ones for the host. [2]

Installation

The easiest way to use Mininet is the VM Installation. [3]

• Install Virtual Box (or another virtualization software)

• Download the Mininet VM Image from
https://bitbucket.org/mininet/mininet-vm-images/downloads

• Create a new Linux VM in VirtualBox and choose the downloaded .vmdk image as the
virtual hard disk

• Start the VM and log in (login and password are mininet)

11
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• In order to see if both interfaces eth0 and eth1 have IP addresses assigned run:
$ ifconfig -a
If there are interfaces without any IP assigned run:
$ sudo dhclient ethX
for the interfaces in question. Remember the assigned IP for the next step.

• From your host OS log into the Mininet VM with:
$ ssh -X mininet@[IP of VM]
and enter the password mininet

• A simple topology with two nodes can be created via:
$ sudo mn

• You should now be able to open a new terminal via SSH:
$ xterm

• Every time you have finished the experiments run the following to exit and clean up:
mininet> exit
$ sudo mn -c

Run a simple emulation [4]

The following steps demonstrate how to set up a simple network with two end hosts and one
interconnecting line. The line can be specified by bandwidth, delay and loss. A network like this
can serve as the base of experiments with media streams.

• Create a network with two nodes and a link (bandwidth 10Mbps and a delay of 10ms):
sudo mn --link tc,bw=10,delay=10ms

• You can now open terminals for the two nodes using:
$ xterm h1 h2
and run some programs

• You can also use iperf or ping in the Mininet console to test the network:
mininet> iperf
mininet> h1 ping -c10 h2

• A nice overview of the Mininet usage can be found on
http://mininet.org/walkthrough

For the purpose of investigating on the network traffic Wireshark or tcpdump can be started
from the Mininet console at any time.
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Run a simple RTP over UDP streaming session in Mininet

A first step towards streaming over the network is the application of ffserver which is part of the
ffmpeg Project [12] and provides a great number of different streaming functionalities. Although
it does not run over TCP without RTCP, it produces traffic that is more than just bulk data transfer.
The following steps explain how to establish such a stream.

• Install ffserver on Mininet

• Change directory to /home/mininet/mininet/custom/

• Put a MPEG-1 file my_movie.mpg to /home/mininet/mininet/custom/

• Create a simple topology:
$ sudo mn

• Start a network capture in a Mininet console for later evaluation:
$ sudo tcpdump -ni s1-eth1 -w filmcap.pcap -s 128

• Open two xterm terminals for the two nodes:
$ xterm h1 h2

• On host 1 run:
ffserver -f ffserver-example.conf with the content:

####################################################
Port 8090
BindAddress 0.0.0.0
MaxHTTPConnections 2000
MaxClients 1000
MaxBandwidth 500000
CustomLog -
NoDaemon

RTSPPort 7654
RTSPBindAddress 0.0.0.0

<Stream test1-rtsp>
Format rtp
File "/home/mininet/mininet/custom/my_movie.mpg"

</Stream>
####################################################

• On host 2 run:
ffplay rtsp://[IP of host 1]:7654/test1-rtsp
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Mininet Timing

Since delay is crucial for TCP throughput, because it determines how fast the sender can react
to the network condition, it is obvious that an emulation environment for TCP congestion control
evaluation should be stable with respect to timing. Mininet is often mentioned in the context
of Software Defined Networks and not in relation to TCP congestion control performance. This
leads to the idea of checking the timing performance of Mininet with a simple file transfer experi-
ment. It should show if the simulated line and the hosts act realistically by looking at the behavior
of RTT over time. As performance may be limited due to the hardware in use, the specs of the
test machine (TIK Laptop) are indicated:

Manufacturer: LENOVO
Version: ThinkPad T410
CPU: Intel(R) Core(TM) i7 CPU M 620 @ 2.67GHz
Memory: DDR3 4GiB
OS: Ubuntu 12.04 LTS 64-bit with 3.2.0-61 kernel
Virtualization software: Virtual Box
Mininet Version: 2.1.0 with 3.8.0-19 kernel
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The following python script for Mininet (motivated from the Mininet Introduction [2]) is used to
produce RTT measurements:

#!/usr/bin/python

from mininet.topo import Topo
from mininet.net import Mininet
from mininet.node import CPULimitedHost
from mininet.link import TCLink
from mininet.util import dumpNodeConnections
from mininet.log import setLogLevel
import os
from time import sleep

class SingleSwitchTopo(Topo):
"Single switch connected to n hosts."
def __init__(self, n=2, **opts):

Topo.__init__(self, **opts)
switch = self.addSwitch(’s1’)
"""print ’n esch: ’ + str(n)
print ’range esch: ’ + str(range(n))"""
for h in range(n):

# Each host gets 50%/n of system CPU
host = self.addHost(’h%s’ % (h + 1),

cpu=.5/n)
# Choose in bw Mbps, delay ms delay, loss% loss, 1000 packet queue
self.addLink(host, switch,

bw=10, delay=’10ms’, loss=0, use_htb=True)

def perfTest():
"Create network and run simple performance test"
os.system( "sudo mn -c")
# set tcp congestion control
os.system( "sudo /sbin/sysctl -w net.ipv4.tcp_congestion_control=reno")
# also cubic or illinois possible
topo = SingleSwitchTopo(n=2)
# create network topology
net = Mininet(topo=topo, host=CPULimitedHost, link=TCLink)
net.start()
print "Dumping host connections"
dumpNodeConnections(net.hosts)
print "Testing network connectivity"
net.pingAll()
print "Do the http file transfer"
h1, h2 = net.get(’h1’, ’h2’)
# start the server
re=h1.cmd(’cd randdata; nohup python -m SimpleHTTPServer 80 &’)
sleep(1)
print re
# start the capture
h2.cmd(’sudo tcpdump -ni h2-eth0 -w h2-bw50-100ms.pcap -s 128 &’)
sleep(1)
# start the download
ri=h2.cmd(’wget -r 10.0.0.1’)
print ri
h2.cmd(’rm -r 10.0.0.1’)
# exit experiment
net.stop()

if __name__ == ’__main__’:
setLogLevel(’info’)
perfTest()
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With the help of tcptrace which is introduced in subsection 4.1.2 the RTT behavior over time can
be obtained from the network capture file:

Fig. 1) RTT behavior for a TCP bulk data transfer
on a line with 10ms delay and 10Mbps bandwidth

Fig. 2) RTT behavior for a TCP bulk data transfer
on a line with 40ms delay and 10Mbps bandwidth

Fig. 3) RTT behavior for a TCP bulk data transfer
on a line with 100ms delay and 10Mbps bandwidth

Fig. 4) RTT behavior for a TCP bulk data transfer
on a line with 100ms delay and 50Mbps bandwidth

The plots show that RTT is not stable at all. There are periods of time where the RTT is much
larger than it should be. Especially for larger delays and bandwidths, the variation of RTT be-
comes striking. Also a repetition of the experiment and turning of the HTB (Hierarchical Token
Bucket) in Mininet did not change the unpleasant situation.
For this thesis it is considered as insufficient for experiments with media streams over TCP
because TCP performance depends a lot on RTT. The causes lie probably in some context
switches in Mininet or the OS of the host machine.
In order to have a more realistic network, a lab setup with real machines needs to be created.
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3.2 Lab setup

This section presents the installation and use of a test network in the lab. The reason for using
separate Linux Boxes is the need to have hosts that act as realistic as possible with respect to
timing and TCP performance. Although the media server and client can be the same as in the
emulation setup, one Linux Box has to act as a line simulator. The fact that three machines have
to be set up and configured causes more effort than a simple emulation on one single machine.
However, an advantage of a setup like this is that a real IPTV Box can also be tested under
additional delay and loss introduced by the line simulator. Furthermore it can be used to capture
the traffic between the box and the LAN.

3.2.1 Topology overview

The lab setup comprises 3 Linux boxes, the first of which acts as a media server, the second
as a line simulator (delay and loss) and the third as a client. The following sections present a
possible implementation and configuration of such a network using WANem as a line simulator.

3.2.2 Line Simulator with WANem

What is WANem?

WANem (Wide Area Network Emulator) is an Open Source software licensed under the GNU
General Public License. It can be used to simulate WAN characteristics like delay, packet loss,
packet corruption, disconnections, packet re-ordering, jitter and so on.
WANem consists of a re-mastered Knoppix and hooks into the Linux kernel towards provisioning
the network emulation characteristics. Additionally, it extends the functionality with additional
modules. An intuitive web interface allows configuring. [5]

Why WANem?

It may be asked why WANem is preferred over the netem tool in Linux that can also introduce
delay and loss. The reason for using WANem in this thesis is that it shows a very low minimal
delay (1ms) while netem on the specific Ubuntu test machine with two bridged interfaces shows
varying minimal delays up to 100ms. The reason for this strange behavior can not be found
during weeks. Also WANem shows a very high maximal bandwidth at 500Mbps while netem
shows only bandwidths up to 10Mbps. It may be problems of the specific hardware and OS
version of the test machine that lead to the issues with netem. But there are also other reasons
for using WANem. It is capable of introducing burst losses and has a very nice configuration
interface that allows for complicated configuration of line simulation in short time.
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Installation and configuration

WANem can be booted from a live CD. The Iso file is available on
http://wanem.sourceforge.net.
In order to simulate a line, two interfaces of the machine have to be bridged:

• Open a LXTerminal and enter:
$ exit2shell

• Open a the interfaces configuration file:
$ leafpad /etc/network/interfaces

• Change file to:

auto br0
iface br0 inet static

address 10.0.0.8
netmask 255.255.255.0
gateway 10.0.0.1
bridge_ports ethX ethY
bridge_fd 0
bridge_stp off

• Restart networking using:
$ /etc/init.d/networking restart

Configure the line characteristics

A web-browser with a configuration GUI is started by default in WANem. There you can set up
the line characteristics for the two interfaces that are bridged.

Fig. 1) WANem Basic Configuration Web-interface GUI

Fig. 2) WANem Advanced Configuration Web-interface GUI
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3.2.3 Host configuration

Before the server and client software can be started, the interfaces have to be configured to
provide network connectivity. The following steps describe the configuration of the server:

• Stop the network-manager:
$ sudo service network-manager stop

• Open a the interfaces configuration file:
$ gedit /etc/network/interfaces

• Change file to:
auto lo
iface lo inet loopback

• Restart networking:
$ /etc/init.d/networking restart

• Configure the interface as follows:
$ ifconfig eth0 10.0.0.1
$ ifconfig eth0 netmask 255.255.255.0
$ route add default gw 10.0.0.8

The interfaces of the client can be configured in the same manner but with another IP:

• Configure the interface as follows:
$ ifconfig eth0 10.0.0.2
$ ifconfig eth0 netmask 255.255.255.0
$ route add default gw 10.0.0.8

3.3 Streaming

The following section presents steps and options to perform media streaming with different TCP
congestion control algorithms over the network.

3.3.1 Selecting the TCP Congestion Control Algorithm

No matter which streaming server is used, on Linux the TCP congestion control algorithm can
be set in the system as follows:

sudo /sbin/sysctl -w net.ipv4.tcp_congestion_control=[algorithm]

where [algorithm] stands for reno , cubic , illinois , etc.

3.3.2 ffserver

ffserver is a streaming server for audio and video. It supports a variety of formats and protocols.

Installation

Since ffserver is part of ffmpeg the latter has to be installed. On Ubuntu for example this can be
done by the following command:
$ sudo apt-get install ffmpeg
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Run a stream

The following command starts a streaming server based on the configuration file below:
$ ffserver -f ffserver-example.conf

with a configuration file like:

Port 8090
BindAddress 0.0.0.0
MaxHTTPConnections 2000
MaxClients 1000
MaxBandwidth 500000
CustomLog -
NoDaemon

RTSPPort 7654
RTSPBindAddress 0.0.0.0

<Stream test1-rtsp>
Format rtp
File "/home/mininet/mininet/custom/[your file].mpg"

</Stream>

The stream is now accessible via:
$ ffplay rtsp://[IP of server]:7654/test1-rtsp (RTP over UDP)
$ ffplay rtsp://[IP of server]:7654/test1-rtsp?tcp (for pure TCP)

Issues

Since RTP over TCP is needed and the request for TCP by ffplay does not initiate a RTP over
TCP but a pure TCP transmission, ffserver does not seem to be the appropriate tool for this
project.
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3.3.3 VLC

The second tool used for streaming is VLC.

Installation

The VLC media player is preinstalled in many Linux distributions and can otherwise easily be
installed using the package manager.

Send a stream

• Open VLC media player on Streaming Host

• Media -> Stream...

• Add... -> (select the ts (MPEG transport stream) file)

• Stream

• Next

• New destination -> RTSP

• Add and enter the <name of the media> and remember the port

• Deactivate "Active Transcoding"

• Next

• Select "Stream all elementary streams"

• Stream

Receive a stream

The stream can be played by ffplay:
$ rtsp://<sender ip>:<port>/<name of the media>

or by VLC:

• Open VLC on Client

• Media -> Open Network Stream...

• Enter the URL: rtsp://<sender ip>:<port>/<name of the media>

VLC as root issue

There might be an issue in Mininet because the VLC media player opens under root there,
which causes the following message:
VLC is not supposed to be run as root. Sorry.
An easy way to solve that problem is:

• Open the file:
$ vi /usr/bin/vlc

• replace geteuid with getppid and save

Issues

VLC is not able to send the stream over TCP when a client requests that. When requesting
TCP instead of UDP as the transport protocol with "?tcp" at the end of the URL for ffplay it says:
method SETUP failed: 461 Unsupported transport, Protocol not supported
Also with openRTSP as client and the option "-t" it says that this transport protocol is unsup-
ported.
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3.3.4 live555 Media Server

For the purpose of using the exotic protocol stack with RTP over TCP without RTCP, a custom
server is necessary. live555 Media Server comprises C++ libraries for multimedia streaming,
using open standard protocols (RTP/RTCP, RTSP, SIP, etc.). [6]
In order to turn off the RTCP, a patch is necessary.

Patch and Compilation

• Get source code live.2014.04.23.tar.gz from /urlhttp://www.live555.com/liveMedia/public/

• Unpack the tar file

• Open the RTSPClient.cpp in the folder live/liveMedia

• Since the sender should not be able to react to the networks condition via RTCP,
the receiver reports should be disabled completely. In fact all appearances of
"enableRTCPReports() = ...;" on the code lines 1107, 1154 and 1176 should be
set to "False" which can be done manually or with the following commands:

– Make a copy of RTSPClient.cpp
$ cp RTSPClient.cpp RTSPClientOriginal.cpp;

– Patch the file
$ patch RTSPClientOriginal.cpp -i turnoffRR.patch -o RTSPClient.cpp;
with the turnoffRR.patch file:
1154c1154
< if (subsession->rtpSource() != NULL) subsession->rtpSource()->enableRTCPReports

() = True; // start sending RTCP "RR"s now
---
> if (subsession->rtpSource() != NULL) subsession->rtpSource()->enableRTCPReports

() = False; // start sending RTCP "RR"s now
1176c1176
< if (subsession.rtpSource() != NULL) subsession.rtpSource()->enableRTCPReports()

= True; // start sending RTCP "RR"s now
---
> if (subsession.rtpSource() != NULL) subsession.rtpSource()->enableRTCPReports()

= False; // start sending RTCP "RR"s now

• Go back to the top directory called live and run ./genMakefiles linux

• Run make

• Now the binaries can be used



3.4 How to rip a movie file from the IPTV Box to a ts file 23

Send a stream

In the live/testProgs folder there are a lot of test applications. The program
testOnDemandRTSPServer can stream all sorts of media files that are in the same di-
rectory. Therefore the media file just as to be moved into the same directory as the
testOnDemandRTSPServer and the server can be started. The application shows the URL
under which the stream can be received:

$ ./testOnDemandRTSPServer

"mpeg4ESVideoTest" stream, from the file "test.m4e"
Play this stream using the URL "rtsp://10.0.0.1:8554/mpeg4ESVideoTest"

"h264ESVideoTest" stream, from the file "test.264"
Play this stream using the URL "rtsp://10.0.0.1:8554/h264ESVideoTest"

"h265ESVideoTest" stream, from the file "test.265"
Play this stream using the URL "rtsp://10.0.0.1:8554/h265ESVideoTest"

"mpeg1or2AudioVideoTest" stream, from the file "test.mpg"
Play this stream using the URL "rtsp://10.0.0.1:8554/mpeg1or2AudioVideoTest"

"mpeg1or2ESVideoTest" stream, from the file "testv.mpg"
Play this stream using the URL "rtsp://10.0.0.1:8554/mpeg1or2ESVideoTest"

"mp3AudioTest" stream, from the file "test.mp3"
Play this stream using the URL "rtsp://10.0.0.1:8554/mp3AudioTest"

and so on...

Receive a stream

A neat tool to receive the stream without wasting CPU power is openRTSP since it does not
display the movie on the screen. This tool is included within live555 and should be used because
of the disabled receiver reports.
Further it can request TCP with the option "-t":
$ ./openRTSP -t [URL indicated by testOnDemandRTSPServer]

Issues

The advantage of this media server is that it can be tweaked to use the special protocol stack.
The downside is the inability to get stall information of the video playback by the client open-
RTSP.

3.4 How to rip a movie file from the IPTV Box to a ts file

The following steps describe how to extract a MPEG Transport Stream (*.ts file) from the IPTV
Box out of a network capture file.

• Start capturing the traffic with a bridge that is connected to the IPTV Box before (!) starting
the playback on the Box

• Open the capture file in Wireshark

• Telephony -> RTP -> Stream Analysis

• Select the stream and save it as *.ts file

Hint: $ ffprobe [file] is a handy tool to find out details about a media file.
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Analysis of Measurements

4.1 Analysis Tools

4.1.1 Wireshark

Besides tcpdump also Wireshark [7] can be used to capture network traffic. Further Wireshark
provides a lot analysis. For this thesis the following parts were important:

• Filter for different protocols (e.g. RTP, RTCP, TCP,...)

• Extract the movie file from a network traffic capture

• Plot I/O statistics for a rough picture of the traffic

4.1.2 Tcptrace

tcptrace [8] can be downloaded at http://www.tcptrace.org/download.html. It is well
suited to get plots and statistics about TCP traffic from a capture file. In this thesis the following
functionalities is used:

• Time Sequence Graph:
tcptrace -S [capture file]
(jPlot [10] is recommended to export the plots)

• General statistics like the number of SACK (selective acknowledgement) packets seen or
the average outstanding window:
$ tcptrace -lW [capture file].

25
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4.1.3 Tcpcsm

tcpcsm [9] can be downloaded at http://www.wand.net.nz/~salcock/tcpcsm/. It
is well suited for estimating the cwnd of TCP traffic from a capture file. Since the a TCP
congestion control algorithm does essentially control the size of cwnd, it makes sense to get
this quantity when trying to evaluate the performance of a specific algorithm. The following
command estimates the size of cwnd:

flight_cwnd [capture file] -R -S -q -o [output file]

A self-made python script is used to plot the cwnd from the output text file.
#!/usr/bin/python

import pylab
import numpy as np
import matplotlib.pyplot as plt
import os

# get the pcap file name, run filght_cwnd
txtfile = str.format(raw_input("Please enter a file: \n"))
os.system("flight_cwnd "+txtfile+".pcap -R -S -q -o "+txtfile+".txt")

# import to python
fh = open(txtfile+’.txt’).read()

# allocate
the_list = []
x=[]
y=[]

# data import similar to http://stackoverflow.com/questions/9746927/python-data-import
for line in fh.split(’\n’):

print line.strip()
splits = line.split()
if len(splits) ==1 and splits[0]== line.strip():

splits = line.strip().split(’,’)
if splits:the_list.append(splits)

for i in range(len(the_list)):
print the_list[i]
if the_list[i][-1]==’’:

the_list[i].pop(-1)
the_list[i].extend(the_list[i+1])
i += 1

# get the start time
starttime=the_list[1][7]

# cut out cwnd data (each row is another timestamp
# ignore the last 10 rows in order to not mess up the plot with data that does not belong to the cwnd information
for k in range(len(the_list)-10):

x.append(float(the_list[k][7])-float(starttime))
y.append(float(the_list[k][10]))

fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.set_title("Wand flight cwnd estimation")
ax1.set_xlabel(’Time Stamp’)
ax1.plot(x,y, c=’r’)
leg = ax1.legend()
plt.show()
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4.2 User experience performance of the IPTV Box

The stalls visible to the unaided eye during one minute of TV watching are counted. This is done
for 15 different loss and delay profiles. The results are shown in the table below. The numbers
indicate the minimum of noticed stalls.

0.5% loss 0 0 2 3 3
0.1% loss 0 0 2 2 3
0% loss 0 0 0 0 0

0ms 40ms 80ms 120ms 160ms

Table 4.1: Minimum number of Stalls

It would be nice to have a comparison to the lab setup. However the openRTSP client does not
display the video, hence stalls cannot be seen by the unaided eye. Although there is the "-Q"
option that provides some QOS information, it unfortunately does not report video playback
stalls. Another approach was to rip the received stream again with openRTSP using the options
"-i" for a AVI file or "-4" for a MP4 file. Sadly neither VLC nor ffplay nor the Totem Movie
Player could display the movie. Therefore it was impossible with the current setup to get a
comparison.
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4.3 IPTV box congestion analysis

The following analysis plots are based upon one-minute long TV streaming sessions. The
WANem Simulator is placed between the TIK Internet Gateway and the IPTV Box.
The Time Sequence Graph plots the sequence number in black and the receive window adver-
tised from the other endpoint in blue. The X-axis represents time whereas the Y-axis depicts the
sequence number. The Time Sequence Graph therefore shows the progression of the transmis-
sion where the slope is related to the transmission speed.
With long delays the slow start of the congestion control algorithm can be clearly seen. It causes
a relatively long time to speed up the transmission.

Fig. 1) IPTV Box with 120ms delay and 0% loss Fig. 2) A close-up view of Fig. 1

It can be seen that SACK blocks, which are marked in green, are found more often as the loss
increases.

Fig. 3) IPTV Box with 0ms delay and 0% loss Fig. 4) IPTV Box with 0ms delay and 0.1% loss

When zooming in, the flights can be seen. The black up and down arrows represent the se-
quence numbers of the last and first bytes of the segment respectively. The blue line represents
the advertised window and the magenta line keeps track of the ACK values.

Fig. 5) A close-up view of Fig. 4 Fig. 6) A close-up view of Fig. 5
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When delay and loss increase, dips can be seen in the Time Sequence Graph as well as variable
flight durations that look congestion-like.
Generally, it looks like Illinois because it seems that there is a lot of feedback. This can be seen
since it finds an optimal sending rate (straight line in the Time Sequence Graph) after some time
and it does not increase the rate very fast after a loss (as for example Cubic would do).

Fig. 7) IPTV Box with 40ms delay and 0.5% loss Fig. 8) A close-up view of the Fig. 7

The knowledge of cwnd would provide an even better insight into the way TCP congestion con-
trol performs since it is the manipulated variable of the algorithm. However the measurements
can only be taken next to the client and it does not make sense to use tcpcsm in that case,
because the distance to the sender would be too large for a reasonable estimation. If there was
access to the server, it would be feasible.
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4.4 Different Congestion Control on RTP over TCP

The following analysis plots are based upon a network capture between a machine with the
live555 Media Server and a machine with the openRTSP client. The WANem line simulator
machine is placed between the two. An approximately one-minute long video, that was originally
captured on the IPTV box, was streamed.

4.4.1 New Reno characteristics

Without any additional delay or loss the Time Sequence Graph looks perfectly straight. The
maximum data rate is found very quickly. As soon as there is delay (80ms here) the slow start
is clearly visible.

Fig. 1) live555 Server with 0ms delay and 0% loss Fig. 2) live555 Server with 80ms delay and 0% loss

When delay and loss increase SACK blocks and dips in the sequence number line can be seen.

Fig. 3) live555 Server with 120ms delay and 0.5% loss Fig. 4) A close-up view of the Fig. 3

Cyan arrows represent retransmitted segments with the up and down arrows representing the
sequence numbers of the last and first bytes of the segment.
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4.4.2 Comparison of different congestion control algorith ms on
live555 RTP over TCP without RTCP media streams

For the comparison of different TCP congestion control algorithms in the case of media stream-
ing via RTP over TCP without RTCP, there was a movie file captured on the real IPTV Box and
play backed in the lab setup for different TCP congestion control algorithms. Additional delay
and loss were introduced to simulate a line. Many measurements were taken and one example
(120ms delay and 0.1% loss) is presented here. The movie file has a length of 50 sec and a
bitrate of 7575 kb/s according to ffprobe. Additionally to the Time Sequence Graph there is the
flight_cwnd graph by tcpcsm which shows the estimated size of the cwnd in bytes at the sender
whereas the X-axis represents time.

New Reno

Fig. 5) live555 Server with 120ms delay and 0.1% loss Fig. 6) flight_cwnd estimation related to Fig. 5

throughput 401’702 Bps
max owin 105’705 bytes
avg owin 56’656 bytes

It can be seen that New Reno is quite conservative and since it has only loss as a feedback sig-
nal, it does not speed up very fast. It never reaches big cwnd sizes which limits the throughput.

Cubic

Fig. 7) live555 Server with 120ms delay and 0.1% loss Fig. 8) flight_cwnd estimation related to Fig. 7

throughput 615’280 Bps
max owin 268’545 bytes
avg owin 78’637 bytes
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Cubic is much more aggressive than New Reno due its cubic cwnd function that depends on
the time since the last congestion event. The effect of that can be seen in the large second
derivative of the congestion window (the rapid speedup) after a loss. Also it is quite obvious that
Cubic is much more jittery compared to New Reno but it gets more bandwidth faster. It is quite
impressive how much higher the throughput with Illinois is compared to New Reno.

Illinois

As a comparison to the New Reno and Cubic case above there is also the same analysis for
the "hybrid" algorithm Illinois:

Fig. 9) live555 Server with 120ms delay and 0.1% loss Fig. 10) flight_cwnd estimation related to Fig. 9

throughput 651’377 Bps
max owin 254’381 bytes
avg owin 75’707 bytes

Illinois seems to find an optimal sending rate after some time due to the big amount of feedback
(Illinois is a loss-delay based algorithm). The result is a much straighter line than Cubic in
the Time Sequence Graph. The fact that it is less jittery than Cubic and has an even higher
throughput makes it the best congestion control algorithm of the three evaluated ones (with
respect to media streaming since this requires a constant and high data rate).
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4.4.3 Comparison of different congestion control algorith ms on
TCP bulk data transfer as a reference

This section shows that for the evaluation of TCP congestion control algorithms for media
streaming, it is not sufficient to perform TCP bulk data transfers, as this results in a different
behavior.
With the purpose of having a reference to the RTP media stream experiments, the same movie
file is transferred by file transfer (over the same simulated line) instead of streamed. The movie
file with the size 49.1 MB was served by the Python simpleHTTPServer and received by wget.

There is a difference to the last section. The scale of the Y-Axis in the flight_cwnd plot is
changed for this section because of the much higher values appearing.

New Reno

Fig. 11) simpleHTTPServer with 120ms delay and 0.1% loss Fig. 12) flight_cwnd estimation related to Fig. 11

throughput 416’434 Bps
max owin 146’249 bytes
avg owin 65’534 bytes

Like in the streaming scenario New Reno is quite conservative and never reaches big cwnd
sizes. Generally it looks very similar to the streaming scenario and never reaches a straight line
in the Time Sequence Graph.
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Cubic

Fig. 13) simpleHTTPServer with 120ms delay and 0.1% loss Fig. 14) flight_cwnd estimation related to Fig. 13

throughput 995’953 Bps
max owin 964’369 bytes
avg owin 254’803 bytes

Cubic performed much better in the TCP bulk data transfer than in the streaming experiment.
I assume that the simpleHTTPServer tries to send as fast as possible, whereas a streaming
server tries to keep the sending rate in a certain range (constant in the optimal case).

Illinois

Fig. 15) simpleHTTPServer with 120ms delay and 0.1% loss Fig. 16) flight_cwnd estimation related to Fig. 15

throughput 1’621’072 Bps
max owin 1’068’625 bytes
avg owin 417’036 bytes

Also Illinois performed much better in the TCP bulk data transfer than in the streaming experi-
ment. Again I assume that the simpleHTTPServer tries to send as fast as possible whereas a
streaming server tries to keep the sending rate in a certain range (constant in the optimal case).
It is remarkable how big the cwnd size gets during the TCP bulk data transfer. Since the line has
a rather high delay, there can be a lot of data in flight and the size of cwnd grows. This also leads
to more buffering and therefore again to a higher delay which is kind of a positive feedback loop
that can become a problem.
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Outlook

Since a lot of work for this thesis went into finding a way to model the server and the line,
further work could be done regarding the given problem. Possible components of future work
may include:

5.1 Improvement of the lab setup

Since there is no way to use the real IPTV Server (that runs on the RTP over TCP without RTCP
stack) for experiments, a custom model of the situation has been built. It has to be assumed that
the custom server and client described by this thesis do not exactly behave like the real server.
A comparison with the real IPTV system could indicate areas of potential improvement of the
lab setup.

5.2 Experiments with burst losses

Dario from Swisscom mentions not only random loss (and delay) as imperfect characteristics
of the last mile but also burst losses up to 150ms. Burst losses can easily be simulated using
WANem. Further experiments for the evaluation of different TCP congestion control algorithms
could be done with burst losses to have a more realistic view on the performance of the algo-
rithms.

5.3 More Algorithms

There is a large number of TCP congestion control algorithms. This thesis compares New Reno,
Cubic and Illinois. The performance comparison of different TCP congestion control algorithms
could be extended to a larger set of algorithms such as Vegas, Compound, STCP, etc.

5.4 Web100

Network captures can only help to estimate the size of cwnd with tools, which is not perfectly
accurate. The Web100 Project [11] could be used to get the real size of cwnd directly from the
kernel, because this reflects the reactions of the algorithm best.

5.5 Middleboxes

Middleboxes in the end user network can influence the performance of TCP significantly. Future
research could cover the effect of middleboxes on TCP congestion control performance over
lossy lines in the case of media streaming.
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5.6 SIAD

The recently published TCP congestion control algorithm SIAD by Mirja Kuehlewind could be
evaluated for media streaming over TCP.

5.7 Mininet performance

In this thesis Mininet shows large variations in RTT which makes it necessary to have real
machines interconnected for TCP performance experiments. Further work could investigate the
accuracy of Mininet with respect to timing and TCP performance.

5.8 TCP Congestion Control specifications

A continuative thesis could specify the optimal TCP congestion control for media streaming
based upon measurement and analysis conclusions.

5.9 Lossy last mile

In general the characteristics and influences of imperfections in the physical layers like WLAN
or LTE could be investigated. Consequences for TCP congestion control could then be found
and recommendations for future algorithms could be formulated.

5.10 Quality of Experience

The relation between the performance of different TCP congestion control algorithms and the
Quality of Experience of media streams over TCP could be explored.
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Summary

The main goal of this thesis is to investigate the effect of TCP congestion control on RTP media
streams in the context of IPTV. The case is motivated by issues in the Swisscom IPTV sys-
tem, where customers can experience stalls in the stream playback although there is enough
bandwidth available. Swisscom uses RTP over TCP without RTCP instead of RTP over UDP to
bypass problems with middleboxes, that could arise when using UDP.
Unfortunately assumptions of the TCP congestion control algorithms can be violated with the
presence of lossy last miles, which avoids a stable allocation of bandwidth that would be needed
for an optimal performance of media streaming. Since lossy last miles are not rare with modern
technologies like DSL or WLAN, the problem is quite widespread.
The task of this project is to build a model network with a line simulator (for delay and loss)
and take measurements for TCP congestion control algorithm evaluation regarding the specific
problem. Mininet shows unstable RTT timing which leads to the necessity to have a lab setup
with real machines. Eventually the setup comprises the installation and configuration of a media
server and a client that run the exotic protocol stack of RTP over TCP without RTCP.
Measurements of network traffic captures are analyzed with the help of tcptrace for Time Se-
quence Graphs and tcpcsm for cwnd estimations. A short evaluation of the algorithms is pre-
sented which makes clear that Illinois performs better than New Reno or Cubic in the specific
environment. Also a comparison to TCP bulk data transfer illustrates that the behavior of TCP
is not the same for RTP media streaming (over TCP) and bulk data transfer.
Finally some suggestions for further work are proposed.
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Appendix A

Task description

A.1 The central question

What’s the effect of server-side TCP congestion control on RTP over TCP without RTCP media
streams?

A.2 Background

Swisscom IPTV application layer people observed performance issues like stalls in the media
stream playback. These problems originate in the fact that the physical link is not perfect and
introduces random loss and burst losses. TCP congestion control does not seem to cope well
with it.

A.3 Tasks

An appropriate lab setup comprising a media server, a line simulator and a client should be
installed and different TCP congestion control algorithms should be tested at different random
loss and delay conditions. Further a short analysis of the measurements for different TCP con-
gestion control algorithms has to be done.

A.4 Annotation

At the beginning of the project it was not clear to me that there is no test server application
or a lab that I could use. Therefore, a simulation/emulation environment had to be built first.
Also Mininet performed worse than I expected on the test machine, which led to the necessity
to have a lab setup with real machines. These two things then occupied very much time. As
a consequence the extent, to which the different TCP congestion control algorithms could be
evaluated, decreased. However a lab setup was created, that was able to show the problem and
the characteristics of the different TCP congestion control algorithms very well.
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