ETH

Distributed
Eidgendssische Technische Hochschule Ziirich .
Swiss Federal Institute of Technology Zurich ComPUtlng

Secure P2P-Messenger

Distributed Systems Lab Project

Roni Héacki, Adrian-Philipp Leuenberger
haeckir@ethz.ch, leadrian@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Philipp Brandes, Tobias Langner
Prof. Dr. Roger Wattenhofer

September 15, 2014

-

Contents

1

2

6

7

Abstract
Introduction

Related Work

3.1 Jabber
3.2 Off-the-Record Messaging
3.3 WhatsApp
3.4 SafeSlinger

Architectural Overview

4.1 Guaranteeing Authenticity and Integrity
4.2 Guaranteeing Confidentiality
4.3 Google Cloud Messaging

Implementation

5.1 Certificate Server

5.2 Message Encryptiono Lo 0oL
5.2.1 Diffie-Hellman Basics
5.2.2 Handshaking
5.2.3 Message Encryption
5.2.4 Discarding Temporary DH-keys
5.2.5 Key Caching and Certificate Storage

5.3 Key Synchronization

5.4 Google Cloud Messaging for Android
54.1 Client
5.4.2 Server
5.4.3 Implementation 0L

Summary

Acknowledgements

A References

1 Abstract

In this Distributed Systems Lab Project we built on previous work on the
P2P Messenger and introduced several new features. We tackled the problem
of authenticity and developed an authentication server. The authentication
server signs keys that are used for signing messages. Additionally we added
the possibility to use several authentication servers and built a hierarchy.
Further, we introduced encryption that has perfect forward secrecy. With
this authenticity, integrity, and, confidentiality are guaranteed. We added
key synchronization of different devices and the usage of the Google Cloud
Messaging service to the P2P Messenger. Synchronisation is performed in
order to let different devices of a user receive the same messages where
as the usage of the Google Cloud Messaging service tries to reduce power
consumption on mobile platforms.

2 Introduction

We all use instant messaging apps like WhatsApp or Skype to communi-
cate with our friends. Unfortunately, most of these apps use a proprietary
protocol, which, on one hand, makes them rather untrustworthy and, on
the other hand, forces you to use one specific client. Open alternatives like
XMPP (Jabber) are server-based and have a single point of failure. There
is no existing solution that uses an open peer-to-peer based protocol.

Only recently people started adding encryption natively into their mes-
sengers, also due to the fact that the NSA is eavesdropping on all of us.
Most apps still send messages in a way that is easily accessible for anybody
with access to the connection. Not to mention that some messaging apps
are well-known for having security issues on a regular basis. The few apps
trying to cope with these issues often implement custommade cryptogra-
phy solutions, which usually do not satisfy the high standards requested by
cryptographers. On top of that, those solutions are mostly still server-based.

We have extended the already existing P2P Messenger presented in [1]
and [2].

3 Related Work

There are several instant messenger that implement different feature set.

3.1 Jabber

Jabber [3] was the first instant messenger to use the open XMPP protocol [4].
Using XMPP, the Jabber instant messenger was able to exchange messages
with other instant messenger that implemented the XMPP protocol. It is
server-based and features encryption based on the Transport Layer Security
(TLS) protocol.

3.2 Off-the-Record Messaging

One of the few open protocols that feature perfect forward secrecy is Off-the-
Record Messaging [5] or short OTR. Perfect forward secrecy is guaranteed
by exchanging new keys with every message. This key exchange is based on
Diffie-Hellman and is combined with a hash function to generate symmetrical
keys for AES [6].

3.3 WhatsApp

The most common instant messenger is currently WhatsApp [7]. WhatsApp
uses XMPP to exchange messages. It supports a lot of features like exchang-
ing photos, videos, audio and even the current location can be exchanged.
One of the weak points of WhatsApp is its security. Currently it does not
feature a sufficient end-to-end encryption and further, since Facebook ac-
quired WhatsApp one can not be sure where our data ends up.

3.4 SafeSlinger

SafeSlinger [8] is a system to securely exchange authentication information
between smartphones. Additionally it features a secure way to exchange
messages. It is based on a centralized but untrusted cloud server. SafeSlinger
features a protocol for the key exchange and verification of this information
which is split up into three rounds. In a first round Keys are exchanged
by Diffie-Hellman but also features a group Diffie-Hellman key agreement
where not only two parties participate in the key agreement. The keys are
hashed to a symmetric key using a SHA-3 hash function. The other two
rounds remaining are for verification.

4 Architectural Overview

In this section, we present the overview of the architecture we have chosen.
The main factors that influenced our choice of architecture are confidential-
ity, authenticity, and integrity.

4.1 Guaranteeing Authenticity and Integrity

An important goal of a secure instant messenger is to guarantee the authen-
ticity of its users. This means, user Alice must be able to verify that the
user that claims to be Bob is indeed Bob.

The common way to guarantee authenticity is to use digital signatures.
Before Bob sends a message to Alice, Bob signs the message with his private
key. Then, Alice can verify the signature using Bob’s public key.

However, this basic approach is not completely safe. The problem is
that a malicious entity Fve can still generate a key pair and simply send the
public key of this pair to Alice, claiming that it is Bob’s public key. Eve can
therefore still impersonate Bob.

The solution to this problem is to certify the public keys using one or
more trusted entities. We chose an approach very similar to the way SSL
certificates are handled. Our approach looks as follows.

Once Bob has generated his private key pair, he connects to a certificate
server (certificate authority), which then certifies Bob’s key and sends back
a signature of the key (and Bob’s user name). Furthermore, the certificate
server also sends Bob his own certificate. The certificates used are according
to the X.509 [9] standard. The most important fields are the issuer, the
subject the certificate belongs to and its validity. With the certificate, Alice
can verify that Bob is truly Bob and Eve cannot impersonate Bob, as she
does not have a valid certificate for her fake Bob-keys.

Now, another problem might arise if the certificate server itself is con-
trolled by Eve. To prevent this, all certificate servers are ultimately certified
by themselves, in a hierarchical way. To be more precise, a certificate server
a user connects to is again certified by a higher tier certificate server which
again is certified by another even higher tier certificate server. This goes on
and on upwards in the hierarchy up to a root server (root CA) which must
be assumed to be trusted and not to be compromised.

Using this hierarchical architecture, Alice and Bob himself can verify
that Bob’s certificate is indeed valid, assuming they trust the root CA.
Furthermore, it simplifies adding new friends. If there were no certificate
authorities, the only way Alice and Bob could make sure that they have the
correct public keys to verifies each others signature is to exchange not only
the usernames but also the very long public keys themselves. However, if
we use CAs this is not necessary as the public keys can be exchanged and
verified by the devices. Alice only has to tell Bob her username.

The architecture can be seen in Figure 1.

Root CA

Alice

Figure 1: Hierarchical architecture for certificate authorities

4.2 Guaranteeing Confidentiality

Another important goal of a secure instant messenger is confidentiality.

We have implemented two approaches to achieve confidentiality. As a
first approach, we chose to implement message encryption using asymmetric
RSA encryption. For this approach, each user simply generates another key
pair and some certificate server certifies the public key of the user. Just as
for the digital signatures, when Alice receives a message from Bob she can
verify that the data has been encrypted using Bob’s private key.

However, using RSA does not provide Perfect Forward Secrecy — mean-
ing, once Bob’s private key has been leaked, all past messages sent to Bob
can be decrypted.

To overcome this problem we have implemented an Off-the-Record pro-
tocol (to be used in the final messenger), which guarantees Perfect Forward
Secrecy. The OTR protocol was presented in [5].

The diffence between OTR encryption and RSA encryption is that in-
stead of using long-term asymmetric encryption keys, short-term symmetric
Diffie-Hellman keys are generated and discarded again as soon after they
have been used for encryption and decryption. With every message a new
public key is added to the message. When Bob receives a message from
Alice, it is encrypted with a key that was previously sent by Bob. Further,
the received message contains a new public key from Alice from which Bob

can generate a new secret with which he can encrypt further messages sent
to Alice.

4.3 Google Cloud Messaging

Additionally to the security features, we also implemented features which
reduce power draw for mobile devices. Google has a service called Google
Cloud Messaging (GCM) which is very handy for instant messenger applica-
tions. The GCM framework can reduce power consumption for the receiv-
ing side of an instant messenger by storing/queueing the message on GCM
servers if the device is not online and deliver the message later by waking
the Android application on the Android device. An implementation of GCM
has two essential parts a client and a server. To leverage the features from
GCM, we integrated it into the messenger. We implemented GCM in two
ways, the official way how Google suggests it, and in a more peer-to-peer
fashion without using a centralized server.

5 Implementation

5.1 Certificate Server

For our certificate servers, we naturally chose a multi-threaded architecture.

On the server, there is a main thread which is always listening for new
incoming connections and there is a thread pool with a bound number of
worker threads. Once a client connects, the main thread creates a new task
to be eventually served by some worker from the thread pool. Then the
main thread continues to listen for new incoming connections. Depending
on the incoming message, different actions are performed.

We will now present the different possible message types and their match-
ing action. All packets between clients and servers are JSON-formatted. The
following types of messages can be sent by a client to a server (Note that a
client might also be another certificate server from a lower tier):

e Signature request: A client (messenger user) might request a sig-
nature for his public keys. There are two different cases:

1. The client has never requested a signature before.

2. The client has already requested a signature before.

In case 1, the server simply aggregates the clients public keys, user ID
and a randomly generated salt (generated by the server) and signs this
data. Then, the server sends back the signature, the salt and its own
certificate. This way, the user Alice can verify that Bob’s keys indeed
belongs to him, as Bob’s user ID and public keys have been signed
together. Furthermore, the server stores Bob’s user ID and keys into
a MySQL-based certificate database. This database is very important
for case 2.

In case 2, the server cannot simply issue a new signature. The problem
is that the malicious entity Eve might generate a new key pair, send
a signature request and claim to be Bob, even though real Bob’s real
keys have already been certified. To prevent Eve from impersonating
Bob, the server requires Bob to include a challenge. This challenge is a
simple signature of Bob’s name, the old and new keys. This signature
must have been created using Bob’s old private signature key and
can be verified using Bob’s old public signature key. The public key
is stored in the previously mentioned certificate database, as the real
Bob has already requested a signature before. If we constrain signature
requests like this, we can prevent Eve from requesting a new signature
in Bob’s name, as long as Bob’s private keys have not been leaked to
Eve.

The typical signature request packet can be seen in Listing 1. It in-
cludes the user ID id, the encryption key enc-key, the challenge chal,

e W o =

w N o wu

g W N =

the signature key sig-key, a request number req-num and a message
type type.

Listing 1: Signature request packet

”7id”:” Bob” ,

7enc—key”:”313233AF34D4298B...”7 ,

7 chal”:74465722050617073746520696
€2064656e2057616c64652073636865697373747

7 sig—key”:”132DA35257234FFC...”" |

"req—num”:1,

” L

"type”:” sig—req”

Upon receiving the server’s response packet which includes the signa-
ture, the client can verify the signature using the certificate sent by the
server. Once this signature has been verified, the client will also verify
the certificate by requesting the certificate from the next higher-tier
CA server until it contacts the root. The root certificate does not have
to be verified as its public key is hard-coded.

Certificate request: A client — which might be a messenger user
or another certificate server — can request the certificate server’s own
certificate. In this case, the server simply fetches its certificate from a
local key store and sends it back to the client.

Certificate requests are required for a client in order to verify certifi-
cates up to the root.

The typical certificate response packets can be seen in Listing 2. We
omitted the request packet as it looks almost the same as the response
packet. Both packet types include a request number req-num and a
type field type and in addition, the response packet also includes the
certificate cert, encoded in hexadecimal format.

Listing 2: Certificate response packet

{
"req—num” :2 |
"type”:” cert—rsp”,
7 cert”:” BADFOOD”

}

Bootstrap packet: There are two cases when a client needs some sort
of bootstrapping. The first case is when the client does not know any
of the certificate servers and wants to contact a well known server, i.e.,
the root CA (root of the chain of trust). When the root is contacted
using a Boostrap packet, it will respond with a packet containing a
host name which is in the hierarchy of certificate servers. The next

DUt A W N

time the client will no longer contact the root server (if there is any
other), but it will contact the address returned from the server. This
way the load can be balanced between the certificate servers. For
a bootstrapping problem there are a lot of smart solutions that find
a node to which a newly joining node may connect to. The easiest
and frequently used solution is, as described before, contacting a well
known node.

In the same way, by contacting the root certificate server, another
certificate server can join the hierarchy of the certificate servers. At
the moment (out of simplicity) the root certificate server knows the
whole hierarchy and can directly return the address of the server which
will be the next element up to the root. Another way to implement
this, would be to let the server itself go from the root certificate sever
down the hierarchy and find its place. This could avoid the problem
of one node knowing the whole structure.

In Listing 3 a bootstrap packet can be seen. As other packets, it
contains the two fields req—num and type. The field host is either
empty (for clients) or contains the address of the server (for other
certificate servers). The field subtype indicates if this packet is sent
by a messenger application or by another server. The response uses
the same packet type and just changes the host field.

Listing 3: Bootstrap packet

{
"req—num”:2
"type”:” boot”,
"host”:”pc—10129.ethz.ch”,
”subtype”:”0”

}

Certificate creation packet: After certificate server knows where
it belongs in the hierarchy, it must request a certificate from a higher
authority in the chain of trust. This can be achieved by sending a
Certificate creation request packet. The request contains the subject
(host address) for which the certificate should be issued, and the public
key of a public/private key pair. This is enough information for the
server higher in the hierarchy to issue a certificate for the subject
specified in the request.

After the server received the issued certificate, a client requesting a
signature for his public key can verify the signature by following the
chain of trust up to the root CA by requesting their certificates using
certificate requests.

10

3. Certificate Creation Request

4. Certificate Creation
Response: Cert CA3

1. Bootstrap
2. Bootstrap Response: CAl

4. Signature Re sponse: Cert CA1l, Signature Alice
3. Signature Request

5. Certificate Request

6. Certificate Response: Cert Root

Alice

Figure 2: Example of Alice first bootstrapping then requesting signature
and verifying it. Additionally, CA3 joins the hierarchy.

11

5.2 Message Encryption

In this section, we present the mechanism behind the message encryption.
Before clients can send to each other they need to establish a chat session.
In the following, chat sessions are referred to as streams. The mechanisms
for messages encryption include the handshakes between the clients when
streams are established as well as the encryption and the storing of the
keys and certificates. As already mentioned, we have implemented Perfect
Forward Secrecy. To be more precise, we used Diffie-Hellman key agreement
where the DH keys are frequently dropped and new ones are created.

5.2.1 Diffie-Hellman Basics

The Diffie-Hellman key agreement protocol is secure based on the assump-
tion that prime factorization is a hard problem. The goal is that two users
Alice and Bob are able to agree on a secret shared key. This key agreement
is performed over an insecure medium where a malicious entity Eve might
eavesdrop.

We now briefly present how Diffie-Hellman key agreement works. Ini-
tially, both Alice and Bob and likely even Eve know about the public gen-
erator g and the modulus m. To perform the key agreement Alice and Bob
choose both generate a secret/private key a and b respectively. Neither of
these keys is ever sent to a communication partner. Next Alice and Bob
compute their public keys A = ¢* mod m and B = ¢ mod m respectively
and exchange these keys. Now Alice can compute

b

B* mod m=(¢° mod m)® modm=g¢"® modm

while Bob computes

a

A® mod m = (¢®° mod m)® mod m=g? modm

Of course, the keys that Alice and Bob compute are identical. However,
Eve cannot compute ¢ mod m even if she knows g, m, ¢* and ¢*. To
be able to compute ¢** mod m Eve would have to know about a or b.
Assuming that prime factorization is hard, Eve cannot derive a from g% or
b from ¢°.

Still, there is a problem regarding the key agreement — Eve can perform
a man-in-the-middle attack and pretend to be Alice while talking to Bob
and pretend to be Bob while talking to Alice. Eve can generate a secret key
e and would perform a key agreement with Alice and Bob where the key
that Alice uses is g°® mod m and the key that Bob uses is ¢® mod m. Eve
would decrypt messages received by Alice using the key ¢°* mod m and re-
encrypt it again using ¢°> mod m. Neither Alice nor Bob would be aware
that their messages have been tampered. To overcome this problem, the

12

messages have to be signed by Alice and Bob which guarantees authenticity
and integrity as modifications would be detected.

5.2.2 Handshaking

In our architecture, we focused on encrypting messages sent in active chat
sessions (streams) such that eavesdropping by malicious entities is not pos-
sible.

Assuming that Alice and Bob are friends, the first step user Alice does
to start a chat with user Bob is to send a stream request. Upon receiving
a stream request, Bob automatically sends a stream response back to Al-
ice. We used this functionality of the already existing P2P Messenger and
extended it such that it also serves as handshaking for key agreements.

Both message types, stream request and stream response, include the
same data that is required to set up a secure stream:

e A signature for all the keys S
e A signature key Kg

e A certificate C to verify that S is indeed Alice’s or Bob’s signature
key

e A first Diffie-Hellman key ¢ mod m or ¢ mod m.

Neither stream request nor stream response are encrypted as it is not re-
quired. Alice’s signature key is public and as already mentioned in Section
5.2.1, malicious entities cannot factorize ¢g® mod m or g mod m. Fur-
thermore, the signature key Kg can be used to verify the signature S and
therefore verify the proposed keys. The signature key itself can be verified
using the certificate C' which in turn can be verified as described in Section
5.1.

5.2.3 Message Encryption

Message encryption should guarantee Perfect Forward Secrecy. To achieve
this in our implementation, user Alice generates a new private Diffie-Hellman
key every time she sends a new message to Bob. To encrypt the i-th message,
Alice generates key a; and encrypts the message using the secret key g% 1%
mod m where b; is the key of j-th message that Alice has received from
Bob. Note that Alice has used the key a;_1 for the encryption. Key a;
is included in the message to be sent but not encrypted, as it is not really
necessary, assuming that the private part x of a public key ¢* mod m cannot
easily be reconstructed. Furthermore, encrypting the new keys would lead
to chain of encryption. Decrypting a message m; would require to have
decrypted message m;_1, which in turn would also require message m;_o to

13

be decrypted at the receiver. If even only one message is lost, none of the
following messages could be decrypted. This would break the whole chat
session. However, if only the texts are encrypted, but not the keys, losing
a message would not be catastrophic. If for example message m;_1 is lost,
the ciphertext in message m; cannot be decrypted but the key can still be
extracted and therefore the following message m;;1 can be decrypted again.

Alice’s Smartphone Bob's PC

Figure 3: Chat example using the implemented encryption scheme

14

Furthermore, we also guarantee authenticity and integrity by signing all
encrypted messages using the private counterparts of the public keys that are
sent in the initial stream requests and responses. To verify authenticity and
integrity of an encrypted message sent by Bob, Alice verifies the signature
using the public key she obtained and verified when the stream was set up.

It is important to know what kind of encryption we use. Since Diffie-
Hellman key agreement produces symmetrical keys, we had to choose a
symmetrical encryption algorithm. We choose the Advanced Encryption
Standard (AES) [6] algorithm as it was known to be fast and save even if
the keys have only a length of 128 bits. To be safe we chose to use 256 bit
long keys. The keys are generated by hashing the symmetric Diffie-Hellman
keys into 256-bit keys using SHA-256. At some point we had to downgrade
the hashing to the less secure MD5 as SHA-256 did not seem to be supported
by our JVM on Windows machines. However, we assume this downgrade
only to be temporary.

AES is a block-cipher-based algorithm meaning that the data is parti-
tioned into blocks and the encrypted block-wise. This block-wise encryption
can be performed using several schemes. The most simple scheme is to en-
crypt each block independently using Electronic Code Book mode (ECB)
[10]. However, this mode is not very secure. Duplicate blocks will always
be encrypted the same way. Such a behaviour might be fatal in certain use
cases. A relevant example is the transfer of image files. Any modern instant
message should be able to support file sharing and even though this is not
yet supported in the P2P Messenger, we already provide functionality to
support secure file transfer. One can see the results of block cipher encryp-
tion using ECB mode in Figure 4. The reader can clearly see that Tux is
still visible in Figure 4b even though the image has been encrypted.

(a) Tux (Original) (b) Tux (ECB) (¢) Tux (Secure, e.g.,
CBCQ)

Figure 4: Tux image unencrypted, encrypted with ECB and encrypted with
a secure block cipher mode (e.g. CBC). [10]

To prevent this kind of information leakage, we have decided to use

15

AES in combination with a secure block cipher mode, namely Code Block
Chaining (CBC) [10]. Sketches of EBC and CBC can be found in Figures
5a and 5b.

Plaintext Plaintext Plaintext
[TTTTTTITTTTT [TTTTTTITTTTT [TTTTTITTTT1

block cipher block cipher block cipher
o e | e[| —[T |

[ENNNEERENEEEE [ENNNEERENEEEE [EEEEENEERENEE]
Ciphertext Ciphertext Ciphertext

(a) Electronic Code Book

Plaintext Plaintext Plaintext
OTTTTTITT1T OTTTTTITTTT [OTTTTTITTTT
Initialization Vector (IV)
[OTTTTTTTTTT [S5) —

block cipher block cipher block cipher
Key encryption Key encryption Key encryption

OTTTITTTTTTT OTTITTITTTT OTTTTTTITTTT
Ciphertext Ciphertext Ciphertext

(b) Code Block Chaining

Figure 5: EBC and CBC mechanism sketches.[10]

The idea behind CBC is to encrypt the data such that the encryption/de-
cryption of the data block always depends on the previously encrypted dat-
ablock. We can represent this idea with the following formula [10]:

Ci=Eg(P,®Ci_1),Co=1V

To encrypt the i-th datablock P; it is first XORed with the previous
ciphertext C;_; and than encrypted with the encryption key K. Note that
1V is an initialization vector on which both parties agreed upon and which
must be changed with every encryption.

5.2.4 Discarding Temporary DH-keys

To achieve Perfect Forward Secrecy it is important to discard old or unused
secret Diffie-Hellman keys. Otherwise an unauthorized entity might see all
the keys if she/he gains access to some user’s device(s). The challenge of
discarding keys is to discard keys as soon as possible. This section describes
how the Diffie-Hellman keys are deleted.

First of all, keys created by a user’s own devices cannot be deleted the
same way as keys generated by his peers. Deleting keys of a peer is straight
forward. When Alice receives the i-th message from Bob, she can directly

16

delete the key that she has received with the previous message, the (i —1)-th
message. Let us assume Bob’s i-th key is the key Alice received in Bob’s i-th
message. The keys of Alice and Bob are denoted by a; and b;, respectively.
Alice can safely delete b;_1 after she has received Bob’s i-th message because
she knows that Bob will never use this key again as he will generate a new
Diffie-Hellman key with every new message he sends. Bob on the other hand
cannot directly delete key b;_; after generating key b; and sending his i-th
message. This is because he cannot tell whether and when Alice will use
key b;_1. Even if Bob receives a message from Alice where she has used key
b;_1, he cannot delete it. Assuming that Bob has received Alice’s message
after he sent his i-th message, it is possible that Alice has not yet received
the i-th message and will use key b; 1 again for one, two or many more
messages until she receives Bob’s i-th message.

The approach to safely delete locally generated Diffie-Hellman keys is
simple — when a user deletes a peer key upon receiving a new message, he
stores the key’s ID in a list containing old or deleted keys. When this user
sends his next message, he simply attaches this list of key IDs to the message.
His peer can then safely delete all the keys in the list since he knows that
they will never be used again.

5.2.5 Key Caching and Certificate Storage

In our implementation there is a lot of information that needs to be stored,
foremost the keys and certificates. After first approaches to store this data
using text files, we had to change to another approach since the more features
we implemented, the more information we needed to keep track of. In the
current implementation the data is stored in a persistent SQLite Database.
There are four tables containing different information:

e The public part of Diffie-Hellman keys which were received

e The private part of the Diffie-Hellman keys which the client has sent
e The signature keys of other clients

e The certificate, signature and salt of the key exchanges.

The keys are stored as plain text using a hex encoding. We are aware that it
would be more save to store some of these keys encrypted, but on the other
hand the sensitive keys are thrown away after some time anyway. All of
these keys are stored with the user name the key is used with. Additionally,
to keep track of which Diffie-Hellman keys can be deleted and which are
still in use, we added an ID to the keys. The certificates are stored in the
same way which means mostly text based. The certificates that are used for
signing (Authentication server) are stored using the Java Key Store (JKS).
JKS has some features like passphrases to provide a certain level of security.

17

Since we implemented the encryption protocol for both a PC client and an
Android app, we had to define a common interface for accessing the SQLite
databases which both these platforms had to implement.

5.3 Key Synchronization

A user may use multiple devices, for example a phone and a tablet or a phone
and a PC. If the user is online with multiple of his devices at the same time,
all devices should be able to receive and decrypt the same messages. Since
we are using an architecture that implements Perfect Forward Secrecy using
Diffie-Hellman key agreements the private Diffie-Hellman keys have to be
synchronized among the different devices of the same user.

But first, we present a short example. Assume that Alice uses the devices
X and Y while Bob uses the device Z and both users have the same generator
g and modulo m. If Bob sends a message to Alice, he will use his own private
key b and one of Alice’s public keys witch is either g®X or ¢*¥, depending
on which device has the last message. In case the last message was sent
by device X, Bob will compute the secret key g*x? to encrypt his message.
Upon receiving Bob’s message device X will have no problems decrypting
the message, but device Y will not be able to decrypt it directly. In order
to decrypt the message, device X must tell device Y about the key ax,
otherwise, device Y cannot compute the secret key g2x°.

There are several possible approaches to implement synchronization. A
first approach would be to use a centralized entity. This could be one of
the user’s device, preferably a stationary device such as a computer. The
centralized entity would coordinate the whole synchronization, including the
creation of keys with unique key IDs but also the distribution of the keys.
However, this approach would result in a heavy load on the coordinator
which is certainly not desirable if the user is using multiple mobile devices
and no stationary one. The other problem is that the coordinators might
disconnect for some reason and leader election would have to be performed
leading to non-negligible delays.

18

Alice’s PC Alice’s Smartphone Bob’s PC

Figure 6: Example of key synchronization

A better approach is to perform synchronization in a truly distributed
manner, which is exactly the approach we have chosen. Instead of having a
centralized entity, each device computes its own set of keys where the set of
key IDs of any two devices are disjoint. In our protocol keys are identified
by their IDs. This minimizes protocol overhead as key IDs use fewer bytes
than keys (e.g., one of Alice’s keys might be used multiple times if Bob sends
multiple messages to Alice without receiving a message from Alice). Keys
generated by different devices of the same user must have disjoint key IDs
or the messages cannot be decrypted by all devices. If Alice’s devices would
generate keys with the same IDs, Bob would tell Alice’s devices that he
used the key with ID k to encrypt the message but for every one of Alice’s

19

devices, the keys with ID ¢ would be different and therefore, only one of the
devices would be able to decrypt the message.
To achieve disjointness each device computes its key IDs as follows:

1. Compute unique offset D where 0 < D < MAX_CLIENT_DEVICES.

2. Keep a counter ¢ that increases by 1 everytime a new key is generated
locally.

3. Key ID k of the i-th key is k =i - MAX_CLIENT_DEVICES + D.

Using this scheme we can assure that no two devices compute the same
key IDs, assuming each device has a unique offset. In our implementation
the offsets are computed by taking the hash code of the clientId modulo
MAX_CLIENT DEVICES. Note that clientId denotes the string that stores
the user ID of the user. Since we can assume that a user has no more
than 4 or 5 devices (e.g. a phone, a tablet, a notebook and maybe a desk-
top), we can assume that collisions among the offsets are highly unlikely if
MAX_CLIENT_DEVICES is set to a high number such as 65536. The computa-
tion from the probability of a collision follows from the birthday problem.

We have used the following formula to compute the probability for a
collision between n devices given that the maximum number of distinct
offsets (MAX_CLIENT_DEVICES) is set to 65536.

65536!
65536 (65536 — n)!

P[Collision|n] = 1 — P[No collision|n] = 1

Assuming that there are at most n = 5 devices for any user (which seems
reasonable), the probability that two or more devices have the same offset
D is less than 0.00015.

Using this scheme a device can determine whether a key ID that has been
used to encrypt a message is a key of its own set of keys or whether another
device must have generated the key. In case another device has generated
the key, a signed key request message (including a temporary Diffie-Hellman
public key) is broadcasted to all other devices of the same user. If a device
receives such a broadcast message, it determines whether it has generated
the requested key and if so, it answers the key request or else simply drops
the request. Therefore, only the creator of the key will answer (if it has not
disconnected).

To answer the key request, the responsible device fetches the key from its
key cache (if it has not been deleted to do clean-ups) and also pre-fetches
a few more keys it is going to use next. Afterwards it generates its own
temporary Diffie-Hellman key and combines it with the public DH key that
was included in the request to generate a secret key. This key is then used
to encrypt the private keys the other device has requested. Obviously this

20

Ut e W N =

is necessary since we cannot transfer private DH keys in plaintext. Finally,
both temporary keys are discarded on the device that responded to the
request and the response is sent back.

After receiving the response Alice’s device can then decrypt the pri-
vate keys, then decrypt Bob’s message and cache the keys for further use.
As already mentioned a device always receives more than one key. This
optimization has been chosen to minimize the number of key requests nec-
essary. After requesting key k, a device will also know about the keys
k + MAX_CLIENT_DEVICES, k + 2 * MAX_CLIENT_DEVICES, k + 3 x
MAX_CLIENT_DEVICES and so on.

Another optimization is to cache the responsible device for a certain
offset. Initially a device does not know which one of the other devices is
responsible for offset 0. However, after the first request for a certain offset
o, the device knows the responsible device. This knowledge allows us to
avoid unnecessary broadcasts by being able to send a request directly to its
responsible device.

5.4 Google Cloud Messaging for Android

In the following sections, we present the implementation of the client and
the server that use the GCM framework. We also present an implementation
that does not use a server.

5.4.1 Client

The client side i.e. the Android application first needs the Google Play
Services SDK installed [11]. Additionally, the manifest of the application
needs to be adapted. GCM requires the following permissions listed in
Listing 4.

Listing 4: GCM permissions

com. google . android .c2dm. permission .RECEIVE
android . permission .INTERNET

android . permission . GET_ACCOUNTS

android . permission . WAKETLOCK
”?applicationPackage”+.permission . C2D_MESSAGE”
com. google.android.c2dm. intent .RECEIVE

Most of these permissions are defining that the device can receive from
GCM, but also which application can receive these messages. This restric-
tion is implemented by GCM by a field called restricted package name. The
packets sent with this fields set to a value can only be received by receiver
services which have defined the same value as the packets sent.

Additionally to these permissions, a developer has to register his project
with Google using the Google Developer Console [12]. When a project is
registered, it gets a Project Number that will be later used as a Sender ID.

21

Further for some sort of authentication, an API Key must be generated. As
a last step in the developer console, the GCM Service itself must be enabled.
The first thing an application has to do if it wants to use GCM is to check if
the device is compatible with Google Play Services. After this quick check
the device can register itself to the GCM servers using the sender ID. The
Google servers will respond with a registration ID. This registration ID spec-
ifies for GCM to which device a message is sent to. The GCM registration
ID is then stored in the shared preferences and needs to be kept secret. The
only other application that needs to know the registration ID, is the second
part of the implementation, the server. The server stores the registration
IDs and associates them with some other sort of identification like the user-
name.

The last part that needs to be implemented on the client side, is the re-
ceiving part itself. Googles Framework offers a class called WakefulBroad-
castReceiver which can be extended by just implementing a method called
onReceive (). This method gets an Intent as a parameter which contains in
the extras the message sent.

5.4.2 Server

The server has two main tasks: store the GCM registration IDs and asso-
ciate them with a username/account name and communicate to the Google
servers.

The first task -storing the registration IDs- is necessary because a messen-
ger client does not know the registration ID of the device it sends to. This
means in order to let two device communicate, the server needs the regis-
tration ID of both device. To send a message the device will send a message
in a format the server understands, to the server. This message will contain
some sort of username/account name which the server then can translate
into a registration ID.

A server can communicate in two ways with the Google server: HTTP
or CCS (XMPP). CCS has the benefits over HTTP of bidirectional asyn-
chronous communication channels which also allow the device itself to com-
municate with the Google servers for upstream messages to the server. One
of the problems with using CCS is the requirement to unlock that CCS can
actually be used. This can take up to 3 months and thus it was clear, that
for the beginning we used HTTP. An example of an HTTP request to the
Google servers is shown in Listing 5.

22

© w0 N O s W N

= e
=]

Listing 5: GCM request

Content—Type: application/json
Authorization : key=AlzaSyB—1uEai2WiUapxCs2Q0GZYzPu7 . ..
{ 7collapse_key”: ”score_update”,

”time_to_live”: 360000,

7delay_while_idle”: true,

7?data”: {
"message”: " hello”,
I
"registration_ids 7 :[” APA91bHundMxP5egoKMwt2KZFBaFUH—-1RYqgx ... " |
?restricted_package_name”: ”"ch.ethz.disco.p2pmessenger. Client”

}

The first few lines are the header that contains the authorization key which
was previously obtained from the Google Developer Console (API key) and
the type of the content, in the shown case JSON. The parameters of the
JSON object are:

e collapse_key: An arbitrary string that is used to collapse messages to
avoid sending too many messages in the case when a device was offline
and then comes online. With this key a group of messages is delivered
together and not on their own if several messages were queued for a
device.

e time to_live: Specifies how long the Google servers should store a
message if it can not be delivered.

e delay while_idle: Specifies if the Google servers should wait until
the device is active and not idle.

e data: The actual data to be sent. This is a JSON object itself and
can have a size of up to 4kb.

e registration_ids: These are the registration IDs to which the mes-
sage should be sent to. Can contain multiple addresses.

e restricted_package name: This is a string containing the package
name of the application. This prevents that messages are sent to
registration IDs that are not registered with this package name.

In this format the server communicates with the Google servers. If there is
an error with this format, there is a lot of information in the response to
the request helping the developer debug. Additionally to the format, Google
suggests that some kind of back-off mechanism is implemented when sending
a request fails.

23

GCM Servers

6. Data: From:Alice
To: Bob
Text: Hello

2
. /?e
&/ >

< 5. To: ReglD2
eq"\’a Data: From: Alice To: Bob Z R
*&,Q‘ Text:Hello é’/;yfer

3. ReglID1/Alice
3. RegID2/Bob

<

Alice 4. From: Alice Server Bob
To: Bob
Text: Hello

Figure 7: Sending a message using GCM with standard implementation

5.4.3 Implementation

Our first approach to the implementation was as described in the previous
subsections. The problem with implementing GCM in this way is, that it
introduces a single point of failure with the server. Our approach to solve
this problem was, to implement most of it in the peer-to-peer network.
At first the messenger client registers itself with the Google servers and
gets a registration ID. Instead of sending this ID to our server, we send
the ID to the client’s parents in the network. Every client has a certain
amount of parents in the network. The parents are the gateway for clients
to communicate over the overlay network. When the parents receive an 1D,
they store this ID and the username and resource it is associated to. When
a client wants to send a message, the messages are first sent to the parent
of the receiver. Instead of sending this message to the device, the peer will
check if it has a registration ID store for the receiver, and send it to the GCM
servers which will deliver the message later. The receiving service extends
the class WakefulBroadcastReceiver. When this receiver gets a message from
the Google servers, it hands the intent to a IntentService which processes
the received message.

24

GCM Servers

7. Data: From: Alice
To: Bob
Text: Hello

> <
» 6. To: RegID2 %,
Q@) .
- Data: From: Alice N
R To: Bob

Text: Hello

5. From: Alice

To: Bob
Parent 1 Text: Hello Parent 2

4. From: Alice
Alice To: Bob Bob
Text: Hello

Figure 8: Sending a message using GCM without centralized server

25

6 Summary

We extended an already existing Peer-to-Peer instant messenger to support
encryption and therefore authenticity, integrity and confidentiality. Fur-
thermore, we implemented encryption in such a way that Perfect Forward
Secrecy can be guaranteed even if a user uses multiple devices at once. We
let ourselves inspire by SSL when creating a hierarchical chain of trust to is-
sue certificates to users of the messengers. We also provided building bricks
for future implementations of secure file transfer.

However, there is yet much to be done concerning the P2P messenger
until it can finally be released into the Google Play Store and such. We are
looking forward to see further progress of the P2P messenger.

7 Acknowledgements

Finally, we would like to thank Tobias Langner and Philipp Brandes for the
(usually) weekly meetings and their constant support.

26

A

[1]
[2]
[3]
[4]

[5]

References

Olafsdottir, H.: Peer-to-peer based instant messenger. (2014)
Bourchas, T.: Distributed hashtables for p2p-messenger. (2014)
Jabber: Jabber instant-messenger-client http://www. jabber.org/.

(IETF), LE.T.F.: Xmpp (rfc 6120) http://tools.ietf.org/html/
rfc6120.

Borisov, N., Goldberg, 1., Brewer, E.: Off-the-record communication,
or, why not to use pgp. In: WPES ’04 Proceedings of the 2004 ACM
workshop on Privacy in the electronic society, New York, NY, USA.
(2004)

Wikipedia: Advanced encryption standard http://de.wikipedia.
org/wiki/Advanced_Encryption_Standard.

WhatsApp: Whatsapp http://www.whatsapp.com.

Farb, M., Lin, Y.H., Kim, T.H.J., McCune, J., Perrig, A.: Safeslinger:
Easy-to-use and secure public-key exchange. In: Proceedings of the

19th Annual International Conference on Mobile Computing &
Networking. MobiCom 13, New York, NY, USA, ACM (2013) 417-428

(IETF), LE.T.F.: Internet x.509 public key infrastructure certificate
and certificate revocation list (crl) profile http://tools.ietf.org/
html/rfc5280.

Wikipedia: Block cipher mode of operation http://en.wikipedia.
org/wiki/Block_cipher_mode_of_operation.

Google: Google play services https://developer.android.com/
google/play-services/index.html.

Google: Google developer console https://developer.android.com/
distribute/googleplay/developer-console.html.

27

http://www.jabber.org/
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6120
http://de.wikipedia.org/wiki/Advanced_Encryption_Standard
http://de.wikipedia.org/wiki/Advanced_Encryption_Standard
http://www.whatsapp.com
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://developer.android.com/google/play-services/index.html
https://developer.android.com/google/play-services/index.html
https://developer.android.com/distribute/googleplay/developer-console.html
https://developer.android.com/distribute/googleplay/developer-console.html

	1 Abstract
	2 Introduction
	3 Related Work
	3.1 Jabber
	3.2 Off-the-Record Messaging
	3.3 WhatsApp
	3.4 SafeSlinger

	4 Architectural Overview
	4.1 Guaranteeing Authenticity and Integrity
	4.2 Guaranteeing Confidentiality
	4.3 Google Cloud Messaging

	5 Implementation
	5.1 Certificate Server
	5.2 Message Encryption
	5.2.1 Diffie-Hellman Basics
	5.2.2 Handshaking
	5.2.3 Message Encryption
	5.2.4 Discarding Temporary DH-keys
	5.2.5 Key Caching and Certificate Storage

	5.3 Key Synchronization
	5.4 Google Cloud Messaging for Android
	5.4.1 Client
	5.4.2 Server
	5.4.3 Implementation

	6 Summary
	7 Acknowledgements
	A References

