
Institut für Technische Informatik
und Kommunikationsnetze

Computer Engineering and
Networks Laboratory

Department of Information Technology and

Electrical Engineering

Spring Term 2014

Resource-e�cient Dynamic Partial
Recon�guration on FPGAs

Semester Project

Andreas Traber

atraber@student.ethz.ch

June 2014

Supervisors: Dr. Markus Happe, markus.happe@tik.ee.ethz.ch
Ariane Trammell, ariane.trammell@tik.ee.ethz.ch

Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch

Abstract

The ReconOS project provides an environment for recon�gurable computing on an FPGA.
Partial recon�guration is used to change hardware accelerators on the FPGA during run-
time. For this purpose fast recon�guration speeds are important. During this semester
project a new hardware core was developed that is much faster than the currently used
solution and works independent of the CPU. The new core uses the ReconOS interfaces
to communicate with the CPU and the main memory.

The capabilities of the Internal Con�guration Access Port (ICAP) interface that is used
for FPGA recon�guration were examined and a proof-of-concept implementation of a
state saving and restoring method for recon�gurable regions was developed. The pro-
posed method only needs the bitstream that was used for partial recon�guration. It is
able to extract all information that is needed to capture the current state of a recon�g-
urable region from the bitstream.

ii

Contents

List of Figures vi

List of Tables vii

List of Algorithms viii

Acronyms ix

1. Introduction 1

2. Preliminaries / Background 2
2.1. FPGA Background . 2

2.1.1. Internal Con�guration Access Port (ICAP) 3
2.1.2. Bitstream Format . 3

2.2. ReconOS Project . 4
2.3. Xilinx ICAP Controller: XPS_HWICAP 6
2.4. Related Work . 6

3. Hardware Design 8
3.1. Partial FPGA Recon�guration . 9

3.1.1. Single Bu�ering . 9
3.1.2. Double Bu�ering . 10
3.1.3. Without RAMs . 10
3.1.4. Failure Handling . 11

3.2. FPGA Con�guration Readback . 11
3.3. Restore Registers . 12

4. Software Design 14
4.1. Partial FPGA Recon�guration . 14
4.2. FPGA Con�guration Readback . 15

4.2.1. Bitstream Parsing . 15

iii

Contents

4.2.2. Reading from ICAP . 16
4.2.3. Capture Current State . 16
4.2.4. Restore Previous State . 17

5. Results 19
5.1. Test Setup . 19

5.1.1. Overview . 19
5.1.2. Adder / Subtracter Threads . 19
5.1.3. Dummy Multiplier Thread . 20
5.1.4. Linear Feedback Shift Register Thread 20

5.2. Functional Veri�cation . 21
5.3. Performance Evaluation . 22

5.3.1. Recon�guration . 22
5.3.2. Readback / State Restoration . 23

5.4. FPGA Resource Usage . 25

6. Conclusion and Future Work 27
6.1. Contributions . 27
6.2. Conclusion . 28
6.3. Future Work . 28

6.3.1. Circumventing Memory Bandwidth Limit 28
6.3.2. Stability Issues . 28
6.3.3. ReconOS Interface . 29
6.3.4. Faster State Restoration . 29
6.3.5. Zynq Platform (Xilinx 7-Series Devices) 29

A. Lessons Learned 30
A.1. Two ICAP Interfaces . 30
A.2. ICAP Interface Issues . 30
A.3. GRESTORE does not work . 32
A.4. Block RAM Restoration . 32
A.5. Clock Gating . 33

B. Task Description 34

C. Project Plan 38

D. Project Files & How-to 39
D.1. File Structure . 39
D.2. How-to . 40

D.2.1. Partial Recon�guration Tool�ow 40
D.2.2. Software . 41

E. Diagrams 43

iv

Contents

Bibliography 46

v

List of Figures

2.1. FPGA Overview. 2
2.2. Bitstream Structure. 5
2.3. ReconOS Hardware Thread Interfaces. 5
2.4. XPS_HWICAP Core. 6

3.1. HWT_ICAP Hardware Thread. 8
3.2. HWT_ICAP Block Diagram. 9
3.3. HWT_ICAP Block Diagram without local RAM. 10

4.1. Con�guration Bitstream. 15
4.2. GCAPTURE needs Clock Gating. 17
4.3. GRESTORE needs Clock Gating. 18

5.1. LFSR Hardware Thread. 20
5.2. HWT_ICAP Write Performance. 22
5.3. HWT_ICAP Read Performance. 24
5.4. Hardware Thread Swapping. 24

A.1. ICAP Interface Timing Problems. 31
A.2. ICAP Interface Readback Timing Diagram. 31

E.1. Detailed Block Diagram of HWT_ICAP. 43
E.2. Block Diagram of HWT_ICAP without local RAM. 44
E.3. State Machine of HWT_ICAP for a Write. 44
E.4. State Machine of HWT_ICAP for a Readback. 45

vi

List of Tables

2.1. Con�guration Registers. 4

5.1. XPS_HWICAP and HWT_ICAP Write Performance. 23
5.2. HWT_ICAP Read Performance. 23
5.3. HWT_ICAP State Restoration Performance. 25
5.4. Resource Usage of HWT_ICAP and XPS_HWICAP. 26

vii

List of Algorithms

3.1. Performing a Recon�guration using HWT_ICAP 9

3.2. Reading using HWT_ICAP . 12

3.3. Performing a GSR using HWT_ICAP . 13

viii

List of Acronyms

ASICApplication-Speci�c Integrated Circuit

CLBCon�gurable Logic Block

CRCCyclic Redundancy Check

FARFrame Address Register

FIFOFirst In First Out

FPGAField-Programmable Gate Array

FSLFast Simplex Link

FSMFinite-State Machine

GSRGlobal Set/Reset

IC Integrated Circuit

ICAP Internal Con�guration Access Port

LFSRLinear Feedback Shift Register

LSBLeast Signi�cant Bit

LUTLookup Table

RAMRandom Access Memory

RTLRegister-Transfer Level

SRAMStatic Random Access Memory

ix

Chapter 1
Introduction

Modern Field-Programmable Gate Arrays (FPGAs) can contain many complex logic
blocks, it is even possible to implement an entire computing system on an FPGA. The
Virtex-6 FPGA from Xilinx that was used for this thesis supports dynamic recon�gura-
tion during runtime, thus the computing environment can be adapted during execution so
that it �ts its current workload best. The recon�guration port that is used on the FPGA
is called Internal Con�guration Access Port (ICAP). The ReconOS project provides such
a computing system and uses a proprietary core to access the ICAP interface.

It is important that a recon�guration is done as fast as possible because workloads can
change any minute. The current solution used in ReconOS is rather slow and blocks the
CPU of the system during recon�gurations. During this semester thesis a new core was
developed that is faster and works independently of the CPU.

Additionally the capabilities of the ICAP interface were examined. The ICAP interface
not only allows to recon�gure the FPGA on the �y, but one can also read con�guration
data from it.

This report is divided into several parts. In Chapter 2 background about FPGAs, ICAP
and the ReconOS project is given. In Chapter 3 the hardware design that was chosen
for the new ICAP controller is explained. In Chapter 4 the software design for the new
core is shown. Chapter 5 contains the performance evaluation and resource utilization of
the new ICAP controller. Chapter 6 draws a conclusion about this project and �nally in
Appendix A several issues are discussed that were encountered during the course of this
project. In Appendix D a How-to can be found that explains the tool�ow that was used
for this project.

1

Chapter 2
Preliminaries / Background

2.1. FPGA Background

An FPGA is an Integrated Circuit (IC) that can be recon�gured by the customer after
manufacturing. This allows a customer to implement any logic he desires in an FPGA
as long as the FPGA is big enough to hold it. Due to the fact that an FPGA is recon�g-
urable it must be much bigger and more complex than an Application-Speci�c Integrated
Circuit (ASIC) that implements the same logic. An FPGA is thus more expensive than
an ASIC for very large quantities. FPGAs are thus mostly used for small volume pro-
duction, prototyping and for applications where the ability to change the con�guration
after production is key.

Interconnect

CLB

ICAP

Reconfigurable
Region

I/O

Figure 2.1.: FPGA Overview.

2

2. Preliminaries / Background

Figure 2.1 shows the general architecture of an FPGA. It contains thousands of so called
Con�gurable Logic Blocks (CLBs) which are built of Lookup Tables (LUTs), �ip-�ops
and multiplexers that allow for basic routing inside a CLB. Those CLBs are placed in
regular intervals inside the FPGA and are connected with each other by interconnect
logic that can be arbitrarily con�gured. The FPGA also contains I/O-pins which allows
the logic inside to communicate with the outside world.

Most applications need some amount of Random Access Memory (RAM) for data storage
which is why most FPGAs contain block RAMs. Block RAMs are typically small dual
port RAMs that are placed at regular intervals inside the FPGA.

The FPGA that was used for this project was the XC6VLX240T from the Xilinx Virtex-6
Family and contains 18′840 CLBs and 416 block RAMs with a capacity of 36 Kb each
[1].

Most modern FPGAs store their con�guration data in Static Random Access Memory
(SRAM) which makes it possible to implement a feature called partial recon�gurability.
As the FPGA is based on SRAM it is possible to update only a portion of the SRAM
with new content. This e�ectively allows us to recon�gure a region of the FPGA while
the rest of it is still running.

2.1.1. Internal Con�guration Access Port (ICAP)

Modern Xilinx FPGAs contain a hardware module that is called ICAP that allows a user
design which is running inside the FPGA to access the con�guration logic. The ICAP
interface allows loading of new con�guration data as well as a readback of the current
con�guration stored in the FPGA. Together with the partial recon�gurability feature it
is thus possible to update the functionality of the currently running design at runtime
from within the FPGA.

The ICAP can be con�gured to have an 8, 16 or 32 bit wide interface. The width of this
interface directly in�uences the recon�guration speed, as for an 8 bit wide interface we
need 4 times as long to write new con�guration data as for a 32 bit wide interface. The
interface can be clocked with a frequency of up to 100 MHz which gives us a maximum
throughput of 400 MB/s, though it has been shown that the interface can be overclocked
to achieve even higher throughputs [2].

2.1.2. Bitstream Format

An FPGA is con�gured by a so called bitstream that is generated by the design tools
of the FPGA vendor. The bitstream contains all con�guration data necessary to run a
design on an FPGA.

3

2. Preliminaries / Background

Partial recon�guration generates bitstreams that only contain the con�guration data
that must be changed in comparison to a full bitstream. After loading a full bitstream
�rst, one can load partial bitstreams that only a�ect the con�guration of the speci�ed
recon�gurable region.

The bitstream is a sequence of commands that are interpreted by the con�guration
logic of the FPGA. A bitstream always starts with a synchronization sequence that
tells the con�guration logic the desired bus width (8, 16 or 32 bits) and contains a
special synchronization word (0xAA995566). Similarly a bitstream always ends with a
desynchronization sequence.

After the device has been synchronized, one can send con�guration commands to it.
Commands are sent in two steps. First a read or write request to a register is sent to
ICAP. After this request the data that should be written to the register is sent or data is
read from the register. Requests are sent in packets, each packet is one 32-bit word long
and contains the con�guration register plus the number of data words that should be
read or written to this register. The most important registers and its uses are explained
in Table 2.1. A more detailed explanation of bitstreams and the con�guration logic is
available in [3].

Table 2.1.: Con�guration Registers.

Register Description

FAR Frame Address Register, contains the frame address that is used by FDRI
and FDRO

CRC Cyclic Redundancy Check Register, is used for integrity checks of the bit-
stream

CMD Command Register, commands are executed after writing to this register
FDRI Frame Data Input Register, con�guration data is written to it
FDRO Frame Data Output Register, con�guration data is read from it

Con�guration data that controls the state of LUTs, �ip-�ops and block RAM is written
in the form of con�guration frames where each frame has a length of 81× 32-bit. The
frames are written to the FDRI register after the address of the frame has been set in
the Frame Address Register (FAR). Figure 2.2 shows the structure of such a bitstream.
The frame address is automatically incremented when multiple frames are written with
one write request. A full bitstream usually contains only one write command after which
the con�guration for the whole FPGA follows.

2.2. ReconOS Project

The ReconOS project provides an operating system for recon�gurable computing [4]. It
runs on modern FPGAs such as the Virtex-6 that is used in this thesis. Recon�gurable

4

2. Preliminaries / Background

Synchronization

Write to FAR

Write to FDRI

Frame Data

Frame Data

CRC Value

Address

Write to CRC

Desynchronization

Request

Data

Figure 2.2.: Bitstream Structure.

computing in this content means that it uses partial recon�guration to dynamically
con�gure hardware accelerators on the FPGA. ReconOS calls those accelerators hardware
threads as they have similar capabilities to threads in the software environment. This
system also contains a traditional CPU which manages the whole system. As the Virtex-
6 FPGA does not contain a dedicated CPU, ReconOS uses a softcore MicroBlaze CPU
from Xilinx. This CPU runs a modi�ed version of Linux that includes support for the
interfaces used by hardware threads.

Hardware
Thread

CPU Memory
subsystem

ReconOS

Linux

Figure 2.3.: ReconOS Hardware Thread Interfaces.

Every hardware thread has an operating system interface which is used to communicate
with the CPU and a memory interface which is used to communicate directly with the
main memory, see also Figure 2.3. These interfaces are basically First In First Out
(FIFO) queues running in both directions. It is possible to disable the FIFO queues to
prevent erroneous data to be inserted into them during recon�gurations.

Until now ReconOS used the XPS_HWICAP core to perform recon�gurations which has
severe drawbacks that will be explained below.

5

2. Preliminaries / Background

XPS_HWICAPCPU

ICAP

Main

Memory

Bus

Figure 2.4.: XPS_HWICAP Core.

2.3. Xilinx ICAP Controller: XPS_HWICAP

Xilinx provides an implementation of a core that is able to use the ICAP interface which
is called XPS_HWICAP. This core is intended to be used together with the MicroBlaze
CPU and uses a system bus to communicate with the CPU, see Figure 2.4. In order to
do a partial recon�guration, the CPU must �rst fetch the bitstream from the �lesystem
and load it into main memory, then it has to write word after word of the bitstream
to the bus. This procedure is very ine�cient and slow, and e�ectively blocks the CPU
during recon�gurations.

It has been shown by Delorme et al. [5] and Liu et al. [6] that using direct memory
access instead of burdening the CPU with the transfer achieves much lower recon�gu-
ration times and also o�oads the CPU. The goal for this semester thesis was thus to
develop a hardware thread for the ReconOS system that does recon�gurations without
the assistance of the CPU.

2.4. Related Work

Related work has shown that the maximum transfer speed of the ICAP interface given
by Xilinx can be exceeded by overclocking the ICAP interface [2]. Overclocking is highly
device speci�c as not all devices can support the same speed and it makes routing more
complicated which is why overclocking was not considered as an option for this semester
thesis.

It has been shown by Liu et al. [6] and Bonamy et al. [7] that bitstream compression can
be used to decrease the size of the data that must be transferred to the ICAP controller.
Compression ratios of up to 75% have been reported. Compression algorithms are fairly
complex and take up a huge amount of space on the FPGA. Due to the limited time
scope of a semester thesis it was not possible to include bitstream compression for the
new ICAP core.

Liu et al. [8] have used block RAMs to cache bitstreams on the ICAP controller prior
to writing them to the ICAP interface. This avoids a potential memory interface bottle

6

2. Preliminaries / Background

neck as the partial recon�guration bitstream does not have to be transferred to the ICAP
core �rst. For the new ICAP core bitstream caching was not done as this wastes a huge
amount of block RAMs. Also this would only be possible for applications where it is
known in advance which bitstream is needed next, so that it is possible to put it into the
cache.

It was demonstrated by [9, 10] that state capturing and restoring is possible by reading
back con�guration data over ICAP. Jozwik et al. [9] have used a Virtex-4 FPGA to do
state capturing and restoring, however they needed additional combinational logic inside
the recon�gurable regions to be able to restore the state of �ip-�ops in recon�gurable
regions.

Morales-Villanueva and Gordon-Ross [10] have shown that state capturing and restoring
is also possible on a Virtex-5, but they did not include the restoration of block RAMs
in their work. They have also demonstrated that it is possible to relocate recon�gurable
regions, i.e. restore the state from the recon�gurable region 1 in region 2.

7

Chapter 3
Hardware Design

FPGA

Reconfigurable Slot 0

Hardware Thread

Reconfigurable Slot 1

Hardware Thread

XPS_HWICAP
Main

Memory

Peripherals

(UART, Ethernet, ...)

CPU Memory
subsystem

ReconOS

Linux

ICAP

HWT_ICAP

ICAP

Figure 3.1.: HWT_ICAP Hardware Thread.

To solve the problems that the XPS_HWICAP core has, I have implemented a new
core that uses the interfaces of the ReconOS project to communicate with the operating
system and the main memory. Figure 3.1 shows the integration of the new HWT_ICAP
core into the ReconOS system. In contrast to the XPS_HWICAP core, this new core
has direct access to main memory which allows it to work independently of the CPU.

8

3. Hardware Design

3.1. Partial FPGA Recon�guration

With the new HWT_ICAP core only the code in Algorithm 3.1 needs to be run on the
CPU to perform a partial recon�guration:

Algorithm 3.1: Performing a Recon�guration using HWT_ICAP

Input : Address and size of the bitstream in main memory
Output: Success / Error

1 // send address of bit�le in main memory to HWT_ICAP
2 mbox_put (mbox_out, address);
3 // send length of bit�le (in bytes) in main memory to HWT_ICAP
4 mbox_put (mbox_out, size);
5 // wait for response from HWT_ICAP
6 ret = mbox_get (mbox_in);

3.1.1. Single Bu�ering

HWT_ICAP

LocalRAM

ICAPFSMReconosFSM

O
S

 I
n
te

rf
ac

e
(O

S
IF

)
M

em
o
ry

 I
n
te

rf
ac

e
(M

E
M

IF
)

Dual-Port

ICAP

Figure 3.2.: HWT_ICAP Block Diagram.

Figure 3.2 shows the block diagram of HWT_ICAP. The ICAP interface is connected
to a dual port RAM which is controlled by a separate Finite-State Machine (FSM) that
manages the transfer of the bitstream from the local RAM to the ICAP interface. This
RAM is �lled by a second FSM that manages communication with the operating system
and the main memory. As already mentioned, the ICAP interface supports 8, 16 and 32
bit wide data. Since the ReconOS memory interface is 32 bit wide, the 32 bit wide ICAP
interface has been used in this core.

The local RAM is not large enough to hold a complete partial bitstream, thus the RAM
is �lled by the second FSM and its content is then sent to the ICAP interface, then the
RAM is �lled again and so on, until the complete bitstream has been transferred to the
ICAP interface.

9

3. Hardware Design

This approach is simple and works well, but its e�ciency can be improved, as either data
is transferred from main memory to the local RAM, or data is transferred from the local
RAM to ICAP, but it is not possible to perform both transfers at the same time.

3.1.2. Double Bu�ering

To make the transfer of a bitstream from main memory to ICAP more e�cient, we can
transfer data from main memory to the local RAM and data from the local RAM to
ICAP at the same time.

This can be done by using double bu�ering. In this scheme the FSMs always work on
only half of the local RAM. The ICAP FSM works on the lower half of the memory, while
the other FSM works on the upper half and vice-versa when both have completed their
transfers. There are no unnecessary idle times anymore, both FSMs are active whenever
possible.

3.1.3. Without RAMs

HWT_ICAP

ReconosFSM

ICAP

O
S

 I
n

te
rf

ac
e

(O
S

IF
)

M
em

o
ry

 I
n

te
rf

ac
e

(M
E

M
IF

)

Figure 3.3.: HWT_ICAP Block Diagram without local RAM.

To write to the ICAP interface one only needs three signals: Clock, chip enable and
the input data. Chip enable and the data have to be supplied synchronous to the clock
signal, thus the chip enable signal can be set when there is valid data to write to the
ICAP interface. This interface is similar to a RAM, except that there is no address input.
So if it is possible to read from main memory in a sequential way, so that data is read
from incremental addresses, then the local RAM can be bypassed entirely, the signals
that would go to the local RAM are instead connected directly to the ICAP interface, see
Figure 3.3. With this scheme, the entire bitstream can be transferred in one go, making
it the most e�cient way to transfer data from main memory to ICAP using the ReconOS
memory interface. It is the most e�cient way because the ReconOS memory interface is
always busy and thus the memory bandwidth is used in an optimal way.

10

3. Hardware Design

3.1.4. Failure Handling

Performing a recon�guration on an FPGA while it is running is a critical task as any
error in the con�guration data might upset the whole FPGA and lets the system crash.
To mitigate those errors, bitstreams for Xilinx FPGAs contain Cyclic Redundancy Check
(CRC) checks along with the con�guration data. The con�guration logic inside the FPGA
continuously calculates the CRC value of the con�guration data and checks it against
the values stored in the bitstream. If an error is detected, an error �ag is raised by the
ICAP interface, making it possible for a user to handle this exception and load a di�erent
bitstream.

The HWT_ICAP core reacts immediately to this error �ag and stops writing data to
the ICAP interface. It then resets the CRC register and informs the operating system
about the error condition. This procedure ensures that the ICAP interface is always in
a valid state even when errors occur.

According to Xilinx CRC errors are unlikely if the bitstream is stored locally [11]. A
more complex recovery strategy than just loading a di�erent bitstream is thus probably
not needed.

3.2. FPGA Con�guration Readback

The ICAP interface not only allows to write new con�guration data to the FPGA, it also
allows reading back the currently active con�guration data. A readback of con�guration
data can for example be used to check for �ipped bits in the con�guration. Flipped
bits in the con�guration memory are caused by noise, e.g. radiation. If a �ipped bit is
detected during a readback, the bitstream used for programming could be downloaded a
second time and thus the �ipped bit can be corrected.

Reading from the ICAP interface is not as easy as writing to it, details of speci�c issues
with this interface can be found in Section A.2. Reading must be done in two steps
and needs a local RAM on the ICAP core. Con�guration data is read from the ICAP
interface, stored in the local RAM and then transferred to main memory using the
ReconOS interface. As the local RAM is much smaller as a typical con�guration frame,
this process is repeated until the speci�ed number of words is transferred.

Algorithm 3.2 shows how data can be read from the ICAP interface using the HWT_ICAP
core. The Least Signi�cant Bits (LSBs) of the bu�er address and bu�er size are always
zero, as bu�ers must be word-aligned in order for the ReconOS memory interface to work
correctly. As those bits are always zero, we can use those two bits to encode additional
information in the messages. If the LSB of the second message is 0, data is written to
ICAP. If the LSB is 1, data is read from ICAP. Although reading alone is simple, it
will not work without �rst telling the ICAP interface what to read. See Section 4.2.2 for
details how this can be done.

11

3. Hardware Design

Algorithm 3.2: Reading using HWT_ICAP

Input : Address and size of the readback bu�er in main memory

1 // send address of bu�er in main memory to HWT_ICAP
2 mbox_put (mbox_out, address);
3 // send length of bu�er (in bytes) in main memory to HWT_ICAP
4 mbox_put (mbox_out, size | 0x1);
5 // wait for response from HWT_ICAP
6 ret = mbox_get (mbox_in);

Note that we can not only read the con�guration data back from the device, but also the
current state [3, 10, 9]. This allows us to capture the current state of a recon�gurable
partition, store it in main memory for some time and restore it later. With this feature
we can do preemptive hardware scheduling similar to preemptive scheduling on CPUs.
For example we can start a time consuming calculation on a hardware thread. If we
need a calculation from a di�erent hardware thread right now, we can capture the �rst
thread and replace it with the new one. This thread can then do its job. After it is
done, we can restore the previous thread which can continue its calculation without
even knowing, that it was stopped in between. Another example is two periodic threads
that need to run once every second but only need a short time for their calculations.
By continuously swapping between those two threads, both can do their jobs. Without
preemptive hardware scheduling both threads would need their own dedicated area on
the FPGA. This area is wasted when hardware threads are idle, so hardware scheduling
is bene�cial.

3.3. Restore Registers

To restore a hardware thread to a previously captured state, one needs to write the
captured con�guration data to the device and then perform a Global Set/Reset (GSR).
GSR is a special signal that runs through the whole FPGA and resets every �ip-�op in
a given region to its initial / captured state. More details on how this works are given
in Section 4.2.4.

According to Xilinx [3] there are two ways to perform a GSR. The �rst is to send a
GRESTORE command over the ICAP interface, the second is to toggle the GSR signal
manually on the STARTUP_VIRTEX6 primitive. It turned out that sending a GRE-
STORE command over ICAP does not work, see Section A.3 for more details about this
issue. So in order to be able to perform a GSR, the new core includes the capability to
toggle the GSR signal manually on the STARTUP_VIRTEX6 primitive.

Algorithm 3.3 shows what needs to be sent to the thread such that the HWT_ICAP
core performs a GSR. Once again we are using the LSB to encode information. If the

12

3. Hardware Design

LSBs of the �rst message is '1', a GSR is performed.

Algorithm 3.3: Performing a GSR using HWT_ICAP

1 // send GSR message to HWT_ICAP
2 mbox_put (mbox_out, 0x1);
3 // wait for response from HWT_ICAP
4 ret = mbox_get (mbox_in);

13

Chapter 4
Software Design

4.1. Partial FPGA Recon�guration

The HWT_ICAP core is controlled by software running on the MicroBlaze CPU inside
the FPGA, thus there is also software required to perform recon�gurations.

The partial bitstreams are typically stored on a large storage device, in our case a compact
�ash card that is plugged into the FPGA development board. Since the HWT_ICAP
core can only access main memory, the bitstream must �rst be loaded into the main
memory by the CPU. It is then checked in software if the bitstream looks valid, i.e. this
means searching for the synchronization sequence. Every valid bitstream contains it in
the �rst few words, if a �le does not contain this sequence, it is either not a bitstream or
it is in the wrong format.

The Xilinx bitgen tool can generate bitstream �les in multiple formats. Recon�guration
using ICAP needs �les with the .bin su�x, while con�guration using JTAG needs �les
with the .bit su�x [12]. JTAG con�guration �les contain a proprietary header that
must be stripped �rst if they should be used for recon�guration with ICAP.

When a recon�guration should be performed, the following steps have to be executed:

1. Activate the reset signal leading to the recon�gurable region.
This also resets the operating system and memory interfaces.

2. Instruct the HWT_ICAP core to write the partial bitstream to ICAP.

3. Deactivate the reset signal.
The recon�gured region is now in its initial state due to the reset signal and all
interfaces are cleared and ready for this new core.

14

4. Software Design

The reason why the reset signal has to be set before the recon�guration is started is
that otherwise erroneous data could be written to the interfaces leading to the operating
system or to the memory during the recon�guration step.

4.2. FPGA Con�guration Readback

4.2.1. Bitstream Parsing

To perform a readback of the active con�guration data on the FPGA, one needs to know
which frames should be read. This information is not that easy to get, as it depends on
the recon�gurable region being used. The best way I found to get this data was to parse
the bitstream used for programming and extract this information from it. Speci�cally
the frame addresses and the number of frames that were written in every write request
need to be extracted, see Figure 4.1.

Frame Address

Frames

No. of Frames

Frame Address

Frames

No. of Frames

Figure 4.1.: Con�guration Bitstream.

By reading back exactly the same frames as were previously written to the device, one
can then compare those frames and see if there are any di�erences. If there are, then
those hint to a potential error in the FPGA con�guration, but this does not necessarily
have to be the case. Some bits in the con�guration frames correspond to user memory
or null memory that should not be compared against the original bitstream. The bitgen
tool can generate mask �les that contain the bit locations that should/should not be
compared [3].

15

4. Software Design

4.2.2. Reading from ICAP

Reading a speci�c con�guration frame from the ICAP interface is quite complicated and
needs several steps:

1. Synchronize the ICAP interface (if it is not already synchronized)

2. Set the FAR to the frame that should be read

3. Send a read con�guration packet for the FDRO register to ICAP.
Also the number of words that should be read back must be speci�ed, set this
number to the number of words you want to read plus 82 words.

4. Read from ICAP the number of words you speci�ed above

5. Desynchronize the ICAP interface (unless it is needed soon)

The reason why one needs to read 82 more words is that the ICAP interface outputs
a dummy frame �rst to �ush its internal frame bu�er, so the �rst 82 words have to be
discarded. It is also important to read exactly the number of words that were announced
to ICAP as otherwise the ICAP interface is in a unknown state and will not accept new
con�guration commands.

4.2.3. Capture Current State

To be able to read the current state from the FPGA, a few additional steps are required.
The Virtex-6 FPGA supports a command called GCAPTURE that stores the current
state of all �ip-�ops in hidden registers. This hidden registers contain the initial values
of all �ip-�ops, they are used during the initial con�guration of the FPGA to set them
to the state speci�ed in the Register-Transfer Level (RTL) model. The GCAPTURE
command must be sent over ICAP to the device which then replaces the initial values of
the �ip-�ops with the newly captured values [3].

Per default this command operates on the whole FPGA which might not always be
what we want. It is possible to constrain this command to only act on a subset of the
FPGA, e.g. a recon�gurable region. Xilinx allows a user to set a property called RE-
SET_AFTER_RECONFIG for partial recon�gurable regions which is used to tell the
synthesis tools that a user wants his design to start in a known state after a recon�gu-
ration. Internally this is done by a GSR event which is constrained to a subset of the
FPGA.

The con�guration memory of a Virtex-6 FPGA is divided into three sections [3]. The
�rst section contains con�guration data for CLBs, I/O and clocks. The second section
contains the block RAM contents. The third section is called CFG_CLB and Xilinx
provides no documentation for what it is used, they just say that a normal bitstream
does not contain con�guration data for this section.

16

4. Software Design

By comparing partial bitstreams that were generated using the same netlist but once
with the RESET_AFTER_RECONFIG property set and once without it, I discovered
that the Xilinx tools insert one additional con�guration frame into the partial bitstream
if this property is set. Its frame address is 0x00400000 and thus it belongs to the
CFG_CLB section of the FPGA. A comparison of di�erent partial bitstreams with the
RESET_AFTER_RECONFIG property set revealed that the content of this con�gu-
ration frames is di�erent for di�erent recon�gurable areas. Also at the end of partial
bitstreams with RESET_AFTER_RECONFIG set, the Xilinx tools inserted a GRE-
STORE command. I then tried to constrain the e�ects of GCAPTURE and GSR by
writing this special con�guration frames to the device prior to capturing some data and
prior to GSR. With this special frame those two commands were then limited to just the
area that I was interested in.

Although the GRESTORE command does not work, we can still extract the content of
the CFG_CLB section from this bitstream and use it to constrain the GCAPTURE and
the GSR commands.

After having extracted the frame addresses and the CFG_CLB section from the bitstream
we have all information that is needed to perform a readback of the partial region. Only
one last issue remains, namely the region has to be disconnected from the clock signal.
Figure 4.2 shows why clock gating is needed for a successful readback. If no clock gating
is done, then the logic inside the region continues to work and changes its state while the
readback is performed. This is not a problem for the current state of �ip-�ops as this
state is saved in the hidden registers and cannot be altered by the logic inside the region.
But it is a problem for the state of block RAMs as the content of those RAMs is not
saved in a hidden RAM, but must be read back from the RAM directly, thus the state of
the RAM can potentially change between the start of the readback and its end. To avoid
this problem we can simply stop the clock and the state of the recon�gurable partition
stays the same for the complete readback. Details how clock gating was introduced to
partial recon�guration regions can be found in Section A.5.

tEvents

Clock

GCAPTURE FF Readback RAM Readback

State STATE_A STATE_B STATE_C STATE_D

(a) Without Clock Gating.

tEvents

Clock

GCAPTURE FF Readback RAM Readback

State STATE_A

(b) With Clock Gating.

Figure 4.2.: GCAPTURE needs Clock Gating.

4.2.4. Restore Previous State

After having captured and read back a state from the FPGA, this data must be formatted
so that it can be once again sent back to ICAP in order to be able to restore a previous
state. The easiest way to do this is to copy the original partial bitstream that was used

17

4. Software Design

to recon�gure this partial region and replace all frames it contains with the frames that
were read back. Frames that belong to block RAMs need some special handling which
is explained in Section A.4. Also the original bitstream contained CRC checks that are
now invalid. This CRC checks can be replaced by NOOP commands, the FPGA accepts
bitstreams even when no CRC values are supplied, but it is not possible to simply remove
those commands as was shown by Liu et al. [6].

As we need the RESET_AFTER_RECONFIG property anyway for capturing the state,
our bitstream already contains the CFG_CLB section which we need to perform a GSR
event, thus the bitstream is ready to be written to ICAP.

To do a restore the following steps need to be done:

1. Activate the reset signal and stop the clock for the recon�gurable partition

2. Write the bitstream to ICAP

3. Deactivate the reset signal

4. Perform GSR

5. Start the clock

The reset signal is needed to shutdown the interfaces to the OS and memory during
recon�guration. GSR is needed to return the captured state and clock gating needs to be
performed as otherwise we might end up in an invalid state, see also Figure 4.3. Similar
to the capturing of the current state, the RAM is not restored using GSR, so we need to
ensure that it is not changed until the �ip-�ops are in their previous state too.

tEvents

Clock

Write Bitstream GRESTORE

State STATE_RST STATE_RUN

Reset

STATE_A

(a) Without Clock Gating.

tEvents

Clock

Write Bitstream GRESTORE

State STATE_RST

Reset

STATE_A

(b) With Clock Gating.

Figure 4.3.: GRESTORE needs Clock Gating.

18

Chapter 5
Results

5.1. Test Setup

5.1.1. Overview

To evaluate the HWT_ICAP core and its associated software, a ReconOS setup with
two recon�gurable slots was used.

The �rst slot contained either a simple adder or a subtracter. These two hardware threads
were mainly intended to verify that writing to ICAP using HWT_ICAP works reliably.
These hardware threads are explained in Section 5.1.2.

The second slot contained either a �dummy� multiplier or a Linear Feedback Shift Register
(LFSR). Those threads were intended to test the capturing and restoring of states. Both
threads perform functions that run for a long time or even forever, which allows the
testing of cycle-true state restoration. If not all sequential elements contain data that
belongs to the same cycle after restoration, it will not work. The multiplier is explained
in Section 5.1.3 and the LFSR in Section 5.1.4.

5.1.2. Adder / Subtracter Threads

This hardware thread contains 4× 32-bit registers and a local RAM. Three of four regis-
ters can be set via messages over the operating system interface, all of them can be read
via messages. It is also possible to copy data from main memory to the hardware thread
and vice-versa. The data in the local RAM is not modi�ed by this thread.

The third register is the target register of an addition / subtraction of the �rst two
registers and can be used to check which of the two di�erent modules is currently loaded
in the recon�gurable slot.

19

5. Results

The fourth register and the local RAM are only included to be able to test state capturing
and restoring, as data in those storage elements is not touched by any calculation of the
thread, so it is easy to check if a restoration was successful.

5.1.3. Dummy Multiplier Thread

This hardware thread was mainly created to check if state restoring is cycle true and
that no data was lost. Its architecture is similar to the ADD / SUB thread as it also
contains 4 registers and a local RAM. The RAM is again not modi�ed by this thread.

This thread performs a multiplication of the values in the �rst two registers. It does this
by a naive multiplication algorithm which was chosen to be slow, so that this thread is
active for a long time. It does multiplications by a loop in which the value in the �rst
register is decremented in each iteration and the value in the second register is added to
the result register. It does this until the value in the �rst register has reached zero, then
the multiplication is �nished.

The multiplication result is available in the third register, while the fourth register con-
tains only one bit which says if the multiplication is still running or if it has already
�nished. By choosing the value in the �rst register a user can control how many cycles
this thread needs to run in order to calculate its result.

5.1.4. Linear Feedback Shift Register Thread

This hardware thread runs several 16-bit LFSRs. The hardware actually contains only
one real shift register which is shared between all LFSRs. To do this the LFSR values are
stored in a block RAM and only inserted in the hardware shift register for one cycle before
being put back into the RAM, see Figure 5.1. The number of LFSRs that can be run on
this hardware thread is thus only limited by the amount of local RAM, for the evaluation
four LFSRs were used. It would also be possible to have several LFSRs running on this
hardware thread without using a RAM, but a hardware thread was needed that actually
needs the RAM contents which was why this thread has such a special architecture.

LFSR

RAM

0 1 0 0 0 1 1 1 10 0 0 0 0 10

0 1 10 0 0 0 0 0 0 01 1 1 1 1

1 1 00 0 1 0 1 0 1 11 0 0 0 1

1 1 00 0 1 0 1 0 1 11 0 0 0 1

Figure 5.1.: LFSR Hardware Thread.

20

5. Results

Using the OS interface it is possible to set a start value for each LFSR. The thread counts
the number of cycles the LFSR was run since it was last loaded with a new value. By
reading the current value of the cycle counter and all values of the LFSRs, it is possible
to check if the LFSR is in the correct state.

5.2. Functional Veri�cation

Functional veri�cation of HWT_ICAP was done by �rst con�guring the ADD and MUL
hardware threads on the FPGA. It is then tested if those two hardware threads work
correctly. After that the ADD thread is replaced by the SUB thread and the MUL
thread by the LFSR thread. Again their correct functionality is tested. This process was
then repeated one hundred times. The recon�guration always worked correctly and the
hardware threads showed no issues after being recon�gured, so I assume that the new
HWT_ICAP core performs recon�gurations reliably.

The functional veri�cation of state capturing and restoring was done in several steps, as
state capturing and restoring was separately tested for each hardware thread.

The ADD and SUB threads were tested by �rst con�guring them on the FPGA and
setting their registers and local RAM to a de�ned state. Then they were captured and
the registers on the FPGA were overwritten. After that another thread was loaded on
that recon�gurable slot, i.e. the SUB thread if the ADD thread was captured and vice-
versa. Now the previously captured state was restored and it was checked if the values
in the registers and the local RAM match the values that were set when the thread was
captured.

For the MUL and LFSR hardware threads a similar procedure was used, but this time
the threads were active when they were captured. For the MUL thread this means that
a lengthy multiplication is started, while for LFSR thread this means that some known
values are loaded before it was captured. So after state restoration it was necessary to
wait for the completion of the calculation of the MUL thread before it was possible to
check if its result is indeed correct. For the LFSR thread the current shift register values
and the number of cycles that it was run, were read and compared to a simulation model
of the shift register.

The state capturing and restoration was done several hundred times for all hardware
threads. Of all those experiments about 1% has failed, because a segmentation fault
occurred, the hardware thread did not respond to a message sent to it or the Linux
kernel has crashed. I was not able to �nd the cause of these problems. As they are
not deterministic, it is di�cult to solve them. Also it is unclear where these problems
come from, as they can come from one of the hardware threads, from the software I have
written, the ReconOS project and even the Linux kernel.

21

5. Results

5.3. Performance Evaluation

5.3.1. Recon�guration

Performance of the XPS_HWICAP core and the new HWT_ICAP core were measured
by recon�guring a slot one hundred times. The time is measured that was needed to
write the partial bitstream to ICAP and the corresponding bandwidth was calculated.
Figure 5.2 shows a comparison of three di�erent bitstream sizes across di�erent RAM sizes
and implementation options for the HWT_ICAP core. Note that the size of the local
RAM does not seem to be important as only small variations can be seen for the double
bu�ering case. Also the implementation that uses no local RAM is not signi�cantly faster
than the double bu�ering implementations. All this indicates that the core has already
hit the memory bandwidth limit of the ReconOS system.

Since the local RAM of the HWT_ICAP core will be mapped to a block RAM on the
FPGA anyway, a RAM size smaller than 2 kilobytes does not save any resources as the
smallest block RAM available on a Virtex-6 has a size of 18 kilobits.

We can see that double bu�ering achieves a signi�cant performance gain of about 20%
against single bu�ering with the same RAM size.

Figure 5.2.: HWT_ICAP Write Performance.

Table 5.1 shows a comparison between the old XPS_HWICAP core and the new HWT_ICAP
core using double bu�ering and 8 KB of local RAM. The new core is about 16−19 times
faster as the old one, depending on the bitstream size.

22

5. Results

Table 5.1.: XPS_HWICAP and HWT_ICAP Write Performance.

ICAP Core Bitstream Size Recon�guration Time Bandwidth

XPS_HWICAP 741 KB 150.7 ms 4.8 MB/s
HWT_ICAP 741 KB 9.2 ms 79.0 MB/s

XPS_HWICAP 361 KB 95.4 ms 3.7 MB/s
HWT_ICAP 361 KB 4.9 ms 71.3 MB/s

XPS_HWICAP 339 KB 91.6 ms 3.6 MB/s
HWT_ICAP 339 KB 4.7 ms 70.4 MB/s

5.3.2. Readback / State Restoration

Readback

The readback performance was measured by reading back typical numbers of partial
con�guration frames, Table 5.2 and Figure 5.3 show the results. One can see that the
performance is higher for a larger number of frames, so there seems to be a considerable
overhead that in�uences the performance negatively.

The HWT_ICAP core with 8 KB RAM seems to be a bit faster than the one with 32
KB of local RAM. This e�ect is related to the way the ReconOS memory interface is
constructed. The memory interface is built from two FIFO queues, one in the direction
of the main memory and one in the opposite direction. The FIFO can hold up to 128
elements, thus it is much smaller than the local RAM of HWT_ICAP. As we are only
doing single bu�ering for readbacks, the FIFO is going to be full nearly all the time
when data is transferred from the local RAM to the main memory, but it will soon be
empty when data is read from ICAP and stored in the local RAM. For a small memory
the amount of time that the FIFO is empty is smaller than for a larger memory, thus
a smaller local RAM makes single bu�ering faster for readbacks. Double bu�ering for
readbacks would probably improve this situation.

Table 5.2.: HWT_ICAP Read Performance.

RAM Size Total Size #Frames Readback Time Bandwidth

32 KB 120 KB 381 2277 us 51.7 MB/s
8 KB 120 KB 381 2256 us 52.2 MB/s

32 KB 98 KB 309 2000 us 47.7 MB/s
8 KB 98 KB 309 1968 us 48.5 MB/s

32 KB 41 KB 129 1396 us 28.6 MB/s
8 KB 41 KB 129 1377 us 29.0 MB/s

23

5. Results

Figure 5.3.: HWT_ICAP Read Performance.

State Saving & Restoring

t

MUL

LFSR

Restore

Running

Capture

Figure 5.4.: Hardware Thread Swapping.

The time it needs to do capturing and restoration of a hardware thread was measured
to estimate how much overhead one can expect when preemptive hardware scheduling is
used. For this measurements the two hardware threads LFSR and MUL were scheduled
on the same recon�gurable slot and each only got a fraction of the hardware time. After
a random time the currently running thread was captured and the other one restored,
see Figure 5.4. For this measurement only double bu�ering for writing to the ICAP
interface and single bu�ering for reading were considered. It was not possible to use
XPS_HWICAP for readbacks due to bugs in the Linux kernel driver, thus it is not
possible to compare it to HWT_ICAP here.

Table 5.3 shows the results of the measurements. The column normalized time is intended
as an indicator, so that di�erent bitstream sizes can be compared. It is calculated by
dividing the total time by the bitstream size. The reason why the larger bitstream yields

24

5. Results

a much lower normalized time is that readback time also depends on the size and number
of frames in the bitstream. As multiple con�guration frames that are stored at continuous
addresses in the FPGA con�guration memory can be read with only one request to ICAP,
readback is much more e�cient for cases where less requests are needed. In this case
both the 741 KB and the 361 KB bitstreams can be read back with two requests each.
If two bitstreams would be compared that have the same size but one needs twice the
number of requests, then the bitstream with fewer requests would yield a much lower
capturing time because the overhead for a readback is reduced.

Table 5.3.: HWT_ICAP State Restoration Performance.

Ram Size Bitstream Size Capturing Restoring Total Normalized

32 KB 741 KB 16.1 ms 9.6 ms 25.7 ms 34.7 µs/KB
8 KB 741 KB 16.0 ms 9.7 ms 25.7 ms 34.7 µs/KB

32 KB 361 KB 10.4 ms 5.5 ms 15.9 ms 43.9 µs/KB
8 KB 361 KB 10.3 ms 5.5 ms 15.8 ms 43.7 µs/KB

By comparing Table 5.1 with Table 5.3 it can be seen that state restoration takes about
three times as long as a recon�guration of a bitstream with the same size.

5.4. FPGA Resource Usage

Table 5.4 shows the FPGA resources used by the di�erent variants of HWT_ICAP and
XPS_HWICAP. The table also includes values for the Fifo32 which is used for the
memory interface of a hardware thread, Fast Simplex Link (FSL) which is used for the
OS interface of a hardware thread and the PLB bus which is used by XPS_HWICAP
to communicate with the CPU. These values are estimates from synthesis, so post map
results would probably look slightly di�erent.

It can be seen that the size of the local RAM does only in�uence the number of BRAMs
used for HWT_ICAP. The single bu�ering case needs signi�cantly less resources than the
double bu�ering case, this is misleading and comes from the fact that the single bu�ering
core does not support readbacks and therefor it is much simpler. Of all HWT_ICAP
variants the implementation without RAMs is the most e�cient in terms of resources
which is not surprising. Therefor if only recon�guration and no readbacks from ICAP
are needed, the HWT_ICAP core without RAM should be used as it is the fastest and
smallest core available.

It is di�cult to compare the XPS_HWICAP core with the HWT_ICAP core directly as
both cores need additional interfaces to perform their duties and those interfaces have to
be considered in the comparison. For HWT_ICAP the Fifo32 and FSL interfaces have
to be added to the resource usage of HWT_ICAP, while for the XPS_HWICAP core the

25

5. Results

PLB bus must be considered. The PLB bus is not only used by XPS_HWICAP but also
by other peripherals which makes it di�cult to put a number on the amount of resources
consumed by XPS_HWICAP. If the interfaces are neglected, then all HWT_ICAP vari-
ants with less than 8 KB RAM use strictly less resources than XPS_HWICAP does. If
the interfaces are included, the picture is not so clear anymore. Still the HWT_ICAP
variant that has no local RAM is superior to XPS_HWICAP and needs signi�cantly less
resources.

Table 5.4.: Resource Usage of HWT_ICAP and XPS_HWICAP.

ICAP Core #Flip-�ops #LUTs #BRAMs

HWT_ICAP, Dbl. Bu�., RAM 32 KB 331 749 8
HWT_ICAP, Dbl. Bu�., RAM 8 KB 323 741 2
HWT_ICAP, Dbl. Bu�., RAM 2 KB 314 733 1
HWT_ICAP, Dbl. Bu�., RAM 0.5 KB 304 709 1

HWT_ICAP, Sngl. Bu�., RAM 8 KB 252 465 2

HWT_ICAP, Without RAM 213 300 0

XPS_HWICAP 750 804 1

Fifo32 14 152 0
FSL 14 152 0
PLB Bus 170 569 0

26

Chapter 6
Conclusion and Future Work

6.1. Contributions

In this semester thesis I have developed a new ReconOS hardware thread (HWT_ICAP)
that is able to perform FPGA recon�gurations using the ICAP interface. After the
CPU has started a recon�guration using HWT_ICAP, it is no longer involved in the
recon�guration. I have created several versions of this hardware thread with di�erent
resource needs, so that a user is able to select the version that �ts his purpose best.
Recon�guration with this new HWT_ICAP core works reliably, I have not found any
issues during testing and performance evaluation.

I have integrated con�guration readback capabilities into HWT_ICAP which allowed
me to do state capturing and state restoring. For state capturing I wrote a software that
parses partial con�guration bitstreams and extracts the information needed for state
capturing. The software then performs state capturing using the HWT_ICAP core and
creates a new bitstream that can be used for state restoring.

State restoration is also done using the HWT_ICAP core. The state saving and restoring
process still has some issues left which lead to crashes of the CPU, however those crashes
happen in only 1 % of all cases.

Since clock gating is needed for successful capturing and restoring of FPGA state, I have
implemented a core that takes a clock signal as an input and outputs a gated clock. If
this core is used to perform clock gating on the hardware threads, then no changes in
the source code of these hardware threads are needed.

27

6. Conclusion and Future Work

6.2. Conclusion

The goal of this semester thesis was reached as the developed HWT_ICAP core does
recon�gurations 16 to 19 times faster than the currently used XPS_HWICAP core. Also
the new core works independently of the CPU, so that it is freed from recon�gurations
and can run other tasks while a recon�guration is performed. The HWT_ICAP core
seems to have reached the peak memory bandwidth that the ReconOS system provides.
In order to get higher recon�guration speeds, this limit would have to be circumvented.

A proof-of-concept implementation of state capturing and restoration on a Virtex-6
FPGA was developed during this semester thesis. This implementation allows preemp-
tive hardware scheduling on the ReconOS system and requires no changes to the existing
hardware threads. State capturing and restoring takes only two to three times as long
as recon�guration and therefor allows very fast task switching. For a 361 KB bitstream
state capturing and restoring takes 15.8 ms which allows for over 60 task swaps per
second.

6.3. Future Work

6.3.1. Circumventing Memory Bandwidth Limit

To get faster with the given memory bandwidth, one could cache the partial bitstream
in a block RAM on the ICAP core [8]. This has some drawbacks as the bitstream has
to be transferred to the core before it is needed for recon�guration and it wastes many
block RAMs. Another possibility is to use bitstream compression. Compression ratios of
up to 75% have been reported [6, 7], so with a memory bandwidth of about 80 MB/s in
the ReconOS system a recon�guration performance of over 300 MB/s seems possible.

6.3.2. Stability Issues

State capturing and restoration has some stability issues in the current implementation,
in about 1% of all restoration attempts a segmentation fault occurs or the restored
hardware thread does not answer to a message sent to it over the OS interface. I did
not manage to �nd the reason why segmentation faults occur during state restoration, it
is even possible that their origin could be somewhere else than in the code that I have
written during this project. In future work this stability issues should be investigated.

28

6. Conclusion and Future Work

6.3.3. ReconOS Interface

The interfaces that ReconOS uses for hardware threads is not well suited for preemptive
multitasking. ReconOS uses FIFO queues for both the operating system interface and
for the memory interface. When a hardware thread is captured and then replaced by
a di�erent thread, those FIFO queues are cleared and its content is lost. If there were
messages waiting in those queues, then those messages are lost and cannot be recovered.

Similarly if a delegate thread is in a speci�c state that is di�erent from the state that
the recon�gured thread assumes, then they will be out of sync and no messages can
be exchanged between them anymore. For an explanation of delegate threads in the
ReconOS environment see [4]. A solution to this problem would be to save the state of
a delegate thread together with the hardware thread itself. ReconOS does not provide
support for this right now, so this would have be developed.

6.3.4. Faster State Restoration

The speed of state capturing and state restoration could be improved by developing a
more sophisticated ICAP core that handles the capturing entirely in hardware.

6.3.5. Zynq Platform (Xilinx 7-Series Devices)

ReconOS version 3.1 now supports the 7-Series FPGAs from Xilinx, namely the Zynq
platform. HWT_ICAP could be ported to this new platform and tested if everything I
have done for the Virtex-6 platform also works for the Zynq. It would also be interesting
to see if the stability issues mentioned above also exist on this platform.

29

Appendix A
Lessons Learned

A.1. Two ICAP Interfaces

Virtex-6 FPGAs contain two ICAP interfaces, a fact that is not well documented. We
discovered this during the development of the HWT_ICAP core and hoped that we could
use one ICAP interface for the new core and the other one for the XPS_HWICAP core,
making it possible to compare the performance of the two cores directly.

It turned out that out of the two interfaces, only one is active at a time. Per default
this is the ICAP interface on the top half of the FPGA. When an ICAP interface is not
active, it outputs zeros and does not react to any of its inputs. As my new core was
always mapped to the bottom ICAP interface by the Xilinx tools, while the old core was
mapped to the top one, my core never did anything. It was necessary to either remove
the other core or force the mapping of the new core to the top ICAP interface.

It later turned out that it is possible to switch the active interface by sending some
con�guration commands over the active ICAP interface. It was thus possible for me to
change the active interface from the top interface to the bottom one using my new core.
But for some reason I was not able to switch back to the top one using the XPS_HWICAP
core.

A.2. ICAP Interface Issues

The ICAP interface has slow timings. For example the propagation delay of the BUSY
signal is 6.909 ns, while the setup time of the Chip Select (CS) and Read/Write select
(RDWR) signals is 4.017 ns. This means that it is not possible to use a combinational
function like in Figure A.1 to react to the BUSY signal in the same cycle if a 100 MHz

30

A. Lessons Learned

clock is used. This problem can be solved by inserting a register for the BUSY signal,
but it is important to know about this behavior in order to be able to design an ICAP
core.

BUSY

ICAP_VIRTEX6

CS

Combinational
Logic

Figure A.1.: ICAP Interface Timing Problems.

Although writing to the ICAP interface is rather easy, reading from it is not straight-
forward. After initiating a readback and enabling the interface (CS is set low), it takes
three cycles until it outputs valid data [3] and the BUSY signal goes low. The BUSY
signal shows the user when readback data is valid, it goes high as soon as CS is disabled,
but readback data continues to be output for 3 additional cycles after CS is disabled.
Figure A.2 show this behaviour. Note that CS is an active low signal.

t

Clock

BUSY

Output

CS

STATUS STATUS

Figure A.2.: ICAP Interface Readback Timing Diagram.

It is also important to note that when more data is tried to be read from ICAP than
was requested by the last command, it stops after the speci�ed amount of data and does
not output anything. It is thus important to specify exactly the number of words one
intends to read as otherwise the ICAP core may hang as it waits for more output data
which will never come.

Also note that if less data is read than was requested, the ICAP interface is in an
unspeci�ed state and does not react to commands anymore.

All this issues are especially bad because Xilinx does not provide a simulation model for
their ICAP interface and one thus has to look at the hardware to understand how it
works.

31

A. Lessons Learned

A.3. GRESTORE does not work

The GRESTORE command is intended to reset all �ip-�ops of a speci�c region to their
initial state. This command performs a GSR event which can also be triggered by
manually setting GSR on the STARTUP_VIRTEX6 primitive [3]. It turned out that
this command does not work on the Virtex-6 that I was using for this project.

To check if it really does not work I used a partial bitstream that has the RESET_AF-
TER_RECONFIG property set. If this property is set the FPGA should reset the
�ip-�ops of this partial region to their initial state. The initial state of some �ip-�ops
was speci�ed in VHDL and could be read by the CPU. Analysis of the partial bitstream
showed that it contains the GRESTORE command at its end, so if this bitstream is
programmed into the device, the �ip-�ops should be in their initial state.

Con�guration via ICAP and JTAG showed the same result, the �ip-�ops did not return
to their initial state but were in a random state that was probably a leftover from
the previous con�guration. As the bitstream was generated using Xilinx tools and not
modi�ed by anything, I therefor conclude that the GRESTORE command is in fact
broken. If a GSR should be performed, one thus has to use the STARTUP_VIRTEX6
primitive.

A.4. Block RAM Restoration

It turned out that block RAMs could not be as easily restored as �ip-�ops. After I
had found a way to use GSR to restore the state of �ip-�ops, I wanted to do the same
for block RAMs. In my �rst attempts the content of a block RAM was not restored
even when the �ip-�ops in the same region returned to their initial / captured states.
I then compared the bitstream of my captured state with a partial bitstream that was
generated using bitgen. Both bitstreams contained the same RAM contents, so they
could be compared directly. The captured bitstream had some additional bits set in the
block RAM con�guration frames compared to the genuine bitstream, interestingly those
bits were placed in regular intervals. When I compared a di�erent region using the same
method, those additional bits were also set and they followed the same pattern.

I then tried to set those bits to zero prior to writing the captured bitstream back to the
device and this worked perfectly, the block RAM contents were now also restored to their
captured state. Thus I believe that those bits control if the memory contents should be
overwritten by the values given in the bitstream.

32

A. Lessons Learned

A.5. Clock Gating

Since clock gating was needed to ensure proper capturing and restoring of FPGA states,
I wanted to implement it with as little changes as possible in the recon�gurable hardware
threads, so I decided to disable the whole clock net that leads to a recon�gurable area.

Correct clock gating is di�cult because glitching and other issues have to be avoided [13].
Since this project runs on an FPGA, it is not possible to create entirely new components
for clock gating and one thus has to use what is available on the FPGA. The Virtex-6
platform has three primitives that are intended for clock gating purposes [14]:

• BUFGCE. A global clock bu�er with enable pin.

• BUFR. A regional clock bu�er with an optional clock divider.

• BUFHCE. A horizontal clock bu�er with an enable pin.

It turned out that BUFHCE leads to terrible hold time problems. I think that the
reason for this is that using BUFHCE upsets clock tree routing in recon�gurable regions.
BUFR were not mappable when a recon�gurable region spanned a large portion of a
clock region of the FPGA. Finally BUFGCE worked well for all designs that were tested.
Using BUFGCE has only one limitation, there are only 32 global clock bu�ers available
on a Virtex-6 FPGA, so this limits the number of recon�gurable partitions that can be
created.

Note that clock bu�ers cannot be instantiated inside recon�gurable regions [11].

33

Appendix B
Task Description

34

Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis

Resource-efficient Dynamic Partial
Reconfiguration on FPGAs

Andreas Traber

Advisor: Dr. Markus Happe, markus.happe@tik.ee.ethz.ch
Co-Advisor: Ariane Trammell, ariane.trammell@tik.ee.ethz.ch
Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch

17 March 2014 - 20 June 2014

1 Introduction

System-on-Chip (SoC) architectures can implement an entire computing system on a single chip. This
includes a central processor, a memory controller, dedicated hardware accelerators, and several periph-
erals. Reconfigurable SoCs (RSoCs) support to partially adapt the hardware architecture at run-time.
Using partial reconfiguration of the chip, an RSoC can support a large library of hardware accelerators,
which are initially stored in (cheap) external memory. At run-time the system identifies, which hardware
accelerators promise the most performance speedup and partially reconfigures the chip to map these
accelerators to the FPGA fabric. The chip area is strictly constrained, therefore only a limited number of
hardware accelerators can be mapped to the FPGA at the same time. When the workload of the system
changes, this mapping needs to be updated. Therefore a resource-efficient way is required to reconfigure
the chip.

ReconOS is a execution environment for RSoCs, which connects multiple so-called hardware threads
to a central processor. ReconOS extends the multithreading approach to reconfigurable hardware. Here,
hardware threads can share operating system resources, such as semaphores, mutexes or message boxes
with software threads that are executed on the central processor. The hardware threads is connected
to the processor using a operating system interface and to the main memory using a memory interface.
ReconOS supports dynamic partial reconfiguration, i.e. hardware threads can be reconfigured at run-time.
For this reason, multiple reconfigurable hardware slots (rectangular areas on the chip) are reserved on
the FPGA fabric. Each slot can contain at most one hardware thread at a time. In the current ReconOS
version, a software driver reconfigures these reconfigurable hardware slots. However, this means that the
processor is busy for the entire duration of the reconfiguration. As a result, the system freezes for the
entire reconfiguration time. It is the goal of this semester thesis to drastically decrease this overhead by
introducing a new hardware thread, which reads the configuration logic from the main memory and feeds
it to the Internal Configuration Access Port (ICAP) of the system.

2 Assignment

This assignment aims to outline the work to be conducted during this thesis. The assignment may need
to be adapted over the course of the project.

1

35

2.1 Objectives

The goal of this semester thesis is to design and implement a new ReconOS hardware thread, which reads
the configuration logic of a partial bitstream from the main memory and feeds it to the Internal Config-
uration Access Port (ICAP) of the system. The expected outcome of the semester thesis is a hardware
controller that can reconfigure hardware slots with minimal interaction with the central processor and
improves the reconfiguration performance compared to the Xilinx XPS HWICAP hardware module.

2.2 Tasks

This section gives a brief overview of the tasks the student is expected to perform towards achieving the
objective outlined above. The binding project plan will be derived over the course of the first three weeks
depending on the knowledge and skills the student brings into the project.

2.2.1 Familiarization

• Xilinx Design Tools (XPS, SDK, PlanAhead, Partial Reconfiguration Toolflow, Isim, ChipScope)

• ReconOS v3.0 architecture, execution environment and VHDL libraries

• ICAP module for Virtex-6 FPGAs

• In collaboration with the advisor, derive a project plan for your semester project. Allow time for
the design, implementation, evaluation, and documentation.

2.2.2 Architecture and hardware design

• Develop a ReconOS hardware thread that receives the memory address and the size of a partial
bitstream (which is stored in main memory) from the processor in order to reconfigure this partial
bitstream using ICAP.

• Optional: Improve the hardware design. For instance, double buffering could be used to increase
the performance of the hardware thread

• Optional: Extend the hardware thread to allow users to read configuration frames to main memory.

2.2.3 Implementation

• Determine an appropriate version control system and set it up for further use. You might consider
using git and branch the official ReconOS git repository into your git repository.

• Implement the hardware ICAP controller on a Xilinx Virtex-6 ML605 board.

2.2.4 Validation

• Validate the correct operation of your implementation.

• Check the resilience of the implementation, including its configuration interface, to uneducated
users.

2.2.5 Evaluation

• Do a performance evaluation of your implementation. This includes a stress test, in order to verify
that your hardware thread does not introduce any instabilities into the overall system.

• Provide a performance comparison between your ICAP controller and the Xilinx XPS HWICAP
module.

• Optional: Experiment with different sizes of the local memory.

2.2.6 Documentation

• Provide appropriate source code documentation.

• Write a step-by-step how to that describes the compilation of your code, the loading of the code
into the hardware and the execution of your code.

• Write a documentation about the design, implementation, validation and evaluation of your work.

2

36

3 Milestones

• Provide a project plan, which identifies the milestones.

• One intermediate presentations: Give a presentation of ten minutes to the professor and the advi-
sors. In this presentation, the student presents major aspects of the ongoing work including results,
obstacles, and remaining work.

• Final presentation of 15 minutes in the CSG group meeting, or, alternatively, via teleconference.
The presentation should carefully introduce the setting and fundamental assumptions of the project.
The main part should focus on the major results and conclusions from the work.

• Any software and hardware modules that is produced in the context of this thesis and its docu-
mentation needs to be delivered before conclusion of the thesis. This includes all source code and
documentation. The source files for the final report and all data, scripts and tools developed to
generate the figures of the report must be included. Preferred format for delivery is a CD-R.

• Final report: The final report must contain a summary, the assignment, the time schedule and
the Declaration of Originality. Its structure should include the following sections: Introduction,
Background/Related Work, Design/Methodology, Validation/Evaluation, Conclusion, and Future
work. Related work must be referenced appropriately.

4 Organization

• Student and advisor hold a weekly meeting to discuss progress of work and next steps. The student
should not hesitate to contact the advisor at any time. The common goal of the advisor and the
student is to maximize the outcome of the project.

• The student is encouraged to write all reports in English; German is accepted as well.

• The core source code will be published under the GNU general public license.

5 References

[1] Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers, Bernhard Plattner, Marco Platzner, and
Christian Plessl. ,,ReconOS – An Operating System Approach for Reconfigurable Computing”. In IEEE
Micro, Nov. 2013. (PrePrint)
[3] Simen Gimle Hansen, Dirk Koch, and Jim Torresen. ,,High Speed Partial Run-Time Reconfiguration
Using Enhanced ICAP Hard Macro”. In IEEE International Parallel and Distributed Processing Sym-
posium 2011
[4] Ming Liu, Wolfgang Kuehn, Zhonghai Lu and Axel Jantsch.,,Run-time Partial Reconfiguration Speed
Investigation and Architectural Design Space Exploration”. In IEEE Conference on Field Programmable
Logic and Applications (FPL) 2009.
[5] Julien Delorme, Amor Nafkha, Pierre Leray, and Christophe Moy.,,New OPBHWICAP interface for
Realtime Partial reconfiguration of FPGA”. In IEEE Conference on Reconfigurable Computing and FP-
GAs (ReConFig) 2009
[6] Git Repository: https://github.com/EPiCS/reconos (branch: v3.0 dev)

User Guides:
[6] UG 702: Partial Reconfiguration (v14.5) http://www.xilinx.com/support/documentation/sw_

manuals/xilinx14_7/ug702.pdf

[7] UG 360: Virtex-6 FPGA Configuration (v3.6) http://www.xilinx.com/support/documentation/

user_guides/ug360.pdf

[8] ,,Driving ICAP Resource” (slides): http://home.mit.bme.hu/~feher/Reconf_Comp/10_Driving_

ICAP.pdf

Webpages:
http://www.epics-project.eu

http://www.reconos.de

3

37

Appendix C
Project Plan

April May June July

Literature Study

Reconfiguration Architecture Design

Interim Presentation

Final Presentation

Testing / Performance Evaluation

Report

Reconfiguration Implementation

Readback Architecture Design

Readback Implementation

March

38

Appendix D
Project Files & How-to

D.1. File Structure

The source code for HWT_ICAP and its associated software can be found on GitHub:
https://github.com/atraber/reconos/tree/v3.0_dev

The git repository is organized as follows:

demos/icap_devContains everything that is related to HWT_ICAP.
hw

edkContains the project �les for XPS.
pcoresContains all cores developed during this project.

hwt_icap_simple_v1_00_aHWT_ICAP core without local RAM.
hwt_icap_v1_00_aHWT_ICAP core with readback support.
hwt_icap_single_v1_00_aHWT_ICAP that uses single bu�ering.
hwt_pr_block_v1_00_aADD/SUB hardware thread.
hwt_pr_lfsr_v1_00_aLFSR hardware thread.
hwt_pr_mul_v1_00_aMUL hardware thread.

pr_designMapping, P&R and bitgen is done here.
pr_design_swap Almost identical to pr_design but recon�gurable regions for
slot 1 and 2 are swapped.

pr_design_largeSimilar to pr_design but for di�erent recon�gurable
regions.

all.shExecutes the complete PR tool�ow
sw ..Contains software for HWT_ICAP.

test_icap ..Source �les for software.
test_icap.c ...Contains main().

39

https://github.com/atraber/reconos/tree/v3.0_dev

D. Project Files & How-to

Note that only hwt_icap_v1_00_a has support for readback and GSR. It uses double
bu�ering for writes and single bu�ering for reads.
hwt_icap_single_v1_00_a is an early implementation of the hardware thread and only
uses single bu�ering for writes.

For applications where readback and GSR is not required hwt_icap_simple_v1_00_a
is probably the best choice as it has the lowest resource consumption and also is the
fastest implementation.

D.2. How-to

This section gives a short overview over the partial recon�guration tool�ow for ReconOS
and explains the software that was developed to test HWT_ICAP.

D.2.1. Partial Recon�guration Tool�ow

You must have a working Xilinx ISE Design Suite v14.7.

1. Clone the Git repository and checkout the branch used for this project.
git clone https://github.com/atraber/reconos.git

cd reconos

git checkout v3.0_dev

2. Generate netlists. This step creates two netlists, one for con�guration a and one
for con�guration b.
cd demos/icap_dev/hw/edk

./generate_netlist.sh

cd ..

3. Generate bitstream for both con�gurations.
cd pr_design/imp/config_pr_a

./generate_config.sh

cd ../config_pr_b

./generate_config.sh

4. The full and partial bitstreams are ready and a full bitstream can now be loaded
on the FPGA:
cd ../../bitfiles

dow ./system_add.bit

5. The partial bitstreams must be copied to the compact �ash card of your FPGA or
to the nfs root directory:
cp ./partial*.bin cf_dir/partial_bitstreams/

40

D. Project Files & How-to

The default tool�ow uses the HWT_ICAP core with double bu�ering and 8 KB of RAM.
If a di�erent core should be used, then the symbolic link in
demos/icap_dev/hw/edk/pcores/hwt_icap_v1_00_a can be changed, so that it points
to hwt_icap_simple or hwt_icap_single.

All the steps mentioned above can also be done by executing all.sh in the hw directory,
except that the bitstream is not automatically loaded on the FPGA and that the partial
bitstreams are not copied to the compact �ash.

D.2.2. Software

You must have a working gcc toolchain for the MicroBlaze CPU.

1. Change to the git root directory.

2. Prepare the ReconOS system.
cd linux/reconos/libreconos-us

make

cd ../../..

3. Compile the software.
cd demos/icap_dev/sw/test_icap/

make

4. Copy the compiled program to the compact �ash card of your FPGA or to the nfs
root directory:
cp ./icap_demo cf_dir/

5. Download the Linux kernel image to the FPGA. The device tree that was used to
generate this kernel can be found here:
git_root/demos/icap_dev/hw/device_tree/icap_2slots.dts

6. Run the icap_demo program on the FPGA
Try ./icap_demo -h for an overview over the arguments it supports. The most
interesting options are explained below:

• ./icap_demp -w 10

Performs 10 recon�gurations in a loop using HWT_ICAP. Every recon�gu-
ration iteration consists of loading and testing the ADD and MUL hardware
threads �rst, then the same is done for the SUB and LFSR hardware threads.

• ./icap_demo -w 10 --linux

The same as above but using XPS_HWICAP.

41

D. Project Files & How-to

• ./icap_demo --test_swap=10

Performs 10 state capturing and state restoring rounds with the MUL and
LFSR hardware threads.

• ./icap_demo --test_add

Performs state capturing and state restoring for the ADD hardware thread.
First the ADD hardware thread is loaded and its state captured, then it is
replaced by a SUB thread and later the captured state of ADD is restored.

• ./icap_demo --test_lfsr

Similar to --test_add but for the LFSR hardware thread.

42

Appendix E
Diagrams

HWT_ICAP

InAxDI

LocalRAM

WEAxSI

AddrAxDI

OutBxDO

LenxDI

ICAPFSM

StartxSI

ICAPCExSBO

ReconosFSM

I

ICAP_VIRTEX6

RDWRB

ICAPStartxSO

ICAPDonexSI

ICAPErrorxSI

ICAPLenxDO

DonexSO

ErrorxSO

OutAxDO

InBxDI

AddrBxDI

WEBxSI

RamDataInxDO

RamAddrxDO

RamWExSO

RamDataOutxDI

32

32

11

32

11

32

32

Dual-Port, 2048x 32 Bit

O
S

 I
n
te

rf
ac

e

(O
S

IF
)

M
em

o
ry

 I
n
te

rf
ac

e

(M
E

M
IF

)

i_osif

o_osif

i_memif

o_memif

ICAPWritexSBO

RamWExSO

RamAddrxDO

S
W
A
P

S
W
A
P

O

ICAPBusyxSI

ICAPStatusxDI

CSB

Busy

CmdLut

AddrxDI

OutxDO

10

RamLutMuxxSO

STARTUP_VIRTEX6

GSRGSRxSO

Figure E.1.: Detailed Block Diagram of HWT_ICAP.

43

E. Diagrams

HWT_ICAP

ReconosFSM

I

ICAP_VIRTEX6

RDWRB

RamDataxDO

RamWExSO

32

O
S

 I
n
te

rf
ac

e

(O
S

IF
)

M
em

o
ry

 I
n
te

rf
ac

e

(M
E

M
IF

)

i_osif

o_osif

i_memif

o_memif

SWAP

O

CSB

BusyLogic-0

ICAPStatusxDI
32

Figure E.2.: Block Diagram of HWT_ICAP without local RAM.

GetAddress

mbox_get(AddrxD)

GetLength

mbox_get(LenxD)

UpperxS = ’0’

FirstxS = ’1’

CmpLen FetchMem

if UpperxS = ’1’

 mem_copy(UpperRam,

 AddrxD)

else

 mem_copy(LowerRam,

 AddrxD)

if LenxD < RamSize/2

 LastxS = ’1’

else

 LastxS = ’0’

ICAPTransfer

ICAPStartxS = ’1’

ICAPUpperxS = UpperxS

if LastxS = ’1’

 ICAPLenxD = LenxD

else

 ICAPLenxD = RamSize/2

MemCalc

AddrxD += RamSize/2

LenxD -= RamSize/2

UpperxS = not UpperxS

FirstxS = ’0’

Finished

mbox_put(Finished)

Error

mbox_put(Error)Done == ’1’

Done == ’1’

Done == ’1’

Done == ’1’

Done == ’1’

&&

FirstxS != ’1’

ICAPDone == ’1’

ICAPError == ’1’

LastxS != ’1’

ThreadExit

ICAPWait

Done == ’1’ && FirstxS = ’1’

ICAPAckxS = ’1’

LastxS == ’1’

ICAPWaitLast

ICAPAckxS = ’1’

ICAPDone == ’1’

ICAPError == ’1’

Figure E.3.: State Machine of HWT_ICAP for a Write.

44

E. Diagrams

GetAddress

mbox_get(AddrxD)

GetLength

mbox_get(LenxD)

ReadCmpLen ICAPRead

ICAPModexS = ’1’

ICAPStartxS = ’1’

if LastxD = ’1’

 ICAPLenxD = LenxD

else

 ICAPLenxD = RamSize

if LenxD < RamSize

 LastxS = ’1’

else

 LastxS = ’0’

ReadCalc

AddrxD += RamSize

LenxD -= RamSize

Finished

mbox_put(Finished)Done == ’1’

Done == ’1’

LastxS != ’1’

ThreadExit

PutMem

if LastxS = ’1’

 mem_copy(AddrxD, LenxD)

else

 mem_copy(AddrxD, RamSize)

ICAPDone == ’1’

Done == ’1’

LastxS == ’1’

Figure E.4.: State Machine of HWT_ICAP for a Readback.

45

Bibliography

[1] Xilinx. (2012, Jan.) Virtex-6 Family Overview. DS150 (v2.4) January 19, 2012.
[Online]. Available: http://www.xilinx.com/support/documentation/data_sheets/
ds150.pdf

[2] S. Hansen, D. Koch, and J. Torresen, �High Speed Partial Run-Time Recon�gu-
ration Using Enhanced ICAP Hard Macro,� in Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
May 2011, pp. 174�180.

[3] Xilinx. (2013, Nov.) Virtex-6 FPGA Con�guration - User Guide. UG360
(v3.7) November 27, 2013. [Online]. Available: http://www.xilinx.com/support/
documentation/user_guides/ug360.pdf

[4] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and C. Plessl,
�ReconOS: An Operating System Approach for Recon�gurable Computing,� Micro,
IEEE, vol. 34, no. 1, pp. 60�71, Jan 2014.

[5] J. Delorme, A. Nafkha, P. Leray, and C. Moy, �New OPBHWICAP Interface for Re-
altime Partial Recon�guration of FPGA,� in Recon�gurable Computing and FPGAs,
2009. ReConFig '09. International Conference on, Dec 2009, pp. 386�391.

[6] S. Liu, R. N. Pittman, and A. Forin, �Minimizing Partial Recon�guration Overhead
with Fully Streaming DMA Engines and Intelligent ICAP Controller,� in Proceedings
of the 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2010, pp. 292�292.

[7] R. Bonamy, H.-M. Pham, S. Pillement, and D. Chillet, �UPaRC - Ultra-fast power-
aware recon�guration controller,� in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, March 2012, pp. 1373�1378.

[8] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, �Run-time Partial Recon�guration speed
investigation and architectural design space exploration,� in Field Programmable

46

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf

Bibliography

Logic and Applications, 2009. FPL 2009. International Conference on, Aug 2009,
pp. 498�502.

[9] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada, �A novel mechanism for ef-
fective hardware task preemption in dynamically recon�gurable systems,� in Field
Programmable Logic and Applications (FPL), 2010 International Conference on,
Aug 2010, pp. 352�355.

[10] A. Morales-Villanueva and A. Gordon-Ross, �HTR: On-Chip Hardware Task Relo-
cation for Partially Recon�gurable FPGAs,� in Recon�gurable Computing: Archi-
tectures, Tools and Applications, ser. Lecture Notes in Computer Science, 2013, pp.
185�196.

[11] Xilinx. (2013, Apr.) Partial Recon�guration User Guide. UG702 (v14.5) April
26, 2013. [Online]. Available: http://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_7/ug702.pdf

[12] ��. (2013, Oct.) Command Line Tools User Guide. UG628 (v14.7) October
2, 2013. [Online]. Available: http://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_7/devref.pdf

[13] H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS
Fabrication. Cambridge University Press, Apr. 2008.

[14] Xilinx. (2014, Jan.) Virtex-6 FPGA Clocking Resources. UG362 (v2.5) January 24,
2014. [Online]. Available: http://www.xilinx.com/support/documentation/user_
guides/ug362.pdf

47

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Preliminaries / Background
	FPGA Background
	Internal Configuration Access Port (ICAP)
	Bitstream Format

	ReconOS Project
	Xilinx ICAP Controller: XPS_HWICAP
	Related Work

	Hardware Design
	Partial FPGA Reconfiguration
	Single Buffering
	Double Buffering
	Without RAMs
	Failure Handling

	FPGA Configuration Readback
	Restore Registers

	Software Design
	Partial FPGA Reconfiguration
	FPGA Configuration Readback
	Bitstream Parsing
	Reading from ICAP
	Capture Current State
	Restore Previous State

	Results
	Test Setup
	Overview
	Adder / Subtracter Threads
	Dummy Multiplier Thread
	Linear Feedback Shift Register Thread

	Functional Verification
	Performance Evaluation
	Reconfiguration
	Readback / State Restoration

	FPGA Resource Usage

	Conclusion and Future Work
	Contributions
	Conclusion
	Future Work
	Circumventing Memory Bandwidth Limit
	Stability Issues
	ReconOS Interface
	Faster State Restoration
	Zynq Platform (Xilinx 7-Series Devices)

	Lessons Learned
	Two ICAP Interfaces
	ICAP Interface Issues
	GRESTORE does not work
	Block RAM Restoration
	Clock Gating

	Task Description
	Project Plan
	Project Files & How-to
	File Structure
	How-to
	Partial Reconfiguration Toolflow
	Software

	Diagrams
	Bibliography

