
Distributed
 Computing

Algorithmically Balancing a
Collectible Card Game

Bachelor Thesis

Jonas Krucher

jkrucher@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Prof. Dr. Roger Wattenhofer, Michael König

March 14, 2015

Acknowledgements

I thank Michael König who spent a lot of time giving me useful feedback and tips
and helping me when I needed support. I also want to thank Professor Roger
Wattenhofer for the opportunity to have an interesting insight into making a
game and artificial intelligence. I appreciate the help of my family and friends
who motivated me, were interested in seeing the final game and gave useful
feedback after the playtesting session. Finally I thank Anna Balicka for reading
through my unstructured thoughts and her support in stressful times during this
project.

i

Abstract

Collectible card games are interesting to play because they usually consist of a
huge amount cards allows many different strategies and variation. This successful
concept is merged with that of a boardgame to a new computer game. For any
card game to be interesting, the cards need to be well-balanced. In this project
this is attempted to be done by an artificial intelligence. By playing many games
against itself and constantly adapting the cards, the artificial intelligence modifies
a randomly generated pool of cards.

Unfortunately the method did not lead to the desired balancing of the cards.
Cards in the resulting set often lack a fair cost and can sometimes even be too
bad to be played at all. The method is suspected to not be accurate enough and
thus needs refinement. Another factor contributing to the failure could be a too
small amount of played games on which the adaptations are based.

Altough the balancing did not lead to the requested results, the game concept
was still well received by playtesters.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Collectible Card Games . 1

2 Game Design 2

2.1 Basic Mechanics . 2

2.2 Heroes, Minions and Characters 3

2.3 Land . 4

2.4 Deck, Hand and Graveyard . 4

2.5 Cards and Effects . 5

3 Balancing 6

3.1 The Artificial intelligence . 6

3.2 Rating the Actions . 7

3.3 Rating Cards . 9

3.4 Adapting Cards . 10

3.5 Unplayable Cards . 11

4 Implementation 12

4.1 Game Engine . 12

4.1.1 Framework . 12

4.1.2 Networking Architecture 12

4.2 User Interface . 13

4.2.1 Lobby . 13

4.2.2 Gameplay . 14

iii

Contents iv

4.2.3 Game End . 17

4.3 Effect Containers, Effects and Conditions 17

4.4 Random Generation . 17

4.4.1 Motivation . 17

4.4.2 Random Name Generation 18

4.4.3 Random Card Generation 19

5 Evaluation 21

5.1 Card Balancing . 21

5.2 User Feedback and Analysis . 26

6 Future Work 28

6.1 Gameplay Elements . 28

6.2 User Interface . 29

6.3 Artificial Intelligence . 30

7 Conclusion 31

Bibliography 32

Chapter 1

Introduction

1.1 Motivation

Board games like chess are an all-time favorite for many people. They often
include strategic elements and need thought and adaptation to the enemy’s play.
Collectible card games became more popular lately, especially games for newer
devices like tablets (for example Hearthstone[1], Solforge[2] or Scrolls[3]) but also
older cardboard based like Magic the Gathering[4] are still played regularly[5].

In this project parts of board games and of collectible card games were com-
bined to form a new computer based game.

There exist other games which try to bring both collectible card games and
board games together. Examples for this are Cards and Castles[6] which was
released for mobile devices, or Faeria[7] which is still in beta stage.

1.2 Collectible Card Games

A collectible card game (CCG) is a type of game where the players build decks
out of a typically big pool of cards. Usually there is a limited number of cards
that can be put into a deck. The cards have a high variety of different effects,
attributes and costs which allows many combinations and strategies. In most
CCGs, the cards are drawn from a shuffled deck to be played against another
deck[8].

1

Chapter 2

Game Design

2.1 Basic Mechanics

In this game, as it is true for the most card games, players have cards in their
hands which they draw from their decks. Each deck consists of 40 cards. Players
are taking turns consecutively. The game takes place on a board, which is a
finite hexagonal grid. There are figures on the board which can be interacted
with. Players can play the cards, which have abilities to affect the board and the
figures on it. Figure 2.1 shows a screenshot of a typical scene during a game.

Figure 2.1: A screenshot showing a typical scene during a game.

2

2. Game Design 3

2.2 Heroes, Minions and Characters

At the beginning of the game, both players each control one figure on the board
which are called the heroes of the players. The goal of the game is to kill the
enemy’s hero. As the game progresses, players can place other figures on the
field, so called minions. Minions and heroes are further referred to as characters
and have the following basic attributes:

• Attack

• Health

• Movement

• Range, consisting of minimum and maximum range

Characters can take damage, which is indicated by the current health of a
character (maximum health - damage). A character dies if it’s current health is
zero or below.

A character can attack other characters within their range. This means
that it deals it’s amount of attack as damage to the defending character. The
defending character does the same thing to the attacker, if the attacker is in the
range of the defending character. Characters can move on the board according
to their movement.

A character’s attack is at least zero, whereas range and movement are always
numbers between one and five.

At the start of a players turn all their characters regain the ability to move
and attack once this turn. When a minion enters the board, it cannot attack or
move in the same turn.

Characters can be poisoned, paralyzed, armored and immune. When a char-
acter is poisoned, it takes n damage at the beginning of the controlling player’s
turn, where n indicates how heavily the character is poisoned. The number n
then gets decreased by one (until it hits zero and therefore vanishes as it has no
effect anymore). The state poisoned always comes with such a number n. When
a character is paralyzed, it cannot attack, move or defend an attack. Paralyza-
tion also has a number n attached, which indicates how long it lasts and is also
decreased by one at the start of the controlling players turn. Similar to the poi-
son, paralyzation vanishes when it reaches zero. Poison and paralyzation stack
up, meaning that for example when a character is poisoned 1 and gets poisoned
1 another time, it is poisoned 2. Armor means, that whenever the character
takes damage, one of this damage is prevented. When a character is immune, it
cannot be poisoned or paralyzed. However, if a character was poisoned or par-
alyzed before becoming immune, poison and paralyzation are treated as before.
In that case it just cannot get paralyzed or poisoned more than it already is.

2. Game Design 4

Minions can also have effects, which are triggered at certain moments in the
game. The possible triggers are:

• When a minion enters the board

• Whenever it fights with another character

• Whenever it kills another character in combat

• At the beginning of the controlling players turn

• At the end of the controlling players turn

2.3 Land

Each field on the board has a land type. A core mechanic of the game is the
possibility to change the land on the board to your needs. There are five land
types: fire, water, nature, earth and wasteland. Players can change a land’s type
in their heroes range once per turn, which is indicated by changing the texture
of the desired field of the board. However they can only change the type to
fire, water, nature or earth. Changing the land is crucial as players can only
play cards, if the pattern indicating their cost is fulfilled by the board. There
can also be cards which can change land types with their effects or turn them to
wasteland, which means that the previous land type is removed and they become
wasteland again. When a game is started, all the land on the board is wasteland.

2.4 Deck, Hand and Graveyard

At start of a game, the players each draw three cards from their decks. Players
can have at most three copies of one card in their decks. This does not apply
for randomly generated decks which can have arbitrary many copies of one card
inside.

At the beginning of a player’s turn, that player draws a card from their deck.
If there are no more cards left in the player’s deck, simply no card is drawn.
There is no additional penalty, as for example in Hearthstone, where a player
loses life points whenever they have to draw a card when the deck is empty[1].
Magic: the Gathering rules are even stricter: players lose the game, if they
have to draw a card from their deck but can’t[9]. In this game the state of no
card being drawn is considered as a penalty severe enough, as the player cannot
strengthen their position anymore. This will eventually also lead to an end of
the game, as nothing can be played anymore at this point to turn the tide again.

At the end of a player’s turn, if that player has more than eight cards in their
hand, random cards are discarded until the player has eight cards in their hand.

2. Game Design 5

Cards which were already played are put in the so called graveyard of the
player who owns that card.

Decks can have cards which need any land type(s) in them, there is no re-
striction in terms of allowed number of land types. However it is recommended
to only play with two or at most three land types. It gets harder to play cards
from your hand when playing with all four different land types, because more
land types have to be changed in order to be able to play the next card. However
it could still be interesting to play with all the four land types, as more combi-
nations of the cards and their effects are possible. In theory it is also possible
to play cards of one land type only, but it may be hard to assemble a good deck
as there are most likely only few cards with one color only due to the way the
cards are generated.

2.5 Cards and Effects

There are two types of cards: namely minion cards and spell cards. Every card
has at least one effect. Minion cards only have one effect, they spawn a specific
minion on the board. They always have the condition that the minion has to be
spawned inside the range of the player’s hero.

Spell cards can have multiple effects, for example healing or dealing damage.
For the cost of minion cards, one has to be look relative to where one wants to
place the minion, for spell cards the pattern has to match relative to the position
of the player’s hero.

Chapter 3

Balancing

3.1 The Artificial intelligence

The purpose of the artificial intelligence (AI) is to play many games against
another instance of itself in order to balance the cards. The cards will then get
rated and modified according to how well they did during these games, meaning
that they get a good rating if the player who played the card won the game and
a bad rating if the player loses.

One main criterion for the AI was to play the turns fast, as the rating of the
cards is highly based on the number of games played with them. The simulation
is limited to one second per turn or 5000 action sequences, which are explained
later in this section. The AI also stops when it explored all the possible action
sequences. This can especially happen in the beginning, as there are for example
no minions or only few on the board which could lead to more actions. A larger
number of played games is desirable. It is not desired to do adaptations based
on only a small number of ratings, as the rating of a card could also be based
on its interaction with another card, or it could not have played a strong role in
the outcome of a game.

The AI tries to simulate actions and then rates the outcome when these are
applied to the initial game state the AI had at beginning of the turn. Possible
actions are:

• Character move

• Character attack

• Land placement

• End turn

• Play card

Each of these actions can have several places/targets to be applied to, for
example minions and heroes can move to the left or to the right and it is possible

6

3. Balancing 7

to place a land of the type fire or one of the type water. The number of allowed
turn ending simulations was limited to two, as otherwise there would be huge
subtrees possible out of this action. Still next turns should be considered in order
to be able to plan a bit further. If the AI can see that there is a very good path in
the tree in the nearer future, it can already do the necessary things in this turn
to be able to go in this direction. An example could be the possibility to play
a stronger minion next turn, if the AI does not place a land for a weak minion
to be summoned this turn. However the end turn actions are only based on
what is already there, the AI plans with a very optimistic scenario of the enemy
player doing nothing in their turn (besides drawing a card). But the effects of
the minions which get triggered at the beginning or the end of the turns are
considered.

3.2 Rating the Actions

Whenever the AI simulates an action, the resulting game state is rated. When
the AI finished the simulation, due to the time limit or one of the other reasons
mentioned above, it executes the action sequence with the best rating.

The rating considers all the attributes of the minions on the board with
a weighting for each of them, where the attributes of the minions which are
controlled by the AI are rated positively and the attributes of enemy minions
are rated negatively.

Rating = Boardown−Boardenemy +Handown−Handenemy +Additional (3.1)

The board ratings Boardown and Boardenemy are computed as in the follow-
ing equation:

Boardplayer = Mplayer + Hplayer + Lplayer (3.2)

Mplayer is the sum of all attributes of the minions of a player, each multiplied
with a weight. A minion also gets an additional positive rating, if the enemy’s
hero is in it’s range, because this means the minion can attack the hero and thus
contribute to the final goal of defeating the enemy’s hero. Hplayer is the same for
the hero of the player but without the additional rating of having the enemy’s
hero in range. At last the number of non-wasteland land around the hero of the
player is considered in Lplayer. This is rated positively, it is considered as an
advantage for a player because it is more likely to be able to play cards.

It is be desirable to rate the attributes of heroes differently than the ones of
minions. For example it could be that a higher range of a player’s hero is much
better than a higher range of one of the minions of the player. In this example the

3. Balancing 8

land could then be changed from further away or minions be spawned without
having to wait for the own hero to move to a field near to where the minion can
be placed, which can be very powerful.

The hand ratings Handplayer are very simple. They just multiply the number
of cards in the hand of a player with a weight. A game state is better the more
cards there are in the AI’s hand and worse the more cards there are in the
enemy’s hand. With more cards in a player’s hand it is more likely to be able to
play something which can strengthen the own position.

Finally the Additional part consists of a very positive rating if the enemy
hero is dead and of a very negative rating if the own hero is dead. Since the goal
of the game is that the own hero survives and the enemy’s hero dies, we want to
take this into account very heavily. This is done by subtracting a∞ rating if the
own hero dies and adding an ∞ rating when the enemy’s hero dies. As a rating
of∞ is not possible in a program, these numbers are just selected to be very big
(+1000000 and -1000000). When there is a chance to kill the enemy’s hero this
should always be done and also if the own hero would die, we absolutely never
want to consider this action sequence as an option. In the Additional part it is
also taken into account with a positive rating if the player changed the type of
a land this turn. We want to change the type of a land in every turn, as it can
also contribute to cards which are drawn in the future. If the land around the
hero is already suited for the hand, the AI can still just change a land to the
type which it already has, which is never bad.

The exact weights and ratings used in this project can be seen in Table 3.1.

Tuning the weights is difficult, in particular because the game has not been
tested for a longer period of time as for example Magic the Gathering, which
was adapted since it came out in 1993[10]. The weights could be optimized by
playing a lot of games with different weights and taking the best of them, but
this is out of the scope for this project.

There are also a few restrictions to bound the possible actions which can
be taken, because a goal is to be fast in order to simulate many games in a
relatively short amount of time. Action sequences with a lower rating than the
game state, which the AI had at start of its turn, minus a threshold (50) are
not considered any further. This is because it is assumed that from a state this
bad it is not possible to recover. However we do not want to throw away all
the action sequences which are only a bit worse than the initial game state, as
there can be cases which get very good later. For example a player may want to
sacrifice two weaker minions in order to kill a bigger minion of the enemy player.
This sequence would be worse after the attack of the first minion, as the player
loses the minion and the enemy only lost a few health points of their minion.
But after the second action, the player will be much better off, as they killed a
bigger minion of the enemy while only losing two smaller ones, which will result
in a possibly better rating than all the other sequences of actions could lead to.

3. Balancing 9

Table 3.1: Weights and ratings used for rating a game state.
Minion attack weight 4
Minion health weight 4
Minion range weight 4
Minion movement weight 4
Minion immune weight 4
Minion armor weight 4
Hero attack weight 5
Hero health weight 5
Hero range weight 5
Hero movement weight 5
Hero immune weight 5
Hero armor weight 5
Minion moved rating 5
Minion attacked rating 5
Minion distance to enemy hero rating per tile 1
Own minion has enemy hero in range rating 100
Hand card weight per hand card 4
Hero is dead rating 1000000

So there is always a trade-off in deciding which sequences we want to keep due
to the possibility of them leading to the best sequence and which we want to
throw away due to efficiency reasons and the risk that the best sequence was not
found, because there was too much time spent on parts which would not lead to
anything good.

3.3 Rating Cards

At the end of a game all cards which appeared in the game are rated. Table
3.2 shows the used ratings. Cards are rated based on if they were in the hand
of a player, on the board (minions only) or in the graveyard and thus already
played, together with the information if the player won or lost the game or if it
was a draw. These ratings are assumptions of what could make sense and lead
to desired results, but could also be tested and adapted further to contribute to
a more accurate adaptation of the cards.

The ratings for the minions on the board are straightforward, if the player
won the game, they are rated positively and if the player lost the game the
ratings are negative. Minions on the board get a rating of zero when the game
ended in a draw. It might be a bit surprising at first, that when a game was
won, hand cards are rated with zero. This is because it cannot be said that these
cards contributed to the result of the game. In fact it cannot be evaluated if this

3. Balancing 10

Table 3.2: Ratings used for cards at the end of a game.
Minion on board rating when a game was won 2
Minion on board rating when a game was lost -2
Minion on board rating when a game ended in a draw 0
Handcard rating when a game was won 0
Handcard rating when a game was lost -2
Handcard rating when a game ended in a draw 0
Card in graveyard when a game was won 2
Card in graveyard when a game was lost -2
Card in graveyard when a game ended in a draw 0

card was good or bad in this game, as it was never played. This does not hold
for the cards in the hand of the player which lost the game. These cards are
suspected to be either not helpful or not playable and this might be a reason
why the player lost the game, thus these cards are rated negatively. The cards
in the graveyards (the spells which were played and the minions which died on
the board) are assumed to have contributed to the final state of the game and
thus are rated with a positive number when the player won and negative when
the player lost.

3.4 Adapting Cards

When the AI played a certain number of games, the cards are adapted based
on their ratings. In this project this was done every 100 games in order to get
a meaningful amount of ratings, but still not have to run too many game for
one adaption. Then the average and the standard deviation of all the cards’
ratings are computed. The cards we want to adapt are the outliers in terms of
rating. We consider a rating as an outlier if it has a deviation of at least 1.5
to 2.5 (depending on the case) times the standard deviation from the average
rating. Additionally, the cards’ win/loss ratio is taken into account and adapts
the threshold from which on we speak of a rating as an outlier. Namely when
a card has a negative overall rating the result of equation 3.3 is chosen as the
threshold and for cards with a positive overall rating the result of equation 3.4
is chosen.

(wonGames/totalGames) ∗ 2.5 + (lostGames/totalGames) ∗ 1.5 (3.3)

(lostGames/totalGames) ∗ 2.5 + (wonGames/totalGames) ∗ 1.5 (3.4)

The reason for this adapting threshold is for example when a card has four
bad ratings, we want it to be considered as a worse card than a card which
lost six times, but also won two times. If we only took their overall rating into
account, they would have been both considered to have the same card value.

3. Balancing 11

We adapt cards by adapting their cost. When a card’s rating is bad enough
to adapt it, we remove one land cost at a random position up to a minimum of
one land. When a card’s rating is too good and we want to adapt it, we add
another land cost of a random type which is already in the cost at a random
position up to a maximum of 35.

3.5 Unplayable Cards

Due to the almost random generation of cards, there may be cards which are too
bad to be played, even with the lowest cost possible (which is one single land).
For example there may be a spell, which does two damage to your own hero.
There is no way this card can be good (at least with the current rules, triggers
and effects), so we want cards like this to be treated specially. One could argue
that it should be prevented to generate such effects in the first place, but such
negative effects can also be interesting to play and be put into strategies. For
example there could be a spell card, which adds four attack points but also deals
two damage to the same minion. This card could either be played on a weaker
enemy minion to kill it, or it could be played on a stronger friendly minion to
boost it. This card would probably have a lower cost than a spell which simply
adds attack or deals damage, as it contains both positive and negative effects.
This can make such a card very attractive to play. Other examples would be a
spell which lets you draw three cards but also deals five damage to your hero
or a minion which is strong and cheap, but also has a negative effect such as
letting the owner discard two cards when it is played. Other card games, such as
Hearthstone also have cards like this. For example a lot of cards of the Warlock
class in Hearthstone have the negative effect that the player has to discard cards
when he plays something, but the cards are stronger than other cards with the
same cost in return[11].

We now have arguments which justify the existence of negative effects. Nev-
ertheless there can be bad cards which just damages your own hero. We want to
find such cards and replace them with new randomly generated cards. The way
it is done in the game is that cards which have a rating which is bad enough to
be adapted but already have cost one (the minimum cost) are marked. If a card
has three marks, it is deleted and a new card is generate in its place.

Chapter 4

Implementation

4.1 Game Engine

4.1.1 Framework

The following C++ libraries were used in this project:

• SFML[12] was used for threading, networking, windowing and 2D graphics.
It was also chosen because it is available for all major platforms.

• TGUI[13] provided GUI elements, such as buttons or list boxes.

Furthermore these programs were used:

• GIMP[14] was used for drawing the graphics.

• MATLAB[15] was used for plotting graphs.

4.1.2 Networking Architecture

The networking part consists of a central server, to which two clients can connect
at a time. When a user hosts a game, a server and also a client are created. This
client then directly connects to the server. The clients send all the actions which
they want to make to the server, where these actions get checked if they can be
applied and all the conditions and costs are fulfilled. If everything is correct,
the server forwards the applied changes to the clients, probably splitted up in
smaller parts of simpler logic. For example if a player plays a spell which deals
one damage and adds two attack, the server just sends that the spell was played,
one damage is dealt and two attack were added and the client can just apply
that without having to check for any conditions to be true, as this was already
done by the server. The architecture fits the fact, that only the server should
be trusted. A client can be modified in a way that he can send anything at any

12

4. Implementation 13

point in time to the server, so it must be possible to check if the sent actions
are legal. For the future it would be desirable to have one official trustful server
which manages all the games.

4.2 User Interface

4.2.1 Lobby

When a user launches the game, the first screen to be seen is the lobby. Here
a user can enter a name, join a game, host a game or quit the program (Figure
4.1).

Figure 4.1: Hosting a game in the lobby.

4. Implementation 14

4.2.2 Gameplay

At the start of a game the user can see the board in the middle of the screen, the
cards they have in their hand at the bottom of the screen and an information
box in the top left, as it can be seen on Figure 4.2.

Everything in the game can be controlled with the mouse. To select some-
thing like a card or a minion on the board, a player left clicks it. In order to
perform actions, like playing a selected card, a player right clicks on the target.
If something needs more than one target, they have to be right clicked in the
correct order. For example if a spell deals one damage to a minion and provides
another minion plus one attack, a player first right clicks on the target which
should be dealt one damage and then on the target which should get plus one
attack in order to play the spell. For spells which do not have a target to be
specified, a player can just left click somewhere on the board to play them.

By clicking on a card in the hand, the properties of the card are displayed
on the right side (Figure 4.2). In the top, it is possible to see the cost needed
to be able to play the card. Right below, the name and the image of the card
is shown. Minion cards have a box with their attributes and another box with
their effects, if they have any. Spell cards only have the box with the effects, as
they do not have attributes.

When a character on the board is selected, details are shown on the right
side, similar to what is shown when a card is selected. Additional information
about where the character can move and which other characters it can attack
are shown with an orange / red indication on the board (Figure 4.3)

There are small circles in the colors red and blue shown next to characters
(Figure 4.4). These indicate if the character can attack and move this turn,
where the red circle shows that the character can attack another time this turn
and the blue circle indicates that the character can move another time this turn.

4. Implementation 15

Figure 4.2: Screenshot of a typical scene in the game. Detailed information
about the selected card is shown on the right side.

4. Implementation 16

Figure 4.3: Screenshot of the game when a minion is selected.

Figure 4.4: Closeup of a character where indicators show if it is still possible to
attack and move with it.

4. Implementation 17

4.2.3 Game End

When a game ended, the player can see a screen, where it is displayed that the
game ended and if the player has won or lost the game. The user gets back to
the lobby with the escape key.

4.3 Effect Containers, Effects and Conditions

In order to provide freedom in terms of being able to use different effects and
combinations of them for randomly generated cards, the previously used term
effect was defined to consist of the three parts effect containers, effects and
conditions.

Effect containers consist of a target type, effects and optionally conditions.
There are around 30 different target types, for example minion, random character
or enemy hero. Some of them allow the player to choose a target as for example
minion, whereas others chose a target randomly or the target is already clear.
Examples for these are random character or all friendly minions.

When a condition of an effect container is not fulfilled, all effects in the
container will not activate. Around 20 different conditions are included in this
project, for example the target needs to be in the own hero’s range or the own
number of cards in the hand is equal some number.

Effects themselves can also have conditions. If these conditions are not ful-
filled, only that effect will not activate, but the effect container as a whole will
not be affected in case it has more than one effect. Effects also have a type and
can have an amount, when it is necessary for the effect type. The effect type
defines what it will do, for example deal damage, whereas the amount would
then indicate how much damage is dealt. There are more than 30 different effect
types included in the game. Examples are deal damage or draw card.

This architecture allows to have a certain effect applied on multiple targets
or several effects on one target and any combination of these. More freedom
and the possibility of many combinations are provided, which is in particular
interesting for randomly generated cards.

4.4 Random Generation

4.4.1 Motivation

One part of this project is balancing the cards. Balancing can especially be
interesting when the cards are generated randomly, as it is not known before-
hand which combinations are exactly generated in the end. It is an interesting

4. Implementation 18

challenge to come up with strategies as no one has thought over which card
could match together to form a strong deck. For cards in this game names, im-
ages, attributes and effects are needed. Besides the images, these are generated
randomly.

4.4.2 Random Name Generation

Names give a strong indication of what something is, can help the imagination
and underline an image. They also illustrate parts of the world in which the game
takes place in. Cards in collectible card games have specific names, which often
consist of different words combined. For example in Magic: the Gathering there
is a card called Fanatic of Xenagos which corresponds to a minion in this project.
Another card is Warstorm Surge, which would be a sort of spell. The two cards
can be seen in Figure 4.5. The name Fanatic of Xenagos, consists of Fanatic
which exists in the English language, the binding word of and a fictional place
in the Magic: the Gathering universe Xenagos. In Warstorm Surge we can see
that two nouns were coupled together: War and Storm, followed by the other
noun Surge. In this project, random names are generated according to these
models. A name can consist of randomly generated fictional words, the binding
word of, a few predefined existing nouns and can have an adjective in front,
which is also chosen from a predefined pool. The fictional words are generated
with a simple algorithm: they consist of four to eight letters and follow the rule
to always consist of a vowel followed by one or two consonants and then again a
vowel and so forth. When a fictional word is in the name, one can also think of
it as a imaginary creature, place or something else which does not exist in the
real world.

Figure 4.5: The Magic: the Gathering cards Fanatic of Xenagos[16] and
Warstorm Surge[17]

4. Implementation 19

4.4.3 Random Card Generation

Cards always have a random name, as described above and also get a random
cost, which consist of one to three types of land types. The cost is more likely
to consist of two different land types, with a chance of 60%, rather than having
a single land type, where the chance is 30%. Three different land types are the
least likely cost to occur with a chance of 10%. The number of lands in the cost
is randomly chosen between one and seven when the card is generated. There
is a distinction between minion and spell cards. Minion cards have randomly
generated attributes, with a few restrictions. The health is a random number
between one and nine. There is a big chance to have more or less the same value
as the health for the attack, namely a 25% chance of having the same value as
the health and a 55% chance to have an attack which differs from the health by a
uniformly chosen random number between zero and two. The chance of choosing
the attack to be a new uniformly chosen random number between zero and nine
is 20 %. The range for the minion is a number between one and three, where
the smaller values are more likely to appear, as a bigger range is considered to
be exceptionally strong. The chance to have a range of one is 55%, the one to
have a range of two is 30% and the chance to have a range of three is 15%. The
minimum and maximum range are with a chance of 75% most likely the same,
but it can also be the case that the maximum range is the minimum range plus
one with a chance of 25%. A minion’s movement is in 65% of the cases randomly
chosen between one and two, but can also be randomly chosen between zero and
four with a chance of 35%.

These numbers and chances are assumptions based on playing different col-
lectible card games. With these restrictions it is much simpler for humans to
calculate minions into strategies. This is especially the case for higher ranges
and higher movement, as it is at some point very hard to tell what can happen
next, if a minion is moved for example. It becomes hard to preserve a general
view of what is happening on the board. This is not fun to play, but cumber-
some to deal with. A similar reason holds for big differences between attack
and health. These are interesting if they are not the rule. Minions with almost
equal attributes in terms of attack and health are easier to handle and embed
into strategies. For example it is not desirable to have many minions which have
big attack but all low health, as they are an easy target for weak minions of the
enemy or spell cards which deal only a small amount of damage. A deck is better
off if it has only few such minions but more evened ones which can be used in
various strategies and circumstances.

Each of the five possible triggers (see Chapter 2.2) has a chance of 25% to
have one to two effects in one effect container. Like this, it is possible to have
a few heavier minions with many effects, but also some which have no effect at
all and thus are simpler to take into account for any strategy. Spell cards only
need effects, which are generated in the same fashion, with the difference that

4. Implementation 20

they can have one or two effect containers (equally likely to appear) with one or
two effects each. We want at least one effect in each spell, as they are useless
otherwise.

Chapter 5

Evaluation

5.1 Card Balancing

In this project, a set of 225 different cards was generated, consisting of 150
minion cards and 75 spell cards. A total of 7500 games were simulated by the
AI. A game was aborted and declared as a draw game, if the sum of turns of
both players exceeded 80. This maximum turn number was chosen, because it
is certain that after 80 turns at the latest both player’s decks would be empty
and thus the game would not make much progress. After every 100 simulated
games, the cards were adapted according to the ratings. Thus, the set of cards
was modified 75 times.

The average number of rated cards per modification was 198.01 from the
total of 225 cards. Each card was rated 5.33 times on average (including the
cards which were rated zero times).

On average, the AI considered 3690.87 different action sequences per turn
from the allowed maximum of 5000. The average length of the longest of these
sequences in each turn was 28.64 actions.

In Figure 5.1 it can be seen that it does not matter for the result of a game
which player started. Many games were aborted because they reached the max-
imum number of turns allowed. Also there were almost no draw games other
than due to reaching the maximum number of turns allowed.

The average number of turns taken over all games is 40.39 without the games
which reached the maximum number of turns and 54.38 with these games. This
distribution can be seen in Figure 5.2. An interesting feature is the large amount
of games which only took five to ten turns. This could be explained by certain
cards, which make a game much shorter and can turn out good or bad. An
example of such a card is a cheap minion which reduces the health of both
heroes to five when it is played. The high number of aborted games could be
interpreted as stalemates due to even games.

Figure 5.3 shows the average, minimum and maximum ratings of the cards
when the modifications happened. The average rating is around zero and does

21

5. Evaluation 22

Figure 5.1: Result of the games.

Figure 5.2: The number of turns taken, measured over all the games without the
games which were aborted due to having reached the limit of 80 turns.

5. Evaluation 23

not change much, which is what could be expected as this can be seen as the final
rating for all balanced cards. The most negative ratings are further away from
the average than the most positive ones. In exchange, there are more cards with
a positive rating (not necessarily outliers), as the average would not be around
zero otherwise. One reason for this could be the random generation of the cards,
as there may be a lot of average cards (which can also win a game) and only few
bad cards with which a player loses often.

Figure 5.3: The average, minimum and maximum ratings of the cards at the
time of the modifications

513 cards were adjusted in the 75 rounds of modification. 240 were modified
to be cheaper and 273 to be more expensive. There were no unplayable cards
detected in the randomly generated set, so no card had to be generated anew.

The number of modified cards per modification oscillates relatively severely,
but a slight trend towards zero can be seen in Figure 5.4, a few adaptions less
were made when comparing the last modifications to the first ones. However
this trend is not very strong. This could be mainly due to the selection of which
outliers are modified. They are selected based only on the ratings of the other
cards and thus there can possibly never be a state where the ratings would be
so close to each other such that there were no outliers anymore. This problem
could for example be addressed by a (small) fixed minimum rating difference
from the average in whose bounds the cards would not get modified. This could
be desirable as the modifications could then be run until no further modifications
happen for a certain amount of rounds. Then the cards could be considered as
balanced.

The standard deviations in Figure 5.5 illustrate a similar picture. The trend

5. Evaluation 24

goes down, but slowly and with many oscillations.

Another issue could be the way the modifications were made. It could be that
an additional cost which is more distant from the position where a card can be
played makes a card harder to play than an additional cost which is nearer. This
could be included by having several types of outliers. Cards with ratings which
are very far away from the average could be adapted with an additional cost
which is further away from the position where the card can be played, whereas
the outliers which are nearer to the average could be adapted with an additional
cost close to the center. The cost reduction could be done in a similar way: the
cost which is removed can be near or further away from the place where the card
can be played.

Figure 5.4: The number of modified cards for each modification.

In Figure 5.6 it can be seen that the number of cards rated, as well as the
average number of ratings, decreases with the number of games played. The
reason for this effect is that the number of games which were declared as a draw
due to reaching the maximum number of allowed turns increased for the later
modifications. This suggests that the game became more even and therefore
often ended in a draw. The reason for this could be that the cards were more
balanced and the decks equally strong in more games, which is exactly what the
goal of the modifications was.

Overall it can be said that the modifications were a partial success, at least
from the AI’s point of view. The games tended to be more even and less cards
were modified the more games the AI simulated. However there was no point
in these 75 modifications where it could be said that there were no more mod-

5. Evaluation 25

ifications to be made (see Figure 5.4 and 5.5). Improvements in the balancing
could probably be made by adapting the term of outliers when looking at the
ratings. It also has to be said at this point that the AI was kept simple and the
results could differ when improving the AI or granting it more time per turn for
calculation.

Figure 5.5: The standard deviations of the ratings of the cards measured when
the modifications happened.

Figure 5.6: The number of average cards rated and the average number of ratings
per card, both per modification.

5. Evaluation 26

5.2 User Feedback and Analysis

A playtesting session with eight participants was organized. After and during
they tested the game the participants gave feedback.

The overall response was that the game concept is interesting, but the game
itself needs refinement in terms of card balancing, more support for the user and
fixes of problems which arose during the session. It was harder for the users to
learn the basic mechanics of the game than expected.

This section covers mostly the feedback for the card balancing. Other sug-
gestions of improvement will be treated in the future work chapter

It was often criticized that it takes a long time (several turns) until the first
cards could be played. After the balancing with help of the AI, many cards
became expensive and harder to play. On the other hand users also mentioned
that some cards where too strong for their cost. One example was the card
observing amohjar-sea. But when the final observing amohjar-sea card after
balancing is compared to the initially generated card, the cards cost was raised
from only two to five. So the card was detected to be too strong three times. The
modification thus goes into the right direction, but the card would have needed
a higher cost compared to other cards in the end according to the feedback.

Another reported issue was the random generation. It was suggested by the
users that some combinations of attributes and effects in the random generation
should be prevented. One example was that some effects have too many or too
complicated conditions to be playable. This was especially the case with very
specific conditions, such as that the own hero needs to have exactly 30 health
or that the number of cards in the players hand needs to be five. A possible
improvement could be that these conditions get excluded from the game.

Users found cards in the game which they estimated to be unplayable. One
example was the spell wasp-xifmed which had a cost of two and would set the
health of five random friendly characters to four. This card has a high chance of
setting the own hero’s health to four, which is very bad. This was not detected
by the AI, in fact it was never modified since the initial generation of the card. A
reason could be that the card did not affect many games outcomes by just being
in the hand of players, which then could win even though one card in their hand
was unplayable. Together with the many draw games due to too many turns
played, this could lead to an average rating which is near zero and thus will not
be modified.

Another card which was rated as unplayable by the playtesters was the spell
star-mawoxef. This card has a cost of five, targets five random friendly minions
and deals three damage to each of them. It is a prime example of a card which is
unplayable, yet it was not removed from the set. When analyzing the change of
the cost of star-mawoxef it can be seen that it changed from six to five. As for

5. Evaluation 27

observing amohjar-sea, the modification goes into the right direction and thus it
was detected as a card which is too expensive, but this was not perceived often
enough in order to mark this card as unplayable.

As a conclusion it can be said that the AI which was programmed during
the project did not modify the cards enough for them to be balanced from a
human point of view. Many cards lack a fair cost for their services: there are
cards which are too expensive as well as cards which are too cheap and even
unplayable cards in the final set. It could be that with more modifications the
costs would be more accurate, but there is the possibility that the method has
to be adapted in general.

Chapter 6

Future Work

6.1 Gameplay Elements

There are a lot of features which can be added, but had to be left out for this
project due to the lack of time. Some of them are inspired by feedback received
during the playtesting session. The following features can be added in a future
version of the game:

• More triggers for effects of minions, such as when a minion dies or whenever
you spawn another minion or play a spell.

• More effects, for example the possibility to spawn many minions at once
with spells or with minion effects. New effects could be added in some kind
of a new set of cards much like with other card games, which again can
be randomly generated (including the new effects and possibly excluding
some old ones) and balanced by the AI.

• A characterization of the land types, in terms of specific effects which
only, or mostly occur for cards of a certain land type, as Hearthstone (in
form of different classes)[11] or Magic: the Gathering (in form of colors)
have these feature [18]. For example the ability to draw cards could be a
common effect for water cards, but almost never be on cards of the type
fire. In return, fire could have many effects which deal a lot of damage to
characters. For this separation to be interesting, there would have to be
enough different effects, such that they can be distributed fairly among the
diffferent land types.

• To bring more variety into the different games, there could be added dif-
ferent boards, for example one with a big hole in the middle, or one which
is double the size but with a lot of holes and one single bigger spot in the
middle to be able to play the more expensive cards. This could change the
gameplay a lot, for example with the last mentioned board, it would be
more like a race which player gets to the center first and is then able to

28

6. Future Work 29

defend that spot. With different boards, there may also be different cards
which are advantageous over others.

• The game could be extended to allow more than only two players playing
in one game. For example it could be interesting to have a four player all
versus all match, where the last player surviving would win. Also team
matches are possible, much like in Magic: the Gathering (Two-Headed
Giant mode, which can be sometimes seen at tournaments)[19].

• Names which are randomly generated could be refined, such that there are
two different generators, one for spells and one for minions. The reason is,
that minions would rather always be creatures and spells not, which could
be reflected by the names. Another improvement would be if the names
were generated according to the land types needed for them to be played.
For example only cards which need water type land would have words like
Water or adjectives like blue in them.

• A timer could be added to limit the maximum duration of a turn, similar
to Hearthstone and some variants of chess.

6.2 User Interface

As players want to be aware of what happens on the board and what the other
player does, there could be more features which help the user to see what hap-
pens:

• Some kind of animation, when a character attacks another character. Ex-
amples of how this can be done are shown very well by Hearthstone[1],
where attacking minions ram into the defending ones.

• More visual effects which are displayed on targets of spells or effects, such
that the player does not have to extract all the information out of the
information box while playing.

• Different sound effects could be added for different types of effects, for
example when a minion dies or the attack of a minion gets boosted.

• When a card is selected a grid could be shown which indicates the cards
cost and moves with the users mouse in order to better grasp where a card
can be placed and where not.

• While a player is changing the type of a land, the details of the previously
selected card could still be visible, such that it is not necessary to remember
where the land should be changed in order to play this card.

6. Future Work 30

6.3 Artificial Intelligence

The AI can deal with all of the effects, but it is also very simple. Improvements
on the AI would highly improve the balancing of the cards.

Parts of the currently present decision-tree could possibly be cut off. For
example for spells, there could be an improved distinction between the different
effects and the targets we want to look at. When considering targets for a simple
spell which deals damage to a minion, we most likely do not want to pursue what
happens when this spell is played on a friendly minion. Distinctions like this are
more involved, especially if there are many effects for a target, but can make the
computation much faster, as the AI throws away more actions which will never
result in any good state.

Nevertheless, improving or extending the AI can also be hard, due to the time
limit we want to give it for taking a turn. Another possibility would be to allow
more computation time for one turn, if enough time is available for balancing. An
example of this is shown by Hearthsim[20], an AI for Hearthstone. Hearthstone
has much more effects and also another type of cards than there are currently
in this project, but on the other hand, there is no real board where minions can
move around. Hearthsim simulates for 90 seconds, which is the time limit per
turn for players of Hearthstone. This is much more computation time than the
one second that the AI of this project currently uses per turn.

In its present state, the AI does never look at what the enemy could do next.
An improvement would be to look, where the enemy could attack the next turn
and do not walk there with minions which can get easily attacked and killed
from enemy minions nearby, especially when they are not even able to defend
themselves, for example due to range reasons.

It could be a strong extension for the AI to be able to guess what the enemy
could do in the next turn out of the board, the land types in the enemy’s deck
or the number of cards in his hand. The AI could then counter certain cards or
prevent the enemy from doing something. For example a minion could be moved
to a place where the enemy will most likely spawn a minion next turn, such that
the place is occupied and he cannot play the minion card at all the next turn.

Chapter 7

Conclusion

The goal of this bachelor thesis was to design and implement a game that is
a mix between a CCG and a board game. Additionally an AI which can play
the game was developed. The cards for the game were randomly generated and
balanced based on the results of the AI playing many games. The modifications
were then analyzed and playtested in order to reason about the quality of the
balancing.

The modifications were not good enough to provide a balanced set of cards.
The analysis of the modifications showed that the balancing could be incomplete
which was then confirmed by the feedback from the playtesting. The method
could possibly be improved by increasing the number of simulated games, but it
could also be that it has to be adapted in general for the balancing to be accurate
enough.

The concept of the game itself was received very positive and with the sug-
gested improvements implemented, there are good chances the game could be
more fun to play one day.

Developing games is a very involved process, as it combines many fields like
for example visuals and networking. I never worked on an AI before this project
and it took me some time until it did something useful. The game can still be
polished, mainly in terms of visual feedback for users and also extended with a
better AI and more cards and effects. It was very interesting to peek into making
a game and the possible problems the companies which publish card and board
games have to face. I am planning to look more into AI and different attempts,
like for example artificial neural networks, as this first insights made me curious
of what else could be possible.

31

Bibliography

[1] Blizzard: Hearthstone Main Page. http://us.battle.net/hearthstone/
en/ Last checked 11.03.2015.

[2] StoneBlade Entertainment: Solforge. http://solforgegame.com/ Last
checked 11.03.2015.

[3] Mojang: Scrolls. https://scrolls.com/ Last checked 11.03.2015.

[4] Wizards of the Coast: Magic: The Gathering Main Page. http://magic.

wizards.com/en/magic-gathering Last checked 11.03.2015.

[5] http://icv2.com/: Magic: The Gathering popularity. http://icv2.com/

articles/games/view/21471/magic-doubled-since-2008 Last checked
11.03.2015.

[6] Bit Mass LLC: Cards and Castles. http://www.cardsandcastles.com

Last checked 11.03.2015.

[7] Abrakam: Faeria. http://www.faeria.net/ Last checked 12.03.2015.

[8] Tim Achee: Collectible Card Games. http://libguides.slu.edu/

boardgames Last checked 13.03.2015.

[9] Wizards of the Coast: Magic: the Gathering Rulebook. http:

//media.wizards.com/images/magic/resources/rules/EN_MTGM14_

PrintedRulebook_LR.pdf Last checked 11.03.2015.

[10] Wizards of the Coast: Magic: the Gathering history. http:

//archive.wizards.com/Magic/magazine/article.aspx?x=mtg/daily/

feature/41a Last checked 11.03.2015.

[11] Blizzard: Heroes in Hearthstone. http://eu.battle.net/hearthstone/

en/game-guide/heroes Last checked 11.03.2015.

[12] Laurent Gomila: SFML. http://www.sfml-dev.org/ Last checked
11.03.2015.

[13] TGUI: Texus’ Graphical User Interface. https://tgui.eu/ Last checked
11.03.2015.

[14] GIMP: GNU Image Manipulation Program. http://www.gimp.org/ Last
checked 12.03.2015.

32

http://us.battle.net/hearthstone/en/
http://us.battle.net/hearthstone/en/
http://solforgegame.com/
https://scrolls.com/
http://magic.wizards.com/en/magic-gathering
http://magic.wizards.com/en/magic-gathering
http://icv2.com/articles/games/view/21471/magic-doubled-since-2008
http://icv2.com/articles/games/view/21471/magic-doubled-since-2008
http://www.cardsandcastles.com
http://www.faeria.net/
http://libguides.slu.edu/boardgames
http://libguides.slu.edu/boardgames
http://media.wizards.com/images/magic/resources/rules/EN_MTGM14_PrintedRulebook_LR.pdf
http://media.wizards.com/images/magic/resources/rules/EN_MTGM14_PrintedRulebook_LR.pdf
http://media.wizards.com/images/magic/resources/rules/EN_MTGM14_PrintedRulebook_LR.pdf
http://archive.wizards.com/Magic/magazine/article.aspx?x=mtg/daily/feature/41a
http://archive.wizards.com/Magic/magazine/article.aspx?x=mtg/daily/feature/41a
http://archive.wizards.com/Magic/magazine/article.aspx?x=mtg/daily/feature/41a
http://eu.battle.net/hearthstone/en/game-guide/heroes
http://eu.battle.net/hearthstone/en/game-guide/heroes
http://www.sfml-dev.org/
https://tgui.eu/
http://www.gimp.org/

Bibliography 33

[15] Mathworks: Matlab. http://ch.mathworks.com/products/matlab/ Last
checked 12.03.2015.

[16] Wizards of the Coast: Magic: The Gathering Fanatic of
Xenagos. http://gatherer.wizards.com/Pages/Card/Details.aspx?

multiverseid=378519 Last checked 11.03.2015.

[17] Wizards of the Coast: Magic: The Gathering Warstorm Surge. http:

//gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=

376581 Last checked 11.03.2015.

[18] Wizards of the Coast: The five colors in Magic: The Gathering. http:

//archive.wizards.com/Magic/multiverse/colors.aspx Last checked
11.03.2015.

[19] Wizards of the Coast: Magic: The Gathering Two Headed Giant. http:

//mtg.wikia.com/wiki/Two-Headed_Giant Last checked 11.03.2015.

[20] BuddyPanda: Hearthsim. http://buddypanda.com/hearthsim Last
checked 12.03.2015.

http://ch.mathworks.com/products/matlab/
http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=378519
http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=378519
http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=376581
http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=376581
http://gatherer.wizards.com/Pages/Card/Details.aspx?multiverseid=376581
http://archive.wizards.com/Magic/multiverse/colors.aspx
http://archive.wizards.com/Magic/multiverse/colors.aspx
http://mtg.wikia.com/wiki/Two-Headed_Giant
http://mtg.wikia.com/wiki/Two-Headed_Giant
http://buddypanda.com/hearthsim

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Collectible Card Games

	2 Game Design
	2.1 Basic Mechanics
	2.2 Heroes, Minions and Characters
	2.3 Land
	2.4 Deck, Hand and Graveyard
	2.5 Cards and Effects

	3 Balancing
	3.1 The Artificial intelligence
	3.2 Rating the Actions
	3.3 Rating Cards
	3.4 Adapting Cards
	3.5 Unplayable Cards

	4 Implementation
	4.1 Game Engine
	4.1.1 Framework
	4.1.2 Networking Architecture

	4.2 User Interface
	4.2.1 Lobby
	4.2.2 Gameplay
	4.2.3 Game End

	4.3 Effect Containers, Effects and Conditions
	4.4 Random Generation
	4.4.1 Motivation
	4.4.2 Random Name Generation
	4.4.3 Random Card Generation

	5 Evaluation
	5.1 Card Balancing
	5.2 User Feedback and Analysis

	6 Future Work
	6.1 Gameplay Elements
	6.2 User Interface
	6.3 Artificial Intelligence

	7 Conclusion
	Bibliography

