
Distributed
 Computing

Haptic, Acoustic, and Visual
Short Range Communication

on Smartphones

Distributed Systems Lab

Marcel Bertsch, Roland Meyer

bertschm@student.ethz.ch, romeyer@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Pascal Bissig, Philipp Brandes

Prof. Dr. Roger Wattenhofer

December 22, 2014

Abstract

Communication between smartphones relies mainly on radio frequencies. In this
lab we explore other ways to communicate with built-in hardware using vibrators,
accelerometers, microphones, speakers, flashlights, and cameras. We evaluate the
feasibility and performance of the following haptic/audible channels: Vibration
to accelerometer, vibration to microphone and speaker to microphone. We also
examine visible light channels between flashlight LEDs and cameras introducing
an algorithm to detect and decode messages sent over the flashlight. Finally, we
introduce BlinkEmote, a user-friendly application that allows for bi-directional
communication between smartphones over such a channel.

i

Contents

Abstract i

1 Introduction 1

2 Vibration Communication 2

2.1 Related Work . 2

2.2 Vibrator to Accelerometer . 2

2.2.1 Vibrator . 2

2.2.2 Accelerometer . 3

2.2.3 Evaluation . 4

2.3 Vibrator to Microphone . 5

2.3.1 Accelerometer versus Microphone 5

2.3.2 Detecting Vibrator with Microphone 5

2.3.3 Matched Filter . 6

2.4 Speaker to Microphone . 8

2.4.1 Speaker Volume . 9

2.4.2 Speaker Frequency . 9

2.5 Conclusions . 11

3 Visible Light Communication 13

3.1 Related Work . 13

3.2 Algorithm . 13

3.2.1 Encoding and Decoding 13

3.2.2 Blinking Detection . 15

3.3 System Components . 19

3.3.1 Flashlight . 19

3.3.2 Camera . 20

3.4 Prototype . 21

ii

Contents iii

3.4.1 Implementation . 22

3.4.2 Evaluation . 22

3.5 End-user Application . 23

3.5.1 Implementation . 23

3.5.2 Evaluation . 24

3.6 Conclusions . 24

3.6.1 Future Work . 26

Bibliography 27

Chapter 1

Introduction

In recent years, smartphones have become very common and also very powerful.
One of their main fields of application is communication and the transmission of
data. For this purpose modern phones make use of a variety of different technolo-
gies, such as WiFi, Bluetooth, or GSM. What most of these “traditional” chan-
nels have in common is that they rely on sending and receiving radio-frequency
(RF) signals. Other means of communication are not widely deployed and still
a hot research topic.

In this lab we explore various alternative ways which allow two off-the-shelf
smartphones to communicate over short distances without relying on RF signals.
With today’s smartphones featuring a plethora of powerful sensors and actuators
combined with the continuously improving computational power the possibilities
are vast. We investigate some of them by conducting a series of experiments using
different types of Samsung and HTC smartphones running Android.

In Chapter 2 we focus on establishing and examining acoustic and haptic
communication channels, using the phone’s speaker, microphone, vibrator, and
accelerometer.

In Chapter 3 we use visible light from the phone’s LED flashlight to send
short messages to another phone’s camera. We show that the phone can de-
tect a blinking light and decode information from it. We also introduce the
app BlinkEmote that makes use of our findings to transmit emoticons over the
flashlight-camera channel.

We conclude both of these chapters with a short summary of our findings.

1

Chapter 2

Vibration Communication

In this chapter we take a look at how two off-the-shelf smartphones can form a
haptic communication channel. We evaluate communication channels utilizing
vibration, accelerometers, microphones, and speakers.

2.1 Related Work

Similar work has been done by A. Studer et. al. [1], where they use such a
channel to authenticate future messages sent over a radio-channel, and by I.
Hwang et. al [2], where they place two phones on a common surface to transmit
messages through the propagation of a vibration pattern. To tie in with these we
first focus on exploring the possibilities such a vibration-accelerometer-channel
offers, then try to improve it by using other sensors and actuators and compare
the different approaches.

2.2 Vibrator to Accelerometer

2.2.1 Vibrator

Most of today’s smartphones have a built-in vibrator, which is typically used to
notify the user of events such as incoming messages when the phone is in silent
mode. We evaluated how well the vibrator can be used to encode messages by
toggling it according to different patterns. Android’s Vibrator API provides us
with a convenient feature to do just that. Since the documentation does not
specify how small the time intervals of such patterns may be, we built a small
app to run a few tests. We placed the Galaxy S4 on a carpet floor and recorded
different vibration patterns with a studio microphone, sampling at 192000Hz.

Figure 2.1a shows the amplitude of the sound signal in the time domain as
produced by a 20-20 vibration pattern (i.e., the repetition of 20ms of vibrating
followed by a break of 20ms). The peaks are clearly visible and occur at regular
intervals of 23.8ms (averaged over 3 seconds), which shows us that the accuracy

2

2. Vibration Communication 3

Time in seconds
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
m

pl
itu

de

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
S4-20-20 - Time Domain

(a) 20-20 pattern

Time in seconds
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
m

pl
itu

de

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
S4-10-10 - Time Domain

(b) 10-10 pattern

Figure 2.1: Amplitude of vibration patterns produced by the Galaxy S4, recorded
by a studio microphone.

is not perfect, but that the precision is quite good. Figure 2.1b shows a 10-
10 pattern, where we see that the noise is too large to see any clear peaks or
regularities. We repeat the experiment with the Galaxy S2 and reach similar
results, i.e., 23.3ms intervals (averaged over 1.5 seconds) with a 20-20 pattern
and no clear peaks with a 10-10 pattern. From this we conclude that 20ms is a
reasonable lower bound on our control over the vibration duration.

2.2.2 Accelerometer

The accelerometer is a sensor that measures acceleration applied to the phone
in all three dimensions. In Android an application can register with the so
called SensorManager to receive updates whenever new raw sensor readings are
available. In order to find out how fine-grained they are, we let the Galaxy S4
vibrate with various different patterns and place it on a wooden table next to
the Galaxy S2, which records the sensor data. From the log messages we know
that the accelerometer is sampled at 100Hz on average (every 10 milliseconds).
Figure 2.2a shows the readings along the Z-axis1 for a 100-200 pattern, where
we can clearly see the individual peaks produced by the vibrator. The time
between the peaks is 107.1ms (averaged over 3 seconds), so again we see the
lack of accuracy of the vibrator. For comparison, Figure 2.2b shows the sensor
readings for a 50-200 pattern. Here we still see the peaks, but they are much
more irregular.

1After subtracting the effects of gravity all three axes produce similar results, but the Z-axis
shows the most distinct shape.

2. Vibration Communication 4

time in ms
0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
w

 s
en

so
r

re
ad

in
gs

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1
z-axis accelerometer for 100-200 pattern

(a) 100-200 pattern

time in ms
0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
w

 s
en

so
r

re
ad

in
gs

9.4

9.45

9.5

9.55

9.6

9.65

9.7

9.75

9.8

9.85
z-axis accelerometer for 50-200 pattern

(b) 50-200 pattern

Figure 2.2: Amplitude of vibration patterns produced by the Galaxy S4, recorded
by Galaxy S2 (showing only accelerometer’s Z-axis).

2.2.3 Evaluation

We conduct a series of experiments in which we place the Galaxy S2 and the
Galaxy S4 on different surfaces and in different relative positions, where one of
them vibrates with a 500-500 pattern and the other one records the acceleration
along the Z-axis. From the results we make a number of interesting observations:

• Placing the phones side-by-side on a wooden surface yields the best results,
as opposed to stacking them on top of each other or placing them on textile
or stone surfaces.

• The accelerometer readings of the Galaxy S4 show a high amount of noise
(compare Figure 2.3a to 2.3b). The data is bad even when recording the
acceleration from its own vibrator. We conclude that accelerometers among
other sensors can be heavily device dependent and thus have to be used
with care.

• When we place the phones on a large wooden table, e.g., the kind found in
lecture rooms, we are able to reliably record the vibration over a distance of
6m. We assume that the vibration pattern would propagate much further,
but we were unable to find a suitable surface to test this assumption.

2. Vibration Communication 5

time in ms
0 200 400 600 800 1000 1200 1400 1600 1800

ra
w

 s
en

so
r

re
ad

in
gs

-10

-5

0

5

10

15

20

z-axis accelerometer for 500-500 pattern
Galaxy S2

(a) Galaxy S2

time in ms
0 200 400 600 800 1000 1200 1400 1600 1800

ra
w

 s
en

so
r

re
ad

in
gs

9.3

9.32

9.34

9.36

9.38

9.4

9.42

9.44

9.46

z-axis accelerometer plot for 500-500 pattern
Galaxy S4

(b) Galaxy S4

Figure 2.3: Comparison of measurement quality for accelerometer of different
devices.

2.3 Vibrator to Microphone

2.3.1 Accelerometer versus Microphone

Experiments with the accelerometer show severe device dependency and low
sampling rates. With the microphone, however, we have a very high sampling
rate and less device dependency. Figure 2.4 shows the recording of a 20-20
vibration pattern comparing accelerometer and microphone. Apparently, the
vibrator is loud enough to be recorded by the microphone over a short distance
and thus we can use it to record vibrations at a much higher sampling rate than
with the accelerometer.

2.3.2 Detecting Vibrator with Microphone

Unlike the accelerometer the microphone is prone to acoustic noise. This forces
us to find a way to separate the vibrator’s sound from the rest, hence we have to
analyze the vibrator’s audible footprint. To do this we transform the recorded
audio signal from the time into the frequency domain using Fast Fourier Trans-
form. Figure 2.5b shows the vibrator’s frequency spectrum clearly indicating
three peaks at around 204Hz, 408Hz and 613Hz, whereas these peaks are not
present in a silent environment as shown by Figure 2.5a.

Holding the phones back-to-back while vibrating improves the signal propa-
gation drastically. An additional peak at around 816Hz can be observed. Fig-
ure 2.6 suggests that the vibrator operates at roughly the same frequencies on all
tested devices which enables device independent filtering of the vibrator signal.
To check whether this could still work in a noisy environment we compare the

2. Vibration Communication 6

time in seconds
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ra
w

 s
en

so
r

re
ad

in
gs

9.4

9.45

9.5

9.55

9.6

9.65

9.7

9.75

9.8

9.85

z-axis accelerometer for 20-20 pattern
Galaxy S4 to S2 side by side

(a) Accelerometer

Time in seconds
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
m

pl
itu

de

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
20-20 - Time Domain

(b) Microphone

Figure 2.4: Recording vibration with accelerometer versus microphone. Galaxy
S4 is vibrating, S2 recording, on a wooden table side by side.

vibrator recording to a recording taken in a cafeteria during lunch time which
is shown in Figure 2.7. We conclude that at least the 204Hz frequency could be
extracted when holding the phones back-to-back in such an environment.

Frequency (Hz)
0 100 200 300 400 500 600 700 800 900 1000

P
ow

er
/F

re
qu

en
cy

 in
 d

B
/H

z

-140

-130

-120

-110

-100

-90

-80

-70

-60

silent - Frequency Domain
(Power Spectral Density single-sided)

max = -77.0839dB @ 87.5499Hz

(a) Silence

Frequency (Hz)
0 100 200 300 400 500 600 700 800 900 1000

P
ow

er
/F

re
qu

en
cy

 in
 d

B
/H

z

-140

-130

-120

-110

-100

-90

-80

-70

-60

50cm-nobg-permafib - Frequency Domain
(Power Spectral Density single-sided)

max = -70.558dB @ 204.266Hz

(b) Vibrating 50cm away

Figure 2.5: Audio recorded by Galaxy S2 in frequency domain, silent versus S4
vibrating 50cm away on concrete floor. Higher frequencies are much lower and
thus omitted.

2.3.3 Matched Filter

Although technically FFT could be used to transform small samples of audio
data into frequency domain and analyze the signal there, it is not very practical

2. Vibration Communication 7

Frequency (Hz)
0 100 200 300 400 500 600 700 800 900 1000

P
ow

er
/F

re
qu

en
cy

 in
 d

B
/H

z

-140

-120

-100

-80

-60

-40

-20

Frequency Domain (N2-s, S2-N2-btb)

no vibration
vibration

(a) Galaxy S2 to Note 2

Frequency (Hz)
0 100 200 300 400 500 600 700 800 900 1000

P
ow

er
/F

re
qu

en
cy

 in
 d

B
/H

z

-140

-120

-100

-80

-60

-40

-20

Frequency Domain (S4-s, N2-S4-btb)

no vibration
vibration

(b) Note 2 to Galaxy S4

Figure 2.6: Frequency domain of recorded vibration holding the phones back-to-
back compared to recording without any vibrating phone nearby.

Frequency (Hz)
0 100 200 300 400 500 600 700 800 900 1000

P
ow

er
/F

re
qu

en
cy

 in
 d

B
/H

z

-140

-120

-100

-80

-60

-40

-20

Frequency Domain (loud_background_noise, S4-S2-btb)

no vibration
vibration

Figure 2.7: Galaxy S4 vibrating and S2 recording back-to-back compared to a
noisy background (cafeteria at lunch time).

2. Vibration Communication 8

because of the computational overhead. As an alternative we take a look at
the Matched Filter technique which we apply directly to the audio signal of
a vibration pattern (20ms vibrating, 300ms pause) in the time domain. As a
template we manually extract a single 20ms vibration segment and use it on the
full signal. As a result we get the correlation of the template within the signal,
peaking on the best match (see Figure 2.8). In the presence of background noise
it gets more difficult to identify the vibration sound and the result is partially
flawed as can be seen in Figure 2.9b. As a noisy environment we again use
the cafeteria at lunch time which features a lot of variation in frequency and
intensity. We conclude that, in general, Matched Filter can be used to detect
the vibration signal in a noisy environment as long as the noise is not too similar
to the vibration frequency.

Time in ms
0 10 20 30 40 50 60 70 80 90 100

A
m

pl
itu

de

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
N2-S4-20-300_NOBG - Matched Filter

time domain
correlation

Figure 2.8: Note 2 to Galaxy S4 vibration detection with Matched Filter.

2.4 Speaker to Microphone

One of the limitations of the vibrator is that it is not possible to control the
volume or frequency of the sound it produces. Having shown that we can use a
microphone to record a vibration pattern and extract information from it we look
at the alternative of using the phone’s speaker instead to produce the desired
frequencies. For this we perform a few tests in which we use one of the phones
to produce a sound at 204Hz and another phone records it.

2. Vibration Communication 9

Time in ms
4100 4200 4300 4400 4500 4600 4700 4800 4900

A
m

pl
itu

de

-1.5

-1

-0.5

0

0.5

1

1.5

N2-S4-20-300 - Matched Filter
Working for range 4.1 - 4.9s

time domain
correlation

(a) Vibration can be detected

Time in ms
5000 5050 5100 5150 5200 5250 5300 5350 5400 5450 5500

A
m

pl
itu

de

-1.5

-1

-0.5

0

0.5

1

1.5

N2-S4-20-300 - Matched Filter
Failing for range 5.0 - 5.5s

time domain
correlation

(b) Vibration cannot be detected

Figure 2.9: Note 2 to Galaxy S4 vibration detection with Matched Filter in a
noisy environment. On the left 3 peaks at roughly 300ms intervals are visible.
On the right loud background noise produces many false-positives.

2.4.1 Speaker Volume

When applying the Matched Filter technique to recordings from a quiet envi-
ronment, the speaker approach yields similar results to the ones we encountered
when using the vibrator. Examining the signal in the time domain shows how-
ever that the speaker’s peaks are of significantly higher magnitude as can be seen
in Figure 2.10. As a consequence, the speaker has a clear advantage over the
vibrator in a noisy environment as shown in Figure 2.11. In this scenario we can
simply increase the speaker’s volume such that its pattern can still be detected
by the Matched Filter, whereas the vibrator’s pattern is mostly drowned out by
the noise, resulting in fewer matches.

2.4.2 Speaker Frequency

In addition to adapting the volume we can change the frequency of the generated
tone. With multiple frequencies we can encode information in an intuitive way.
Figure 2.12 shows a pattern of six different frequencies (261, 293, 329, 349, 391
and 440Hz) played at half of the maximum volume level. Those frequencies lie
close together in a small area of the audible frequency band whereas the frequency
spectrum is much larger and we could possibly use frequency modulation to
achieve high data rates. However, since plenty of research has already been done
on the subject [3, 4, 5], our aim is not to optimize the data rate of acoustic data
channels but to conduct a simple feasibility test on smartphones. Using Matched
Filter with templates of different frequencies we can indeed distinguish the tones
quite well as shown in Figure 2.13.

2. Vibration Communication 10

Time in seconds
0 0.1 0.2 0.3 0.4 0.5 0.6

A
m

pl
itu

de

-0.3

-0.2

-0.1

0

0.1

0.2

N2-S4-20-300 - Time Domain

(a) Vibrator

Time in seconds
0 0.1 0.2 0.3 0.4 0.5 0.6

A
m

pl
itu

de

-0.3

-0.2

-0.1

0

0.1

0.2

N2-S4-20-300-speaker - Time Domain

(b) Speaker

Figure 2.10: Recording vibrator compared to speaker without background noise.
The amplitude is higher and more controllable with the speaker.

Time in seconds
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
m

pl
itu

de

-0.6

-0.4

-0.2

0

0.2

0.4

N2-S4-20-100 - Time Domain

(a) Vibrator

Time in seconds
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
m

pl
itu

de

-0.6

-0.4

-0.2

0

0.2

0.4

N2-S4-20-100-speaker-204Hz - Time Domain

(b) Speaker

Figure 2.11: Recording vibrator compared to speaker with background noise.
The vibrator sound gets drowned by the noise while the speaker can be adapted
by increasing the volume.

2. Vibration Communication 11

Time in seconds
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

50-50 - Time Domain

Figure 2.12: Galaxy S4 to S2 sending different frequencies in a 50-50 pattern.
The frequency pattern is 261, 293, 329, 349, 391, 391, 440, 440, 440, 440, 391,
440, 440, 440, 440, 391, 349, 349, 349, 349, 329, 329, 391, 391, 391, 391, 261Hz.

2.5 Conclusions

We have shown that it is possible to use off-the-shelf smartphones to establish
a communication channel between the vibrator and the accelerometer. Due to
the limitations in control and speed of these two devices such a channel would
reach only low throughput. Our experiments showed that the vibration signal
propagated much further than expected, which makes such a channel unsuitable
for security applications in an environment where the propagation medium can-
not be controlled. Furthermore, since the performance of the accelerometer as
well as the vibrator depends on the phones that are used we believe that such a
channel would require too much parameter tuning and calibration overhead to
be practical for efficient data transmission. It is, however, suitable to transmit
very small amounts of information, as was shown in [1].

Using the microphone instead of the accelerometer, due to a higher sampling
rate, increases the speed at which data can be transmitted. It also allows for a
longer communication distance. The downside however is that this channel is
prone to heavy noise, depending on the environment. Given the fact that the
vibrator’s volume cannot be increased to cope with such a scenario we see no
advantage over other communication methods.

Replacing the phone’s vibrator with the speaker turned out to be an im-
provement due to the ability of changing volume and frequency. This opens up

2. Vibration Communication 12

the possibility to encode information not only in the time domain but also in
the frequency domain, which we briefly explored. At this point we decided to
not pursue this topic any further since a lot of research has already been done
on communication over an acoustic channels. Multiple sophisticated implemen-
tations already exist on smartphones [4] [5].

Time in seconds
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50-50 - Matched Filter - 329Hz

(a) 329Hz

Time in seconds
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50-50 - Matched Filter - 349Hz

(b) 349Hz

Time in seconds
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50-50 - Matched Filter - 391Hz

(c) 391Hz

Time in seconds
0 0.5 1 1.5 2 2.5

A
m

pl
itu

de

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50-50 - Matched Filter - 440Hz

(d) 440Hz

Figure 2.13: Matched Filter with different frequency templates. One can clearly
see which frequencies are present at which times in the pattern.

Chapter 3

Visible Light Communication

In this chapter we explore how visible light communication (VLC) can be imple-
mented on smartphones across distances of a few meters and what the possibili-
ties and limitations are.

3.1 Related Work

M. M. Galal et. al. [6] [7] showed how the LED of a smartphone can be used
to form a secure one-way visual channel to a photodetector over a very short
distance, e.g., to send the information from a magnetic card to an ATM. J.
Ekberg et. al. [8] propose a system that uses cameras, screens, and LEDs of two
smartphones to provide mutual authentication when they are close to each other.
In contrast, our goal is to use off-the-shelf smartphones only, i.e., no additional
hardware as is the case with [6] [7], and build a system for sending messages
across longer distances, similar to Morse code.

3.2 Algorithm

For our visible light communication channel we developed a data encoding schema
and an algorithm consisting of two parts. One part is the encoding and decoding
of the message and the other is detecting the blinking part in video frames used
to locate the sender. In combination these parts can be used to send and receive
short messages (a few bits) or even locate a person in a crowd, for example in a
stadium, based on a characteristic blinking pattern.

3.2.1 Encoding and Decoding

We communicate by turning the flashlight LED on and off in time slots of fixed
length, which have to be large enough for the camera to detect. Relying on
smartphone cameras limits the speed of transmission severely due to their low

13

3. Visible Light Communication 14

frame rate. The sender repeats its signal without preamble, but with a detectable
pause in-between such that the receiver can at any time connect to the sender
and then record until one message is completely sent and decode. As a payload
we choose short binary messages of four to eight bits. Since our carrier signal is
also binary we modulate zero as 01, one as 011 and pause as 00 where 0 stands
for LED off and 1 for LED on. While this might not be optimal in terms of data
transmission rate, it turned out to work well with our non-synchronized timing
slots as well as for the blinking detection.

zero-centering

segmentation at
zero-crossings

find start
and end

distinguish
zero and
one bits

timestamps brightness values

segments

message

Figure 3.1: Decoding a message from brightness values and their corresponding
timestamps.

The decoding part of the algorithm takes a vector representing the bright-
ness over time for the image part of the video where the blinking was detected.
As brightness we denote the sum of the grayscale pixel values. For each video
frame we get one brightness value together with the frame’s timestamp. The
timestamp is required because the frame rate may vary and unfortunately we
cannot assume the frames to be equidistant in time. As a first step, we subtract
the mean from each brightness value, thereby zero-centering the data. Then
the vector gets partitioned along the zero-crossings into segments which are ei-
ther above or below zero and with a duration assigned which is the difference
between the first data point in the next segment and the first in the current
segment. Thanks to the low speed of the camera the slot times are high enough
to distinguish between single and double slots even with jitter and without clock
synchronization. Negative segments of two slots mark the transition from one
message to the next (see Figure 3.2a). Positive segments in between correspond
to the payload bits according to their duration where a single slot means zero

3. Visible Light Communication 15

and a double slot means one. Figure 3.2b shows an example decoding for the
message 01110010 with the positive segments mapped to the corresponding bits.
Figure 3.1 summarizes the decoding algorithm.

frames
0 20 40 60 80 100 120 140 160 180

br
ig

ht
ne

ss

-2

-1.5

-1

-0.5

0

0.5

1

normalized brightness with message segmentation
80ms slot time at 30fps

brightness
beginnings

(a) Segmentation

frames
0 10 20 30 40 50 60

br
ig

ht
ne

ss

-1.5

-1

-0.5

0

0.5

1

single message with zeros and ones decoded
80ms slot time at 30fps

brightness
ones
zeros

(b) Decoding

Figure 3.2: Decoding algorithm for 80ms slot time at 30 frames per second.
Extracting a single message and decode to 01110010.

3.2.2 Blinking Detection

To feed the decoding part with the correct data we have to locate the part of
the image where the blinking resides. Therefore, we lay a grid over every video
frame and compute the brightness value from the grayscale pixels in each grid
cell. Choosing a suitable cell size is crucial. If the cells are too large the blinking
might be drowned by the noise in the cell, if the cells are too small the blinking
is likely to jump from one cell to another due to camera shake. The optimal size
depends on the distance between the sender and receiver and thus is a parameter
for this algorithm provided by the user. Experimentally we figured out that a
grid cell size of around 30 pixels (at a resolution of 640 × 480) works well for
distances up to 10 meters. Note that in general it is better for detection to
use small cells, however the smaller the cells the more computational effort is
required from having to analyze brightness over time for each cell. Things get
even worse because we need to shift the grid to avoid the blinking to hit a border
between two or more cells. We shift the grid by half of the cell size horizontally,
vertically and in both directions resulting in a total of four grids which results
in a large number of cells (see Figure 3.3). Unfortunately this restricts the video
resolution and with it the maximum distance at which we can detect blinking
due to the limited computational power on smartphones. In theory however,
the algorithm could be used for arbitrary resolutions and small grid cell sizes
enabling blinking detection on greater distances with a stable camera setup.

3. Visible Light Communication 16

(a) Original grid (b) Horizontal shift (c) Vertical shift (d) Combined shifts

Figure 3.3: To increase the probability that the blinking lies completely within
one of the square cells, as is the case in b), the grid is shifted by half the grid
size in both directions, resulting in 4 grids.

frames
0 10 20 30 40 50 60

br
ig

ht
ne

ss

×105

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

60-60
brightness

sum over all pixels per grid cell

(a) Bright environment

frames
0 10 20 30 40 50 60

br
ig

ht
ne

ss

×104

0

1

2

3

4

5

6

7

8

9

60-60_dark
brightness

sum over all pixels per grid cell

(b) Dark environment

Figure 3.4: Brightness values for each grid cell. This illustrates how much easier
it is to detect and decode in a dark environment. Note that the values are
considerably smaller in darkness.

3. Visible Light Communication 17

Figure 3.4 shows the brightness values for cells of size 30 × 30 pixels for a
simple 60-60 blinking pattern in both a bright and a dark room. It clearly illus-
trates how much simpler detection is in a dark environment. After extracting the
brightness values for each cell we want to find those with a high periodicity. To
achieve this we use an autocorrelation approach which low-pass filters the zero-
centered brightness values with the normalized values used as a template.1 Equa-
tion 3.1 shows the formula we use to quantify the periodicity of the brightness
in a grid cell. n ranges from 1 to #frames and K = min(#frames− 1, n− 1).
Figure 3.5 illustrates the outcome of the filtering.

y(n) =
K∑
k=0

normalized x(k + 1) · zerocentered x(n− k) −
K∑
k=1

y(n− k) (3.1)

Periodic cells peak higher than non-periodic ones so we can coarsely separate
blinking from non-blinking cells by thresholding at a percentage of the maximum
using the highest peak of a cell as a score. We discard all cells that do not reach
40% of the highest score over all cells. The threshold is determined empirically
and is justified by the fact that we assume the video to be stable and thus
the cells which do not contain any blinking only vary minimally which leads to
little correlation whereas the blinking and its reflections correlate much stronger.
So the threshold of 40% basically separates signal from noise leaving us with a
handful of cells either showing the blinking directly or a reflection of it. Figure 3.6
shows the 30 × 30 pixel cells that passed the filtering.

frames
0 10 20 30 40 50 60

co
rr

el
at

io
n

×105

-3

-2

-1

0

1

2

3

60-60
self correlation

(a) Bright environment

frames
0 10 20 30 40 50 60

co
rr

el
at

io
n

×106

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

60-60_dark
self correlation

(b) Dark environment

Figure 3.5: Filtering of the brightness values for each cell. The higher the value
the more periodic is the brightness in the cell.

1This corresponds to the Matlab function filter [9] whose implementation is discussed
in [10]

3. Visible Light Communication 18

Figure 3.6: Blinking detection including reflections on the ceiling.

Figure 3.7: Blinking detection with the reflections on the ceiling removed.

3. Visible Light Communication 19

For decoding, a reflecting cell may be sufficient but we also want to locate
the sender so further filtering has to be done. When comparing reflecting with
blinking cells we notice that reflections most often occur on flat specular surfaces
such as ceilings or floors. Reflections on flat surfaces are spacious and often
completely fill the cell in contrast to the cell with the blinking flashlight which
shows a bright spot surrounded by darkness. In other words, the contrast of a
blinking cell is high whereas for reflections it is often low. While this reasoning
is not completely foolproof and might be invalid under special circumstances,
it turns out to be a good heuristic. As a contrast score of a cell we take the
standard deviation over the pixel values of a single frame where the flashlight is
on. To guarantee that we have such a frame we compute the standard deviation
for sufficiently many consequent frames and take the maximum. Figure 3.7 shows
the result of the filtering step thresholding at 90%. For decoding we take the cell
which scores the highest. A summary of the detection algorithm can be found
in Figure 3.8.

video frames (grayscale) best cells

cells

shifted
grid

brightness
correlation
thresholding

contrast
thresholding

Figure 3.8: Detecting blinking patterns in a video.

3.3 System Components

3.3.1 Flashlight

A potential lower-bound on the rate at which we can transmit data over a visible
channel is the rate at which the phone’s flashlight can be toggled. Android pro-
vides us with two different ways of scheduling periodic tasks; Handlers (using the
postDelayed method) and Timers. We implement both and measure their per-
formance by logging timestamps during execution. Figure 3.9 shows the results
for an 80-80 pattern. We can clearly see that the postDelayed approach lacks
both in precision and in accuracy, while it also shows large periodic peaks, which
we assume occur due to interference from the garbage collector. The Timer on
the other hand appears to be much more reliable. The reason for this is that
it produces less overhead of creating or recycling Java objects and that it does
not run on the UI-thread, which is typically busy with updating the screen and
handling user input. As a result we rely on using Timers for the rest of this
project.

3. Visible Light Communication 20

On/Off steps
0 20 40 60 80 100 120

S
ta

te
 d

ur
at

io
n

(m
s)

70

80

90

100

110

120

130

140

150

160

170
Flash Timing Comparison

postDelayed
mean postDelayed
Timer
mean Timer

Figure 3.9: Comparison between Handler and Timer for an 80-80 flashing pat-
tern. The Y-axis indicates the time that passed between two steps in the pattern,
where 80ms is the ideal duration.

To see how fast we can actually toggle the flashlight we use the high-speed
camera of an iPhone 6 (240fps) to record blinking patterns of different interval
length. From these recordings we conclude that we can turn the flashlight on
and off at intervals of 10ms, while 5ms seems to be too short to still be accurate
enough.

3.3.2 Camera

According to their specification all the smartphone cameras we looked at support
frame rates of up to 30fps. To verify this number we have the camera record the
top of a record player running at 45 revolutions per minute on which we place a
white marker. By counting the number of frames it takes the marker to cycles
around the center three times and dividing it by 4s (3 ∗ (60s/45)) we are able to
infer the actual frame rate and can verify that it is according to specificiation,
even in low-lighting conditions.

Unfortunately Android does not provide a way to handle a video stream
from the camera at 30fps in a frame-by-frame manner.2 Furthermore, there is
no support to read a video file frame-by-frame,3 which makes it impossible for us
to first record to a video file, then process it. This leaves us with two alternatives
in which we can record frames and process them afterwards:

PreviewCallback
When displaying the camera preview in an application we have the option

2Reading a video stream frame-by-frame may be possible with Android L’s new Camera2
API, though we are not sure whether it would operate at 30fps. Since Android L is still fairly
new and not widely deployed at the time of this writing we decided to stick with the old Camera
API.

3Reading video files would require us to compile the FFMPEG library for Android.

3. Visible Light Communication 21

to register a callback method that gets called every time a new frame is
displayed. The first parameter to the callback contains the frame encoded
in YUV-format as a byte array. For our purpose this is a convenient format
since we only need the brightness information (and not the colors) which
is stored in the first width× height bytes of the YUV-frame. From exper-
iments we know that this approach typically reaches frame rates of about
20fps, depending on lighting conditions.

OpenCV’s CvCameraViewListener2
The OpenCV library for Android [11] allows us to implement its CvCamer-
aViewListener2 interface, which features a method that is called for every
new frame from the camera. We can use it to store the frames in mem-
ory in the form of a (grayscale) pixel matrix. The performance with this
approach seems to be similar to the previous one, reaching around 20fps.

To summarize, we cannot benefit from the camera’s 30fps. Instead we have
to fall back to using lower frame rates, which dictates a new lower-bound on the
achievable throughput of our channel.

3.4 Prototype

To show the correctness of our algorithm we build a prototype application as a
proof of concept and evaluate it.

Figure 3.10: Screenshot of the prototype application in action showing the result
screen. The decoded message is shown in the top left corner.

3. Visible Light Communication 22

3.4.1 Implementation

Our prototype implements both the detection and decoding part of the algorithm
on Android. We use OpenCV to access the video frames and also use the included
libraries with native support to do fast matrix and vector operations. The user
can send binary messages of up to eight bits in a unidirectional channel. The
receiving part records frames for a fixed amount of time long enough to capture
a complete message of maximum length (8 bits) and starts processing. After
processing, a single frame is displayed with the best cell marked and the decoded
message shown. The frames are kept in memory as grayscale matrices in 480p
resolution. The processing includes all the steps described in Section 3.2. Most
of the computation time is due to the correlation filtering step, which is the most
costly part and has to be applied to every grid cell. We improve the performance
by parallelizing this step, which speeds it up by roughly one third. Using larger
cells would improve performance even further but reduces the precision, leading
to an undesirable tradeoff. Figure 3.10 shows the processing and result screen.

3.4.2 Evaluation

To evaluate the prototype we fixed two phones (the Galaxy Note 2 for blinking
and the Galaxy S4 for recording) on tripods and took them out into the field.
We used three different blinking patterns (00000000, 11111111, and 10110010),
each of which we repeated 5 times, and tested how well the prototype could
detect and decode them. We did this both during the day (cloudy sky) and
during the night. Since we could not observe any significant differences between
the three patterns we group them together into 15 repetitions per distance and
lighting. The results are shown in Table 3.1.

Table 3.1: Success rate of detecting, i.e., locating the flashlight, and decoding
blinking patterns, produced by the Galaxy Note 2 and recorded by the Galaxy
S4, at different distances and in different lighting conditions. Three different
patterns, each repeated five times, were used for each experiment.

5m 15m 30m

Detect Decode Detect Decode Detect Decode

Night 100% 100% 100% 93% 100% 100%

Day 100% 93% 60% 50% 53% 40%

As we can see the prototype performs very well in a dark environment, both in
detecting and decoding the message. In a bright environment, however, the rate
of success quickly drops with increasing distance, making it practically unusable
beyond 15m. The reason for this behavior is that the grid size is too large and
as such there is too little variation in brightness within the blinking cell for it to

3. Visible Light Communication 23

be detectable. With a darker background this variation is much higher, making
detection easier. An additional effect that improves the detection rate at night
is the fact that the camera’s auto-focus does not work properly, which causes the
blinking light to appear larger. As a result it better matches the grid size and
detection becomes easier.

Some additional tests (with the same setup) showed that during the night
the prototype still works at a distance of 130m with a success rate of 100% for
detection and 60% for decoding.

The average processing time, in addition to the 8 seconds of recording, was
18.5s, which is, unfortunately, much too slow to be practical.

3.5 End-user Application

The prototype works well as a proof of concept, but is not very user friendly. The
dependency on OpenCV, which requires the user to install an additional third-
party application, the slow processing speed and the lack of a duplex channel
render the prototype useless in practice. We come up with the new applica-
tion BlinkEmote, addressing all of these issues and introducing an entertaining
emoticon chat for the flashlight-to-camera channel.

3.5.1 Implementation

As a first step we drop OpenCV completely for two reasons. On the one hand
because we do not want our application to rely on a third-party manager and
on the other hand we encountered problems with OpenCV on certain devices
causing the prototype to run stable only on Samsung devices. Instead we get
the frames directly from Android using the camera preview and converting from
YUV-format to grayscale. To shorten the processing time we drop the detection
part and focus on decoding only. Detection is now left to the user who has to
align the camera with help of crosslines at the center of the screen such that it
points directly towards the blinking flashlight. The user may also adapt the size
of the crosslines with an intuitive pinch-and-zoom gesture. We use this feature
for user-assisted cell size optimization. All the user has to do is to choose an
appropriate grid size and keep the blinking flashlight within the cell for a few
seconds.

To assist the user in keeping the image stable, we use Android’s built-in video
stabilization and further enhance it with gyroscope data to compensate shake by
moving the crosslines in the opposite direction. The gyroscope support can be a
little annoying due to improper calibration so we put it in as an optional feature,
which can be toggled by tapping the screen. To enable duplex communication we
merge the sending and receiving part into a single Activity and perform decoding

3. Visible Light Communication 24

00000 0

00001 1

00010 1

00011 0

00100 1

00101 0

00110 0

00111 1

01000 1

01001 0

01010 0

01011 1

01100 0

01101 1

01110 1

01111 0

10000 1

10001 0

10010 0

10011 1

10100 0

10101 1

10110 1

10111 0

11000 0

11001 1

11010 1

11011 0

11100 1

11101 0

11110 0

11111 1

Figure 3.11: BlinkEmote features 32 emoticons that can be sent and received.
Each of them is encoded as a 5-bit-pattern plus an even parity bit.

periodically in a background process. Instead of the raw bits the user is presented
with a broad repertoire of emoticons, each of which is encoded as a 5-bit pattern
plus an even parity bit to avoid false-positives (see Figure 3.11). Figure 3.12
shows screenshots of the emoticon selection menu and the application in action.

3.5.2 Evaluation

The application works well even in duplex mode and over some distance. The
maximum distance depends on the lighting conditions and on how well the user
can aim and stabilize the phone. Depending on the message we reach a data rate
of 21 to 30 bits per minute with a latency of about 2 seconds.

The additional anti-shake mechanics based on gyroscope are questionable
and did only improve the handling on the HTC One whereas on all the Samsung
phones the drift was too strong for it to be useful. While the direct usage of the
application might not be evident the feedback was throughout positive and the
application was considered to be fun. One major problem however is the bright
flashing which gets annoying and could potentially damage the eye or might even
trigger epileptic seizures. As a first countermeasure we added a warning message
to inform the user upon first use of the application.

3.6 Conclusions

We showed that VLC can be implemented on modern smartphones in a way
that is fast enough for end-users to send short messages over distances of a few

3. Visible Light Communication 25

(a) Emoticon selection

(b) Sending and receiving emoticon

Figure 3.12: Screenshots of the end-user application BlinkEmote in action. The
user is sending an emoticon (selected at the bottom) while simultaneously re-
ceiving one from his colleague (displayed in the top left corner).

3. Visible Light Communication 26

meters, at a rate of about half a bit per second. We also showed an algorithm
to locate a blinking light source in a video, but the performance of the typical
smartphone is not high enough to do so in reasonably short time. The main
limitations are currently the low frame rates of the camera as well as the lack of
computation power to perform complex operations.

3.6.1 Future Work

Smartphone technology is rapidly improving, performance and cameras are get-
ting better. The iPhone 6 for example features a camera with 240 frames per
second which could drastically improve our data rate. The possibilities of An-
droid’s new Camera2 API are yet to be explored. Data rate could be further
improved by using a more efficient encoding schema and optimizing the slot time.
Looking deeper into the gyroscope stabilization may help to extend the distance
at which the application could operate. Security is another aspect to be inves-
tigated, especially if flashlight communication is used outside the entertainment
domain. Finally, one could investigate the use of infrared light instead of visible
light to improve user acceptance, as we see more and more smartphones equipped
with IR-hardware.

Bibliography

[1] Studer, A., Passaro, T., Bauer, L.: Don’t Bump, Shake on It: The exploita-
tion of a popular accelerometer-based smart phone exchange and its se-
cure replacement. Technical Report CMU-CYLAB-11-011, CyLab, Carnegie
Mellon University (Feb 2011)

[2] Hwang, I., Cho, J., Oh, S.: Privacy-aware communication for smartphones
using vibration. In: Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2012 IEEE 18th International Conference on. (Aug
2012) 447–452

[3] : Wikipedia - Dial-up Internet access. http://en.wikipedia.org/wiki/
Dial-up_Internet_access

[4] Frigg, R., Corbellini, G., Mangold, S., Gross, T.: Acoustic data trans-
mission to collaborating smartphones - an experimental study. In: Wire-
less On-demand Network Systems and Services (WONS), 2014 11th Annual
Conference on. (Apr 2014) 17–24

[5] Frigg, R., Gross, T.R., Mangold, S.: Multi-channel acoustic data transmis-
sion to ad-hoc mobile phone arrays. In: ACM SIGGRAPH 2013 Mobile.
SIGGRAPH ’13, ACM (2013) 20:1–20:1

[6] Galal, M., El Aziz, A., Fayed, H., Aly, M.: Employing smartphones xenon
flashlight for mobile payment. In: Multi-Conference on Systems, Signals
Devices (SSD), 2014 11th International. (Feb 2014) 1–5

[7] Galal, M., Fayed, H., El Aziz, A., Aly, M.: Smartphones for payments and
withdrawals utilizing embedded led flashlight for high speed data trans-
mission. In: Computational Intelligence, Communication Systems and Net-
works (CICSyN), 2013 Fifth International Conference on. (June 2013) 63–66

[8] Saxena, N., Ekberg, J.E., Kostiainen, K., Asokan, N.: Secure device pairing
based on a visual channel. In: Security and Privacy, 2006 IEEE Symposium
on. (May 2006) 6 pp.–313

[9] : Matlab Filter. http://ch.mathworks.com/help/matlab/ref/filter.
html

[10] : Matlab Filter Implementation. https://ccrma.stanford.edu/~jos/fp/
Matlab_Filter_Implementation.html

[11] : OpenCV for Android. http://opencv.org/platforms/android.html

27

http://en.wikipedia.org/wiki/Dial-up_Internet_access
http://en.wikipedia.org/wiki/Dial-up_Internet_access
http://ch.mathworks.com/help/matlab/ref/filter.html
http://ch.mathworks.com/help/matlab/ref/filter.html
https://ccrma.stanford.edu/~jos/fp/Matlab_Filter_Implementation.html
https://ccrma.stanford.edu/~jos/fp/Matlab_Filter_Implementation.html
http://opencv.org/platforms/android.html

	Abstract
	1 Introduction
	2 Vibration Communication
	2.1 Related Work
	2.2 Vibrator to Accelerometer
	2.2.1 Vibrator
	2.2.2 Accelerometer
	2.2.3 Evaluation

	2.3 Vibrator to Microphone
	2.3.1 Accelerometer versus Microphone
	2.3.2 Detecting Vibrator with Microphone
	2.3.3 Matched Filter

	2.4 Speaker to Microphone
	2.4.1 Speaker Volume
	2.4.2 Speaker Frequency

	2.5 Conclusions

	3 Visible Light Communication
	3.1 Related Work
	3.2 Algorithm
	3.2.1 Encoding and Decoding
	3.2.2 Blinking Detection

	3.3 System Components
	3.3.1 Flashlight
	3.3.2 Camera

	3.4 Prototype
	3.4.1 Implementation
	3.4.2 Evaluation

	3.5 End-user Application
	3.5.1 Implementation
	3.5.2 Evaluation

	3.6 Conclusions
	3.6.1 Future Work

	Bibliography

