
Distributed

 Computing

A RESTful API for the AMIV

Group Project

Hermann Blum, Conrad Burchert, Alexander Dietmüller

blumh@ethz.ch, bconrad@ethz.ch, adietmue@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Barbara Keller

Jochen Seidel

Prof. Dr. Roger Wattenhofer

March 17, 2015

Abstract

As a group project we desgined and implemented an API for our stu-
dent’s association. This Report describes problems with the old infras-
tructure and the ideas behind our new design.
Attached are the User- and Developer Guide which were part of our
work. They describe the API and implementation in a more detailed
and technical way.

Contents

I Group Project Report 4

1 Introduction 4

2 Development in the past and current Situation 4

3 Concept and Goal 4

4 Solution 5

5 Outlook 6

II Developer Guide 8

6 General 8

6.1 Used Frameworks . 8
6.2 Development status . 8
6.3 Installation . 9
6.4 Configuration . 9
6.5 Running the tests . 10
6.6 Debugging server . 10

7 Architecture 10

8 Security 11

8.1 Authentification . 12
8.2 Authorization . 12

9 Roles 13

1

10 Owner checks 13

10.1 API Keys . 14

11 Localization 14

11.1 Note: Testing . 15
11.2 Note: Automatization . 15

12 Files 16

13 Validation 16

14 Cron 16

III User Guide 17

15 General 17

15.1 About this document . 17
15.2 Portability . 17
15.3 Encryption . 17
15.4 Date format, string format . 17
15.5 About REST . 17
15.6 Response format . 18
15.7 HATEOAS . 19
15.8 Example: First Request . 19

16 Authentification 20

16.1 Example: Login . 21
16.2 Example: Retrieving user . 21
16.3 API keys . 23
16.4 Unregistered users . 23
16.5 Public Events . 23
16.6 Email Forwards . 24

17 GET queries 24

17.1 where clauses . 24
17.2 Projections . 25
17.3 Embedding . 25
17.4 Sorting . 25
17.5 Pagination . 25

18 PUT, PATCH, DELETE queries 26

18.1 If-Match . 26

19 Example: Use PATCH to change a password 26

2

20 Localization: Content in different languages 26

20.1 Example: Create an event with the requests library 26

21 Working with files 29

21.1 Files in Events, Joboffers, etc. 29
21.2 Working with study documents 30

22 Common Problems 30

22.1 PATCH, PUT or DELETE returns 403 30
22.2 How can I send boolean etc to the server using python requests? 30

3

Part I

Group Project Report

1 Introduction

We are members of the student organisation of mechanical and electrical
engineers at ETH Zürich, called AMIV. Working for AMIV we realized that
the current IT-infrastructure is in great need of improvement.
As a group project in the third bachelor year, we redesigned the general
architecture of the system and defined and implemented an API interface
as the central element of the new design.

2 Development in the past and current Situation

Over the years the IT-infrastructure of AMIV has grown with the rest of
the organisation to fit many different needs:: e.g. news articles, event orga-
nization and registration, member management and lots more.
Along the way many tools have been written and integrated into the infras-
tructue as they were needed, since the active members of the organisation
came and went, as they did not have that much time besides their studies
or their time at ETH came to an end.

All of this lead to different problems which we are now facing:
Our current infrastructure is built around the Content Management Sys-
tem (CMS) Drupal which is extended by many self-written modules. The
content is fragmented and our homepage the opposite of user friendly. The
single modules in the CMS can not communicate which each otherThis leads
to a lot of additional work, as one needs to put the same data into different
modules to create e.g. an event that requires a website article, registration
and a calendar entry, which have to be created seperately.
Moreover a single bug which may lead to a blackout in the whole infrastru-
cute could be in any of our (sadly) insufficiently documented modules.

Because of this maintaining the website requires both extensive knowledge
of the CMS and an overview of all the different modules.

3 Concept and Goal

• Division of the infrastructure:

– one database server: Here we store information about members,
events, app-logins, permissions for the homepage, registrations

4

for the pay-system, signups for events

– Homepage on basis of a Content-Management-System (e.g. Word-
press): Here we provide static contents and can show data from
the database-server (events, signups, . . .)

– Applications like a beer-machine, where members can get beer
with their student-card, or our mobile applications will talk to
the database-server to get the data they need

• As a first step we defined interfaces of the components. This defines
also the function, each component has.Our questions were:

– Which function will this component provide?

– Which data-elements will be accessed by whom?

– In which format is the data stored and provided?

– Who has right for which kind of access?

• From the client point of view, there are additional questions:

– How can one verify their identity and right to access e.g. member
data?

– At which point authentication is neccesary?

• Implementation of the interface: We implemented the interface and
the backend functions like relations or authorization and wrote a lot
of tests to be sure that the interface works the way we defined.
We did not already integrate it with the existing database or did any
kind of migration.

• We documented the interface itself, the way to access it (including
code examples in python). We also wrote documentation for admins
and developers.
Documentation is elemantary to conserve our knowledge and ideas
behind the project for future students using this api, also in times we
already left ETH.

4 Solution

On top of the function the frameworks provided and we only had to define
our specific needs, we actively worked on the frameworks (first pull request
already accepted) and implemented further functions:

Data Validation The Cerberus framework comes along with a basic data
validation, e.g. for strings or numbers and also relationships. However,
we wanted to make sure that the data a client POSTs to the api is
semantically correct. So we check for example that an end-time of an
event comes after the start-time.

5

Token based authentication Every login session is identified with a to-
ken. On login with his username and password a user receives a ran-
dom generated token, which he can use to authentificate himself in
subsequent requests. To achieve this we wrote a custom subclass of
Eve’s authentification system, which uses our SQLAlchemy data model
to store currently active sessions and handle login requests.

Role based authorization Thinking about a simple model to define per-
missions for our api, we came along with a role based model for every
big resource-category. A user can be assigned to a role that allows him
to manage events and their signups, or allows him to manage email-
lists.
Thinking about a simple model to define permissions for our api, we
came along with a role based model for every big resource-category. A
user can be assigned to a role that allows him to manage events and
their signups, or allows him to manage email-lists.
We also make sure that a user can only see and manipulate his/her
own eventsignups or userdata by defining one or more owners for every
item in the database.

Different Languages supported for all text fields For master students
in our organisation we wanted to be able to provide english transla-
tions as well. After researching “best practise” cases for this issue we
implemented an additional endpoint that accepts translated content
in (basically) unlimited languages.

Anonymous user support with email-confirmation For different spe-
cial events like info days for high school students we need people to
use our signup tool without having any account. In this case they use
an email-address as identity and we authenticate request by a token
the API send to the given email-address.

Application Tokens Applications like a website which displays events can
authenticate themselves with application-tokens.

File management Eve uses MongoDB as default filestorage. We wanted
to save files in our servers filesystem and were able to implement an
extended MediaStorage Class that can be used by the framework for
this exact purpose.

5 Outlook

With our group project we build the basis for a new IT system of the AMIV.
The definition and documentation of the API allows us to motivate people

6

who want to program small applications. It is no longer necessary for ev-
erybody to learn Drupal. They just need to understand the API and can
write applications in a language they prefer.
A new webpage CMS will now be reduced to providing static content or
data accessed via the API. This makes content administration and design
for active members simpler.
By splitting the IT system up into small pieces we expect to get a robust
system that will serve the AMIV for many years.
Our plan is to migrate the whole infrastructure within one year.

7

Part II

Developer Guide

6 General

6.1 Used Frameworks

AMIV API uses the python-eve1 Framework which is a collection of libraries
around Flask2 and SQLAlchemy3. The best source for information during
development is the EVE Source Code at Eve Github Repository SQL Alchemy Branch4.

The main links for research about the used technologies are:

• Flask5

• SQL Alchemy6

• Flask-SQL Alchemy7

• Werkzeug8

• Eve9

6.2 Development status

Eve is still in early development and changing a lot. That means it might
be possible that we can improve our codebase as more features move into
Eve’s core. We are currently using a patched version of eve-sqlalchemy and
eve-docs, which are forked on github here:

• eve-sqlalchemy fork by Leonidaz0r10

• eve-docs fork by hermannsblum11

1http://python-eve.org/
2http://flask.pocoo.org/
3http://www.sqlalchemy.org/
4https://github.com/nicolaiarocci/eve/tree/sqlalchemy
5http://flask.pocoo.org/docs/0.10/api/
6http://docs.sqlalchemy.org/en/rel 0 9/
7https://pythonhosted.org/Flask-SQLAlchemy/
8http://werkzeug.pocoo.org/
9http://python-eve.org/

10https://github.com/Leonidaz0r/eve-sqlalchemy
11https://github.com/hermannsblum/eve-docs

8

http://python-eve.org/
http://flask.pocoo.org/
http://www.sqlalchemy.org/
https://github.com/nicolaiarocci/eve/tree/sqlalchemy
http://flask.pocoo.org/docs/0.10/api/
http://docs.sqlalchemy.org/en/rel_0_9/
https://pythonhosted.org/Flask-SQLAlchemy/
http://werkzeug.pocoo.org/
http://python-eve.org/
https://github.com/Leonidaz0r/eve-sqlalchemy
https://github.com/hermannsblum/eve-docs
http://python-eve.org/
http://flask.pocoo.org/
http://www.sqlalchemy.org/
https://github.com/nicolaiarocci/eve/tree/sqlalchemy
http://flask.pocoo.org/docs/0.10/api/
http://docs.sqlalchemy.org/en/rel_0_9/
https://pythonhosted.org/Flask-SQLAlchemy/
http://werkzeug.pocoo.org/
http://python-eve.org/
https://github.com/Leonidaz0r/eve-sqlalchemy
https://github.com/hermannsblum/eve-docs

6.3 Installation

To setup a development environment of the API we recommend using a
virtual environment with the pip python package manager. Furthermore
you need git.

The following command works on Archlinux based systems, other distri-
butions should provide a similar package:

1 sudo pacman −S python2−pip g i t

After installing pip create a working environment. First create a folder:

1 mkdir amivapi
cd amivapi

Now create a virtualenv which will have the python package inside and
activate it:

v i r t u a l env venv
2 . venv/bin / ac t i v a t e

Now get the source:

g i t c lone https :// github . com/amiv−eth /amivapi . g i t
2 cd amivapi

Install requirements:

pip i n s t a l l −−al low−ex t e rn a l python−mysql−connector −r
requ irements . txt

6.4 Configuration

Create a configuration:

1 python2 manage . py c r e a t e c on f i g

The tests will create their own database. If you configure a MySQL
Server you will be asked whether the tests should also be run there. If
you don’t activate that they will create temporary databases on the fly in
temporary files. Note that even if they run on a MySQL server they will
create their own database, so you need to have the permissions for CREATE
DATABASE.

9

6.5 Running the tests

To run the tests you need to install tox:

1 pip i n s t a l l tox

Create a config(see above). To run all tests enter

1 tox

To test just one environment use -e with py27, py34, pypi or flake8

1 tox −e py27

To run only some tests specify them in the following way(substitute your
test class):

1 tox −− amivapi . t e s t s . forwards

6.6 Debugging server

To play around with the API start a debug server:

1 python2 run . py

When the debug server is running it will be available at http://localhost:5000
and show all messages printed using the logger functions, print functions or
exceptions thrown.

7 Architecture

The main-directory lists following files:

• authentification.py: Everything about who somebody is. Tokens are
mapped to sessions and logins are handled. Also author fields are set.

• authorization.py: Everything about what somebody can do. Permis-
sions are implemented here.

• bootstrap.py: The Eve-App gets created here. All blueprints and
event-hooks are registered in the bootstrap.

10

• confirm.py: Blueprint and event-hooks regarding the confirmation of
unregistered users.

• cron.py: Jobs run on a regular basis (sending mail about expiring
permissions, cleanup)

• documentation.py: Loads additional documentation for the bluep-
trints.

• forwards.py: Hooks to implement the email-functionality of forwards
and assignments to forwards.

• localization.py: Localization of content-fields.

• media.py: File Storage. Handles uploaded files and serves them to the
user.

• models.py: The Data-Model. As a basis of the API, in the Data-Model
the different Data-Classes and their relations get defined.

• schemas.py: Creates the basic validation-schema out of the data-model
and applies custom changes.

• settings.py: Constants which should not be changed by the admin,
but can be changed by some developer

• utils.py: General helping functions.

• validation.py: Every validation that extends the basic Cerberus-schema-
definition and Hooks for special semantic checks, e.g. whether an end-
time comes after a start-time.

For understanding the structure of the api, the data-model in models.py
is the Point to start.

8 Security

Checking whether a request should be allowed consists of two steps, authen-
tification and authorization. Authentification is the process of determining
the user which is performing the action. Authorization is the process of
determining which actions should be allowed for the authentificated user.

Authentification will provide the ID of the authentificated user in g.logged in user
Authorization will provide whether the user has an admin role in g.resource admin
Requests which are handled by eve will automatically perform authentifi-

cation and authorization. If you implement a custom endpoint you have to
call them yourself. However authorization really depends on what is about
to happen, so you might have to do it yourself. To get an idea of what to do

11

look at the authorization hooks(pre xxx permission filter()). You can quite
certainly reuse that code somehow.

Perform authentification(will abort the request for anonymous users):

1 i f app . auth and not app . auth . au thor i z ed ([] , <resource >, r eques t .
method) :
r e tu rn app . auth . au then t i cat e ()

Replace with the respective resource name.

8.1 Authentification

File: authentification.py
The process of authentification is straight forward. A user is identified by

his username and his password. He can sent those to the /sessions resource
and obtain a token which can prove authenticity of subsequent requests.
This login process is done by the process login function. Sessions do not
time out, but can be deleted.

When a user sends a request with a token eve will create a TokenAuth
object and call its check auth function. That function will check the token
against the database and set the global variable g.logged in user(g is the
Flask g object) to the ID of the owner of the token.

8.2 Authorization

File: authorization.py
A request might be authorized based on different things. These are

defined by the following properties of the model:

pub l i c me thod s = [<methods>]
2 r e g i s t e r e d me t h od s = [<methods>]

owner methods = [<methods>]
4 owner = [< f i e l d s >]

The xx methods properties define methods which can be accessed. Also
a list of fields can be set, which make somebody an owner of that object
if he has the user ID corresponding to the fields content. For example a
ForwardUser object has the list

owner = [’ u s e r i d ’ , ’ forward . owner id ’]

This defines the user referenced by the field user id as well as the user
referenced by owner id of the corresponding Forward as the owner of this
ForwardUser object.

12

I recommend to look over the common authorization() function. The
rules created by it are the following, in that order:

1. If the user has ID 0 allow the request.

2. If the user has a role which allows admin access to the endpoint allow
the request

3. If the endpoint is public allow the request.

4. If the endpoint is open to registered users allow the request.

5. If the endpoint is open to object owners, perform owner checks(see
below)

6. Abort(403)

The function will also set the variable g.resource admin depending on
whether the user has an admin role(or is root).

One thing to note is that users which are not logged in are already
aborted by eve when authentification fails for resources which are not public,
therefore this is not checked anymore in step 4.

9 Roles

Roles can be defined in permission matrix.py. A role can give a user the
right to perform any action on an endpoint. If permission is granted based
on a role no further filters are applied, hence it is refered to as admin access
and g.resource admin is set.

10 Owner checks

If the authorization check arrives at step 5 and the requested resource has
owner fields, then those will be used to determine the results. This is the
case for example when a registered user without an admin role performs
a GET request on the ForwardUser resource. He can perform that query,
however he is supposed to only see entries which forward to him or where
he is the listowner.

This is solved by two functions. When extracting data we need to create
additional lookup filters. Those are inserted by the apply lookup filters()
function which is called by the hooks below it. When inserting new data
or changing data it gets more complicated. First we need to make sure
that the object which is manipulated belongs to the user, that is achieved
using the previously described function. In addition we need to make sure
that the object afterwards still belongs to him. We do not want people

13

moving EventSignups or ForwardUsers to other users. All this is done in the
will be owner() function which is used by the hooks as needed. However to
achieve this the function needs to figure out what would happen if the request
was executed. This is currently done by the resolve future field() function,
which tries to resolve relationships using SQLAlchemy meta attributes for
the data which is not yet inserted.
If this checks out ok, the hooks return, if not the request is aborted.

To check ownership inside your own function for an existing object, you
can use get owner(resource, id) from utils. It will return a list of user-ids
who are owners of the item. A common owner check looks like this:

1 i f g . l o g g e d i n u s e r i s in u t i l s . get owner (< resource >, < id >) :

10.1 API Keys

Instead of a token an API key can be sent. These are generated by man-
age.py and are stored in the config file. If an API key is sent, the user ID
will be –1(the anonymous user) and all actions will be authorized based on
the settings for that key in the config.

For implementation see common authorization() and TokenAuth.check auth()

11 Localization

The api includes support for several languages in four fields which contain
language dependant content, these are:

• joboffers.title

• joboffers.description

• events.title

• events.desription

The general idea is: for every instance of each field we want an unique
ID that can be used to provide translated content.

This is solved using two new resources:

1. translationmappings
This resource is internal (see schemas.py), which means that it can
only be accessed by eve internally.
To ensure that this works with eve and our modifications (like author
fields) we are not using SQLAlchemy relationship configurations to
create this field.

14

Instead the hook “insert localization ids” is called whenever events
and joboffers are created. It posts internally to languagemappings to
create the ids which are then added to the data of post.
The relationship in models.py ensures that all entries in the mapping
table are deleted with the event/joboffer

2. translations
This resource contains the actual translated data and works pretty
straightforward:
Given a localization id entries can be added

How is the content added when fetching the resource?
The insert localized fields hook check the language relevant fields and

has to query the database to retrieve the language content for the given
localization id.

Then it uses flasks request.accept languages.best match() function to get
the best fitting option. (it compares the Accept Language header to the
given languages)

When none is matching it tries to return content in default language
as specified in settings.py (Idea behind this: There will nearly always be
german content). If this it not available, it uses an empty string)

The field (title or description) is then added to the response

11.1 Note: Testing

Both events and joboffers have the exact language fields, but job offers have
less other required fields.
Therefore testing is done with job offers - if there are any problems with
language fields in events, ensure that the tests work AND that all language
fields in events are configured EXACLY like in joboffers

11.2 Note: Automatization

Since there are only four language fields (with title and description for both
events and joboffers, which is convenient) all hooks and schema updates
are done manually. Should a update of the api be intended which includes
several more language fields automating this should be considered.

For every language field the following is necessary:

• Internal post to languagemappings to create the id (locatization.py,
hook)

• Retrieving the content when fetching the resource (locatization.py,
hook)

15

• Adding a id (foreignkey) and relationship to translationmappings (mod-
els.py)

• Removing id from the schema to prohibit manually setting it (schemas.py)

12 Files

For files we wrote our own MediaStorage class as used by Eve by
extending the template12 . The files need a folder which is created in the
process of “create config”.

Maybe in future releases of Eve there will be an official implementation
of file system storage. Maybe it would be useful to use this instead of our
implementation instead in this case.

How Eve uses the MediaStorage Class can be found here13

To serve the information specified in EXTENDED MEDIA INFO the
file “media.py”
contains the class “ExtFile” which contains the file as well as the additional
information Eve needs.

As EXTENDED MEDIA INFO we use file name, size and a URL to
the file. The URL can be accessed over a custom endpoint specified in
“file endpoint.py”, using flask methods.

13 Validation

Luckily the cerberus validator is easily extensible, so we could implement
many custom rules. Those are found in validator.py and are not very com-
plex.

More information on cerberus and its merits can be found in the
Cerberus Documentation14

14 Cron

There are some tasks which are done on a regular basis. This includes
removing expired permissions and unused sessions. Users who’s permissions
expire should be warned prior to this by mail. This is all done by a cronjob.
The cronjob runs cron.py.

12https://github.com/nicolaiarocci/eve/blob/develop/eve/io/media.py
13http://python-eve.org/features.html#file-storage
14https://cerberus.readthedocs.org/en/latest/

16

https://github.com/nicolaiarocci/eve/blob/develop/eve/io/media.py
http://python-eve.org/features.html#file-storage
https://cerberus.readthedocs.org/en/latest/
https://github.com/nicolaiarocci/eve/blob/develop/eve/io/media.py
http://python-eve.org/features.html#file-storage
https://cerberus.readthedocs.org/en/latest/

Part III

User Guide

15 General

[TOC]

15.1 About this document

This document should help somebody who wants to develop a client for
the AMIV API. It focuses on manipulating data via the public interface.
For in depth information see Developer Guide, for reference visit the [API
Reference](https://<base url>/docs).

15.2 Portability

The API is designed and all clients should be designed to be useable outside
of AMIV. Although we will use api.amiv.ethz.ch as the base URL in this
document this is not necessary and a client should provide a config entry for
that.

15.3 Encryption

The API is only accessible via SSL and will never be made public via an
unencrypted channel, as should all your apps.

15.4 Date format, string format

Date and time is always UTC in ISO format with time and without mi-
croseconds. Any different time format will result in 400 Bad Request.

1 %Y−%m−%DT%H:%M:%SZ

All strings are UTF–8.

15.5 About REST

AMIV API is a REST API15. REST is a stateless protocoll modelled after
HTTP. The API consists of resources, which have objects. For example the
resource /users provides access to the member database. Every resource has
the methods GET, POST, PUT, PATCH, DELETE. These are the known
regular HTTP methods, GET and POST being the most well known. The

15https://de.wikipedia.org/wiki/Representational State Transfer

17

https://de.wikipedia.org/wiki/Representational_State_Transfer
https://de.wikipedia.org/wiki/Representational_State_Transfer

API is based on the python-eve16 framework, so you can refer to eve for
detailed information as well.

There are many clients available to use REST and there are libraries for
all kind of programming languages. Many HTTP libraries will also be able
to communicate with a REST API.

The methods meanings:
Resource methods(use i.e. on /users) * GET - Retriving data, query

information may be passed in the query string * POST - Creating a new
entry, the new entry must be provided in the data section

Item methods(use i.e. on /users/4) * PATCH - Changing an entry *
DELETE - Removing an entry * PUT - Replacing an entry, this is like
DELETE immediately followed by POST. PUT ensures no one else can
perform a transaction in between those two queries

15.6 Response format

The status code returned by the API are the standard HTTP status codes17.
Codes starting with 2 mean the operation was successfull, starting with 3
are authentification related, 4 are client errors, 5 are server errors, 6 are
global errors. Most important codes are:

• 200 - OK (Generic success)

• 201 - Created (successful POST)

• 204 - Deleted (successful DELETE)

• 400 - Bad request (This means your request has created an exception
in the server and the previous state was restored, if you are sure it is
not your fault file a bug report)

• 401 - Please log in

• 403 - Logged in but not allowed (This is not for you)

• 404 - No content (This can also mean you could retrive something
here, but no object is visible to you because your account is that of a
peasant)

• 412 - The etag or confirmation-token you provieded is wrong

• 422 - Semantic error (Your data does not make sense, e.g. dates in the
past which should not be)

• 500 - Generic server error

16http://python-eve.org/index.html
17https://de.wikipedia.org/wiki/HTTP-Statuscode

18

http://python-eve.org/index.html
https://de.wikipedia.org/wiki/HTTP-Statuscode
http://python-eve.org/index.html
https://de.wikipedia.org/wiki/HTTP-Statuscode

• 501 - Not implemented (Should work after alpha)

All responses by the API are in the json format18 by default. Using the
Accept header output can be switched to XML, but we encourage to use
json as near to no testing has been done for XML output. If you want XML
support consider reading the Developer Guide and providing unit tests for
XML output.

15.7 HATEOAS

The API is supposed to be human readable, meaning a human can read the
responses and only knowing REST standard can perform any action avail-
able. That means it is possible to get any information about the structure of
the data via the API. Starting at the root node /URL links will be provided
to any object.

Check wikipedia19 for more info.

15.8 Example: First Request

The examples will provide code in python using the requests20 library. If you
are developing a client in the python language requests might be a possible
choice to query the API.

Request:

1 GET /

Code:

1 r e sponse = r equ e s t s . get (” https :// ap i . amiv . ethz . ch/”)

Response:

1 s t a tu s : 200

3 {
” l i n k s ” : {

5 ” ch i l d ” : [
{

7 ” h r e f ” : ”/ f i l e s ” ,
” t i t l e ” : ” f i l e s ”

9 } ,
{

11 ” h r e f ” : ”/ studydocuments” ,

18https://de.wikipedia.org/wiki/JavaScript Object Notation
19https://en.wikipedia.org/wiki/HATEOAS
20http://docs.python-requests.org/en/latest/

19

https://de.wikipedia.org/wiki/JavaScript_Object_Notation
https://en.wikipedia.org/wiki/HATEOAS
http://docs.python-requests.org/en/latest/
https://de.wikipedia.org/wiki/JavaScript_Object_Notation
https://en.wikipedia.org/wiki/HATEOAS
http://docs.python-requests.org/en/latest/

” t i t l e ” : ” studydocuments”
13 } ,

{
15 ” h r e f ” : ”/ fo rwarduse r s ” ,

” t i t l e ” : ” fo rwarduse r s ”
17 } ,

{
19 ” h r e f ” : ”/ forwards ” ,

” t i t l e ” : ” forwards ”
21 } ,

{
23 ” h r e f ” : ”/ s e s s i o n s ” ,

” t i t l e ” : ” s e s s i o n s ”
25 } ,

{
27 ” h r e f ” : ”/ j o b o f f e r s ” ,

” t i t l e ” : ” j o b o f f e r s ”
29 } ,

{
31 ” h r e f ” : ”/ events ignups ” ,

” t i t l e ” : ” events ignups ”
33 } ,

{
35 ” h r e f ” : ”/ fo rwardaddre s se s ” ,

” t i t l e ” : ” fo rwardaddre s se s ”
37 } ,

{
39 ” h r e f ” : ”/ u se r s ” ,

” t i t l e ” : ” u se r s ”
41 } ,

{
43 ” h r e f ” : ”/ events ” ,

” t i t l e ” : ” events ”
45 } ,

{
47 ” h r e f ” : ”/ permis s ion s ” ,

” t i t l e ” : ” permis s i on s ”
49 }

]
51 }

}

16 Authentification

Most access to the API is restricted. To perform queries you have to log in
and acquire a login token. The login token is a unique string identifying you
during a session. Sessions are a part of the data model as any other object
and can be created in the normal way. Just send a POST request to the
/sessions resource:

20

16.1 Example: Login

Request:

POST / s e s s i o n s ?username=myuser&password=mypassword

Code:

1 r e sponse = r equ e s t s . post (” https :// ap i . amiv . ethz . ch/ s e s s i o n s ” ,
data={”username” : ”myuser” , ”password” : ”mypassword ” })

Response:

1 s t a tu s = 201

3 {
u ’ author ’ : −1,

5 u ’ c r eat ed ’ : u’2014−12−20T11 : 50 : 06 Z ’ ,
u ’ etag ’ : u ’088401622 fc10cbf0d549e9282072c37829a1b81 ’ ,

7 u ’ id ’ : 4 ,
u ’ l i n k s ’ : {u ’ s e l f ’ : {u ’ hre f ’ : u ’ / s e s s i o n s /4 ’ , u ’ t i t l e ’ : u ’
Sess ion ’}} ,

9 u ’ s ta tu s ’ : u ’OK’ ,
u ’ updated ’ : u’2014−12−20T11 : 50 : 06 Z ’ ,

11 u ’ id ’ : 4 ,
u ’ token ’ : u ’ eyJzadasdaswfgmjuhdjh fgjs= ’ ,

13 u ’ u se r id ’ : 4
}

We will look at the details of this response later. First we only notice
the token field and use that token to issue an authenticated query to find
out something about our user account. A token can be passed as the HTTP
Basic Auth username with an empty password. The python requests library
provides this functionality as does command line curl. If you can not pass
such a field you can create the Authorization header which would be gen-
erated by that parameter yourself. For that you need to base64 encode the
token followed by a colon. We will see examples for both methods.

16.2 Example: Retrieving user

It is possible to retrive a user using its username. Normally we would use
an ID to retrive an item, but in this case it is easier this way.

Request:

POST / s e s s i o n s ”username=myuser&password=mypassword ”
2 GET / user s /myuser (+Author izat ion header)

21

Code with good REST library:

l o g i n = r equ e s t s . post (” http :// ap i . amiv . ethz . ch/ s e s s i o n s ” , data={
”username” : ”myuser” , ”password” : ”mypassword ” })

2 token = log in . j son () [’ token ’]
r e sponse = r equ e s t s . get (” https :// ap i . amiv . ethz . ch/ use r s /myuser” ,

auth=requ e s t s . auth . HTTPBasicAuth (token , ””))

Code with bad REST library:

1 l o g i n = r equ e s t s . post (”/ s e s s i o n s ” , data={”username” : ”myuser” , ”
password” : ”mypassword ” })

token = log in . j son () [’ token ’]
3 auth header = b64encode (token + ” : ”)

r e sponse = r equ e s t s . get (”/ use r s /myuser” , headers={”Author izat ion
” : auth header })

Response:

{
2 ’ author ’ : 0 ,

’ c r e a t ed ’ : ’ 2014−12−18T23 : 29 : 07 Z ’ ,
4 ’ e t ag ’ : ’ 290234023482903482034982039482034 ’ ,

’ l i n k s ’ : {
6 ’ parent ’ : {

’ h r e f ’ : ’ / ’ , ’ t i t l e ’ : ’home ’
8 } ,

’ s e l f ’ : {
10 ’ h r e f ’ : ’ / u se r s ’ ,

’ t i t l e ’ : ’ u se r s ’
12 }

} ,
14 ’ updated ’ : ’ 2014−12−18T23 : 29 : 07 Z ’ ,

’ b i r thday ’ : None ,
16 ’ department ’ : None ,

’ emai l ’ : ’ kimjong@whitehouse . gov ’ ,
18 ’ f i r s tname ’ : ’Edward ’ ,

’ gender ’ : ’ male ’ ,
20 ’ groups ’ : None ,

’ id ’ : 4 ,
22 ’ lastname ’ : ’Nigma ’ ,

’ ldapAddress ’ : None ,
24 ’ l e g i ’ : None ,

’membership ’ : ’ none ’ ,
26 ’ nethz ’ : None ,

’ phone ’ : None ,
28 ’ r f i d ’ : None ,

’ username ’ : ’myuser ’
30 }

22

16.3 API keys

If access is not done by a user but rather by a service(cron, vending machine,
info screen), user based authorization does not work. Instead an API key
can be used. The API administrator can generate keys using the manage.py
script and configure which endpoints can be accessed. Endpoint access via
API key will give admin priviledges. The API key can be sent in the same
way as a token. You can think of it as a permanent admin session for specific
endpoints.

16.4 Unregistered users

Next to GET operations on public data, AMIV API currently allows unreg-
istered users in exactly two cases: Signing up for a public event or managing
email-subscribtions for public email lists. In Both cases, ‘is public’ of the
event or forward must be True.

Basically, an unregistered user can perform any GET, POST, PATCH or
DELETE action on the supported resource within the usual rights. However,
as the HTTP request comes without login, you need to confirm yourself
and your email-address with a special token. After the creation of a new
item with POST, the User will get an email with the Token. Your Admin
might provide links in this mail to a user-friendly tool. However, here is
the Workflow that always works: Just POST the token send to you to ‘/
confirmations’ in the following way:

POST / con f i rmat ion s ? token=dagr fv c ihk34t8xa2das fd

After this, the server knows that the given email-address is valid. Every
further Action kann be performed as usually, but with a special Header:

1 {
’Token ’ : dagr fv c ihk34t8xa2das fd

3 }

The API will return 403 FORBIDDEN if you did forgot to provide a
token and will return 412 PRECONDITION FAILED if the provided token
is not valid for the requested item.

16.5 Public Events

To subscribe to a public event with an email-address you simply post to
“/eventsignups”:

Data:

23

1 {
’ e v en t i d ’ : 17 ,

3 ’ u s e r i d ’ : −1,
’ emai l ’ : ”mymail@myprovider . ch” ,

5 }

You will receive a 202 Acepted. This means that the signup is not valid
yet, but the server has received valid data and the user can confirm the
signup by clicking on a link in an email. The User-ID ‘–1’ stands for the
anonymous user.

16.6 Email Forwards

For email-lists, we know 3 resources: ‘/forwards’, ‘/forwardusers’,
‘/forwardaddresses’. ‘/forwards’ is used to manage lists. ‘/forwardusers’ is
used to manage entries which forward to a registered user. ‘/forwardaddresses’
is used for anonymous entries. To create a new subscription or change an
existing one for an unregistered user, you need to use ‘/forwardaddresses’.
The procedure of confirmation is exactly the same as for events.

17 GET queries

GET queries can be customized in many ways. There is the possibility for
where, projection, embedding and pagination clauses.

17.1 where clauses

Using a where clause one can specify details about the object looked for.
Queries can be stated in the python syntax(as if you would write an if
clause). This is some kind of experimental, if any issues occur please contact
api@amiv.ethz.ch or write a report in the issue tracker on github.

An example (url-encoded) is:

1 GET / events ?where=t i t l e==”Testevent ”+and+spots>5

A more complex query would be

1 GET / events ?where=(t i t l e==”Testevent ”+and+spots >5)+or+t i t l e==”
Testevent2 ”

Embedding works only for equality comparison and no recursion at the
moment(to improve, commit to the eve-sqlalchemy project), for example:

24

1 GET / events ?where=signups . u s e r i d==5

This would return all events which the user with the id 5 is signed up
for.

17.2 Projections

Using the projection parameter it is possible to decide which fields should
be returned. For example:

1 GET / events ? p r o j e c t i on ={” l o c a t i o n ” : 0 , ” s ignups ” :1}

This will turn of the location field, but return a list of signups. The be-
haviour of data relations when their projection is enabled can be configured
using embedding.

17.3 Embedding

Turning embedding on and off will determine how relations are returned by
the API. With embedding turned on the whole object will be returned, with
embedding turned off only the ID will be returned.

1 GET / user s ? p r o j e c t i on ={” permis s ion s ” :1}&embedded={” permis s ion s ”
:1}

This will return all the permission objects embedded in the response

17.4 Sorting

Results can be sorted using the sort query parameter. Prepending the name
with a - will sort in descending order.

1 GET / events ? s o r t=−s t a r t t ime

This will return the events sorted by descending start time.

17.5 Pagination

The number of returned results for queries to resource endpoints can be
controlled using the max results and the page parameter.

1 GET / events ? max re su l t s=10&page=3

This will return the third page of 10 items.

25

18 PUT, PATCH, DELETE queries

18.1 If-Match

To manipulate an existing object you have to supply the If-Match header
to prevent race conditions. When you use GET on an element you will be
provided with an etag field. The etag is a string which changes whenever the
object is manipulated somehow. When issuing a PUT, PATCH or DELETE
query you must supply the etag in the If-Match header to ensure that no
one else changed the object in between.

If no etag is provided, you will recieve 403 FORBIDDEN. If the etag is
wrong, the api returns 412 PRECONDITION FAILED.

19 Example: Use PATCH to change a password

1 GET / user s /myuser (+Author izat ion header)
PATCH / user s /myuser data : ”password=newpw” headers : ” I f−Match :

a23 . . . 1 2 b”

Code:

me = requ e s t s . get (”/ use r s /myuser” , auth=myauth)
2 etag = me . j son () [’ e t ag ’]

r e s u l t = r equ e s t s . patch (”/ use r s /myuser” , data={”password” : ”newpw
” } , headers={” I f−Match” : etag })

The response will be the changed user object.

20 Localization: Content in different languages

The api supports descriptions and titles for events and job offers in different
languages. If you post to one of those ressources, the response will contain a
title id and description id. Those are the unique identifiers. To add content
in various languages you can now use this id to post to the /translations
resource

20.1 Example: Create an event with the requests library

Code:

1 import j son # To proper l y encode event data

3 ”””Usual l o g i n ”””
auth = { ’ username ’ : user , ’ password ’ : pw}

5 r = r equ e s t s . post (’ http :// ap i . amiv . ethz . ch/ s e s s i o n s ’ , data=auth)

26

token = r . j son () . get (’ token ’)
7 s e s s i o n = requ e s t s . S e s s i on ()

s e s s i o n . auth = (token , ’ ’)
9

”””Some data without language r e l e v an t content ”””
11 data = { ’ t ime s t a r t ’ : ’ 2045−01−12T12 : 00 : 00 Z ’ ,

’ t ime end ’ : ’ 2045−01−12T13 : 00 : 00 Z ’ ,
13 ’ t im e r e g i s t e r s t a r t ’ : ’ 2045−01−11T12 : 00 : 00 Z ’ ,

’ t im e r e g i s t e r e n d ’ : ’ 2045−01−11T13 : 00 : 00 Z ’ ,
15 ’ l o c a t i o n ’ : ’AMIV Aufenthaltsraum ’ ,

’ spot s ’ : 20 ,
17 ’ i s p u b l i c ’ : True}

19 payload = json . dumps (data)

21 s e l f . s e s s i o n . headers [’ Content−Type ’] = ’ app l i c a t i on / j son ’
r e sponse = s e l f . s e s s i o n . post (’ http :// ap i . amiv . ethz . ch/ events ’ ,

23 data=payload) . j son ()
de l (s e l f . s e s s i o n . headers [’ Content−Type ’]) # Header not needed

anymore

Response:

{u ’ author ’ : 0 ,
2 u ’ c r eat ed ’ : u’2015−03−05T14 : 12 : 19 Z ’ ,

u ’ etag ’ : u ’ 8 a20c7c3e035eb5a03906ce8f0 f7717a4300e9de ’ ,
4 u ’ id ’ : 1 ,

u ’ l i n k s ’ : {u ’ s e l f ’ : {u ’ hre f ’ : u ’ / events /1 ’ , u ’ t i t l e ’ : u ’ Event
’}} ,

6 u ’ s ta tu s ’ : u ’OK’ ,
u ’ updated ’ : u’2015−03−05T14 : 12 : 19 Z ’ ,

8 u ’ d e s c r i p t i o n i d ’ : 2 ,
u ’ id ’ : 1 ,

10 u ’ i s p u b l i c ’ : True ,
u ’ l ocat ion ’ : u ’AMIV Aufenthaltsraum ’ ,

12 u ’ spots ’ : 20 ,
u ’ time end ’ : u’2045−01−12T13 : 00 : 00 Z ’ ,

14 u ’ t ime r eg i s t e r end ’ : u’2045−01−11T13 : 00 : 00 Z ’ ,
u ’ t im e r e g i s t e r s t a r t ’ : u’2045−01−11T12 : 00 : 00 Z ’ ,

16 u ’ t ime s tar t ’ : u’2045−01−12T12 : 00 : 00 Z ’ ,
u ’ t i t l e i d ’ : 1}

Now extract ids to post translations
Code:

1 ”””Now add some t i t l e s ”””
s e l f . s e s s i o n . post (’ http :// ap i . amiv . ethz . ch/ t r a n s l a t i o n s ’ ,

3 data={ ’ l o c a l i z a t i o n i d ’ : r [’ t i t l e i d ’] ,
’ language ’ : ’ de ’ ,

5 ’ content ’ : ’ I r gende in Event ’ })
s e l f . s e s s i o n . post (’ http :// ap i . amiv . ethz . ch/ t r a n s l a t i o n s ’ ,

27

7 data={ ’ l o c a l i z a t i o n i d ’ : r [’ t i t l e i d ’] ,
’ language ’ : ’ en ’ ,

9 ’ content ’ : ’A random Event ’ })

11 ”””And d e s c r i p t i o n ”””
s e l f . s e s s i o n . post (’ http :// ap i . amiv . ethz . ch/ t r a n s l a t i o n s ’ ,

13 data={ ’ l o c a l i z a t i o n i d ’ : r [’ d e s c r i p t i o n i d ’] ,
’ language ’ : ’ de ’ ,

15 ’ content ’ : ’ Hier p a s s i e r t was . Komm
vorbe i ! ’ })

s e l f . s e s s i o n . post (’ http :// ap i . amiv . ethz . ch/ t r a n s l a t i o n s ’ ,
17 data={ ’ l o c a l i z a t i o n i d ’ : r [’ d e s c r i p t i o n i d ’] ,

’ language ’ : ’ en ’ ,
19 ’ content ’ : ’ Something i s happening . Join

us ! ’ })

If we now specify the ‘Accept-Language’ Header, we get the correct con-
tent!

Code:

1 s e l f . s e s s i o n . headers [’ Accept−Language ’] = ’ en ’

3 s e l f . s e s s i o n . get (’ http :// ap i . amiv . ethz . ch/ events/%i ’ % response
[’ id ’]) . j son ()

Response:

1 {u ’ author ’ : 0 ,
u ’ c r eat ed ’ : u’2015−03−05T14 : 12 : 19 Z ’ ,

3 u ’ etag ’ : u ’ 8 a20c7c3e035eb5a03906ce8f0 f7717a4300e9de ’ ,
u ’ l i n k s ’ : {u ’ c o l l e c t i o n ’ : {u ’ hre f ’ : u ’ / events ’ , u ’ t i t l e ’ : u ’

events ’} ,
5 u ’ parent ’ : {u ’ hre f ’ : u ’ / ’ , u ’ t i t l e ’ : u ’ home ’} ,

u ’ s e l f ’ : {u ’ hre f ’ : u ’ / events /1 ’ , u ’ t i t l e ’ : u ’ Event
’}} ,

7 u ’ updated ’ : u’2015−03−05T14 : 12 : 19 Z ’ ,
u ’ a d d i t i o n a l f i e l d s ’ : None ,

9 u ’ d e s c r i p t i on ’ : u ’ Something i s happening . Join us ! ’ ,
u ’ d e s c r i p t i o n i d ’ : 2 ,

11 u ’ id ’ : 1 ,
u ’ img 1920 1080 ’ : None ,

13 u ’ img thumbnail ’ : None ,
u ’ img web ’ : None ,

15 u ’ i s p u b l i c ’ : True ,
u ’ l ocat ion ’ : u ’AMIV Aufenthaltsraum ’ ,

17 u ’ p r i c e ’ : None ,
u ’ s ignups ’ : [] ,

19 u ’ spots ’ : 20 ,
u ’ time end ’ : u’2045−01−12T13 : 00 : 00 Z ’ ,

21 u ’ t ime r eg i s t e r end ’ : u’2045−01−11T13 : 00 : 00 Z ’ ,
u ’ t im e r e g i s t e r s t a r t ’ : u’2045−01−11T12 : 00 : 00 Z ’ ,

28

23 u ’ t ime s tar t ’ : u’2045−01−12T12 : 00 : 00 Z ’ ,
u ’ t i t l e ’ : u ’A random Event ’ ,

25 u ’ t i t l e i d ’ : 1}

Yay! The title and description are added in english as requested.

21 Working with files

Working with files is not much different from other resources. Most resources
contain the file, only study documents, which will be explained below.

21.1 Files in Events, Joboffers, etc.

Files can be uploaded using the “multipart/form-data” type. This is sup-
ported by most REST clients. Example using python library “requests” and
a job offer: (More info on requests here: http://docs.python-requests.org/
en/latest/)

Code:

1 ”””Usual l o g i n ”””
auth = { ’ username ’ : user , ’ password ’ : pw}

3 r = r equ e s t s . post (’ http :// ap i . amiv . ethz . ch/ s e s s i o n s ’ , data=auth)
token = r . j son () . get (’ token ’)

5 s e s s i o n = requ e s t s . S e s s i on ()
s e s s i o n . auth = (token , ’ ’)

7

”””Now upload ing the f i l e ”””
9 with open (’ s ome f i l e . pdf ’ , ’ rb ’) as f i l e :

data = { ’ t i t l e ’ : ’Some Of fe r ’ }
11 f i l e s = { ’ pdf ’ : f i l e }

s e s s i o n . post (’ http :// ap i . amiv . ethz . ch/ j o b o f f e r s ’ ,
13 data=data , f i l e s=f i l e s)

Response:

1 { ’ author ’ : 0 ,
’ c r e a t ed ’ : ’ 2015−02−19T14 : 46 : 14 Z ’ ,

3 ’ e t ag ’ : ’ 9 cd7fd f37507d2001f5902330f f38db1236bdb84 ’ ,
’ i d ’ : 1 ,

5 ’ l i n k s ’ : { ’ s e l f ’ : { ’ h r e f ’ : ’ / j o b o f f e r s /1 ’ , ’ t i t l e ’ : ’ J obo f f e r ’
}} ,

’ s t a t u s ’ : ’OK’ ,
7 ’ updated ’ : ’ 2015−02−19T14 : 46 : 14 Z ’ ,

’ id ’ : 1 ,
9 ’ pdf ’ : { ’ c on t en t u r l ’ : ’ / s to rage / some f i l e . jpg ’ ,

’ f i l e ’ : None ,
11 ’ f i l ename ’ : ’ s ome f i l e . jpg ’ ,

’ s i z e ’ : 55069} ,

29

13 ’ t i t l e ’ : ’Some Of fe r ’ }

Note that ‘file’ in the response is None since returning as Base64 string
is deactivated.

21.2 Working with study documents

Study documents are a collection of files. Using them is simple:

1. Create a study document (POST to /studydocuments)

2. Save ID of the newly created document

3. Upload files to the ‘/files’ resource as described above, using the ID

22 Common Problems

22.1 PATCH, PUT or DELETE returns 403

It is only possible to issue these methods on objects, not on resources. This
will not work:

1 DELETE / user s ?where=id==3

Use this instead:

1 DELETE / user s /3

Make sure you provided the required If-Match header. If that does not
help make sure you can use GET on the item. If you are unable to request
a GET then your account can not access the object. If you are able to
GET the object, then your provided data is invalid. If you do not have
admin priviledges for the endpoint(method on that resource) make sure
your request will conserve your ownership of the object.

22.2 How can I send boolean etc to the server using python

requests?

To properly encode Integer, Boolean and such you need to properly format
the data to json before sending, like this:

Code:

30

1 import j son

3 data raw = { ’ spot s ’ : 42 ,
’ i s p u b l i c : ’ True}

5

payload = json . dumps (data raw)

The payload is now ready for sending! (Be sure to set the ‘Content-Type’
header to ‘application/json’)

31

	I Group Project Report
	1 Introduction
	2 Development in the past and current Situation
	3 Concept and Goal
	4 Solution
	5 Outlook

	II Developer Guide
	6 General
	6.1 Used Frameworks
	6.2 Development status
	6.3 Installation
	6.4 Configuration
	6.5 Running the tests
	6.6 Debugging server

	7 Architecture
	8 Security
	8.1 Authentification
	8.2 Authorization

	9 Roles
	10 Owner checks
	10.1 API Keys

	11 Localization
	11.1 Note: Testing
	11.2 Note: Automatization

	12 Files
	13 Validation
	14 Cron

	III User Guide
	15 General
	15.1 About this document
	15.2 Portability
	15.3 Encryption
	15.4 Date format, string format
	15.5 About REST
	15.6 Response format
	15.7 HATEOAS
	15.8 Example: First Request

	16 Authentification
	16.1 Example: Login
	16.2 Example: Retrieving user
	16.3 API keys
	16.4 Unregistered users
	16.5 Public Events
	16.6 Email Forwards

	17 GET queries
	17.1 where clauses
	17.2 Projections
	17.3 Embedding
	17.4 Sorting
	17.5 Pagination

	18 PUT, PATCH, DELETE queries
	18.1 If-Match

	19 Example: Use PATCH to change a password
	20 Localization: Content in different languages
	20.1 Example: Create an event with the requests library

	21 Working with files
	21.1 Files in Events, Joboffers, etc.
	21.2 Working with study documents

	22 Common Problems
	22.1 PATCH, PUT or DELETE returns 403
	22.2 How can I send boolean etc to the server using python requests?

