
Institut für
Technische Informatik und
Kommunikationsnetze

Remo Balaguer

Flow Embedding Algorithms for
Software Defined Audio Networks

Master Thesis MA-2014-14
15th of September 2015 to 13th of March 2015

Supervisor: Prof. Dr. Bernhard Plattner
Academic Advisors: Dr. Panagiotis Georgopoulos, Vasileios Kotronis
Industrial Advisor: Peter Glaettli (R&D Director, Studer, Regensdorf)

2

Abstract

Audio over IP is becoming increasingly more important in the professional audio industry. The
interoperabilty standard AES67 further promotes this trend by defining a common standard on
how to transform digital audio data to a stream for IP networks. Consequently, the intelligent
management of networks is the next step towards the widespread deployment of Audio over IP
in the entertainment industry. The emerging approach of Software Defined Networking provides
a global view and control on networks by abstraction, which enables optimized flow embedding.
In professional applications multimedia streams have to run over paths, which satisfy a certain
maximum latency requirement and a minimal bandwidth requirement. If the network paths do not
satisfy both requirements, the stream cannot run successfully. As there may be multiple paths
for a stream to be routed from a source to a target node in the network, the flow embedding
has to be in such a way that as many other streams as possible can run on the same network
concurrently, in order to maximize the end-user’s benefit from the network.
The result of this thesis is the design, implementation and evaluation of three different flow
embedding algorithms to address this routing problem.
We found that for some scenarios a Genetic Algorithm (given optimal parameters) can perform
in the same acceptance ratio range as a Linear Program, which is a common technique to solve
flow embedding problems. In addition, the Genetic Algorithm can deliver partial solution during
the process of solving, which is a great advantage of the Genetic Algorithm. However, there are
certain bottlenecks regarding the Genetic Algorithm, which are described in the thesis.
As far as the Online Algorithm is concerned, it performs slower than the Linear Program for
small graphs but faster for large graphs. Yet, the larger the graph the lower the acceptance ratio
(a few percent less) of the Online Algorithm compared to the Linear Program.

3

Acknowledgments

In the first place I would like to thank Prof. Dr. Bernhard Plattner for providing the academic
environment for this work. Also, I wish to express great thanks to my advisors Dr. Panagiotis
Georgopoulos and Vasileios Kotronis for their constant support.

I express my gratitude to Peter Glaettli, R&D Director at Studer [1], whom I’d like to thank for
the idea and support of this thesis. Further, many thanks to Christos Liaskos at the Institute
of Computer Science (ICS) of the Foundation for Research and Technology - Hellas (FORTH)
for his helpfulness and advice regarding Genetic Algorithms. Last but not least, I would like
to thank Bruno Loetscher and Thomas Wicki from SRG (Swiss Broadcasting Corporation) for
providing their top level network topology and for interesting discussions.

4

Contents

1 Introduction 7
1.1 Problem Statement and Motivation . 7

1.1.1 Why Audio over IP? . 7
1.1.2 Audio over IP today . 7
1.1.3 Audio over IP Limitations . 7
1.1.4 Towards Software Defined Audio Networking 8

1.2 Goals . 9
1.3 Overview . 9

2 Background and Related Work 11
2.1 Background . 11

2.1.1 Audio Network Management . 11
2.1.2 Software Defined Networking . 11
2.1.3 AES67 . 12

2.2 Related Work . 13
2.2.1 Resource Allocation in Communication Networks 13
2.2.2 Audio / Video Bridging and Time Sensitive Networking 13
2.2.3 Commercial Solutions . 14
2.2.4 Linear Programming for Routing Optimization Problems 14
2.2.5 Genetic Algorithms . 15

3 Software Defined Audio Networking Algorithms 17
3.1 Context . 17
3.2 Algorithm Requirements and Design . 18

3.2.1 The Embedding Problem . 18
3.2.2 Online case . 19
3.2.3 Offline case . 20

3.3 Algorithm Implementation . 21
3.3.1 Online Algorithm . 21
3.3.2 Offline Algorithm: Linear Program . 23
3.3.3 Offline Algorithm: Genetic Algorithm . 26

4 Evaluation Methodology for Software Defined Audio Networking Algorithms 31
4.1 Graphs from Network Topologies . 31

4.1.1 Elementary Graphs . 31
4.1.2 SRG Graphs . 32
4.1.3 Butterfly Graph . 33
4.1.4 Internet Topology Zoo Graphs . 34
4.1.5 Overview of the Experimentation Graphs 35

4.2 Demand Sets . 35
4.3 Experiments . 37

5 Evaluation Results and Discussion 39
5.1 Linear Program Runtime versus Problem Size . 40
5.2 Search All Paths Problem . 40
5.3 Suitable Genetic Algorithm parameters . 41

5

6 CONTENTS

5.4 Acceptance Ratio Comparison:
Linear Program versus Genetic Algorithm . 43
5.4.1 Butterfly Graph . 43
5.4.2 Redbest Graph . 44
5.4.3 Cogent Graph . 45

5.5 Genetic Algorithm: Robustness . 46
5.6 Linear Program versus Online Algorithm . 47
5.7 Conclusion . 49

6 Summary and Outlook 51
6.1 Summary . 51
6.2 Outlook . 52

6.2.1 System Aspect . 52
6.2.2 Multicast . 53
6.2.3 Demand Grouping . 53
6.2.4 Fail-over Paths . 53
6.2.5 Number Of Channels Per Stream . 53
6.2.6 QoS Applications . 53
6.2.7 Genetic Algorithm Refinements . 53

Chapter 1

Introduction

1.1 Problem Statement and Motivation

1.1.1 Why Audio over IP?

Today’s audio engineers are confronted with an enormous number of audio channels during an
event. Broadcasting large live audio performances like for example the Super Bowl [2] requires
the handling of up to 2000 different audio channels. It is obvious that a setup with single-channel
point-to-point connections would end up in a big clutter considering all the separate cables. Also
in recording studios a big number of point to point connections leads to the time-consuming pro-
cess of manual signal routing and manual channel assignment with respect to their source. In
order to keep the number of cables low, multichannel technologies like MADI [3], which corre-
sponds to the AES10 Standard that can transmit up to 64 channels, are commonly used. But
MADI still needs special hardware and is a point to point technology that does not support so-
phisticated network topologies. That is why MADI ends up in relatively high costs for hardware
and cabling effort. This is the motivation behind the development of Audio over IP (AOIP).

1.1.2 Audio over IP today

AOIP technology can be used with common Ethernet cables, switches and routers and there-
fore mitigates the problem involving the need for special hardware and the requirement to install
many cables. However, the problem is that, in the past decade, a variety of different proprietary
AOIP technologies like Livewire [4], Dante [5] or WheatNet [6], which are not interoperable, were
developed and deployed [7]. These well-established technologies support multichannel uncom-
pressed audio transmission at ultra low latencies (1-2 milliseconds [8] [9]) and are used in many
studios all around the world. They are wide spread even though they are not interoperable be-
cause of differences in sample packetization, time synchronization and transport protocols. A
successful open standard for professional AOIP applications has not been released until now.
In 2013 the Audio Engineering Society (AES) published the AES67 Standard ”AES standard
for audio applications of networks - High-performance streaming audio-over-IP interoperability”
[10]. The aim of that document is to define an open AOIP standard that is very close to the exist-
ing technologies so that manufacturers are motivated to create new versions of their protocols,
which are AES67 compliant. Ravenna by ALC NetworX already supports AES67 and others
announced new AES67 compliant versions of their protocols [7] [11].

1.1.3 Audio over IP Limitations

The industry now has strong motivation to make modern AOIP systems interoperable through
AES67, which would be a huge advantage for audio production and broadcasting. The AES67
Standard promotes the formation of large AOIP networks, however it does not address the prob-
lem of AOIP network control and management. The uprising and remaining challenge then is
to manage an AOIP network, since the core element of AES67 lies in the transmission of audio
samples over a network but neither the routing of streams through the network nor the discovery
and control of devices is considered.

7

8 CHAPTER 1. INTRODUCTION

Nowadays an audio engineer has to decide, if a network is suitable for a specific task, based
on the network topology, latency and throughput, which requires a lot of manual labour. If nec-
essary, additional Ethernet cables, switches or routers have to be added. Also the configuration
has to be done manually, which is expensive and exhausting.
Consider the following situation: A major radio station in Switzerland owns a network that con-
nects different cities (Fig. 1.1). An outdoor event is taking place at Basel where analog audio
signals get converted to digital samples in the stagebox, which transmits the audio to the main
studio in Basel on MADI. From there a stream A is sent to the broadcast center in Zurich, which
at the same time also has to send a stream B to Genf for another program. The question that
arises, is, whether there is enough capacity in the network for both streams to be routed at
the same time and which routes they should take. Also the situation may change if there is an
extraordinary event at Lugano, which causes a stream C to be routed to Basel. Additionally, the
network should react very quickly and smartly if there is a link failure.

1.1.4 Towards Software Defined Audio Networking

A way to cope with such challenges is ”Software Defined Audio Networking” (SDAN), which is
introduced by this project and is based on ”Software Defined Networking” (SDN). It enables
dynamic traffic management and central network control by software, which can be designed to
optimize the network performance. Besides the complete network topology, the controller has
knowledge of the demands that the audio engineer would like to be routed in the network. De-
mands reflect streams by source ID, target ID, bandwidth requirement and latency requirement
which result in network flows if embedded by the controller. Embedding (also called the solution
to the embedding problem) in this context denotes the process of finding a path through the
network by the use of a routing algorithm and pushing the flow rules to the switches. Allocation
stands for the process storing an embedding in a database, such that the controller can calcu-
late the residual capacities on each network link before embedding a new demand. In this way, it
is possible to manage the available link capacities in the network without overloading individual
links or bottlenecks.
In case the network is comprised of SDN capable switches, an OpenFlow-based controller can
therefore centrally orchestrate the network, intelligently determine the optimal route for each
stream, determine backup routes in case of link failure for each demand and push flow rules
to the switches, so that the network performs optimally. Furthermore the controller should warn
the network operator or audio engineer if starting streams are going to overload the network in
such a way that other streams would break. It must be kept in mind that the dynamicity of such
networks (compared to the Internet) is limited, as all streams are known by a central entity and
the network topology is persistent.
Besides the pure routing and flow rule generation, the discovery of devices is also an impor-
tant aspect of an SDAN controller for audio engineers, because they have to mix the different
channels in the end and need to know what is on which channel. But since the AES67 Standard
already proposes a few discovery protocols, it is assumed that this will be standardized in the
following months or years.

Figure 1.1: Simplified depiction of a hypothetical radio station network in Switzerland

1.2 Goals 9

1.2 Goals

In order to accomplish intelligent audio network management, in this thesis we will in-
vestigate optimal resource allocation routing algorithms for professional SDN Audio over
IP networks. This is why we chose to set the following goals:

1. Define the specifications of SDAN resource allocation routing algorithms based on the
needs of the industry.

2. Implement possible resource allocation routing algorithms.

3. Evaluate different algorithms and compare them against each other.

1.3 Overview

This thesis is structured as follows:

• Chapter 2 introduces SDN and the AES67 standard as two emerging elements in the
world of AOIP and as the background of the thesis. Furthermore, it introduces network
management in the context of SDAN and related work.

• Chapter 3 describes two different types of SDAN resource allocation routing algorithms
based on the requirements of a professional AOIP network. It then introduces the design
of three algorithms and provides implementation insights.

• Chapter 4 illustrates how the different implemented algorithms were evaluated by means
of test scenarios, in order to give an overview on the algorithm performance.

• Chapter 5 provides results of the algorithm performance evaluation. It states conclusions
and gives insights with respect to task of the project.

• Chapter 6 provides an overview on the problem, possible solutions and the contributions.
It also suggests continuative work based on the findings in this project as an outlook.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

The following two sections outline the background and related work of this thesis. Firstly, net-
work management is motivated and explained. Since the idea of SDAN originates from the
emergence of SDN [12] and AES67 [10], the remaining sections provide a short introduction
on both. In order to build on preexisting findings, methods and technologies the related work
section presents related scientific works, technologies and commercial solutions.

2.1 Background

2.1.1 Audio Network Management

Computer networks are basically telecommunication networks that allow devices to exchange
data packets amongst each others. The various applications of them are ubiquitous. Very often
people make use of the World Wide Web or E-Mail. One rather special application is profes-
sional audio networking. The main difference of this application compared to the Internet is the
very strict bandwidth and latency requirements of the media streams as well as the reliabil-
ity. Streams can not successfully run without enough bandwidth (typically around 3 Mbps per
stream, depending on packet size, audio sampling rate, audio bit depth and number of audio
channels per stream [4]) and are useless for the application when introducing too much latency
(sometimes down to 1-2 milliseconds [8] [9]). That is why admission control and traffic routing is
essential in professional audio networks.
Admission control manages which streams are allowed to enter the network, in order to prevent
congestion and overloading of the network. Traffic routing determines the best paths for the
streams that are allowed to run and enables maximum network utilization subject to all stream
requirements.

2.1.2 Software Defined Networking

The principal concept of Software Defined Networking (SDN) [12] is to separate the control and
the data plane of a network. Central controllers on the control plane orchestrate the logical as-
pects of the network such as routing and push rules to the forwarding devices (switches) on the
data plane. As a consequence, the routing logic of the network can reside in one central con-
troller whereas the forwarding hardware implements the given routing decision. Moreover, the
SDN approach facilitates sophisticated networking monitoring by one central entity. Above all,
the total abstraction of a network is the main advantage of SDN compared to legacy networks
as this allows for any kind of network control and monitoring.
Figure 2.1 depicts the SDN Stack with the applications in the north, the SDN controllers in the
middle and the forwarding hardware in the south. While the southbound API between the con-
trollers and the switches is commonly the standardized and popular OpenFlow protocol [13], the
northbound API between the controller and the application depends on the used SDN controller
framework (e.g. POX [14] or Floodlight [15]).
The great advantage of this architectural approach is that the application can learn about the
complete network topology by the controllers and therefore get a global view on the network.

11

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Sophisticated algorithms inside the applications can be applied to find the optimal routing poli-
cies for the network. The policies can then be transformed to flow rules by the applications and
be pushed to each switch by the controller. This allows for efficient network management as
each forwarding device implements optimal routing rules determined by the applications. For
this reason it is reasonable to use SDN for AOIP networks.

Figure 2.1: SDN Stack [16]

2.1.3 AES67

The AES67 Standard [10] was developed by the Audio Engineering Society (AES) and published
in September 2013. It is an AOIP protocol on layer 3 and is designed to allow interoperabilty
between previously competing AOIP systems by different professional audio manufacturers.
The key components of the protocol are:

• Synchronization: A master clock distributes the time over the whole network by Precision
Time Protocol IEEE 1588-2008 [17]. This allows each node to generate a local media
clock, which is used to synchronously playback or record audio samples.

• Network and Transport: In order to transport the samples over the network, AES67
makes use of RTP/UDP and supports IPv4 in unicast or multicast mode with IGMPv2.

• Audio Sample Encoding: The resolution of the audio samples is defined as 16 or 24 bit
linear and the sampling frequency can be 44.1, 48 or 96 kHz. One stream carries up to 8
channels.

• Audio Sample Packetization: The maximum payload size in AES67 is defined as 1440
bytes, which allows for 6, 12, 16, 48, 192 audio samples per packet depending on the
number of channels and sampling frequency.

• Quality of service: To prioritize time sensitive packets in the network, AES67 uses Diff-
Serv with 3 different traffic classes (DSCP).

• Connection management: Session Description Protocol (SDP) and Session Initiation
Protocol (SIP) are used to set up audio streams in the AES67 network.

• Discovery: In order to find other AES67 compliant devices in the network there are some
recommendations given (i.e. ZeroConf [18], SAP [19], and others) but discovery is not fully
defined in the standard.

The concept behind the design of AES67 was to create a new AOIP protocol, which is based on
the commonalities of preexisting proprietary AOIP protocols like Livewire, Dante or Wheatnet,
in order to minimize the effort to update preexisting protocols to be AES67 compliant. The goal
is that any AOIP protocol will be AES67 compliant in the future so that every manufacturer gets
interoperable with all others by means of AOIP [7] [20].

2.2 Related Work 13

2.2 Related Work

2.2.1 Resource Allocation in Communication Networks

The dissertation on the Resource Allocation In Networks (RAIN) problem by Frei [21] [22] is
closely related to this thesis, as it is also about algorithm design for optimal constraint-based
routing. Actually, Frei addressed the problem of QoS routing, which can not efficiently be solved
by common shortest path routing, because it leads to poor network utilization or even conges-
tion. Frei aimed for managing bandwidth in the network so that a better use of available network
resources is possible.
The network is depicted as a connected graph with nodes and edges. Nodes represent pro-
cessing units like switches and routers. Edges correspond to communication media such as
Ethernet or optical fibers. Each edge is characterized by its currently available bandwidth ca-
pacity. As the network is meant to fullfill communication needs between pairs of nodes, Frei
introduces demands. A demand reflects one single communication need and is defined by the
triple du = (xu, yu, βu), where xu and yu are distinct source and target nodes and βu is the
bandwidth requirement for the demand du. Therefore Frei illustrates the RAIN problem in Figure
2.2 and describes the RAIN problem as follows:

• Given a network composed of nodes and links, each link with a given resource capacity,
and a set of demands to allocate,

• Find one route for each demand so that the bandwidth requirements of the demands are
simultaneously satisfied within the resource capacities of the links.

Figure 2.2: Rain Problem [21]

One important consideration to note is that it is not possible to divide demands among multiple
routes. This means that all packets per flow have to take the same path as different paths
introduce varying latencies and jitter, which could cause stalls in real time applications where
network buffers have to be small. This makes the RAIN problem NP-hard.
Frei showed how an abstraction technique, namely "Blocking Islands", allowed applying the well-
known Constrain Satisfaction Problem (CSP) technique to solve the problem with manageable
complexity.
However, there was unfortunately no implementation of RAIN available and the main part of his
work does not include latency requirements per demand.

2.2.2 Audio / Video Bridging and Time Sensitive Networking

Another approach to implement audio network management is Audio / Video Bridging (AVB).
AVB is a layer 2 technology by the IEEE comprising the Stream Reservation Protocol (SRP),
which implements admission control to guarantee QoS [23] [24]. Although AVB is an established
technology in the multimedia industry, Layer 3 protocols are more widely used as they do not
need any specialized hardware. Additionally, SRP does not optimize for network utilization in
the first place.
Time sensitive networking (TSN) is a set of standards by the IEEE that defines extensions to
the IEEE 802.1Q Virtual LANs. The TSN Task Group stems from the AVB Group after renaming
them in 2012. The main purpose of TSN is to accomplish very low transmission latency and
a high availability in networking by SRP. It can be used for audio and video applications or

14 CHAPTER 2. BACKGROUND AND RELATED WORK

real-time control streams in industrial facilities [25] [26]. However, it does not optimize the flow
embedding such that as many streams as possible concurrently run on the same network and
the end-user’s benefit from the network would be maximized.

2.2.3 Commercial Solutions

Network management can evidently be carried out manually, meaning that a network engineer
configures all switches in such a way that the network can successfully transport all streams
concurrently. This might be a sufficient solution in small network. For rather big networks there
are commercial and proprietary control and management solutions. For instance, the L-S-B
Virtual Studio Manager (VSM) [27] is an example for an IP-based broadcast control and moni-
toring system, which abstracts the physical hardware from the control interfaces with all kinds of
equipment. Many different protocols are integrated and hardware devices like video routers, au-
dio routers, audio consoles and intercoms are supported. VSM is a server application that acts
as a system controller that provides monitoring and control of the whole multimedia network and
all connected devices. It can be operated on many special proprietary hardware panels that are
well-suited for studios large broadcasters [28].

2.2.4 Linear Programming for Routing Optimization Problems

Linear Programming (LP) is a frequently used technique for solving routing optimization
problems and has been applied in this thesis as well (Section 3.3.2). Linear Programming in the
case of Mixed Integer Programming (introducing integer and binary variables in the program)
is a widespread method for optimized flow embedding and routing. Bley [32], for instance,
used the concept of Linear Programming for the minimum congestion unsplittable shortest path
routing problem in IP networks whereas Kotronis et al. have optimized flow embedding in terms
of maximizing the number of embeddable flows in the context of IXP multigraph [33].

Generally, LP is a method to find the best solution with respect to a linear objective func-
tion in a mathematical model. In fact, it is an optimization of a linear objective function subject to
linear equality and linear inequality constraints [29]. A simple introductory example for a linear
program is demonstrated in the following:

• linear function to be maximized
f(x1, x2) = c1x1 + c2x2

• constraints
a11x1 + a12x2 ≤ b1
a21x1 + a22x2 ≤ b2
a31x1 + a32x2 ≤ b3

• non-negative variables
x1 ≥ 0
x2 ≥ 0

Having a description of the Linear Program, a solver is needed in order to find the best solution
to the problem. There are open-source solvers like LpSolve [30] or proprietary ones like Gurobi
[31] that solve Linear Programs.
However, when introducing integer variables in a Linear Program, which is then called a Mixed
Integer Programming (MIP), the solving turns into a NP-hard problem due to combinatorial
characteristics of the Mixed Integer Linear Program [34].

2.2 Related Work 15

2.2.5 Genetic Algorithms

In networking, Genetic Algorithms have been used for finding shortest paths in networks [36]
[37]. Also Kumar et al. has used the concept of Genetic Algorithm to solve the shortest path
problem routing problem for IP networks, and found that Genetic Algorithms are well suited for
cases where the solution space is huge and the Dijkstra algorithm gets slower [38].
In general, Genetic Algorithms are search heuristics for optimization problems [39]. They were
invented by John Holland at the University of Michigan [40] in the 70s and is a particular class
of the evolutionary algorithms. Evolutionary algorithms mimic the characteristics of biological
evolution such as mutation, inheritance and selection that enable finding a solution to a problem
by iteration.
In a Genetic Algorithm there are populations of individuals where each individual represents
a candidate solution of the optimization problem in an encoded manner (e.g. bit string). After
having created an initial population, also called "first generation", the evolution starts in an iter-
ative way. In each generation, every individual is evaluated and assigned a fitness value by an
objective function. Afterwards, the individuals are recombined and randomly mutate in order to
create a new generation. Commonly, the algorithm terminates after having reached a satisfac-
tory fitness level or a maximum number of generations.
The process of each Genetic Algorithm is characterized by key parameters like the number of
individuals per population or the mutation rate per evolutionary step. The time it takes for the
evolution to reach better solution candidates is dependent on the value of these parameters and
should therefore be tuned. A possible method of tuning the parameters is to use a second level
Genetic Algorithm optimizing the parameters of an underlying Genetic Algorithm [41].
There are more sophisticated versions of Genetic Algorithms for Multi-objective Optimization
such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [42] or Strength Pareto
Evolutionary Algorithm (SPEA) [43]. In his work Zitzler showed that Genetic Algorithm can be
well applied to Multi-objective Optimization [44].
To the best of our knowledge we are the first to use Genetic Algorithms to address the flow
embedding optimization problem with bandwidth and latency requirements on a per flow basis.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Software Defined Audio
Networking Algorithms

3.1 Context

In this project we introduce Software defined Audio Networking (SDAN) as a proposal for effi-
cient management of professional audio networks. The components of such a network comprise
an SDN/OpenFlow enabled network for the transport of audio data and an SDN controller, which
instructs the switches to establish designated routes for each stream. The information on the
exact route of each stream is the output of an algorithm on top of the controller (Fig. 3.1) that
determines the best possible allocation of resources (also called optimal embedding) in the
network, such that as many streams as possible can run concurrently and therefore the end-
user’s benefit from the network is maximized. Another way to express this aim is to set the goal
to maximize the so-called acceptance ratio number of embedded demands

total number of demands , which is a measure for the
quality of embedding with respect to the end-user’s benefit from the network in the context of
SDAN. Given a network and a number of demands, it is possible that not all demands can be
embedded at the same time. Therefore, the algorithm does not only decide on the routing of
each demand but also on which demands are embedded in order to maximize the acceptance
ratio. Furthermore, it is essential that each solution satisfies each stream’s minimal bandwidth
and maximum latency requirement and that the residual bandwidth capacity of each link is non-
negative. We call this the SDAN algorithm problem. To solve the problem for a given demand
set of streams, an algorithm is also given the whole network topology including bandwidth and
latency values on each edge, which can by done by the approach of SDN.

SDN AOIP Network

SDN Controller

Algorithm

Figure 3.1: Software Defined Audio Networking Overview

17

18 CHAPTER 3. SOFTWARE DEFINED AUDIO NETWORKING ALGORITHMS

3.2 Algorithm Requirements and Design

3.2.1 The Embedding Problem

In order to illustrate the challenge of optimal resource allocation in terms of network utilization,
Table 3.1 presents an example demand set and Figure 3.2 and 3.3 show a suboptimal and an
optimal embedding in the network for the same demand set.
Figures 3.2 and 3.3 depict an identical graph with residual bandwidth capacity as edge labels.
The two figures demonstrate that when having multiple possible embedding possibilities, one
of them can be more efficient than the other in terms of acceptance ratio regarding the whole
demand set.

time demand ID source ID target ID bandwidth requirement
1 1 1 4 0.4
2 2 1 4 0.4
3 4 1 4 0.8

Table 3.1: Example demand set

1

2

3

4

1

1 1

1

1

2

3

4

0.6

1 1

0.6

1

2

3

4

0.6

0.6 0.6

0.6

1

2

3

4

0.6

0.6 0.6

0.6

t=0

t=1

t=2

t=3

Figure 3.2: Suboptimal Allocation for exam-
ple demand set of Table 3.1

1

2

3

4
0.2

1 1

0.2

1

2

3

4
0.2

0.2 0.2

0.2

1

2

3

4
0.2

0.2 0.2

0.2

1

2

3

4
1

1 1

1

1

2

3

4
0.6

1 1

0.6

t=0

t=1

t=2

t=3

t=4

Figure 3.3: Optimal Allocation for example
demand set of Table 3.1

At t = 1 the first demand is embedded on the edges (1, 2) and (2, 4) in both Figures. At t = 2
the second demand is embedded on the edges (1, 3) and (3, 4) in Figure 3.2, whereas in Figure
3.3 it is embedded on edges (1, 2) and (2, 4). Both embeddings are valid as they do not violate
the bandwidth capacity on the edges, but it turns out that for this demand set one embedding
is more efficient than the other. In the case of Figure 3.2 there is no capacity left for the third
demand at t = 3 while in Figure 3.3 the demand can be embedded on (1, 3) and (3, 4) which
leads to a higher acceptance ratio.
It is important to note that in many scenarios the SDAN Algorithm has to cope with latency
requirements as well. Furthermore, like in the RAIN problem described by Frei [21], it is not
possible to split streams. This means that all packets of the same stream have to take the same
path as different paths introduce varying latencies and jitter, which could cause stalls in real
time applications where network buffers have to be small.

3.2 Algorithm Requirements and Design 19

In order to tackle the problem of optimal embedding, namely, optimal resource allocation,
we divide SDAN Algorithms into two classes. Online algorithms determine the path for each
new demand on the fly in a short amount of time and therefore embed demands one after
another. Offline algorithms in contrast are allowed to use more calculation time and try to find
a set of best paths for all known demands in advance before the embedding. The following
subsections present an overview on the two classes:

3.2.2 Online case

SDAN for radio and television broadcasting faces the challenge of unforeseen events. For in-
stance, it can happen that there is need for a live-broadcast to a faraway place due to a catas-
trophe, which is reported in the news show. In such cases it is necessary to be able to embed
demands within a few minutes or less. The disadvantage of this situation is that there is no
possibility to optimize the total acceptance ratio because future demands are not known and
previously allocated demands may or may not be rerouted due to different latency and jitter
on different routes. We call this type of problems Online case and list its key characteristics as
follows.

• Scenario
Demands are unknown in advance and are embedded one by one on the fly

• Objective
Find a feasible path fast

• Principle
Prune graph for bandwidth, use Dijkstra to find shortest path satisfying latency req.

• Advantage / Disadvantage
fast, but embedding is not optimal

20 CHAPTER 3. SOFTWARE DEFINED AUDIO NETWORKING ALGORITHMS

3.2.3 Offline case

Another common application of professional audio infrastructure including AOIP are live events
like concerts or TV shows. The demands can be pre-scheduled in this cases, which allows for
maximizing the acceptance ratio by dedicated flow embedding algorithms that find the best pos-
sible solution. We call this type of problems Offline case.
An additional application of such application is the dimensioning of a network. Since these al-
gorithms find the best possible solution, a network can be checked for the ability of transporting
a set of streams. If the network provides too little capacity, the offline algorithms allows for in-
vestigating the effect of additional switches and lines.
Moreover, an offline algorithm can be used to allow a performance evaluation of an online algo-
rithm. By finding the best possible embedding for a set of demands, which have been previously
embedded by an online algorithm, the offline algorithm provides a reference for the comparison
between the embedding performed by the online algorithm and the best possible embedding.
The offline algorithm can even assist the online algorithm by solving sub-problems (find a solu-
tion for a subset of demands in a loaded network) and implementing reallocation mechanisms
(Section 3.3.1).
The key characteristics of the Offline case are as follows.

• Scenario

– Demands are known in advance and embedded at once

– Dimensioning a network

– Rating the performance of an online algorithm

– Performing reallocation in the online case

• Objective

– Find paths for as many demands as possible, maximize acceptance ratio

• Principle

– Linear Mixed Integer Program

– Genetic Algorithm

• Advantage / Disadvantage

– Linear Program: Embedding is optimal, but solving a Mixed Integer Linear Program is
NP-hard [34]. Therefore this approach gets much slower as the graph size increases
(Section 5.1). In addition, it is not possible to get partial solution during the solving
process.

– Genetic Algorithm: Embedding is optimal, too. Yet, it is possible to get partial solution
during the solving process. On the other hand, it is difficult to tune parameters for
optimal performance [41].

3.3 Algorithm Implementation 21

3.3 Algorithm Implementation

As a proof of concept we implemented SDAN algorithms as described in Section 3.2 and tested
them on different network topologies and demand sets. Network topologies are represented by
graphs. A graph with a corresponding demand set form a scenario or ’SDAN problem’. This
Section presents the functional principles of one online algorithm and two different offline algo-
rithms, which are evaluated later in Section 4.
All three algorithms take a graph, which represents a network and a list of demands as input,
and try to find routes for all demands such that the acceptance ratio is maximized. If not all de-
mands can be embedded in the network, the algorithm has to decide which demands to reject
and not to embed.
The implementation was done in Python with the help of some preexisting modules. The most
important ones are NetworkX [45] and Graphviz [46]. NetworkX is a Python package providing
data structures for modeling graphs and methods for handling graph problems. It comes with
various interfaces for building, importing and exporting graphs as well as methods for finding
paths in the graph and producing graph-theoretical statistics. Further, Graphviz is an open-
source software package suitable for drawing graphs. Its layout algorithms are very sophisti-
cated such that even large and complex graphs are clearly presented.

3.3.1 Online Algorithm

Functionality and features

By experimentation we found that a possible way for finding paths that satisfy the bandwidth and
latency requirement, in a short amount of time (’on the fly’), is the combination of the following
two steps:

1. Pruning the graph for bandwidth
By pruning the graph for bandwidth, all the edges that can not offer enough bandwidth
for the demand in question are removed. The pruned graph is then stored in a temporary
variable for further steps. The pruning ensures that all paths found by the following step
have enough bandwidth.

2. Looking for low latency paths
The second step is to look for all paths that fullfill the latency criterion. Afterwards the list
of all paths, that provide a latency that is lower than the demand’s constraint, are sorted
by the number of hops. In order to keep the consumption of network resources as small
as possible (e.g. the number of edges in the path for a demand multiplied by its bandwidth
requirement), the path having the least number of hops is chosen. If no path is found, the
demand has to be rejected or a reallocation procedure can be initiated as explained in the
following section.
The search for low latency paths can be performed by a modified depth-first search algo-
rithm [47], which is also implemented in the NetworkX [45] method ’all_simple_paths’.

Reallocation Procedure

Although the aforementioned technique finds existing paths that satisfy the constraints, the fact
that it allocates resources in the network on the fly yields a greedy character of the algorithm
since it can not take upcoming demands into consideration. Thereby, it can happen that after
having embedded n demands, d_n (the (n+1)-th demand) can not be allocated anymore due
to a lack of network resources, although all n+1 demands could coexist with a more intelligent
embedding. To overcome this downside we developed a reallocation mechanism in the algo-
rithm, which tries to reallocate (allocate demands on alternative paths) some of the previously
allocated demands such that all n+1 streams can coexist in the network, if possible.
The basic idea is to let an offline algorithm solve the allocation problem for a subset of the de-
mands. This subset comprises one currently non-allocatable demand n+1 and a specific number
of selected demands d_u’s that have been previously allocated.
Due to possible jumps in path latency and jitter during rerouting, delicate streams (e.g. live
streams) can stall or break because of buffer underrun and timeout at the stream’s receiver. In

22 CHAPTER 3. SOFTWARE DEFINED AUDIO NETWORKING ALGORITHMS

order to avoid this, the end user can set a flag for each demand, defining whether a stream is
allowed to be rerouted or not. Hence, the subset of demands for the offline algorithm must not
contain demands that are not allowed to be rerouted.
The remaining component of this mechanism is the selection of promising d_u’s. Demands that
are more likely to release network resources for the embedding of d_n are preferred for the
subset of demands. The selection process for the d_u’s goes as follows:

1. Get the paths for d_n in the empty (no other demands embedded) graph as the optimal
path to assure that the demand is feasible and prepare the search for reroutable d_u’s

2. Check all paths of the currently allocated and reroutable demands for intersections in the
graph with the optimal path for d_n and store all demands as d_u’s that intersect by at
least one edge

3. Sort d_u’s based on bandwidth first and on the number of alternative paths secondly in
a descending manner. By taking demands with high bandwidth requirements first, the
probability of releasing enough bandwidth for d_n by reallocation is increased. On the
other hand, sorting on the number of alternative paths increases chances of a successful
reallocation process, where all d_u’s and d_n can be embedded.

4. Take the first k demands in the sorted list of d_u’s and d_n to formulate a sub-problem.
Afterwards, let an offline algorithm solve this sub-problem. The number k can be adjusted,
as larger amounts decelerate the processing.

5. If there is a feasible path for each demand of the subset: allocate new paths for all d_u’s
and d_n, otherwise reject d_n

Figure 3.4 depicts the procedure of the offline algorithm including the reallocation mechanism.

Start with a new demand d_n

look for a feasible path for d_n

success?

look for a feasible path for d_n in the empty graph

 False

Allocate d_n

 True

success?

find d_u's to reroute

 True

Reject d_n

 False

success?

run offline solver for d_n and d_u's

 True

 False

success?

Reallocate d_u's

 True False

end

Figure 3.4: Online Algorithm Flow Chart

3.3 Algorithm Implementation 23

3.3.2 Offline Algorithm: Linear Program

Linear Programming is a widespread method [32] for optimising flow embedding and routing.
Also for the SDAN problem we can use Linear Programming with the acceptance ratio being
the objective function and the bandwidth / latency requirements as constraints. Hence, the fol-
lowing Linear Program description is a formal way to formulate the SDAN problem. It is strongly
motivated by the work of Kotronis et al. that have solved a similar problem in a different context
(Internet Exchange Point multigraph) [33].

Linear Program: Variables

Graph
VG Set of nodes representing switches and routers
EG Set of edges representing links between switches and routers
G = (VG, EG) Directed graph representing a network
δ+(v) outgoing edges of a vertex v
δ−(v) incoming edges of a vertex v

e ∈ EG edge of graph G
bwe ∈ R≥0 Bandwidth corresponding to edge e
late ∈ R≥0 Latency corresponding to edge e
Demands
D Set of demands representing streams to embed in the network
D One specific demand of the demand set
sD Source of demand D
tD Target of demand D
bwD Bandwidth requirement of demand D
latD Latency requirement of demand D

Solution
PD Path corresponding to demand D
xD Binary variable that indicates whether demand D is embedded or not
P eD Indication whether edge e is used by demand D or not

Table 3.2: Linear Program: Variables

It should be noted that there are binary variables in this Linear Program due to the fact that
streams can not be split in the network (Section 2.2.1). This makes solving the problem a lot
more difficult for a Linear Program solver than compared to real-valued solutions, as the problem
turns into a combinatorial one with binary variables. On the other hand, managing unsplittable
flows is a basic requirement for the algorithms, as we explained in Section 3.2.1.

24 CHAPTER 3. SOFTWARE DEFINED AUDIO NETWORKING ALGORITHMS

Linear Program: Model description

Objective Function to maximize:

(0) max
∑
D∈D

xD

subject to:

(1) xD =
∑

e∈δ+(sD)

P eD −
∑

e∈δ−(sD)

P eD ∀D ∈ D

(2) 0 =
∑

e∈δ+(v)

P eD −
∑

e∈δ−(v)

P eD ∀D ∈ D and v ∈ VG \ {sD, tD}

(3) bwe ≥
∑
D∈D

bwD · P eD ∀e ∈ EG

(4) latD ≥
∑
D∈D

late · P eD ∀D ∈ D

(5) xD ∈ {0, 1} ∀D ∈ D

(6) P eD ∈ {0, 1} ∀D ∈ D, e ∈ EG

If a demand D is embedded, subject (1) and (2) induce a flow from the source to the target by
the law of flow conservation. Subject (3) assures that the bandwidth capacity of a link is not
exceeded whereas (4) avoids violations of the latency requirements of each demand.
The variables that determine the actual embedding decisions are xD of (5) that indicate whether
demand D is embedded or not. If a specific demand D is embedded, P eD of (6) then denotes
whether edge e is part of the path of demand D.

Linear Program: Implementation

Gurobi provides a Python interface for building and optimizing mathematical models. When
Gurobi is installed on a machine the module called gurobipy can be imported in any python
script. This way, the optimization capabilities of Gurobi can be used in a convenient way. In this
project we used the Gurobi version 5.6.3. In the context of SDAN algorithms we implemented
the Linear Program presented in Section 3.3.2 in a Python module by applying the following
steps:

1. Convert the NetworkX Graph to a list of edges and a dictionary containing the bandwidth
and latency for each edge.

2. Convert set of demands to a list of source nodes, target nodes, bandwidth requirements
and latency requirements.

3. Create a Gurobi optimization model.

m = Model(’sdan’)

4. Create boolean embedding variables xD of (5).

for r in Requests:
x[r] = m.addVar(vtype=GRB.BINARY, name=’x%s’ % (r))

3.3 Algorithm Implementation 25

5. Create boolean membership edge variables P eD of (6).

for r in Requests:
for i,j in edges:

P[r,i,j] = m.addVar(vtype=GRB.BINARY, name=’P%s_%s_%s’ % (r, i, j))

6. Update and input variables to the Gurobi model.

m.update()

7. Set the objective of (0).

acceptance = quicksum(x[r] for r in Requests)
m.setObjective(acceptance, GRB.MAXIMIZE)

8. Induce flow (conservation) of (1) and (2).

for r in Requests:
outgoing=quicksum(P[r,e,w] for e,w in edges.select(s[r],’*’))
incoming=quicksum(P[r,e,w] for e,w in edges.select(’*’,s[r]))
m.addConstr(x[r] == outgoing - incoming)

as well as

for r in Requests:
for k in nodes:
if k!=s[r] and k!=t[r]:
outgoing=quicksum(P[r,e,w] for e,w in edges.select(k,’*’))
incoming=quicksum(P[r,e,w] for e,w in edges.select(’*’,k))
m.addConstr(0 == outgoing - incoming)

9. Implement bandwidth and latency requirement of (3) and (4).

for e,w in edges:
m.addConstr(bw_e[e,w] >= quicksum(bw_r[r]*[P[r,e,w]][0] for r in Requests))

as well as

for r in Requests:
m.addConstr(lat_r[r] >= quicksum(lat_e[e,w]*[P[r,e,w]][0] for e,w in edges))

10. Perform optimization.

m.optimize()

11. Read out variables xD of (5) and P eD of (6) and convert to a path for each embedded
demand.

26 CHAPTER 3. SOFTWARE DEFINED AUDIO NETWORKING ALGORITHMS

3.3.3 Offline Algorithm: Genetic Algorithm

Mapping the allocation problem to a GA

Because the Mixed Integer Program is NP-hard [34] and gets slower in an over-proportional
manner as the graph size increases (Section 5.1), we were looking for an alternative, which is
faster for large graphs. As it turned out Genetic Algorithms (Section 2.2.5) are worth investigat-
ing as the use of Genetic Algorithms is reasonable in cases where a straightforward solution is
impossible or too complex to derive and implement. NP-Hard (as the Mixed Integer Linear Pro-
gram of Section 3.3.2) problems fall into the first case [35]. In addition, we had strong evidence
from related work, which is presented in the following paragraph, that Genetic Algorithms can
yield benefits to problems of similar nature.
Gonen et al., for instance, used Genetic Algorithms to find a shortest path for OSPF routing
within a limited time. He suggests to apply a Genetic Algorithm in the beginning of searching
the space for shortest paths and then switch to other techniques towards the end of the pro-
cess to speed up the whole procedure [36]. As a further example, Behzadi et al. successfully
applied Genetic Algorithms on the shortest path problem in transportation on urban road maps
and came up with specific mutation methods for this application of Genetic Algorithms [37].
Similar to the SDAN problem, the aforementioned related works all deal with graph problems in
an abstracted way. This similarity made us even more confident on the potential applicability of
Genetic Algorithms in this project.
Generally, Genetic Algorithms can be well suited for problems with huge search space, which
is exactly the case when having an SDAN problem on a large graph. Last but not least we real-
ized, how diverse the applications of Genetic Algorithms are [44]. Tobias Siegfried et al. as an
example solved a multi-objective groundwater management problem [49] and others under the
supervision of Eckart Zitzler at ETH Zurich, solved a physical block stacking problem using Ge-
netic Algorithms [50]. Therefore we expected some potential in using Genetic Algorithms also
in the context of the SDAN problem as well.
To make use of the principles of Genetic Algorithms described in Section 2.2.5, we abstracted
the SDAN problem to a decision-finding problem. Given a graph and a set of demands, all
possible paths in the graph can be determined for each demand based on the source, target,
bandwidth and latency requirement. This information is stored in the gene pool, which conse-
quently contains all possible paths per demand. The remaining and important task is to decide
whether a certain demand is allocated or not and which of the possible paths it gets assigned
to when embedding it. We found that this process can be performed by a Genetic Algorithm.
The following simple example (Fig. 3.5) demonstrates the operating principle of the mapping.
Assume we have a graph with 5 nodes and 6 edges and a demand set containing 4 demands.
The second demand, for instance, has source node 3 and target node 2. Therefore, the possible
paths in the gene pool are: [3,2], [3,4,5,2] and [3,4,5,1,2]. For the sake of simplicity this example
does not take specific latency and bandwidth requirements into account.

1

2

3

4

5

+
Demand 1: 1==>4, bandwidth req., latency req.
Demand 2: 3==>2, bandwidth req., latency req.
Demand 3: 5==>2, bandwidth req., latency req.
Demand 4: 3==>5, bandwidth req., latency req.

graph
demands

Demand 1 Demand 2 Demand 3 Demand 4

[1,5,4] [3,2] [5,2] [3,2,5]

[3,4,5,2] [5,1,2] [3,4,5]

[3,4,5,1,2] [3,1,2,5]

=
Possibilities or gene pool

Path selection for
demand 1

Path selection for
demand 2

Path selection for
demand 3

Path selection
for demand 4Genome

Figure 3.5: Example: Mapping the SDAN problem to a Genetic Algorithm

3.3 Algorithm Implementation 27

In order to achieve optimal embedding, the algorithm has to make a choice for each demand.
This choice can either be ’non-allocated’ or set to one of the paths in the pool of possible
paths for that specific demand. We defined the genome to contain this choice for each demand.
The genome is then evolved by the Genetic Algorithm in order to find the optimal genome that
represents the optimal solution.

Implementation components

We implemented the basic elements required for a Genetic Algorithm tackling the SDAN prob-
lem in Python from scratch. The main components are presented in the following paragraphs to
outline the implementation without going into the details of the code.
The principal concept was to implement an evolution class as the main class that takes a graph
and a demand set as input and returns a path for each embedded demand. Besides finding and
choosing paths, also the decision whether a demand is embedded or not, is carried out by the
evolution process in order to maximize the acceptance ratio.
The evolution class is responsible for instantiating a population and hosting the process of evo-
lution by calling methods on the population and monitoring the fitness values of each solution
candidate. Eventually it determines the end of the evolution process, stops it and returns the
best solution candidate to the caller.
The population is an object instantiated by an evolution object and is described by the cor-
responding population class. It carries a constant number of genome objects as individuals,
which reflect candidate solutions. The population is responsible for instantiating all individuals
and keep fitness values assigned to each of them. Based on the fitness values it establishes a
ranking from the fittest to the least fit individuals. In addition, it calls methods on the genome
object for mutating and determining the fitness values.
A genome object is described by the corresponding class and is responsible for carrying one
candidate solution (path choices for demands for the SDAN problem). It provides methods to
the population that enables mutation of and fitness assignment to the genome. Mutation in this
context denotes the process of randomly selecting a path out of a pool of possible paths for a
certain number of demands. The pool of possible paths for each demand can be determined in
advance (before the evolution has started) by looking for all feasible paths in the unloaded net-
work graph. A feasible path for a certain demand has to be shorter than the latency requirement
and offer enough bandwidth regarding the bandwidth requirement. The number of demands for
which a mutation is carried out is denoted by the mutation rate, which is the ratio between the
number of mutations in the genome and total number of demands and is managed by the evo-
lution object. Eventually, each genome object calculates its fitness values by determining the
acceptance ratio of the solution candidate as well as the bandwidth usage total_requested_bw

total_alloc_bw such
that the population object is able to rank all individuals in the population by the acceptance ratio
first and bandwidth usage secondly. Thereby, the acceptance ratio is the dominant fitness value
whereas the bandwidth usage enables finding the best genome under a set of genomes with
equal acceptance ratios.

Genome Class

• Variables

– Demand set
Contains information about source, target, bandwidth requirement and
latency requirement of each demand.

– Genome
Denotes the path choice for each demand of the demand set.
The choice is either ’None’ for non-allocated or a feasible path as a node list.

• Methods

– mutate(mutation_rate, non_allocation_probability)
Randomly selects mutation_rate-many positions in the Genome.
At all selected positions in the Genome, set the choice to ’None’ with a probability of
non_allocation_probability or randomly choose another path from the gene
pool

28 CHAPTER 3. SOFTWARE DEFINED AUDIO NETWORKING ALGORITHMS

– rate(graph)
Returns the acceptance ratio of the genome in the graph as well as the bandwidth
usage total_requested_bw

total_alloc_bw as a fitness value tuple

Population Class

• Variables

– Graph
Represents the network on which the demands are embedded.

– Demand set
Contains information about source, target, bandwidth requirement and
latency requirement of each demand.

– Population size
Determines the number of genomes in one population to enable parallel evolution.
The number of genomes is constant throughout the whole process.

– Amount of ’clergy’ genomes
Defines the amount of ’clergy’ genomes that are treated better than the rest to im-
plement evolutionary advantage. ’Clergy’ genomes are preserved unchanged for the
next generation and have an adjustable amount of children.

– Amount of ’clergy’ children genomes
Adjusts the amount of children of clergy genomes in the next generation.

– Non allocation probability
Denotes the probability that a mutation operation results in ’non-allocated’ instead of
a path variant.

– Individuals
Contains all genomes of the population.

– Fitness
Contains the assigned fitness value tuples of each genome in the population.

– Ranking
Contains the ranking based on the fitness of all genomes in the population.
Sorted from the fittest to the least fit.

• Methods

– mutate_all(mutation_rate)
Calls the mutate method of each genome in the population and passes the
mutation_rate.

– rate_all()
Calls the rate method of each genome in the population.

– rank()
Updates the ranking of all genomes in the population from the fittest to the least fit.
The ranking is based on the fitness value tuple. It is achieved by sorting on accep-
tance ratio in the first place and for bandwidth usage in the second place.

– get_best_genome()
Returns the best genome and the according fitness value based on the ranking.

– evolve(mutation_rate)
Produces the next generation (step in evolution) out of the current population of
genomes.
In order to do so, it calls the mutate method of each Genome. It organizes genomes
with respect to the parameters of ’clergy’ genomes.
Furthermore, it calls the rate_all() and rank() method of the population to update the
fitness and ranking of all genomes for the current generation respectively population.
During the whole process of evolution, this method preserves the best genome in
each step such that the best genome in a population can only get better over time.

3.3 Algorithm Implementation 29

Evolution Class

• Variables

– Population
Contains a population object.

• Methods

– init(graph, demand set, population size, amount of ’clergy’
genomes, amount of children by preferred genomes,
non-allocation probability, target acceptance ratio, timeout)
This method instantiates a population with Genomes for the evolution.

– run_evolution(target_ratio, timeout)
This method is the core of the evolutionary process.
It calls the ’evolve’ method on the population object iteratively until the best genome
has either achieved the target ratio (as an acceptance ratio) or the timeout is reached.
In the end, it returns the best solution. In addition, During the process of evolution it
adapts the mutation rate according to the one-fifth rule by Ingo Rechenberg [48].

Having implemented the classes described above, the evolution class can be used to run several
evolution processes on the same problem on multiple threads (e.g. number of CPU cores of
the machine). This parallelism increases to probability to get a solution of required fitness by
a shorter amount of time as each evolution process is driven by random. At the end of the
evolutionary process, the solution of the best thread can be extracted.

Parameter Choice

A downside of Genetic Algorithms is the fact that parameters like the population size or the
mutation rate have to be tuned. Generally speaking, there is no generic way to tune this pa-
rameters. One way to go is to let a second level Genetic Algorithm find the optimal parameters
Greffensette [41]. However, this would arise the challenge of tuning the parameters of this sec-
ond level Genetic Algorithms again. Eventually, we evaluated the performance of the Genetic
Algorithm for a different parameter sets by the means of brute force and looked for the best per-
forming one. This involved selecting a pool of parameters for brute forcing by experimentation.
The results of this brute force search is presented in Section 5.3.
There are two performance indices for SDAN algorithms. The first performance index denotes
how long it takes for the algorithm to reach a solution with the best possible acceptance ratio
(runtime performance). The second performance index is denoted by the acceptance ratio of
the solution after a fixed amount of time (acceptance ratio performance). As a reference the
best possible acceptance ratio can be determined by the Linear Program.
The implementation in this thesis comprises the following parameters:

• pop_size_pool
Defines the number of genomes per population.

• clergy_size_pool
Defines the amount (decimal fraction) of ’clergy’ genomes.
’Clergy’ genomes are preserved for the next generation and have an adjustable number
of children genomes.

• clergy_children_pool
Defines the number of children for ’clergy’ genomes.

• start_mut_pool
Defines the starting mutation rate by percent of the maximum rate (number of demands).

• non_prob_pool
Defines the percental probability of not choosing any path but setting the choice for a
demand to ’non-allocated’ by a mutation process.

30 CHAPTER 3. SOFTWARE DEFINED AUDIO NETWORKING ALGORITHMS

Chapter 4

Evaluation Methodology for
Software Defined Audio
Networking Algorithms

The SDAN algorithms presented in Chapter 3 take a graph and a demand set as input and
produce a list of paths for all embedded demands such that the acceptance ratio is maximized.
As we wanted to test and evaluate the performance of the algorithms we had to create network
graphs and demand sets as input. The following sections present the underlying network topolo-
gies that were used to create example graphs and demand sets for the performance evaluation.

4.1 Graphs from Network Topologies

All graphs represent networks where the numbers in the nodes stand for the switch IDs. Each
edge connecting two nodes in the plots represents two bidirectional edges reflecting the data
links. Furthermore, all edges are labelled by their characteristics in the following way: ’latency /
bandwidth’.

4.1.1 Elementary Graphs

For debugging purposes and preliminary tests we have created a couple of very simple graphs
depicted in Fig. 4.1, 4.2 and 4.3.

Figure 4.1: Basic dia-
mond shaped graph

Figure 4.2: Figure of
eight graph

Figure 4.3: Modified fig-
ure of eight graph

31

32
CHAPTER 4. EVALUATION METHODOLOGY FOR SOFTWARE DEFINED AUDIO

NETWORKING ALGORITHMS

4.1.2 SRG Graphs

In order to have more realistic Wide Area Network topologies the SRG (Swiss Broadcasting
Corporation) [51] provided a top-level view (Fig. 4.4) of their network.

Figure 4.4: SRG network top level view

We abstracted this network to a numbered graph (Fig. 4.5) with hypothetical latencies and band-
widths because we could not get the exact facts and figures on each link. The latencies are pro-
portional to the geographic distance (geographical distance divided by the speed of light). As for
bandwidth there are a couple of devised bandwidth classes (Fig. 4.6) according to the thickness
of the lines in Fig. 4.4. Also, it has to be kept in mind that this graph is not very detailed as it is
only a top level view. Nevertheless, it is interesting for evaluating SDAN algorithms because it is
the part of a network where the variety of possible paths for certain demands stems from.

Figure 4.5: Abstracted SRG graph

4.1 Graphs from Network Topologies 33

Figure 4.6: SRG graph with edge labels drawn by Graphviz.
Edge label legend: [latency in 1e-4 seconds / bandwidth in Gbit/s]
Node legend: 1: ’Basel’, 2: ’Zurich’, 3: ’Bern’, 4: ’Lausanne’, 5: ’Genf’, 6: ’Lugano’, 7: ’Chur’, 8:
’Delemont’, 9: ’Aarau’, 10: ’Rapperswil’, 11: ’St. Gallen’, 12: ’Solothurn’, 13: ’Biel’, 14: ’Neuen-
burg’, 15: ’Luzern’, 16: ’Friburg’, 17: ’Thun’, 18: ’Martigny’, 19: ’Sion’, 20: ’Brig’, 21: ’Locarno’

4.1.3 Butterfly Graph

Based on the SRG graph (Fig. 4.6) we built another graph that we call ’butterfly’ due to its
shape. It consists of the SRG graph being put in place four times next to each other as sub-
graphs. The shape of the four SRG sub-graphs are identical but they differ in their node IDs in
order to avoid ambiguity. The four sub-graphs are then interconnected by 16 links (latency=10,
bandwidth=100) between randomly picked nodes.
This way, the butterfly graph represents four interconnected networks (e.g. countries). The fact
that there are more routes within the sub-graphs than between them, introduces bottlenecks on
the linkage between sub-graphs. This property forces SDAN algorithms more than in the other
graphs to make a decision on which demands to embed and which not. As the bottleneck links
must be shared optimally by multiple flows, without overloading the links, this is a sub-case of
the knapsack problem, which is NP-Hard [52]. It has been showed that Genetic Algorithms can
perform well in solving the knapsack problem [53]. Therefore, it is interesting how the Genetic
Algorithm performs as compared to the Linear Program in this case.

34
CHAPTER 4. EVALUATION METHODOLOGY FOR SOFTWARE DEFINED AUDIO

NETWORKING ALGORITHMS

4.1.4 Internet Topology Zoo Graphs

In order to have a set of different sized graphs we took four graphs from the Internet Topology
Zoo [54]. We looked through the whole data-set and picked the ’SwitchL3’ graph (Fig. 4.7) from
Switzerland with 42 nodes and 126 edges, the ’RedBestel’ graph (Fig. 4.8) from Mexico with
84 nodes and 186 edges, the ’Cogent’ graph (Fig. 4.9) from USA/Europe with 197 nodes and
486 edges, the ’Kdl’ graph (Fig. 4.10) from the USA with 754 nodes and 1790 edges. These
graphs provide real topologies of real networks and were therefore used for experimentation in
this thesis.

Figure 4.7: SwitchL3 graph Figure 4.8: Redbest graph

Figure 4.9: Cogent graph Figure 4.10: kdl graph

We note that there is information missing on the link latency provided in the data sets by The
Internet Topology Zoo. Also bandwidth is only indicated on some links. This is why we had to
set latencies and bandwidth manually. We chose to assign latencies and bandwidths randomly
from a pool of variants. For bandwidth we chose randomly from 1, 4 or 8 bandwidth units (e.g.
Gbit/s) and for latency 5, 10, 20 or 40 time units (e.g. milliseconds).

4.2 Demand Sets 35

4.1.5 Overview of the Experimentation Graphs

To provide an overview on the presented graphs we list the main features of the graphs.

graph diamond figure of eight mod. figure of eight
number of nodes 4 7 7
number of directed edges 8 16 18

Table 4.1: Graph properties

graph SRG switch redbest cogent kdl butterlfy
number of nodes 21 42 84 197 754 336
number of directed edges 54 126 186 486 1790 896

Table 4.2: Graph properties

4.2 Demand Sets

As we did not have realistic audio stream scenarios at our disposal we produced sets of random
demands for the Internet Topology Zoo graphs with the following coefficients, which have been
found by experimentation.
Since the network’s capacity rises with the number of edges in the graph, we chose to make
the number of demands linearly dependent. The bandwidth requirements are independent on
the graph, whereas the latency requirement distribution is dependent on the graph’s diameter
to account for the size of the graph.
We produced a strict and a loose demand set for each graph in order to evaluate the algorithms
on demand sets which allow acceptance ratios around 60% (strict) and close to 100% (loose).

• Strict demand set for Internet Topology Zoo graphs

– number of demands:
0.4*number_of_graph_edges

– bandwidth requirement:
random choice of [0.2, 0.2, 0.4, 0.6, 1]

– latency requirement:
random choice out of 4-valued linearly spaced list of
[10, graph_diameter*mean_graph_latency*10]

• Loose demand set for Internet Topology Zoo graphs

– number of demands:
0.3*number_of_graph_edges

– bandwidth requirement:
random choice of [0.2, 0.2, 0.4, 0.6]

– latency requirement:
random choice out of 5-valued linearly spaced list of
[5, graph_diameter*mean_graph_latency]

36
CHAPTER 4. EVALUATION METHODOLOGY FOR SOFTWARE DEFINED AUDIO

NETWORKING ALGORITHMS

For the butterfly graph we focused on having one strict set of demands.

• Butterfly graph

– number of demands:
20

– bandwidth requirement:
uniform random choice between
[minimum_graph_bandwidth/100, maximum_graph_bandwidth/100]

– latency requirement:
uniform random choice between
[minimum_graph_latency*20, maximum_graph_latency*20]

It is important that all demands in the demand set are checked for feasibility before being added
to the set. In other words, each demand must be actually embeddable if it had access to all
resources in the idle network, respectively, empty graph. If a demand, for instance, has a band-
width requirement higher than any link in the network, the demand is considered as unembed-
dable. Also, it might be generally impossible to find a path, which is short enough with respect to
the latency requirement of a demand, even in the idle network. If unembeddable demands were
in the demand set, this would distort the measurement as unembeddable demands decrease
the acceptance ratio without the algorithm being responsible for it. Therefore, the acceptance
ratio would no longer reflect the performance of the algorithm, which had to be avoided in the
process of evaluation.
Also it is essential to note that the characteristics of the demand set have a great impact on the
best possible acceptance ratio and the performance of the different algorithms. The following
list provides some examples.

• Best possible acceptance ratio increases,

– when the bandwidth requirements of the demands decrease

– when the latency requirements of the demands increase

– when the number of demands decreases

• Best possible acceptance ratio decreases,

– when the bandwidth requirements of the demands increase

– when the latency requirements of the demands decrease

– when the number of demands increases

The best possible acceptance ratio in turn has an effect on the runtime performance of the
Genetic Algorithm. Because the Genetic Algorithm starts out with an empty genome it has a high
chance to get the best allocation in a short amount of time if the best possible acceptance ratio is
very low. Moreover, the graph topology itself has an influence on the algorithm performance as
well. If, for instance, the number of possible paths per demand is very low, the genetic algorithm
logically needs less time to go through the search space and find the best solution.
Therefore, the selection of graphs and creation of demand sets for SDAN algorithm performance
evaluation is rather delicate.

4.3 Experiments 37

4.3 Experiments

In order to evaluate the performance for the different algorithms on the different scenarios
(graphs with associated demand sets), we implemented a simulator that carries out experi-
ments and collects measurement data.
An experiment consists of a certain graph and a demand set, which correspond to an SDAN
problem. This problem is handed over to the Online Algorithm and the two Offline Algorithms
(Linear Program and Genetic Algorithm) by the simulator and being solved sequentially and
independently by all three algorithms. The simulator logs the runtimes used by each algorithm
as well as the acceptance ratios of the provided solutions. Afterwards the simulator plots these
results in one plot.
Regarding the Genetic Algorithm there are some particularities. The Genetic Algorithm is given
a parameter set by the simulator, since it needs parameters (e.g. population size) in addition
to the graph and the demand set. In order to find the best suitable parameters for the Genetic
Algorithm for a certain scenario, we implemented a parameter set pool, which is used for brute
forcing by the simulator to find the parameter set with the best acceptance ratio after a fixed
amount of time. If runtime was not limited for the Genetic Algorithm, it would have run for days
under some circumstances while the Linear Program solved the problem within less than a
minute. This can occur when parameters of the Genetic Algorithm lead to an extremely slow
progress in the evolution of the solution. For instance, a mutation rate, which is extremely low
naturally turns the evolution very slow. Also implementation related effects like a very high pop-
ulation size slows down the software by introducing more operation per generation and defer a
good solution.
As the Genetic Algorithm includes randomness in the solution process, we chose to account for
this by repeating experiments 10 times and take the average of all result values, which is also
done by the simulator.
Eventually, it is important to note that all runtime values depend on the hardware used, that is
why it is important to list the features of the machines used:

Operating System: Ubuntu 14.04.1 LTS
CPU: Intel(R) Core(TM) i7-2600K CPU at 3.40GHz CPU
RAM: 16GiB system memory

38
CHAPTER 4. EVALUATION METHODOLOGY FOR SOFTWARE DEFINED AUDIO

NETWORKING ALGORITHMS

Chapter 5

Evaluation Results and Discussion

Chapter 4 describes the test scenarios for the designed algorithms, which are presented in
Chapter 3. The current chapter provides results and insights stemming from the carried out
algorithm evaluation of this thesis. Firstly, Section 5.1 demonstrates the fact, that the Linear
Program gets much slower as the problem size increases, which was one of the reasons why
we chose to investigate Genetic Algorithms. However, in the mapping of the SDAN problem
to a Genetic Algorithm (Section 3.3.3) there is a bottleneck regarding runtime performance.
In particular, the time necessary for finding all possible paths per demand (respectively filling
the gene pool) increases rapidly as the graph size increases. This effect and its consequences
are described in Section 5.2. Besides a populated gene pool, the parameters for the Genetic
Algorithm play an essential role to its performance. In order to find suitable parameters, we used
a brute force approach and searched for the best parameter set in a pool of possible parameter
sets. This procedure is presented in Section 5.3. Given the gene pools and parameter sets
for every scenario we compare the performance of the Genetic Algorithm versus the Linear
Program in Section 5.4. Furthermore, Section 5.5 investigates on the parameter robustness of
the Genetic Algorithm. Eventually, the Online Algorithm (Section 3.3.1) is compared with the
Linear Program in Section 5.6. The chapter is then completed up by a brief conclusion of the
presented results.

39

40 CHAPTER 5. EVALUATION RESULTS AND DISCUSSION

5.1 Linear Program Runtime versus Problem Size

In order to demonstrate the steep rise of the time necessary to solve the NP-hard Mixed Integer
Linear Program [34], we plotted the solving time versus the problem size. Figure 5.1 presents
a measurement example for different graph sizes and demand sets. The graphs are ’switch’,
’redbest, ’cogent’ and ’kdl’, which are taken from the Section 4.1.4. We measured the solving
time for the Linear Program for the switch, redbest, cogent and kdl graphs (Section 4.1.4) using
the loose and strict demand sets (Section 4.2).

Figure 5.1: LP performance for the switch, redbest, cogent and kdl graph from Section 4.1.4

In Figure 5.1, it can be seen that with a relatively small rise of the graph size, the solving time
increases highly. This therefore demonstrates the need for considering algorithms that might
perform better in large graphs and for big demand sets. Furthermore, it can be seen that the
solving time depends on the demand set. Since there are more possible embeddings for the
loose demand set, the search space is larger and the Linear Program takes more time to explore
it.

5.2 Search All Paths Problem

The time for searching all possible paths, to populate the gene pool explodes as the graph size
increases. Table 5.1 provides some examples to illustrate this fact. The underlying method is
the NetworkX method ’all_simple_paths’, which uses a modified depth-first search. Since the
complexity of finding all paths can be very large, e.g. O(n!) in the complete graph of order n, it
task takes a vast amount of CPU time and memory for large graphs [58]. The table shows the
calculation time for different graphs with different sizes and maximum path length, which limits
the search depth. The specific value was taken based on experiments where we let the Linear
Program and the Genetic Algorithm solve the SDAN problem for the same graph and demand
set. We then took the maximum path length appearing in the solution of the Linear Program
as the limit. Of course, the values depend on the characteristics of the graph and demand set.
For instance, by increasing the number of edges (per node) in a graph, the number of possible
paths between two random nodes is likely to increase. This again enlarges the search space and
therefore increases the time needed to find all paths. A similar effect can appear by increasing

5.3 Suitable Genetic Algorithm parameters 41

the latency requirements of the demands. As the latency requirement is higher, it is probable
that feasible paths can get longer, which leads to more possible paths and enlarges the search
space again. These effects are most probably the reason for the fact that the time to find all
paths for some graphs with more nodes (e.g. 84) is lower than for the graphs with less nodes
(e.g. 42).

graph name switch redbest cogent butterfly kdl
nodes 42 84 197 336 754
edges 126 186 486 896 1790
max path length 11 23 22 19 54
calculation time [s] 0.56 0.24 39.8 16.4 not known

Table 5.1: Finding all paths

The measurements were taken on a PC with Ubuntu 14.04.1 LTS, a Intel(R) Core(TM) i7-2600K
CPU at 3.40GHz CPU and 16GiB system memory. Unfortunately, it was not possible to get the
runtime for the graph kdl with 754 nodes and 1790 as it always ended in a segmentation fault
after 2 demands and 10 hours. This was possibly due to memory constraints on the experimen-
tal computer. The vast amount of possible paths is most likely the reason for this behaviour.
However, to mitigate the problem the caching of all possible paths can simply be distributed and
parallelized on multiple machines that determine all possible paths for subsets of the demands.
In our experiments we performed the caching of all possible paths once and stored them in a
file. Thereby, we could evaluate the actual evolutionary process of the Genetic Algorithm with-
out caching all paths every time. Therefore, the following sections describe the evaluation of the
Genetic Algorithm without the caching.

5.3 Suitable Genetic Algorithm parameters

As the performance of the Genetic Algorithm is dependent on the parameters and the scenario,
we had to find suitable parameter sets for each scenario. Therefore we defined the following
parameter pool as candidate parameter sets by experimentation and consultation from literature
[39] and Christos Liaskos from FORTH, Greece, who has had research experience with Genetic
Algorithms.

variable parameter pool
population size [10, 20, 50, 100]
amount of clergy genomes [0,20]
amount of clergy children [2,4]
starting mutation rate [10,20,50]
non allocation probability [5,10,20,40,80]

Table 5.2: Parameter pool used for finding decent parameters

Is has to be noted that this pool could be extended to increase the probability to find the best
possible parameter set. However, brute forcing for the best parameters is very time consuming
(in the order of several weeks), which is the reason why we have a limited amount of parameter
sets in the pool.
Table 5.3 shows the results of the brute force search. For each scenario we let the Linear
Program solve the problem and store the acceptance ratio of the solution and the time needed
for solving the problem. Afterwards, we let the Genetic Algorithm run on the same problem for
the same amount of time. In doing so, we could select the parameter set, which achieved the
best acceptance ratio. In order to factor in the randomness of the Genetic Algorithm we repeated
each run ten times and calculated the average acceptance ratio. Based on this, we selected the
parameter set with the highest average acceptance ratio .

42 CHAPTER 5. EVALUATION RESULTS AND DISCUSSION

We note that the use of genome classes including ’clergy’ genomes is beneficial in some cases.
In addition, the values for the butterfly scenario clearly differ from the other scenarios, as the
graph shape is different on purpose (Section 4.1.3).
Eventually, Table 5.3 shows that the connection between the scenario and the corresponding
parameter set is not trivial.

population
size

clergy
size

clergy number of
children

start mutation
rate

non allocation
probability

switch, tight 20 0 0 10 5
switch, loose 20 20 4 10 40
redbest, tight 10 0 0 10 5
redbest, loose 20 20 4 10 5
cogent, tight 10 0 0 10 5
cogent, loose 10 0 0 10 20
butterfly 100 20 4 50 10

Table 5.3: Best parameter sets out of the pool 5.2

As the Genetic Algorithm is implemented in Python and could be up to 10x faster with a more
efficient C-based implementation, we did the brute forcing again by giving the Genetic Algorithm
10x the solving time of the Linear Program. The results are presented in Table 5.4 and were used
in all experiments of Sections 5.4 and 5.5 since there we let the Algorithm run 10x longer than
the Linear Program. However, if the Algorithm is given the exact same amount of time as the
Linear Program used, the parameters of Table 5.3 are suitable.

population
size

clergy
size

clergy number of
children

start mutation
rate

non allocation
probability

switch, tight 10 0 0 10 10
switch, loose 20 20 2 20 20
redbest, tight 10 0 0 10 10
redbest, loose 20 0 0 20 10
cogent, tight 10 0 0 50 5
cogent, loose 20 0 0 10 5
butterfly 50 20 4 50 20

Table 5.4: Best parameter sets given the parameter pool of Table 5.2

5.4 Acceptance Ratio Comparison:
Linear Program versus Genetic Algorithm 43

5.4 Acceptance Ratio Comparison:
Linear Program versus Genetic Algorithm

This section compares the resulting acceptance ratio of the Linear Program and the Genetic
Algorithm. Given a suitable parameter set (Section 5.3) and a precalculated pool of all paths
(Section 5.2), the Genetic Algorithm performance can be considered with regard to the evolu-
tionary process.
The Genetic Algorithm as well as the Linear Program were given the same graphs and demand
sets as input. Generally, it has to be noted that the comparison is somehow unfair since the Ge-
netic Algorithm is implemented in Python in the course of 3 months during this project, whereas
Gurobi is compiled and highly optimized by a purpose specific company over the course of the
last 6 years. A C++ implementation of the Genetic Algorithm could probably be around 10x
faster [55] as comparisons of different programming languages for various problems show [56]
[57]. For this reason, we let the Genetic Algorithm run 10x longer (excluding caching the gene
pool, which can be done in advance) than the Linear Program. We let the Linear Program run
first and stored the acceptance ratio of its solution with the corresponding runtime used. After-
wards, the Genetic Algorithm was given the same graph and demand set with a timeout of 10x
the runtime of the Linear Program.
Figure 5.2 and 5.3 show the solution finding process of the Linear Program and the Genetic
Algorithm. The performance of the Linear Program is plotted using two dashed lines, which indi-
cate the acceptance ratio of its solution as well as the time needed for solving the problem. The
colored lines connect partial solutions of the Genetic Algorithm that are produced after each
iteration of the evolution, when a new generation has been created. In fact, we implemented
the Genetic Algorithm such that it can utilize all eight cores on the test machine. Therefore we
ran the evolution eight-fold in parallel as eight threads. For the analysis in this section we let
the Genetic Algorithm run for six different parameter sets. The parameter sets are based on the
best parameter set found for the corresponding scenario (Table 5.4) and varied in one parame-
ter to demonstrate its impact on the performance. We chose to show the effect of the population
size and non allocation probability as they are the most important. The population size deter-
mines the degree of parallelism in the evolution on the one hand. On the other hand, it limits
the speed of the evolution as the number of operations per iteration increases by increasing the
number of genomes per population. The non allocation probability can be seen as the ’tenacity’
of the algorithm to embed a demand by a mutation process. As the non allocation probability in-
creases, the probability of creating unfit solutions (solutions that can not be embedded because
they exceed the bandwidth capacity of at least one link) decreases. However, also the speed of
convergence is lowered by increasing the non allocation probability because new demands get
allocated less frequently.
Each experimental run included the evolution process with eight threads running in parallel. Re-
garding the plots we only show the results of the best thread per run. The following subsections
present these plots for the different topologies.

5.4.1 Butterfly Graph

In order to show the effect of different parameters we took the best possible parameter set for
the butterfly graph (Table 5.4) and the corresponding demand set. For the plot we varied one
parameter of the parameter set to show its impact on the performance. Figure 5.2 shows the
effect of different non-allocation probabilities. It can be seen that a very high non allocation
probability leads to weak solutions as the algorithm embeds fewer demands per iteration. In
the extreme case, no demands are allocated at all when the non allocation probability is 100%.
In addition, it can be seen that a too low non allocation probability is counterproductive as the
algorithm tries to embed a lot of demands too hard. There seems to be an optimum around
10%.
In contrast, Figure 5.3 shows the effect of the population size. It is evident that small populations
evolve faster as one iteration step takes less time because there are fewer operations to perform
by the machine. The population size of 400 resulted in very long calculation times, that even the
first generation takes nearly 100 seconds to end and it was not able to stop at 10x the time of
the Linear Program. However, it is notable that the Genetic Algorithm came up with such a good
solution in just one iteration due to parallelism.

44 CHAPTER 5. EVALUATION RESULTS AND DISCUSSION

Figure 5.2: Acceptance ratio versus time,
Linear Program and Genetic Algorithm
(using a set of different non-allocation
probabilities), solving the butterfly scenario
with the corresponding loose demand set.

Figure 5.3: Acceptance ratio versus time,
Linear Program and Genetic Algorithm
(using a set of different population sizes),
solving the butterfly scenario with the
corresponding demand set.

5.4.2 Redbest Graph

Similar to the Figures 5.2 and 5.3 for the Butterfly graph, Figures 5.4 and 5.5 show the progress
of the solution finding by the Linear Program and the Genetic Algorithm. Again, Figure 5.4 shows
that there seems to be an optimum around 10% for the non allocation probability as trying to
allocate too many demands per generation can be counterproductive regarding the acceptance
ratio. On the other side a too low non allocation probability makes the convergence very slow,
as demands are only embedded very rarely. Because the Genetic Algorithm had more time to
run, since we set its timeout to 10x the time that the Linear Program used, the effect of smaller
population sizes in Figure 5.5 is even more evident compared to the Figure 5.3 of the butterfly
scenario. The smaller population sizes allow for more iterations as there are less operations per
generation. This leads to a higher acceptance ratio of the solution by the timeout. In contrast,
when the population size is extremely high, one iteration takes very long. This led to the fact,
that the Genetic Algorithm was not even able to stop within a reasonable amount of time after
the timeout (e.g. in Figure 5.5 for population size 200) since it can only stop after an iteration.

Figure 5.4: Acceptance ratio versus time,
Linear Program and Genetic Algorithm
(using a set of different non-allocation
probabilities), solving the redbest scenario
with the corresponding loose demand set.

Figure 5.5: Acceptance ratio versus time,
Linear Program and Genetic Algorithm
(using a set of different population sizes),
solving the redbest scenario with the
corresponding loose demand set.

5.4 Acceptance Ratio Comparison:
Linear Program versus Genetic Algorithm 45

5.4.3 Cogent Graph

The fundamental relations between the parameters and the performance of the Genetic Algo-
rithm explained in Sections 5.4.1 and 5.4.2 remain the same for the cogent graph scenario.
However, it can be seen that the Genetic Algorithm could not reach the same region of accep-
tance ratio within the time given. One possible reason for this is that the search space increases
a lot when the graph size increases and there are much more possible paths in the gene pool
to choose from. In addition, it takes more effort by the genetic algorithm to determine the fitness
of each genome in large graphs as there are more edges to check. We note that the Linear
Program still finds the best possible solution within a reasonably short amount of time.

Figure 5.6: Acceptance ratio versus time,
Linear Program and Genetic Algorithm
(using a set of different non-allocation
probabilities), solving the cogent scenario
with the corresponding loose demand set.

Figure 5.7: Acceptance ratio versus time,
Linear Program and Genetic Algorithm
(using a set of different population sizes),
solving the cogent scenario with the
corresponding loose demand set.

46 CHAPTER 5. EVALUATION RESULTS AND DISCUSSION

5.5 Genetic Algorithm: Robustness

This section presents the performance of the Genetic Algorithm with respect to parameter ro-
bustness. Figures 5.8 and 5.9 show the acceptance ratio of the Genetic Algorithm for the but-
terfly graph scenario. The Genetic algorithm was given 10x the time that the Linear Program
needed for the same task. The parameters of the Genetic Algorithms were set to the optimal
values found by brute forcing (Table 5.4). Although, one parameter is varied to show its impact
on the performance. In order to factor in the randomness of the Genetic Algorithm we repeated
the experiments 10 times and created boxplots.
Figure 5.8 shows a boxplot of the acceptance ratio versus the non allocation probability. The
non allocation probability is introduced in Section 3.3.3 and determines how likely a mutation
process ends up with a path choice as opposed to ’None’, which would mean that the demand
is not allocated. It can be seen that the Genetic Algorithm is reasonably robust within 5% to 20%
non allocation probability but significantly drops for higher values, as the algorithm then tries to
embed demands too rarely.
In contrast, the Genetic algorithm shows a more robust performance with respect to popula-
tion size as Figure 5.9 demonstrates. The reason for this lies most probably in the fact that the
higher degree of parallelism with large populations compensates for the additional computa-
tion time per generation. Furthermore, we note that for some parameters the performance is
very constant over several runs such that the boxplot does only show very little variance in the
acceptance ratio.

Figure 5.8: Genetic Algorithm robustness against non allocation probability

Figure 5.9: Genetic Algorithm robustness against population size

5.6 Linear Program versus Online Algorithm 47

5.6 Linear Program versus Online Algorithm

This section compares the performance of the Linear Program versus the Online Algorithm.
To show the advantages and disadvantages of the algorithms, we let the Linear Program and
Online Algorithm solve the same scenario and compare the acceptance ratio and solving time
needed for the solution. As the Online Algorithm was designed to allocate demands fast, we
show a version with and a version without the reallocation mechanism, since the reallocation
mechanism is an extension to the Online Algorithm. The reallocation mechanism is described
in Section 3.3.1. This mechanism tries to reallocate previously allocated demands to reorganize
resources such that a new demand can be embedded although there was no feasible path ini-
tially due to occupied links. To achieve this, the Online Algorithm let the Linear Program solve
a sub-problem and find a way to reallocate previously allocated demands and embed the new
demand at the same time. The size of this sub-problem is set to 10 demands in this evaluation.
However, this parameter can be adjusted. A bigger sub-problem size increases the probability
to reach a higher acceptance ratio. Yet, it introduces more overhead by the reallocation mecha-
nism and therefore increases the solving time. In fact, the reallocation mechanism improves the
acceptance ratio performance of the algorithm. However, the reallocation is to the disadvantage
of the solving time as it introduces a lot of overhead, which contradicts the concept of Online
Algorithms (Section 3.2.2).
We let each algorithm solve three scenarios sequentially and independently and plot the time
needed for solving and the acceptance ratio of the solution. Figures 5.10, 5.11 and 5.12 indi-
cate the performance of the Linear Program by circles, the performance of the Online Algorithm
without the reallocation mechanism by triangles and the performance of the Online Algorithm
with the reallocation mechanism by squares. As the performance of the Linear Program is not
dependent on the order of the demands it was run once per scenario. However, to take into
account that the embedding of the Online Algorithm depends on the order of the demands, we
shuffled the demands and plotted the results for 10 runs per scenario.

Figure 5.10: Acceptance ratio vs time for the Online (with and w/o reallocation mechanism)
versus the LP on the switch graph with the corresponding ’loose’ demand set

48 CHAPTER 5. EVALUATION RESULTS AND DISCUSSION

Figure 5.10 shows the performance evaluation of the three algorithm for the switch graph and
the corresponding loose demand set. It demonstrates that the Linear Program is at least 5 times
faster than the Online Algorithm in this scenario. Nevertheless, the Online Algorithm manages to
get to the same acceptance ratio as the Linear Program in 12 cases whereas only 8 of the 20 in
total ended up with lower acceptance ratio. Generally, we note that the Online Algorithm without
reallocation performs worse but is tendentially faster. An important insight is that the Online
Algorithm with reallocation does not always perform better than the version without reallocation.
The reason for this could be that the order of the demands is such that the best acceptance
ratio can also be achieved without reallocation. It can even happen that the Online Algorithm
with reallocation performs worse than the Online Algorithm without reallocation. This is the worst
case since the extra effort of the reallocation mechanism results in a longer calculation time and
a rearrangement of network resources, which by accident deteriorates the embedding regarding
the resulting overall acceptance ratio.

Figure 5.11: Acceptance ratio vs time for the Online (with and w/o reallocation mechanism)
versus the LP on the redbest graph with the corresponding ’loose’ demand set

Figure 5.11 presents the performance evaluation of the two algorithm for the redbest graph and
the corresponding loose demand set. It can be seen that each algorithm performs in a different
region. The Online Algorithm without reallocation is at least 5 times faster than the Linear Pro-
gram or the Online Algorithm with reallocation. The reallocation mechanism produces a slightly
better averaging acceptance ratio. However, the Online Algorithms could not reach the optimal
acceptance ratio of the Linear Program. On the other hand the Online Algorithm was no more
slower than the Linear Program like in Figure 5.10.
As for the cogent graph and the corresponding loose demand set, Figure 5.12 depicts the per-
formance of the three algorithms. As in Figure 5.11 the Online Algorithm without allocation was
fastest but the Online Algorithm with allocation shows a higher average acceptance ratio closer
to the solution by the Linear Program. However, it was not possible for the Online Algorithms to
reach the best allocation ratio determined by the Linear Program. In addition, the plot shows that
the Online Algorithm with reallocation is even slower than the Linear Program, which contradicts

5.7 Conclusion 49

the concept of Online Algorithms (Section 3.2.2). The reason behind this behaviour is that the
overhead of creating a sub-problem and let it solve by the reallocation mechanism increases a
lot with graph size.

Figure 5.12: Acceptance ratio vs time for the Online (with and w/o reallocation mechanism)
versus the LP on the cogent graph with the corresponding ’loose’ demand set

5.7 Conclusion

This section condenses the results found in Chapter 5.
The Linear Program does get slower as the graph size increases, yet, it always returned a so-
lution in our experiments independently from the graph or demand set characteristics. Also, for
most cases it appears to be much more performant compared to the other algorithms of this
project.
Regarding the Genetic Algorithm, it is not trivial at all to tune the parameters such that it performs
optimally in every case. Also, for graphs and demand sets, which do not allow an acceptance
ratio of 100%, there is no obvious break condition for the Genetic Algorithm to stop the evolu-
tion and return the solution. The most substantial disadvantage is the pronounced bottleneck of
finding all paths. Yet, this problem can be addressed by finding and caching all possible paths
in advance. Besides the disadvantages of the Genetic Algorithm, there is a strong advantage.
In contrast to the Linear Program, the Genetic Algorithm is able to produce partial solutions (ac-
ceptance ratio not yet maximized but greater than zero) when an embedding is needed within a
very short amount of time. In a large problem it is well possible, that the Genetic Algorithm has
found a first solution within a couple of generations, when the Linear Program has not finished
calculating yet. As it turned out, the Genetic Algorithm performed similar (when considering that
a C++ implementation could be up to 10x faster) to the Linear Program in the case of the but-
terfly graph (Figure 5.2).
The butterfly graph comprises distinctive bottlenecks in the graph by connecting four SRG sub-
graphs by only a few links. These bottleneck links must be shared optimally by multiple de-

50 CHAPTER 5. EVALUATION RESULTS AND DISCUSSION

mands, without exceeding the capacity of each link. Actually, this is a sub-case of the knapsack
problem, which is NP-Hard [52]. During our experiments we also validated related literature that
showed that Genetic Algorithms are particularly efficient in solving the knapsack problem [53].
Therefore, it would be promising to further optimize the Genetic Algorithm implementation and
parameter set.
By comparing the Linear Program and the Online Algorithm we could show that the Online Al-
gorithm can perform close to the Linear Program by a few percent whereas the Linear Program
always found the best solution in our scenarios. Yet, the reallocation mechanism helped (e.g. in
Figures 5.11 and 5.12) to improve the acceptance ratio of the Online Algorithm. However, this is
to the disadvantage of the runtime performance as the reallocation mechanism introduces a lot
of overhead. Another important insight is the fact that the order of demands has a great effect
on the performance of the Online Algorithm.

Chapter 6

Summary and Outlook

6.1 Summary

The main goal of this thesis was to solve the problem of optimal flow embedding for Audio over
IP networks. The case was motivated by the lack of network management for the emerging
Audio over IP Standard AES67 [10]. By network management we denote the optimal flow
embedding of audio streams in a network. Each audio stream is represented by a demand
carrying the information on the source, target, bandwidth requirement and latency requirement
of the stream. The aim of the network management is to satisfy bandwidth and latency
requirements on a per flow basis while maximizing the acceptance ratio. The acceptance ratio
is defined as number of embedded demands

total number of demands .

To use such algorithms we propose an SDN-enabled Audio over IP network Software
Defined Audio Networking (SDAN) with a SDN controller on top. The controller provides a
global view on the network’s topology by abstracting switches and links to nodes and edges of
a graph. Given the graph representing the network and a set of demands, an SDAN algorithm
can search for the best possible embedding.

In this thesis we defined two classes (online and offline) of SDAN algorithms for two typi-
cal types of scenarios. Online Algorithms handle scenarios where demands are unknown in
advance and a feasible path has to be found fast and on the fly. However, the embedding is not
optimal, which limits the achievable acceptance ratio. Offline Algorithms on the other hand deal
with scenarios when a set of demands is known in advance and search for the best possible
embedding for as much demands as possible. The benefit of this approach is an optimal
embedding, yet the runtime of the algorithms scales poorly with the problem size.

We implemented an Online Algorithm as well as two Offline Algorithms in Python. The
first offline algorithm is the implementation of a Mixed Integer Linear Program. Linear Pro-
gramming is a common approach for solving flow embedding optimization problems. However,
solving a Mixed Integer Linear Program is NP-hard and the time to solve a problem increases
rapidly with the graph size. We had indications that a Genetic Algorithm might be applicable in
this situation. The use of Genetic Algorithms is reasonable in cases where a straightforward
solution is impossible or too complex to derive and implement. NP-hard problems as the Mixed
Integer Linear Program fall into this case [35]. In addition, we had strong evidence from related
work, that Genetic Algorithms can yield benefits to problems of similar nature [36] [37] [49]. We
implemented a Genetic Algorithm from scratch in Python. It is essential to note that the Genetic
Algorithm could be up to 10x faster if it was implemented in a more efficient language (e.g.
C++) as comparisons of different programming languages for various problems show [56] [57]
[55]. The disadvantage of the Genetic Algorithm is that there are parameters that have to be
tuned per graph and demand set.

In order to evaluate the algorithm we created a set of scenarios. A scenario is comprised of a
graph and a demand set. As network graphs we had the top level network graph provided by
the SRG (Swiss Broadcasting Corporation) as well as four graphs from the Internet Topology

51

52 CHAPTER 6. SUMMARY AND OUTLOOK

Zoo [54], which are real topologies of wide area networks. As it turned out, the creation of
reasonable demand sets is not trivial as the number of demands as well as the bandwidth
and latency requirements influence the best achievable acceptance ratio. Eventually we tuned
parameters by experimentation to get a strict (allowing an acceptance ratio around 60%) and a
loose demand set (allowing an acceptance ratio around 100%) for each graph.
With the help of these scenarios we could compare the runtime and acceptance ratio per-
formance of each algorithm. We found that for some scenarios the Genetic Algorithm (given
optimal parameters) can perform in the same acceptance ratio range as the Linear Program,
when taking into account that it would be 10x faster if implemented in C++. In addition, the
Genetic Algorithm can deliver partial solutions during the process of solving, which is a great
advantage of the Genetic Algorithm. We also analysed the parameter robustness of the Genetic
Algorithm and found that it is reasonably robust against population size whereas the non
allocation probability in a mutation process has a great impact on the performance. However,
the mapping of the SDAN problem to the Genetic Algorithm revealed a bottleneck. For running
the Genetic Algorithm, a gene pool of all possible paths per demand has to be precalculated.
For smaller graphs this is not an issue (as it takes a couple of minutes) whereas it can take
several weeks for graphs with over thousand nodes.

As far as the Online Algorithm is concerned, it performs slower than the Linear Program
for small graphs but faster for large graphs. Yet, the larger the graph the lower the acceptance
ratio (a few percent less) of the Online Algorithm compared to the Linear Program. Yet, it
performs in the same acceptance ratio range, too.

6.2 Outlook

6.2.1 System Aspect

The concept of SDAN is explained in Section 3.1. This thesis focuses on the algorithmic part
of an SDAN controller. However, to make use of the algorithms in a real SDN-enabled network,
they have to be integrated on the northbound interface of an SDN controller framework (e.g.
POX [14] or Floodlight [15]). The integration includes the following essential components:

1. One component is responsible for providing a network overview by recognizing all switches
and links, convert this information to a graph and feed it to the algorithm.

2. Another component has to convert the output of the algorithm (a path as a node list per
embedded demand) to flow rules for each switch and push them to the switches by the
southbound interface (e.g. OpenFlow [13]).

3. An interface for an end-user or a professional audio mixing console allowing the generation
of demands. The same interface should also allow the deletion of demands and flow rules
in order to release network resources.

4. A module that manages safety margins on the network lines to assure enough capacity
for the streams (AVB for example does not load links more than 75% [61] [62]).

5. Eventually networking monitoring is inevitable and has to be integrated in the controller to
ensure optimal network performance and recognize potential bandwidth over-consumption
by streams.

A test network of SDN-enable switches (e.g. Open vSwitches [60]) and line simulators (e.g.
Wanem [59] to simulate bandwidth capacity, latency, jitter and loss on a line) could be set up.
Professional AOIP devices could then be attached to the test network to carry out Quality of
Service and Quality of Experience experiments allowing a performance evaluation of the whole
SDAN system.

6.2 Outlook 53

6.2.2 Multicast

As it is common in audio broadcasting and during live events to have a signals being consumed
at several end nodes in the network (e.g. the ambiance audio mix of a sports event that captures
fan chants and acclamations is consumed by numerous TV broadcasters, which then mix their
sports commentator’s voice to it), it is essential to use multicast in order to minimize the network
load per stream. In order to achieve this, the algorithms have to be adopted for multicast (e.g.
the work of Ciro A. Noronha et al. [63]) and the SDN controller has to provide SDN-multicast
capabilities [64].

6.2.3 Demand Grouping

In professional audio production it is prevalent that some audio streams logically belong to-
gether, for example all the microphone channels of a drum set. As all the streams have to be in
sync at the end node it is reasonable to route them on the same path though the network. This
is implementing demand grouping could be beneficial in such scenarios.

6.2.4 Fail-over Paths

As all the ongoing streams and the current topology is known by the controller, fail-over paths
can be calculated and pushed to the switches in advance to provide a higher system reliability
in case of a link or switch failure.
We suggest the approach of calculating two distinct paths (minimizing the number of common
edges) for each demand, which are converted to flow rules and pushed to the switches. By this,
a main stream and a backup stream can run concurrently. However, one could also choose to
just install the flow rules of the fail-over path at the beginning (without actually having a backup
stream running) and only switch to it, when the main path breaks. By this, less network capacity
is occupied, yet the reaction time in case of failure increases, since the link failure has to be
recognized and the backup stream has to be initiated first.

6.2.5 Number Of Channels Per Stream

As each stream introduces some overhead traffic in the network it is reasonable to have multiple
audio channels per stream. In AES67 [10] one single stream can carry multiple audio channels.
Depending on the sampling rate and packet time, there is a certain maximum number of chan-
nels defined in the standard. When a certain amount of audio channels has to be transported
over a network, the question is, how many streams are needed and which channels should be
embedded in each of them. Future work could therefore investigate on the optimal grouping of
audio channels into streams such that optimal performance of the streams is guaranteed and
the network load per stream is minimized.

6.2.6 QoS Applications

The SDAN algorithm can of course also be used for general QoS applications. With the help
of rate limiters in each device on the network (because bulk traffic is bursty and not constant
regarding bandwidth consumption like streams) it would be possible to build an SDN-enabled
network, where each node of the network is given a link to other nodes with a fixed well-defined
minimal bandwidth and maximum latency. This feature could be used to embed office or bulk
traffic in real time media networks.

6.2.7 Genetic Algorithm Refinements

GA Parameter Tuning

One of the big challenges when using Genetic Algorithms is to find parameters such that the al-
gorithm converges fast. A method to find these parameters is a second level Genetic Algorithm,
which is described in work by John J. Grefenstette [41].

54 CHAPTER 6. SUMMARY AND OUTLOOK

PyPy

In order to make the Genetic Algorithm faster it should be written in C++ or PyPy [65].

Implement Crossover

Crossover is, besides mutation, an important element in Genetic Algorithms [39]. Due to time
constraints, the implementation of this thesis does not involve crossover but it could be consid-
ered in future work.

Multi-thread Multi-parameter Search

Another idea to accelerate the process of evolution is to instantiate several threads that run the
same Genetic Algorithm whereas each Genetic Algorithm instance is running on different pa-
rameters. Since different parameters lead to different performance, the probability of finding the
best solution faster increases when running different Genetic Algorithm instances on different
parameters in parallel.

Tabu Search

Another possibility to speed up the Genetic Algorithm is the introduction of Tabu search [39].
This technique avoids the same solution candidate being visited multiple times by accident and
therefore saves time in the process of optimization.

Multi-objective Optimization

SPEA [43] [44] and NSGA [42] are Genetic Algorithms for multi objective optimization, but the
SDAN algorithm just optimizes for one single objective (maximizing acceptance ratio). Although
SPEA and NSGA do not precisely match the task of an SDAN algorithm, it could be investigated
on the performance of them with an additional secondary objective (minimizing bandwidth usage
on each link).

Bibliography

[1] STUDER by HARMAN,
http://www.studer.ch/,
Date of the last visit: 9th of February 2015

[2] Wikipedia, "Super Bowl",
http://en.wikipedia.org/wiki/Super_Bowl,
Date of the last visit: 9th of February 2015

[3] Wikipedia: "MADI",
http://en.wikipedia.org/wiki/MADI,
Date of the last visit: 9th of February 2015

[4] S. Church, S. Pizzi,
"Audio Over IP: A Practical Guide to Building Studios with IP, including VoIP and Livewire"
Focal Pr, November 2009, ISBN-10: 0240812441, ISBN-13: 978-0240812441

[5] Audinate,
"Dante Audio Networking",
https://www.audinate.com/,
Date of the last visit: 3th of March 2015

[6] Wheatnet-IP,
"Technology Overview",
http://wheatstone.com/index.php/wheatnet-ip-technology-overview-corporate
Date of the last visit: 3th of March 2015

[7] A. Hildebrand,
"AES67 & beyond, Presentation at Broadcast Engineering Conference",
NAB, 2014

[8] Audio Engineering Society (AES),
"Best Practices in Network Audio" White Paper,
AESTD1003V1, 2009
http://www.aes.org/technical/documents/AESTD1003V1.pdf,
Date of the last visit: 9th of February 2015

[9] ALC Networx,
"Latency RAVENNA Features",
http://ravenna.alcnetworx.com/technology/features/latency.html,
Date of the last visit: 9th of February 2015

[10] Audio Engineering Society (AES),
"AES standard for audio applications of networks -
High-performance streaming audio-over-IP interoperability",
AES67-2013, Standards and Information Documents, 2013

[11] ALC NetworX GmbH,
"Ravenna V 1.0, White Paper",
http://ravenna.alcnetworx.com/infos-downloads/white-papers.html,
Date of the last visit: 9th of February 2015

55

56 BIBLIOGRAPHY

[12] N. Feamster, J. Rexford, E. Zegura,
"The Road to SDN - An intellectual history of programmable networks",
Georgia Institute of Technology and Princeton University,
Acmqueue, Volume 11, issue 12, December 30, 2013,
http://queue.acm.org/detail.cfm?id=2560327,
Date of the last visit: 9th of February 2015

[13] N. McKeown,
"OpenFlow: enabling innovation in campus networks",
ACM SIGCOMM Computer Communication Review 38.2 (2008): 69-74.

[14] POX,
"SDN Controller",
http://www.noxrepo.org/pox/about-pox/,
Date of the last visit: 3th of March 2015

[15] Project Floodlight,
"Open Source Software for Building Software-Defined Networks",
http://www.projectfloodlight.org/floodlight/,
Date of the last visit: 3th of March 2015

[16] networkstatic.net,
"The Northbound API - A Big Little Problem",
http://networkstatic.net/the-northbound-api-2/,
Date of the last visit: 3th of March 2015

[17] Institute of Electrical and Electronics Engineers (IEEE),
"IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measure-
ment and Control Systems",
1588-2002, IEEE Standard, 2002
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1048550
Date of the last visit: 3th of March 2015

[18] The Internet Engineering Task Force (IETF),
"Zero Configuration Networking (zeroconf)",
https://datatracker.ietf.org/wg/zeroconf/charter/
Date of the last visit: 3th of March 2015

[19] The Internet Engineering Task Force (IETF),
"Session Announcement Protocol",
RFC2974, October 2000
http://tools.ietf.org/html/rfc2974
Date of the last visit: 3th of March 2015

[20] Wikipedia, "AES67",
http://en.wikipedia.org/wiki/AES67,
Date of the last visit: 9th of February 2015

[21] C. Frei, EPFL,
"Abstraction techniques for resource allocation in communication networks",
PhD These Nr. 2144,
http://infoscience.epfl.ch/record/32620

[22] C. Frei, B. Faltings, M. Hamdi,
"Resource Allocation in Communication Networks Using
Abstraction and Constraint Satisfaction",
IEEE Journal on Selected Areas in Communication, Vol 23, p. 304-320, February 2005,
http://liawww.epfl.ch/Publications/Archive/Frei2005.pdf,
Date of the last visit: 9th of February 2015

[23] Audio Video Bridging Task Group,
http://www.ieee802.org/1/pages/avbridges.html,
Date of the last visit: 9th of February 2015

BIBLIOGRAPHY 57

[24] M. J. Teener, AVnu Alliance,
"No-excuses Audio/Video Networking:
The Technology Behind AVnu" White Paper, 8th of August 2009,
http://avnu.org/wp-content/uploads/2014/05/No-excuses-Audio-Video-Networking-v2.pdf,
Date of the last visit: 9th of February 2015

[25] Wikipedia, "Time-Sensitive Networking",
http://en.wikipedia.org/wiki/Time-Sensitive_Networking,
Date of the last visit: 9th of February 2015

[26] time sensitive networks,
http://www.802tsn.org/,
Date of the last visit: 9th of February 2015

[27] L-S-B,
Website "VSM - Broadcast Control and Monitoring System",
http://www.l-s-b.de/en/products/vsm.html,
Date of the last visit: 9th of February 2015

[28] L-S-B,
Brochure "VSM - Broadcast Control and Monitoring System",
http://www.l-s-b.de/fileadmin/content/LSB_NEU/Marketing/Brochures/Flyer_VSM_2014.pdf,
Date of the last visit: 9th of February 2015

[29] Wikipedia: "Linear programming",
http://en.wikipedia.org/wiki/Linear_programming,
Date of the last visit: 9th of February 2015

[30] lpsolve,
http://sourceforge.net/projects/lpsolve/,
Date of the last visit: 9th of February 2015

[31] Gurobi Optimization,
http://www.gurobi.com/,
Date of the last visit: 9th of February 2015

[32] A. Bley,
"An Integer Programming Algorithm for Routing Optimization in IP Networks",
Zuse Institute Berlin, Algorithms - ESA 2008, Lecture Notes in Computer Science, p. 198-
209, Volume 5193, 2008,
http://link.springer.com/chapter/10.1007%2F978-3-540-87744-8_17#page-1,
Date of the last visit: 24th of February 2015

[33] V. Kotronis, R. Kloeti, M. Rost, P. Georgopoulos, B. Ager, S. Schmid, X. Dimitropoulos,
"Investigating the Potential of the Inter-IXP Multigraph for the Provisioning
of Guaranteed End-to-End Services",
ETH Zurich, Laboratory TIK, Nr. 360, February, 2015

[34] M. Juenger,
"50 Years of Integer Programming 1958-2008,
From the Early Years to the State-of-the-Art",
Springer-Verlag Berlin Heidelberg, p. 345, 2010
http://www.springer.com/gp/book/9783540682745 Date of the last visit: 3th of March 2015

[35] R. Fabregat and Y. Donoso,
"Multi-objective optimization in computer networks using metaheuristics",
CRC Press, 2007,
http://www.crcnetbase.com/isbn/9780849380846,
Date of the last visit: 3th of March 2015

[36] B. Gonen,
"Genetic Algorithm Finding the Shortest Path in Networks",
Department of Computer Science and Engineering, University of Nevada, Reno, Reno,

58 BIBLIOGRAPHY

Nevada, U.S.A,
http://weblidi.info.unlp.edu.ar/worldcomp2011-mirror/GEM3983.pdf,
Date of the last visit: 9th of February 2015

[37] S. Behzadi, A. Alesheikh,
"Developing a Genetic Algorithm for Solving Shortest Path Problem",
WSEAS International Conference on Urban Planning and Transportation, Heraklion, Crete
Island, Greece, July 22-24, 2008,
http://www.wseas.us/e-library/conferences/2008/crete/upt/upt04.pdf,
Date of the last visit: 9th of February 2015

[38] R. Kumar, M. Kumar,
"Exploring Genetic Algorithm for Shortest Path Optimization in Data Networks",
Global Journal of Computer Science and Technology, Vol. 10, Issue 11 (Ver. 1.0), p. 8-12,
October 2010,
http://globaljournals.org/GJCST_Volume10/2-Exploring-Genetic-Algorithm-for-Shortest-
Path-Optimization-in-Data-Networks.pdf,
Date of the last visit: 9th of February 2015

[39] S. Luke,
"Essentials of Metaheuristics - A Set of Undergraduate Lecture Notes",
Department of Computer Science, George Mason University,
Second Edition, Online Version 2.1, October 2014,
http://cs.gmu.edu/ sean/book/metaheuristics/Essentials.pdf

[40] J. Holland,
"Adaptive algorithms for discovering and using general patterns
in growing knowledge bases",
International Journal of Policy Analysis and Information Systems, 4(3), p. 245-268, 1980

[41] J. Grefenstette,
"Optimization of Control Parameters for Genetic Algorithms",
IEEE Transactions on Systems, Man, and Cybernetics,
VOL. SMC-16, No, 1, January/February 1986,
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4075583,
Date of the last visit: 9th of February 2015

[42] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan,
"A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II",
IEEE Transactions On Evolutionary Computation, VOL. 6, No. 2, APRIL 2002,
http://www.iitk.ac.in/kangal/Deb_NSGA-II.pdf,
Date of the last visit: 9th of February 2015

[43] E. Zitzler, L. Thiele,
"An Evolutionary Algorithm for Multiobjective Optimization:
The Strength Pareto Approach",
TIK-Report, No. 43, May 1998,
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zt1998a.pdf,
Date of the last visit: 9th of February 2015

[44] E. Zitzler, ETH TIK,
"Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications",
Diss. ETH No. 13398, November the 11th, 1999,
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zitz1999a.pdf

[45] NetworkX,
https://networkx.github.io/,
Date of the last visit: 9th of February 2015

[46] Graphviz,
http://www.graphviz.org/,
Date of the last visit: 9th of February 2015

BIBLIOGRAPHY 59

[47] R. Sedgewick,
"Algorithms in C, Part 5: Graph Algorithms",
Addison Wesley Professional, 3rd ed., 2001

[48] I. Rechenberg,
"Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution",
Fromman-Holzbook, Stuttgart, Germany, 1973

[49] Tobias Siegfried,
"Multiobjective Groundwater Management Using Evolutionary Algorithms".
IEEE Transactions On Evolutionary Computation, Vol. 13, No. 2, April 2009
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4540060,
Date of the last visit: 9th of February 2015

[50] Eckart Zitzler,
"An Evolutionary Algorithm for the Block Stacking Problem",
Computer Engineering and Networks Laboratory (TIK), ETH Zurich.
http://www.tik.ee.ethz.ch/file/51778347a40443e27115d11aca1a8baa/hegb2008a.pdf,
Date of the last visit: 9th of February 2015

[51] SRG,
"Schweizerische Radio- und Fernsehgesellschaft",
http://www.srgssr.ch/,
Date of the last visit: 9th of February 2015

[52] A. Drexl,
"A Simulated Annealing Approach to the Multiconstraint Zero-one Knapsack Problem",
Computing, January 1988,
http://dl.acm.org/citation.cfm?id=46827,
Date of the last visit: 9th of February 2015

[53] F. Lin,
"Applying the Genetic Approach to Simulated Annealing in Solving Some NP-Hard Prob-
lems",
IEEE Transactions On Systems, Man, And Cybernetics, Vol. 23. No. 6, November Decem-
ber 1993,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=257766,
Date of the last visit: 9th of February 2015

[54] The Internet Topology Zoo,
http://www.topology-zoo.org/,
Date of the last visit: 9th of February 2015

[55] Python Software Foundation,
"Comparing Python to Other Languages",
https://www.python.org/doc/essays/comparisons/,
Date of the last visit: 23th of February 2015

[56] S. B. Aruoba, J. Fernandez-Villaverdez,
"A Comparison of Programming Languages in Economics",
University of Maryland, University of Pennsylvania, August 5, 2014,
http://economics.sas.upenn.edu/ jesusfv/comparison_languages.pdf,
Date of the last visit: 23th of February 2015

[57] I. Zahariev,
"C++ vs. Python vs. Perl vs. PHP performance benchmark",
/contrib/famzah, July 1, 2010,
http://blog.famzah.net/2010/07/01/cpp-vs-python-vs-perl-vs-php-performance-
benchmark/,
Date of the last visit: 23th of February 2015

60 BIBLIOGRAPHY

[58] NetworkX all_simple_paths,
http://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.simple_paths.all_simple_paths.html,
Date of the last visit: 9th of February 2015

[59] WANem,
"The Wide Area Network emulator",
http://wanem.sourceforge.net,
Date of the last visit: 3th of March 2015

[60] Open vSwitch,
"Open vSwitch, a production quality, multilayer virtual switch licensed under the open
source Apache 2.0 license.",
http://openvswitch.org/,
Date of the last visit: 3th of March 2015

[61] D. Pannell,
"Audio Video Bridging Audio Video Bridging - AVB Assumptions",
IEEE 802.1 AVB Plenary, Sept 4, 2007, Stockholm,
http://www.ieee802.org/1/files/public/docs2007/avb-pannell-assumptions-0907-v8.pdf,
Date of the last visit: 3th of March 2015

[62] Biamp Systems,
"AVB Resource Guide - Covering the Basics of AVB",
http://c353616.r16.cf1.rackcdn.com/Biamp_AVB_Reference_Guide.pdf,
Date of the last visit: 3th of March 2015

[63] C. A. Noronha,
"Optimum routing of multicast audio and video streams in communications networks ",
Standford University, Technical Report: CSL-TR-94-618, 1994
http://i.stanford.edu/pub/cstr/reports/csl/tr/94/618/CSL-TR-94-618.ps,
Date of the last visit: 3th of March 2015

[64] P. Leu,
"SDN-assisted IP Multicast",
ETH, TIK, Semester Thesis SA-2014-30, September 2014 to December 2014,
ftp://ftp.tik.ee.ethz.ch/pub/students/2014-HS/SA-2014-30.pdf,
Date of the last visit: 9th of February 2015

[65] Pypy,
http://pypy.org/,
Date of the last visit: 9th of February 2015

