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Abstract

Twitter is a successful micro-blogging platform where users write about topics which are catch-
ing their interest on the moment. Thanks to its real time nature, event detection using Twitter
data is a promising and active research area with various interesting applications.
In this work we focus on the detection of plane hijackings, plane crashes and wildfires events.
We show that plane hijackings and plane crashes events have similar characteristics which dif-
fer greatly from wildfires events in terms of quantity, time span and thus Twitter activity.
We implement a language independent event detection system with two different core algo-
rithms, the first one based on the frequency of tweets and the second on the content of the
tweets. Although we test our system on the above specified event types, the same methods can
be used for other kind of events with minor changes.
Using sampled Twitter data from October 2013 to October 2014 we achieve faster detection than
traditional media like Reuters and BBC for plane hijackings and wildfires. For plane crashes our
detectors are faster than BBC but slower than Reuters. To give an idea of our results, we are
able to detect:

• 100% of the plane hijackings within 7.5 hours with 70% precision

• 85% of the plane crashes within 18 hours with 100% precision

• 65% of the wildfires within 72 hours with 80% precision
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Chapter 1

Introduction

The general goal of this work is to detect events. But what is an event? Up to this date,
Philosophy doesn’t offer an universal definition as multiple different theories exist. We focus on
real-world events so we can start with the simple physical definition of an event: A phenomenon
or occurrence located at a single point in space-time. But this is too limited... We will see in the
section 1.2 Motivation that our horizon is vast and to restrict ourselves to the physical definition
would be counterproductive. So we widen the scope of the events to detect. The details are
given in the section 2.2.1 Defining an Event, we first need to introduce the subject further to
understand the reasons behind our choices.

Before social media, event detection techniques were applied on traditional information
sources. The DARPA TIDES program goal is to enable English-speaking users to access,
correlate, and interpret multilingual sources of real-time information and to share the essence
of this information with collaborators 1. From the TIDES program, spawned in 1997 the Topic
Detection and Tracking (TDT) research program with aim to develop algorithms for discovering
and threading together topically related material in streams of data such as newswire and
broadcast news in both English and Mandarin Chinese 2. Similarly to what we want to do with
Twitter the developed techniques allow to automatically extract news of interest and keep track
of their evolution. According to [3] we can classify these methods in mainly two types, the
document pivot techniques where events are detected by clustering documents based on their
textual similarity, and the feature pivot techniques where events are detected by identifying
topics with sudden increase in activity. These methods were designed to work with traditional
media data i.e. relatively long, structured, relevant and well constructed documents. However
we will show in the next paragraph that social media data is completely different and that these
methods can’t be used directly.

Social media are now very popular and widely spread. Through these services, users interact
with each others, create virtual groups and communities, exchange user-generated content.
One main innovation is that each user has now become an active source that can create
content and share it among the other users whereas with traditional media the number of
content producing sources stays limited. The majority of users produce content about recent
events which catch their interest but also their current state, what they are experiencing/feeling,
what interest them in general. This is very different from traditional medias which aim to report
events of interest. One can easily guess that the content produced by users in social media will
contain a large proportion of uninformative, irrelevant data. The users aren’t working together
towards a common goal so it isn’t possible to assume that the produced content from different
users is structured in any way. Most of the users aren’t producing content in a formal systematic
organized way, they make mistakes, imprecisions and omissions. Because there are many
users then the quantity of data produced is huge so we need methods with low computational
cost. From these reasons we see that traditional medias methods aren’t suited to detect events
with social media data. After stating all these negative points, it is important to think about why
detecting events with social media data is still promising. We think that even if only a small

1http://www.itl.nist.gov/iad/mig/tests/tdt/
2See footnote 1
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12 CHAPTER 1. INTRODUCTION

fraction of the data covers the events we are interested in, the large amount of data makes
up for it. Then because every user is a source, the potential coverage and reactiveness of the
event reporting capability is better than with traditional media. So there is hope to catch all
occurrences of events even faster than what traditional media can achieve.

In this project we use the data of the successful social media platform called Twitter and
develop algorithms aiming to “detect” events faster than traditional media like BBC or Reuters.
Let it be said here once and for all, the expression “detect” events is an abuse of language,
a shortcut. In this work, by “detecting” events we mean to write that the system detects the
events’ projections and effects on the Twitter data.
We have the possibility to choose between specified or general events detection. The issue with
general events detection is that we are more tracking trending topics than informative events.
For example this would place the latest viral joke and the Minsk ceasefire at the same level of
importance. So we opt for specified event detection and assume that anyone interested into
tracking events occurrences will know what type of events they want to track. This assumption
allows to pinpoint and focus on specific event categories.

1.1 Twitter

Twitter is an online social networking service that enables users to send and read short 140-
character messages called "tweets" 3. Starting in 2006 from its original concept of an SMS
service to communicate with a small group, Twitter became very popular and in 2014 totaled
255 million monthly active users and 500 million tweets sent per day4. Twitter is the typical
example of a microblogging platform, aside from writing/reading tweets users can:

• Subscribe to other user’s tweets (A “follows” B).

• Repeat a message from another user (A “retweets” B’s tweet).

• Reply to a tweet author or mention users in a tweet (A “mention” B).

• Browse Twitter recommendation or through the search option to find interesting tweets
and users.

The following aspects of Twitter should be known:

• Hashtags are important elements in a tweets, Twitter uses hashtags to group the similar
tweets together, they represent the core entities and keywords in a tweet.

• Users can embed URLs in tweets to provide more content.

• Tweets contain meta-data about the tweet itself and its author. Among others, the meta-
data contains the number of retweets of the tweet, the geographic location where it was
posted, the timestamp when it was posted, the number of friends/followers of the author,
whether the author is giving his geographic location at each tweet, his language, his coun-
try, his profile picture, etc..

With its 140 characters limit, Twitter really favors briefness. Users won’t be able to elaborate
complicated ideas or theories, they can only ask a short question or make a quick statement.
Due to their conciseness, most tweets lifespans are extremely short, they represents a fact at
a certain point of time. Users will either talk about themselves, their mindsets, their opinions,
their topics of interest, or about events which catch their attention. Users also try to tweet about
topics which will interest their followers so they are eager to tweet about new information that
their followers may not know yet.

3http://en.wikipedia.org/wiki/Twitter
4http://www.adweek.com/socialtimes/social-media-statistics-2014/499230
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1.2 Motivation

In this work we want to detect events using Twitter data, the first step toward the development
of techniques to monitor the activity on Twitter. We know that Twitter users reveal their opinion,
sentiments, mindset through their tweets. Thanks to its success, Twitter has now a large
user base across many countries. Thus in each of these country there is a proportion of the
population for which we can track their opinion, sentiments, mindsets, etc. It is clear that for the
moment this is strongly biased as the Twitter users aren’t randomly sampled in the population
but this bias can be evaluated and given time could maybe reduce.

Being able to monitor the activity in Twitter has many applications. For example events similar to
the “Arab Spring” could be predicted and perhaps influenced if not thwarted. Many informations
usually not reported by the traditional medias could be inferred like crowd agitation, sentiments,
interest in a particular topic. This is very useful and could be used for example to evaluate the
effect of a political decision. The information extracted from Twitter could also be used to model
how crowds react or just correlated with social events, economic events, market stocks...

Social medias are disruptive technologies, nothing comparable existed at this scale until now.
They greatly facilitate the organization and reunion of large amount of people in short time. For
example they give opportunity for politically engaged people to influence big crowd which can
be particularly threatening for a government in tensed times. The science to influence crowds,
rhetorics, is as old as the first men, now it is possible to influence bigger crowds and thus reap
bigger effects. Studying them isn’t really an option, any country needs to develop this know-
how; some already started e.g. America and their attempt to build a Twitter-like social media in
Cuba5.
Possible reluctance to act as “Big Brother” should be swept away. The users already consented
to give the social media companies full control over their data and these companies’ interests
may conflict with countries’ will. One could also concern himself with personal privacy questions.
This shouldn’t be the case because the techniques we aim to develop won’t target individuals
but crowds and groups behaviors, movements, evolutions, reactions, opinions, etc. To finish
with an amusing note, we can think of the social medias as the first testing grounds for the
development of the science of phsychohistory in the sci-fi sense of Isaac Asimov’s Foundation
series...

1.3 Contribution of this Master Thesis

In this work we evaluate the feasibility to use Twitter as an early warning system for real-world
events. We implement language independent event detection algorithms and evaluate their per-
formance (precision, recall, delays between events and their detections timestamps) on ran-
domly sampled Twitter data collected from October 2013 to October 2014. Then we compare
our detectors’ delays with the delay from the traditional medias like BBC and Reuters first re-
ports. To evaluate these performances we established a ground truth i.e. a subset of all real-
world events occurrences over the data timespan, for each event types.
As explained in the introduction, we decide to focus on specified event detection. We choose to
track wildfires as disaster-type events and plane hijackings and plane crashes. The reason for
choosing plane hijackings is that Switzerland was recently concerned by the Ethiopian Airlines
ET702 hijacking on the 17th February 2014. This event was reported first on Twitter 6 and much
later by traditional medias. There were few plane hijackings over the data span so we choose
also plane crashes events which have similar characteristics. As we will show in chapter 2 Chal-
lenges, the plane hijackings/crashes events are really different from the wildfires events which
allows us to present results of the same detectors on event types with different behavior and
characteristics.

5http://www.nytimes.com/2014/04/04/world/americas/us-says-it-tried-to-build-a-social-media-site-in-cuba-but-
failed.html

6https://medium.com/@thatjohn/how-i-broke-the-ethiopian-airlines-et702-hijacking-on-twitter-6c2cc1d2f2e4
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1.4 Related Work

Thanks to its success Twitter has a large user base which makes it an interesting laboratory
for researchers. Event detection is only a part of the work going on to understand what can be
learned from Twitter. To cite a few, Java et al. [1] studied Twitter social network and its user’s
intentions. Andre et al. [14] analyzed the users tolerance to undesired content and what type
of information is valued. The classification of users between informers (information sharing)
and meformers (talking about themselves) was proposed by Naaman et al. [12] and between
humans, bots and cyborgs (bot-assisted human or human-assisted bot) by Chu et al. [20].
Sharifi et al. [4] proposed a method to create a summary from all the tweets related to an
arbitrarily chosen phrase. Tumasjan et al. [2] showed that the political landscape in Germany
could be extracted using content analysis on the subset of tweets containing a reference to a
party which also reflected the results of the federal elections.
The list could go on; Twitter and its numerous application possibilities have sparked the
enthusiasm of a vast research community. Event detection is also a very active field as shown
in Atefeh et al. survey [3] where the authors propose a non-exhaustive table listing event
detection methods from papers up to year 2012. We complete this table with a selection of
more recent papers in table 1.1.

The table 1.1 covers techniques for both specific and general event detection. With general
event detection, the algorithms don’t know anything about the events they are tracking so
they usually extract event candidates (e.g. words, users, geographical locations, etc.) from
the tweets and monitor them trying to detect anomalies and sudden bursts in the Twitter
activity. As a result these methods can detect any trending topic but cannot really focus on a
precise target and will usually be slower compared to specified event detection performances
algorithms which have a priori knowledge of the event types characteristics and can be adapted
and trained to be more efficient. On the other hand, specified event detection techniques are
limited to the event types they were designed for and will perform poorly on other event types
if they aren’t properly retrained and re-optimized. Another issue with specified event detection
techniques is that training often implies the need of labeled data and often results in language
dependent models.
We would like to get as much as possible of the best of the two worlds. As we explained in
the first part of the Introduction, we will track specified event types because we assume that
anyone interested into tracking events occurrences will know what type of events they want to
track. But we also want our algorithms to work well on new event types with as little training and
required optimization as possible. As a result the techniques we implemented are inspired from
papers aiming to track general events which we adapted to work well with specified event types
while staying unsupervised and language independent. Simplicity being a quality, it is worth
mentioning that the only features used by our system are the tweets’ text and additionally for
one of the two detectors, the hashtags. Thus the algorithms ideas can be easily improved, built
upon and reused as foundation bricks for more complex process.

To the best of our knowledge, the research community didn’t attempt yet to detect plane
hijackings/crashes and wildfires using Twitter data. Vieweg et al. [16] analyzed microblog posts
generated during the April 2009 Oklahoma Grassfires and the March-April 2009 Red River
Floods but their goal was to identify information that may contribute to enhancing situational
awareness and not to detect wildfire events. Plane crashes and plane hijackings are interesting
to study because they are popular events generating a large activity in Twitter where users
debate about what happened, create theories and relay the latest updates. We chose wildfires
as well because their characteristics are completely different (cf section 2.2.2) allowing us to
compare how well the same detectors performed on event types incurring very different Twitter
responses.
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16 CHAPTER 1. INTRODUCTION

1.5 Overview

The report is organized in the following manner. Chapter 2 presents the challenges we face by
working with Twitter data, the problems due to the event types nature and the typical issues
in event detection. In Chapter 3 we describe the system architecture and the implementation
details. Chapter 4 explains our technical setup and how we organized the experiments. Chapter
5 presents the experiments’ results and the performance of our system. We conclude in Chapter
6 with our achievements and finally give ideas for potential next research work in chapter 7. The
reports then ends with the Appendix section and the Bibliography.



Chapter 2

Challenges

In this chapter, we detail the challenges we face to create an event detector for wildfires, plane
hijacking, plane crashes working with Twitter data.

2.1 Twitter Data

The Twitter data is composed by the tweet meta-data which contains the text and many other
informations as explained in section 1.1 Twitter. The first thing to note is that we have access to
this data only through the Twitter Streaming API which offers just 1% of the total Twitter traffic.
The quality of the sampling has been studied by Morstatter et al. [8] and shown to be biased.
This is an issue we cannot solve and have to work with.

There are problems due directly to the concept of Twitter. The tweets are very short text (only
140 characters); this creates a problem with traditional natural language (NLP) techniques
which usually require longer text and more context to be able to extract interesting informations.
We can’t just concatenate the tweets together as there is no structure between them, tweets
may be in rare cases related (e.g. user transcribes a speech) but otherwise are completely
independent. The facts that users make neologisms, new abbreviations, grammatical mistakes,
misspelling all the time adds even more to the difficulty. This implies that we can’t use NLP
techniques without adapting them specifically for Twitter.

Another problem directly linked to Twitter concept is that users talk mainly about uninteresting
topics (for event detection). A San Antonio-based market-research firm Pear Analytics analyzed
2,000 tweets ... and separated them into six categories: Pointless babble 40%, Conversational
38%, Pass-along value 9%, Self-promotion – 6%, Spam 4%, News 4%1. This shows that most
of the data is noise which drowns interesting news informations. We need to be able to separate
event related tweets from the mass of unimportant tweets.

Thanks to its success, Twitter generates continuously a huge quantity of data; this is good news
in terms of potential coverage but an issue for the computational complexity. The algorithms
need to stay as simple as possible to be able to handle the incoming flow of tweets. As the data
comes in a streaming fashion the algorithms need also to be online. These two points restrict
the algorithms we could use, again we see that the methods developed in the TDT program (cf
chapter 1 Introduction) and traditional NLP techniques really aren’t directly applicable on Twitter
data.

1http://en.wikipedia.org/wiki/Twitter
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2.2 Events

2.2.1 Defining an Event

As explained in the chapter 1 Introduction, defining the term event isn’t simple because there
is no universal definition. With section 1.2 Motivation in mind, we extend the basic physical
definition of an event. We aren’t interested only in the time/space information of an event
but also by its evolution in the users discussions. As an example let us consider the mh370
crash: over the course of the investigation, mh370 started from a plane crash, became a
plane hijacking event and finally reverted to a plane crash. The cause of the accident changed
over time as well as the crash location. The users discussed about the official news releases,
created theories, gave their opinions... If we restricted ourselves to the physical definition, we
would lose all these informations about the users perception of the mh370 event.

We also extend our event definition to tolerate past event (e.g. 9/11/2001) and false rumors
(e.g. on the 24/3/2014 a confusing boat picture was mistaken for a crashed plane). For past
event the reason is that if the crowd talks about them, it means that the topic still matters for
the users and as it is linked to a past real-world event, this information should be known and
monitored. For false rumors, the reason is that we wish to track the crowd belief. It is also
interesting to see how fast the users start trusting the crowd knowledge and how easily they
are deceived.
In this way we extend our tolerance on what the event detector should report which results in
more alerts that needs to be handled properly. Our event definition doesn’t include viral joke
(e.g. a popular joke about watching a plane hijacking movie before taking a flight) because they
are only noise and uninformative.

To recapitulate, during this work we will consider as event the set containing events in the sense
of the physical definition, new information about an event which already occurred (e.g. after a
news release), reminiscence of users about a past event (9/11) and false rumors.
We don’t consider as event the set containing viral jokes because they aren’t related in any ways
to a real-word event or to a real belief of the users that an event is happening.

2.2.2 Event Types Specific Characteristics

Each of the chosen event types has its own behavior, particularities and differences that we will
present in this section. These differences makes it more difficult to create an algorithm which
works well for all the event types.
Plane hijackings are relatively rare, during the year from October 2013 to October 2014,
there were “only” 4 occurrences. When a plane hijacking happens it usually becomes a major
event discussed worldwide. The physical duration of such an event is relatively short, it never
lasts more than a day and the physical location is usually clear. From this description we can
already guess that the plane hijacking event type “signal” should have little noise and highly
recognizable spikes.

Plane crashes happen relatively more often than plane hijackings. These events don’t always
take a large importance in the discussions as many of the occurrences concern small private
planes or relatively remote countries. The usual physical duration is also short, they never last
more than a day and their physical location is also clear. We see from this description that plane
crashes events behaviors are similar to plane hijackings events, a bit more noisier because of
the greater number of occurrences.

Wildfires events on the other hand are very different from plane hijackings and plane crashes
events. They are very frequent during the year, they can last from days to months and their
locations can move and often isn’t clear in the tweets. For example in 2014, 5620 wildfires
happened in California alone2. This makes it very difficult for a given wildfire to understand
when it started and where. The intuition is that the signal for wildfire events will be much wilder
and noisier than for plane hijackings and plane crashes.

2http://en.wikipedia.org/wiki/2014_California_wildfires
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2.2.3 Past Events

People still discuss about past events like 9/11/2001 or the day the music died3 on the 3/2/1959
on their anniversaries each year. As we explained in section 2.2.1, they are interesting to track
but they create an issue when the system tries to match them with recorded known event oc-
currences. The reason is that we don’t know which past events will be of interest for the users.
They are also hard to recognize because the users don’t disclose much details about the events
as they are considered common knowledge. It may happen that new informations related to an
event is released months after the event occurrence leading to an event detection. In this case
the detection is related to a past event and the system should be able to match the detection
to the original event but this proves difficult as we explain in section 2.2.6 Events Detections
Aggregation.

2.2.4 False Rumors

False rumors are tracked as real events because it is interesting to check how quickly they
spread and how well they are accepted by the crowd. But it is very difficult to recognize if a de-
tection is a false rumor. This ability is very important as it was demonstrated on the 23/04/2013
when the White House Twitter account was hacked and the false rumor of a bombing injuring
president Obama was released. As a result the Dow Jones index and the S&P 500 crashed
shortly. Such false rumors need to be recognized and treated as false information but it is hard
using only Twitter data.

2.2.5 Viral Jokes

Viral jokes are the false positives we have to filter out from our detections. They usually take the
form of a very popular sentence like when ur squad couldn’t hijack the plane... which can be
taken as event related information by an algorithm. They are totally uninformative and often lead
to the belief that an event is happening when it isn’t. These tweets are really liked by the users
and usually have a higher than normal retweet count and favorite count. This illustrates the fact
that users use Twitter as a recreational activity and gives insight on how we can diminish the
viral jokes impact.

2.2.6 Events Detections Aggregation

The algorithms will often raise duplicates detections about the same event when the related
Twitter activity lasts long enough. One hard challenge aside from triggering event detections
is to automatically make sense of the detections in order to differentiate or aggregate them.
A detection consists of a set of tweets which are supposed to be related to an event. From
this set of tweet, we need to extract the core elements of the event, usually the location and
the involved entities, and use them to differentiate the current detection from the others. This
process isn’t straightforward because we have to work in an online fashion (the detections
come one after the other), we never know how many different events occurred and this number
increases over time. For these reasons we can’t use typical clustering algorithms.

Event differentiation proves especially difficult for wildfires as they can often happen in a similar
location (e.g. two wildfires both in the state of California) or exactly the same location but in
different point of times which can be confusing as wildfires can have a long duration. We need
to be able to understand whether the detection is a new fire which started at the same place or
the same fire which lasted since the first detection.

Concurrent events are also difficult to handle; the system needs to be able to separate the
event related tweets and match them to their corresponding events. It wouldn’t be an issue for a
human to read the tweets and understand what events are actually occurring but if we want the
system to analyze itself the detections it is a much harder problem. Still this capability is useful
and worth looking into because it saves manual work, for example the system could track the

3http://en.wikipedia.org/wiki/The_Day_the_Music_Died
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evolution of an event and then automatically generate a summary presenting its main aspects.
This challenge is already a future work topic but we will propose a first solution attempt for the
first step which is aggregating the duplicates detections together.

2.3 Language Independent Detection

Twitter has users all over the world using different languages but we want to be able to detect
events anywhere so our methods should be language independent. This restricts the methods
we can use in our detector algorithms to language independent techniques like n-grams, bag of
words, etc. For practical reason in this work we test the methods only using English tweets but
the developed methods would work with any other languages with quasi no changes. To improve
our detections aggregation algorithm results we apply stemming and stop words removal but we
use Lucene which is multilingual and this step can be skipped if needed.

2.4 Absence of Standard Dataset

There is no standard event detection dataset for plane hijackings, plane crashes and wildfires.
This implies that we cannot test our algorithms performance against other results from the
community and that we have to create our own ground truth (known real-world events which
physically occurred over the data timespan) dataset to be able to evaluate our performance. We
also can’t use supervised machine learning techniques as there is no labeled dataset available
and we can’t label a dataset ourselves otherwise the trained models would become language
dependent as the labeled dataset would be in English only.

2.5 Semantics

An important part of the work is to separate the event related tweets from the mass of tweets.
This is done by choosing for each language and for each event type a set of keywords best
describing the event type. For example for the wildfires event type and the English language, we
choose the keywords “wildfire”, “forest” and “fire”. This choice is complex because depending
on the sentence the keyword may mean something else e.g. Spread like wildfire.... Adding to
the difficulty, we need to choose for performance reason the smallest set of keywords which still
best represents the event type. If we miss one keyword, event related tweets will be ignored
but in the opposite case, unrelated tweets will be taken into account possibly leading to a false
positive event detection. Semantics plays an important role as well during the analysis of the
detections where we have to understand clearly what are the relevant entities (involved parties,
location, etc.) so that we can match them together with their related event.

2.6 Efficient Algorithms

The Twitter traffic is huge which implies that the algorithms need to stay computationally simple
and be fast enough to be able to support very high streaming load.
The algorithms need to be efficient also in terms of the detection speed to achieve the goal of
this work of being faster than traditional media. The delay between an event occurrence and the
very first tweet talking about it cannot be reduced but the extra time taken by the detector should
be minimized as much as possible. A human is able to tell that something is happening directly
after reading the very first tweet, we attempt to achieve this performance with our detectors.
Then comes the traditional precision and recall trade-off; our algorithm should detect as much
events which are reported on Twitter as possible while having an acceptable false positive rate.

2.7 Performance Evaluation

Because of the absence of a standard dataset, we have to build the dataset with the ground
truth (known real-world events which physically occurred over the data timespan) and the social
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media delays. This dataset isn’t complete as there may be events which really occurred but
aren’t present in the ground truth in which case if a detection occurs, will be ignored.
From this dataset we should then evaluate the precision, recall and delays of our detectors.
The difficulty is to automate the performance evaluation. We have to match as much detec-
tions as possible automatically to the known events without making mistakes. This process isn’t
straightforward, many detections which aren’t false positives remain unmatched and require
manual work to correct. For example it is possible that the first detection of an event remains
unmatched but a second detection is assigned to the real-world event resulting in a wrong delay
value. To correct such mistakes, there is no other solution than going through the experiment’s
logs.
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Chapter 3

Design and Implementation

In this chapter we present the design and implementation of our event detection system for
Twitter data. It is composed of several modules which can be independently changed. We de-
scribe two different alternatives for the detection algorithms for which we will compare the per-
formances.

3.1 Flow Chart

The system is composed of four independent modules which were all implemented using the
Java programming language. The next sections detail the modules individually.

Data Feed Tweets Classification Event Detector Detections Aggregation

Figure 3.1: System Flow Chart

3.2 Data Feed

The data feed module retrieves the flow of tweets and canalizes it to the classification module.
In the current implementation the data feed reads the tweets which are stored in avro format
(Apache Avro is a data serialization system which relies on JSON schema1). To extract the
tweets from the avro format, the data feed uses an hierarchy of classes which were automati-
cally generated2 from the avro schema using the avro-tools JAR from Apache.
We use this setup to be able to test our system on Twitter data from October 2013 to October
2014. To use the system online with fresh Twitter data, the only modification would be to modify
this module and link it to the Twitter stream through the Twitter Streaming API.

The Java classes and packages of interest:

• The data feed is represented by the AvroTweetFeed class in the dataFeeder package.

• The generated classes used to deserialize the tweets are located in package
ch.armasuisse.twitterdemo.avro.v2.

3.3 Classifying Event Related Tweets

Once we retrieved the tweets, we need to separate the event related tweets from the mass of
uninformative tweets. We have to do this classification without any available labeled data, while

1https://avro.apache.org/docs/1.7.7/index.html
2https://avro.apache.org/docs/1.7.7/gettingstartedjava.html
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staying language independent and as efficiently as possible because we have to be able to
process the Twitter stream of tweets (more than a thousand tweets per second, cf. chapter 1
Introduction).

We use a keyword based approach which has the merit of being Twitter friendly as Twitter’s
interface allows to subscribe to tweets containing specified keywords. For each event types
of interest we choose a set of keywords in every tracked language, which best represent the
concept of the event type. In our case for the English language we choose:

• For plane hijackings, the keywords “plane” and “hijack”

• For plane crashes, the keywords “plane” and “crash”

• For wildfires, the keywords “wildfire”, “forest” and “fire”

We chose these keywords because we made the assumption that if a tweet contained any two
of them, it was highly likely that this tweet was related to the corresponding event type. There
are other ways to select the keyword, for example by taking the words with top frequency from
a text defining or reporting about the event type.
We are able to evaluate the quality of the classification as we will show in section 5.1 by comput-
ing the correlation of the obtained event related tweet counts with the real world events ground
truth time series. We tested several combination of keywords and picked the one giving the high-
est correlation while containing as few keywords as possible. Having few keywords is important
because we observed that the running time of the experiments increased notably even with a
single additional keyword.
The classification is then done using algorithm 1.

Algorithm 1 Decide if a tweet is related to an event

procedure ISRELATEDTOEVENT(tweet, type)
score = 0
for each keyword w in type.getKewords() do

if tweet contains w then
score = score+ 1

end if
end for
Return score ≥MIN_SCORE

end procedure

In our system we choose MIN_SCORE = 2 i.e. the tweet contains all keywords for plane
hijackings/crashes and 2 out of 3 for wildfires. We apply this procedure to the stream of tweets,
one tweet after the other. The resulting stream of event related tweets are then passed as input
to the event detector module as they are classified.
This method is simple but powerful. It has the advantage of being language independent and
also very easy to extend for other event types. For example if we want to start tracking events
related to the Ukraine crisis we could set keywords such as “Ukraine”, “Minsk”, “Donetsk”, etc.

The Java class holding the event types’ keywords and taking care of the classification of the
tweets is the EventType class in the Event package.

3.4 Event Detectors

The following algorithms use as input only the event related tweets resulting from the classifica-
tion module. They decide at any point in time whether or not an event detection alert should be
triggered.
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3.4.1 Frequency based Event Detector (Detector A)

This detector was proposed by Zhao [21] as Threshold-Based Event Detection for events
related to National League Football matches i.e. fumble, interception, touchdown, etc. The time
scope of a NFL match amounts to a few hours and the detection delays to seconds but we
show in the chapter 5 Results that the detector, after parameter tuning, performs well also for
real-world events. We decided to call this detector frequency-based because it doesn’t focus
on the content of the tweets but on the quantity.

The general idea of this detector is to monitor the activity of Twitter regarding an event type and
trigger detection alert if certain thresholds are breached. The main aspects are explained by the
following points:

• To estimate the Twitter activity, we count the number of events related tweets and store
this information in a list of time windows shifted in time.

• At each timestep (our implementation uses 15 minutes) we check each time window; if
the ratio of the count from the first half of the time window with the count from the second
half is below a chosen threshold (we use 0.5 i.e. the number of tweets at least doubles
between the first half of the window and its second half) and if the total amount of tweets in
the time window is above a chosen threshold (we use 50 tweets) then the detector triggers
an alert.

• The size of the time window is an important parameter; too long would delay the detection
longer than necessary but too short would miss events for which the activity grows only
slowly. This issue is addressed by the use of dynamic sized time windows. Basically each
time window has several possible sizes (in our system they range from one hour to ten
hours); when the end of a time window is reached, the algorithm tries to expand it if this is
possible and if it isn’t, discards the time window.

• When an alert is triggered, it means that the Twitter activity around the event type is high
because the community is discovering the event and debating about it. It is very probable
that in the short future the detector will have many other occasions to trigger an alert for
the same event with often the exact same informations. In order not to get submerged by
duplicates detection we use a filter which, once the first detection is triggered, filters out
detections related to the same event type during a chosen period of time (in our imple-
mentation 24 hours).

The procedure has to be done for each event types, it is summarized in algorithm 2.

Algorithm 2 Frequency based detector’s procedure

procedure TIMESTEPUPDATE
At each timestep T

Create new time window and add it to the list of time windows
Count all event related tweets which occurred in the timestep
Add obtained count to all active time windows
For each time window, check if condition are met to trigger detection alert
Update all time windows and prepare them for next timestep

end procedure

The evident shortcoming of this detector is that it can’t differentiate concurrent events of the
same type because it focuses only on the Twitter activity around the event type concept and
not about the events themselves. It can happen for example that the same detection contains
tweets related to two different plane crashes.
Also it cannot detect events of the same type separated in time by less than the delay during
which detections are filtered out in order to prevent duplicate detection flooding (24 hours in our
system).
The detector must count a minimum number of event related tweets before it can trigger an
alert. In our case it needs at least 50 tweets which is a lot when we think that a human could
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understand that something is happening from the first 2-3 tweets. This could incur further
detection delays if the event isn’t very popular and the tweets are coming slowly in time.

But this isn’t as bad as it looks, we will see in the Results chapter that the detector performs
well enough and that the actual delay caused by waiting for 50 tweets isn’t high at least for
the event types we track. It is true that the detector doesn’t use well the content of the tweets
but this can be a strength when we focus on an event type concept which isn’t very precise
because it grasps the tweets together without separating them too strictly. It is less precise but
gives more of an overview. As this detector focuses on the activity in Twitter, we can follow the
crowd interest in a subject, which corresponds well to the motivation of this work.

The Java classes and packages of interest are:

• The time window logic is located in package timeWindow, the TimeWindow class repre-
sents a single time window and the TimeWindowManager class manages the list of active
time windows.

• The main detector logic is coded in the FrequencyBasedEventDetector class in the ana-
lyzer package.

3.4.2 Content based Event Detector (Detector B)

This algorithm was created by using some ideas developed in a paper by Krstajic et al. [11]
focusing on general event detection.
The goal of this detector is to improve over the shortcomings of the frequency based detector.
The content based detector uses the content of the tweets, it is able to detect concurrent events
and requires fewer tweets before triggering a detection.

The general idea of the content based detector is to extract the core entities from each tweet
and cluster the tweets with similar entities together. Once a cluster’s size reaches a threshold,
the detector triggers an alert. The extraction of the core entities is the central aspect of the
algorithm, it should be precise and fast enough to handle the Twitter stream and again, language
independent. The main aspects of the detector are explained in the following points:

• We use directly the hashtags of the tweets as their core entities best representing the
tweet’s content. As we explained in section 1.1 Twitter, the hashtags are chosen by the
users to help Twitter reference their tweets. With this knowledge, the users have a strong
incentive to choose well the hashtags because it enables them to reach a larger audience,
so they usually pick the core concepts/entities of their tweets as hashtags.

• A cluster of tweets is represented by a set containing all its tweets’ hashtags.

• Once the hashtags are extracted from a tweet, the detector checks all active clusters’ sets
for a non-empty intersection. There are three possible cases:

– No cluster contains any of the tweet’s hashtags; in this case we create a new cluster
containing the tweet with the same set of hashtags.

– A single cluster gives a non-empty intersection; in this case we add the tweet to this
cluster and update its hashtags set.

– Many clusters have non-empty intersections; in this case we merge all these clusters
along with the tweet into a single cluster for which we recompute the hashtags set.

• If a cluster’s size reaches a threshold (our system uses 5-10 tweets) and if this cluster
didn’t already trigger a detection, then the detector raise an alert.

• We delete clusters in case their set contains too many hashtags (we allow a maximum
of 10 hashtags) because we assume that these clusters have become too general, not
specific enough to represent an event. We also delete clusters when their last update (i.e.
the last tweet added) is too old (we use a limit of 24 hours) because we assume that their
topics aren’t active enough to represent active events which just occurred.
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Algorithm 3 Content based detector’s procedure

procedure PROCESSTWEET
For each event related tweet

Extract tweet’s hashtags
Try assign to existing cluster, else create new cluster
Check updated cluster if condition is met to trigger detection alert
Remove too old or too general clusters

end procedure

The procedure is done for each event types, it is summarized in algorithm 3.

The shortcomings of this detector come mainly from the fact that we rely on hashtags to
represent the core entities of the tweets. There are some cases when this isn’t true but the
main problem happens when the hashtags used by the users aren’t popular and aren’t used
by other users. This causes the tweet to be ignored even when they could be relevant to an
event. It is also possible that we miss the very first tweets talking about an event because their
authors didn’t choose the right hashtags which are being reused by the other users.

This detector detects events quickly because it requires few tweets to trigger a detection. It
performs better on events specific enough so that users talking about the event use the same
hashtags in their tweets. When this isn’t the case i.e. for more general concepts, it has more
trouble and may miss events.

The content based detector logic is coded in the ContentBasedEventDetector Java class from
the analyzer package and in the EventCandidate Java class from the event package.

3.5 Detections Aggregation

This module implements a first attempt at solving the detections clustering problem which goes
beyond the scope of this work as explained in section 2.2.6 Events Detections Aggregation.
We define a new detection as the set of tweets which triggered the event alert and an aggregate
representative as the set of tweets obtained from the union of all the detections in the aggregate.
We develop a solution based on the computation of a similarity score between the new detection
and all the aggregate representatives. The similarity score is computed using algorithm 4.

Algorithm 4 Similarity of new detection D and aggregate representative C

procedure SIMILARITYSCORE(D, C)
score = 0
for each word nC in C.getTopKngramTerms() do

for each word nD in D.getTopKngramTerms() do
if Jaro-Winkler(nD, nC) ≥MIN_STRING_SIMILARITY then

score = score+ 1
end if

end for
end for
Return score

end procedure

For each set, the top K n-grams are extracted from the concatenated tweets with K = 5 and
n = 2. In our experiments we remove stop words and apply stemming before extracting the n-
grams to improve the quality of the aggregation. This preprocessing is done with lucene library, a
multilingual library, and need slight adaptation before working with other languages than English.
We prefer to work with the top K n-grams’ terms (i.e. the individual words) because it is more
difficult to compute the effective similarity between two groups of words than between two words.
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The similarity between two strings is computed using the Jaro-Winkler distance3 and we set
MIN_STRING_SIMILARITY = 0.8.
Using this similarity score function we aggregate the new detections with algorithm 5.

Algorithm 5 Aggregate new detection D

procedure AGGREGATE(D)
max_score = 0
for C in allAggregateRepresentatives() do

max_score = max(max_score, similarityScore(D,C))
end for
if max_score ≥MIN_SIMILARITY then

Aggregate D with corresponding aggregate representative
else

Establish D as a new aggregate representative
end if

end procedure

In our system we take MIN_SIMILARITY = 3. Every aggregate representatives ideally
corresponds to an individual event which really occurred. If the new detection isn’t similar to
any of them, we assume that it relates to a new event.

The Java class taking care of the aggregation of the detections is the DetectedEventsManager
class in the Event package.

3http://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
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Experiment Design

The experiments we ran aimed at finding the best configuration parameters for the different
modules and find out how fast the system was able to report an event occurrence. The analysis
(graphs, features, etc.) of the data obtained from the experiments were realized using the R
programming language.

4.1 Available Data

We run the experiments on Twitter data i.e. tweets and their meta-data, from the 1st October
2013 to the 7th October 2014 (around 850GB). The data was collected by armasuisse through
the Twitter streaming API without any filters so we have around 1% of the total Twitter traffic
of this time period. The tweets were serialized in avro format1, the avro schema is available in
Appendix C.

4.2 Technical Configuration

The experiments were all run on a laptop running Windows 7 Enterprise, through eclipse and
Java 8, with an Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz processor, 16 GB RAM and the
data stored on SSD Samsung 850 Pro.

We used the following Java libraries to implement the system:

• avro tools 1.7.7 from Apache to read avro format

• JRI 0.5-0 to call R scripts from Java

• lucene 3.6.2 to extract n-grams

• opencsv 3.3 to write to CSV files

• SimMetrics 1.6.2 for the Jaro-Winkler distance between two strings

We also used the following R libraries to analyze the results of the experiments:

• ggplot2 0.9.3.1 for plotting the graphs

• scales 0.2.4 for plotting the graphs

• Hmisc 3.15-0 for plotting cumulative distribution functions

• qcc 2.6 for computing EWMA

• plyr 1.8.1 for data preprocessing

• chron 2.3-45 for manipulating the date and times

1https://avro.apache.org/docs/1.7.7/index.html

29



30 CHAPTER 4. EXPERIMENT DESIGN

• caret 6.0-41 for training models

• stats 2.3.15 for fitting models

• fpc 2.1-9 for clustering

4.3 Ground Truth

Before evaluating the performance of our system, we first have to establish the ground truth i.e.
the list of real-world known events which occurred between October 2013 and October 2014
and their timestamps. To gather these informations we used lists available in Wikipedia (list of
plane hijackings2, list of plane crashes3, list of wildfires4), browsed google, BBC, Reuters and
completed the resulting lists with new events we discovered after running the detectors on the
data.

Using this method we collected 43 important events: 5 hijackings, 18 crashes and 20 wildfires.
It is important to note that this list isn’t complete. At some point we stopped adding events we
discovered in order to keep the same ground truth for all experiments. The list of known events
with the URLs to the sources used are available in Appendix A

To be able to compare the delays with traditional media, we searched for each of these events,
their first mention in articles from BBC and reports from Reuters. This data isn’t organized
to be easily accessible (we had to browse their website with their limited search options and
google) plus it is only possible to get an article/report latest update’s timestamp. So the gathered
timestamps don’t represent perfectly the very first mention of the event by BBC and Reuters but
still it allows us to see how the system compares with traditional media. The list of known events’
traditional media detections’ timestamps is available in Appendix B.

4.4 Classifier Performance Evaluation

We run the system up to the classifier module over the data. During the experiments, we
compute the daily and hourly event related tweet counts for each event type with and without
retweets. Using these counts we can create graphs to visualize the twitter event related activity.

To evaluate the quality of the classification, we create a time series from the ground truth
known events timestamps and correlate it with the measured event related tweet counts. We
also compute the lagged correlation i.e. the correlation of the known events time series with the
shifted event related tweets counts vector. This gives us insight on the time lag between the
occurrence of an event and the reaction it creates in the twitter data.

To filter out noise, in case it has an effect on the correlation, we apply an exponential weighted
moving average filter (EWMA, a type of infinite impulse response filter that applies weighting
factors which decrease exponentially5) on top of the counts data. From Wikipedia: that is we
compute for each count xi the observation zi = λ ∗ x̄i + (1 − λ) ∗ zi−1 by computing the rational
subgroup average, x̄i (in our case there is always only one measure for the tweet count so
averaging is trivial), and then combining that new subgroup average with the running average
of all preceding observations, zi−1 with λ the weight given to the most recent rational subgroup
mean (i.e. the most recent count). To be sure to pick the filter giving the best possible results
we vary the λ parameter between maximum filter (λ = 0, i.e. always taking the successive
average of the counts, maximum dependence on past data) and no filter (λ = 1, i.e. no filter, no
dependence on past data).

2http://en.wikipedia.org/wiki/List_of_aircraft_hijackings
3http://en.wikipedia.org/wiki/List_of_accidents_and_incidents_involving_commercial_aircraft
4http://en.wikipedia.org/wiki/List_of_wildfires
5http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average and http://en.wikipedia.org/wiki/EWMA_chart
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As this analysis is specific and only needed for these experiments, we create a separate Java
class called TweetFluxAnalyzer inside the analyzer package. We use this class to browse the
data and compute the daily/hourly event related tweets counts.

4.5 Detector Performance Evaluation

We run the system up to the detector module over the data without retweets (cf section 5.2)
and then analyze the list of detections triggered by the detector. This process is repeated so
that we can find the best parameters values i.e. the ratio and minimum tweet count threshold
for the frequency based detector and the minimum tweet count threshold for the content based
detector.
For the frequency detector when varying one of the two parameters, the second parameter is
set to the value giving the best performance. The adaptive time window sizes are set to 1, 5
and 10 hours. We don’t test other sizes because we already cover thanks to the adaptive time
window technique a large enough range. To evaluate how well the detectors perform we make
the following analysis.

On the basis of the ground truth, we compute the recall, precision (see figure 4.1) and delays
values. We then compare the observed delays with traditional media’s first reports’ delays. The
comparison is made over the same set of detected events otherwise it wouldn’t make sense.
It isn’t feasible to match all the detections with the ground truth manually so we implement the
following system which is similar to our detection aggregation module from section 3.5 Detec-
tions Aggregation:

• For each known event from the ground truth, we create a set of distinctive keywords.

• For each detection, we concatenate the related tweets together, remove stop words, apply
stemming and finally extract the top K n-grams.

• For each detection we try matching its n-grams with the known events keywords. If the
maximum matching score is above a threshold (we use a threshold of 3 matches) we
match the detection with the corresponding known event otherwise we leave it as unrec-
ognized to be manually matched afterward.

This method leaves quite a few unrecognized detections which then need to be manually clas-
sified. For practical reasons, we are testing the performance of the system on English tweets.
We use the following formulas for recall and precision:

Recall =
# detected known events

total # known events
and Precision =

# detected known events
# detected known events + # false positives

The experiments resulting false positive counts and detection counts are available in Appendix
D.
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Figure 4.1: Wikipedia precision and recall definition

4.6 Detections Aggregation Performance Evaluation

We run the whole system with the same settings as in section 4.5 and then use the triggered
detections as input to the detection aggregation module. As this module is outside the scope
of the master thesis and mainly because of the lack of time, we couldn’t check all the logs
manually and verify individually the aggregates representatives. Still in order to get an idea of
the results of the algorithm, we compare the resulting number of aggregates with the number
of false positives and detected events and discuss on the conditions under which the algorithm
works best.



Chapter 5

Results

In this chapter we present for each module the results of the experiments described in chapter
4 Experiment Design.

5.1 Classification

In this section we explain the results of the experiments on the classification module. For each
event type, we start by discussing the output of the classifier then its correlation with the ground
truth time series after applying the exponential weighted moving average filter to reduce the
noise. The main points to remember are:

• Classification works well with plane hijackings and crashes but is noisier with wildfires.

• The daily counts data correlates better with the ground truth time series than the hourly
counts data and taking the lagged correlation (i.e. the correlation between the shifted
count vector and the ground truth) can improve the results.

• Removing retweets from the count data doesn’t change much the correlation with the
ground truth. We see in the graphs that the behavior of the data stays similar which
strongly suggests that it can be beneficial for the frequency based detector to ignore
retweets.

5.1.1 Plane Hijackings

Data Visualization

The plane hijacking related tweets daily and hourly counts are presented in figure 5.1.
In general we can see that except for the spikes, the usual amount of event related tweets

stays small which means that the classification module is working properly. The spikes are well
separated from the rest of the data and we see the activity ceases cleanly in a few days. This
represents the user interest in the event decaying quickly as nothing new happens about the
event. This illustrates that plane hijacking events physically happen over a short period of time.
The majority of the spikes are related to known events or to one past event (9/11) but the
rest corresponds to viral jokes (e.g. joke about watching a plane hijacking movie before taking
a flight) which will be considered as false positive should the detectors raise an alert. If the
classifier was perfect, it would have filtered out the viral jokes.

When we compare the hourly and daily data, we see that the general data behavior is the
same. The hourly graph is much more vertically compressed because the counts are distributed
over the 24 hours of each day which makes the data very volatile in the smaller counts area.
Still we see the events spikes in the hourly data are well separated from the rest meaning
that the activity was concentrated over some hours. In general we will see that the hourly
graphs are harder to analyze than the daily graphs because they are much more crowded and
concentrated in the low count area.
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Figure 5.1: Plane hijacking related tweet counts
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We compute the retweet proportion for the daily data by taking the mean of the daily average
and get 40.27% (hourly data has 44.95% but it contains many zero counts which we ignore
to compute the mean). The behavior of the count data without retweets is very similar to the
count data with retweet. Removing the retweets doesn’t change the Twitter measured activity
drastically, the spikes are reduced by less than half their maximum count. This is good news for
the frequency based detector because ignoring retweets will make its execution faster without
creating an issue as long as we adapt the minimum tweet count threshold in consequence.

Classification Evaluation - Correlation with Ground Truth

In order to filter potential noise we apply EWMA to the plane hijacking related tweets classifi-
cation and correlates the results with the ground truth time series. The graphs from figure 5.2
show this correlation against the variation of the EWMA lambda parameter with λ = 0 meaning
maximum filtering i.e. full dependence on past data and λ = 1 no filtering i.e. no dependence
on past data. The graphs from figure 5.3 show the daily and hourly lag values giving the highest
correlation against the variation of the EWMA lambda parameter.

We see that the daily correlation outperforms the hourly correlation probably because the
hourly data is more noisy and doesn’t react in the very next hours after the event occurs. We
have to note that the hourly ground truth time series is very sparse compared to the daily time
series and thus the noise has a bigger effect on the correlation which is also a reason why it
decreases like this.

We reach a high correlation value of around 0.8 with the daily data which is a good results
considering that the classifier created mistakes for several viral jokes. We see that EWMA
filtering isn’t necessary because we reach the highest correlation if λ = 1 (i.e. when we don’t
filter) meaning that the noise doesn’t have a strong impact.

Regarding the lagged correlation we see for the daily data that the highest values are obtained
with no lag (zero value) so the dashed and solid curve are overlapping. We can deduce from
this that the Twitter data reacts on the same day as when the plane hijacking events occur. For
the hourly lag, the correlation is way better when the lag has value 8 suggesting that twitter
data reacts usually 8 hours after an event occur.

Removing retweets gives a little worser correlation to the ground truth but there isn’t a very big
difference. We see also that there is no impact on the lag values which stay the same regardless
of whether we include retweets or not meaning the retweets delays don’t differ from other tweets.

As we reach a high correlation value we can consider that the classification is doing well for
plane hijackings events. In the next section 5.3 we will be able to compare the intuitions given
by this analysis with the detectors results.
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5.1.2 Plane Crashes

Data Visualization

The plane crash related tweets daily and hourly counts are presented in figure 5.4.

The first difference to note is the change of scale from the plane hijackings graphs. There
are many more known event occurrences and the Twitter activity is much higher as shown by
the relatively high counts. Like with the plane hijackings graph, the activity around an event is
short lived and returns to lower values after the spikes which is explained by the fact that plane
crashes physically happen over a relatively short period of time. The few events with small
response from Twitter data are small scale crashes involving private jets or few passengers.

The graph shows that the classifier is working properly because most of the events are
represented by a spike and the activity when no crash is occurring is low. We found very little
viral jokes activity compared to legit plane crash activity in the data and as we will see in the
detector results, few false positive detections meaning that the classifier works well regarding
this aspect even better than for plane hijackings.

We can make similar remarks when comparing plane crash hourly and daily data than for plane
hijackings data, the graph is very much compressed vertically and noisier in the low counts
area. We see that many smaller scale events related spikes are very small meaning that the
Twitter activity is distributed and not concentrated.

The retweet proportion is 26.58% for the daily data (hourly data has 25.72%) which is lower than
for plane hijackings confirming the intuition given by the graph. We see that removing them
doesn’t make the spikes disappear and won’t change the data general behavior so again it is a
good idea to ignore the retweets during the analysis.
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Classification Evaluation - Correlation with Ground Truth

We present the results from the same analysis as in section 5.1.1. We show in figure 5.5 the
graphs of the correlation between the daily/hourly plane crash data with the ground truth time
series and in figure 5.6, the lag values giving the highest correlation scores.

For the same reasons as with the plane hijacking data, the daily correlation outperforms the
hourly correlation.
The top correlation is again reached when we don’t use EWMA filtering (λ = 1) and peaks
around 0.45 which is worse than with plane hijacking. One reason is that there are much more
known events occurrences which creates a noisier activity in general. It could be a possibility
that the classifier simply performs worser as we use very common keywords but we also have
to keep in mind that the ground truth is not complete and still misses plane crashes which are
reflected in the Twitter data.

Regarding the obtained correlation, we see that removing retweets is beneficial and increases
it slightly meaning that retweets add more noise to the signal. Retweets don’t seem to have
an effect on the lag values which means that they happen after a similar delay like the other
tweets.
We remark that for daily data, when we apply a strong EWMA filter (λ < 0.5) i.e. when we
strongly smoothen the peaks, the lagged correlation gives somewhat better results (with lag
value 1 i.e. one days after a peak) otherwise it doesn’t make a difference. This wasn’t the case
with plane hijackings which means that for a plane hijacking event, the activity decays faster
with time than for a crash event. But the strongest correlation is when no filtering happens with
no lag which implies that the Twitter plane crash data reacts also on the same day as when the
events occur.
Without surprise, the lagged correlation is better for hourly data and peaks when the lag value
is 18 suggesting that twitter data reacts usually 18 hours after an event occur so slower than
with plane hijacking events which had a lag value of 8.
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Figure 5.5: Plane crash data correlation with ground truth
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5.1.3 Wildfires

Data Visualization

The wildfire related tweets daily and hourly counts are presented in figure 5.7.

The difference with hijackings and crashes is striking, the data is much more volatile and many
spikes don’t seem to correspond to an event. One part of the reason is that the classifier has
more trouble separating wildfires tweets from the rest and we will see that the false positive
rate is higher than with the previous event type. But the main problems lie in the wildfire
event type nature as we explain in section 2.2.2 Event Types Specific Characteristics. There
are many real events occurrences not present in the ground truth list (California only had
5620 wildfires in 2014) and the wildfires last from days to weeks during which the users can
report new information and stay active generally. This behavior differ completely from plane
crashes and hijackings which was one reason why we decided to also track wildfires. We can
note than often the events impact on the Twitter data is more delayed than with hijackings
and crashes. The reason for this is that the wildfire aren’t always detected right at their start
which is often determined exactly only later when the starting date, time and cause are deduced.

As for the previous event types, the hourly data is very volatile in the low count area. There are
many activity spikes seemingly unrelated to ground truth known events like we observed in the
daily graph. This continuous noise shows there are always some users talking about wildfires
meaning that they are very frequent.

The retweet proportion is 28.48% for the daily data (hourly data has 27.18%). We see that the
curves with and without retweets are very similar, only shifted down so removing the retweets
don’t change the data behavior and can be beneficial for detection.

Note: the zero counts area in January 2014 are due to the down time of our tweet recording
system creating this “hole” in the data.
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Figure 5.7: Wildfire related tweet counts



5.1 Classification 45

Classification Evaluation - Correlation with Ground Truth

We present the results from the same analysis as in section 5.1.1. We show in figure 5.5 the
graphs of the correlation between the daily/hourly wildfire data with the ground truth time series
and in figure 5.6, the lag values giving the highest correlation scores.

As with the other two event types and for the same reasons, the daily correlation outperforms
the hourly correlation.
For the hourly data correlation we see that the top correlation is reached when we don’t
use EWMA filtering (λ = 1) but it isn’t as clear for the daily data. The correlation peaks
two times at around 0.27 when λ ≈ 0.5 and λ = 1 which shows that some filtering on the
data can improve its similarity to the ground truth. The correlation is much lower than with
plane hijackings and crashes but again, we should keep in mind that the ground truth is
far from complete, there are many more events occurrences which makes the data volatile.
The classifier also performs worser as we see in the graphs from figure 5.7 which are very noisy.

Removing retweets improves a little the daily correlation but decreases the hourly correla-
tion meaning that retweets aren’t fully noise and belong partly to the event related Twitter activity.

The lagged correlation improves both for hourly and daily data. The strongest correlation are
obtained with lag value of 3 for the daily data and 74 for the hourly data which corresponds to a
delay of around three days so users are usually talking about a wildfire three days after it started.

The obtained correlations are the lowest we obtained so far but we know that the wildfire event
type has a behavior which differs a lot from plane hijackings and crashes so there is room for
improving the classifier using wildfires specific characteristics.
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5.2 Ignoring Retweets

We decided to ignore retweets in our analysis of the detectors algorithms because of the follow-
ing arguments:

• We have seen in section 5.1 Classification that removing retweets didn’t have a strong
impact on the correlation with the ground truth meaning that it shouldn’t create a problem.

• We were able to do more experiments as they were running faster with less data to ana-
lyze.

• We observed that there were less duplicate detections raised by the detectors which im-
plies less unrecognized detection thus reducing the manual work required after each ex-
periments.

• The number of false positives was also reduced giving the algorithms a higher precision.
This behavior confirmed the intuition we had after finding that event related tweets had
usually a smaller retweets count than false positive tweets as shown in figure 5.10.

The graph 5.10 was obtained from the retweet count data of all the tweets related to detected
viral jokes and a set of randomly chosen event related tweets from the detector’s alerts. We see
that both boxplot median are at 0 but the third quartile of the viral joke tweets is higher by almost
500 retweets than the third quartile of the events tweets which means that up to 25% of the viral
jokes tweets have a higher retweet count than the event tweets.
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5.3 Event Detectors performance evaluation

In this section we present the results of the two detector modules individually and then compare
their performance with traditional medias. As we explained in section 4.5, for each detector and
for each event type, we run experiments with different parameters and compute the associated
performance. The false positive and detection counts used to compute the precision and recall
are available in Appendix D. The delays are obtained over the same set of detected events.

5.3.1 Frequency based Detection

The parameters we focus on are the two thresholds of the detector: the minimum number of
tweets in the time window and the ratio of the first half of the time window tweet count by the
second half tweet count. The sizes of the time windows are 1 hour, 5 hours and 10 hours.

Plane Hijackings

First of all, it is important to recall that the ground truth for plane hijackings contains only 5
events. This small number makes the precision and recall very sensible, for example missing
one event would lower the recall to 80%. We start by showing the precision and recall graphs in
the figure 5.11.

We see from the graph 5.11a that the more tweets we require to be present in a time window
before triggering a detection alert, the better precision we get. This is logical because if there
are more tweets related to plane hijackings, it is more probable that a real plane hijacking event
occurs. This assumption isn’t true in the case of a very popular viral joke (the algorithm detects
up to two viral jokes here) but as we ignore retweets their impact is diminished (cf section 5.2).
We see that there is a trade-off between precision and recall as the recall diminishes when we
increase the minimum tweet count threshold. This is explained by the fact that not all events
may be able to simultaneously satisfy the ratio threshold and still produce enough tweets to
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reach the minimum count.

Regarding the ratio threshold in graph 5.11b, it is better for precision to require a small ratio
(e.g. a ratio lower than 0.5 means that we require the tweet count to at least double between
the first half of the window and its second half) which is easily explained by the fact that only
when an event happens, will the activity be high enough to reach the ratio threshold.
There should be again a trade-off between precision and recall as not all events will generate
such an activity burst and being more lenient on the ratio threshold would increase the recall.
However this isn’t visible for plane hijackings which means that these events are very popular
and much discussed on Twitter.
Again popular viral jokes are detected (up to two viral jokes) even with a high ratio but we would
detect more if we were not ignoring retweets.

The precision and recall are satisfactory, we are able to detect all plane hijackings and over
the full data which has a time span of over one year we have only two false positives which is
manageable for a human. Now we present the detection delays in graphs 5.12.

The first thing to note is that graph 5.12a delays are obtained over a common set of 4 plane
hijackings (the third curve has a recall of only 80%) and that the graph 5.12b delays are
obtained over the full set of 5 plane hijackings (minimum recall of 100%) which explains the
difference of the traditional media delay cumulative distribution function.

The top delays are obtained with 50 tweets and 0.5 ratio. It is obvious that setting a lower
threshold on the tweet count means that the detector has to wait for less tweets before
launching a detection and thus gives shorter delays.
In graph 5.12b we can see only one curve because they all overlap meaning that they have
really close detection delays. This behavior is explained because of the nature of the plane
hijackings events but first we should understand the following. The ratio threshold is used to
trigger a detection in case of a bursty activity meaning that the tweets all arrive in a relatively
short amount of time. If we choose a stricter ratio this means that there will be cases where
the detector won’t trigger an alert because the tweets didn’t arrive in a sudden enough burst
and will wait for the right moment where such a situation arise. Therefore a stricter ratio should
normally incur a longer delay. However we can’t observe this with plane hijackings events
because we see from the graph 5.1a that their occurrences are very popular and also lead
to sudden bursts (the huge spikes) from the very first tweets after an event occurrence which
nullifies the delay incurred by stricter ratios. Thus plane hijackings events behavior doesn’t
allow us to verify this argument.

We detect all considered events in 7.5 hours which is really close to the lag value 8 obtained in
section 5.1.1. The detector is faster than traditional media as shown in graph 5.13. This infor-
mation has to be taken with a grain of salt as explained in section 4.4 because the traditional
media data consists of the article/report latest update timestamp (the creation data aren’t avail-
able through their website).

We now show the visualization of the plane hijackings detections in the graph 5.14 with the daily
count (hourly data is too crowded) data without retweets using the configuration which gives the
best delays and almost the best precision/recall (50 tweets and 0.5 ratio). We precise that in
the graph’s legend, by automatically matched, we mean matched to its corresponding known
events from the ground truth in the way described in 4.5. Please note as well that the recognized
duplicates detections aren’t present in the graph.

The graphs shows that the detections correspond to the spikes and happen on the same day as
the known events as their dots overlap. There are almost only one detection per event meaning
that detection aggregation wouldn’t be really needed in this case. The viral joke 3 remains
undetected. The isolated dot corresponds to an unrecognized duplicate detection.
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Plane Crashes

The ground truth for plane crashes contains 18 events so the precision and recall will be less
sensible than with plane hijackings. The precision and recall graphs are shown in figure 5.15.

We see in graph 5.15a a perfect precision but we think for the same reasons that the behavior
would be the same as with plane hijackings events i.e. with low tweet count threshold, there
is more chance to get false positives than with a high threshold on the tweet count. The recall
goes down fast when we increase the tweet count threshold confirming what we couldn’t see
with the plane hijackings, i.e. that smaller scale events aren’t popular enough to breach a high
tweet count threshold. This behavior confirms the trade-off between precision/recall and the
tweet count threshold we supposed.

Graph 5.15b is more surprising. The recalls behaves as we expected and increases when we
weaken the ratio threshold (which we couldn’t confirm with plane hijackings) but the precision
doesn’t and decreases when strengthening the ratio from 0.3 to 0.1. Like we observed with
plane hijackings the precision should have stayed at 100% but there is one false positive
detection which doesn’t occur when the ratio is 0.3. After careful analysis of the logs we found
the following: in both cases the same detection occurs but with ratio 0.1 it contains 100%
unrelated tweets making it a false positive whereas with ratio 0.3 it contains a small proportion
of valid tweets related to a small undetected plane crash event thus making it a valid detection.
The reason behind this difference lies in the fact that the detector chose another time window,
a shorter one missing the event tweets, to raise the detection because the longer time window
wouldn’t breach the ratio threshold but the shorter window full of the viral joke tweets would.
So this surprising behavior in the precision curve doesn’t infirm our deduction but on the other
hand highlights the difficulty of classifying the detections as valid or not. We chose the point of
view of a human reading through such alerts which would then ignore the garbage tweets but
get informed by the small valid tweets proportion of the event occurrence.

Overall the precision is really good meaning that the classifier does a proper job and also that
they were few viral jokes involving plane crashes over the last year. The recall is fine as long as
we choose a small tweet count threshold. We now show the detection delays in graphs 5.16.

The delays are obtained over a common set of around 60% for graph 5.16a and around 70%
for graph 5.16b of the ground truth.

Again and for the same reasons as with plane hijackings, the best value for the tweet count
threshold is the smallest i.e. 50 tweets. For the ratio threshold, we see that the shortest delays
are obtained with a ratio of 0.7. This also confirms our argument from plane hijackings a stricter
ratio threshold increases the detection delays.

We detect all considered events in around 25 hours which is higher than the lag value 18 ob-
tained in section 5.1.2 but we still detect around 80% in 18 hours. The detector is most of the
time faster than BBC but slower than Reuters as shown by graph 5.17.

We show the visualization of the plane crashes detections in the graph 5.18 with the daily count
data (hourly data is too crowded) without retweets using the configuration which gives almost
the best delays and the best precision/recall (50 tweets and 0.5 ratio). Please note that the
recognized duplicates detections aren’t present in the graph.

Some detections don’t seem to correspond to an annotated spike from the ground truth; in fact
they match to smaller scale events which were not added to the ground truth. All the large spikes
were recognized as events by the detector. For the events Flight 222 and Flight 5017 one of the
two detections is delayed because of the time limit of 24 hours between which the detector
doesn’t allow any other detections. Overall the detector works well for plane crashes, it detects
most of the events and is on par with the traditional media regarding the detection delays.
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Figure 5.15: Detector A precision and recall for plane crashes
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Wildfires

The ground truth for wildfire contains 20 events, we use it as the basis to compute precision and
recall. The precision and recall graphs are shown in figure 5.19.

The detectors performs worse than with the previous event types. This is due as we explained in
section 2.2.2 to the wildfire event type characteristics. We see in graph 5.19a a confirmation of
the hypothesis that recall decreases when we increase the tweet count threshold for the same
reasons that we stated before. However the behavior of the precision seems to differ from what
we observed with plane hijackings and plane crashes, it doesn’t follow a trend and switches
between decreasing and increasing. The cause for this is the decreasing recall. To understand
what happens we need to check the false positive and detections count from Appendix D. We
see that the number of false positive keeps decreasing and never increases which corresponds
to the behavior we observed with the previous event types and expected i.e. less positive with
an increasing tweet count threshold. The precision curve doesn’t reflect this behavior because
of the number of detections which also decreases.

Graph 5.19b also confirms that the recall increases when we weaken the ratio threshold for
the reasons we already explained. Again the precision seems to differ to what we expected but
after checking Appendix D we see that the increase in precision is due only to the increase of
the number of detected events and that the false positive count stays the same. So the behavior
of the precision is what we expected and decreases when we weaken the ratio threshold.

Overall the precision stays at an acceptable level but the recall performance really depends on
choice of the parameters. We now show the detection delays in graphs 5.20.

The delays are obtained over a common set of around 60% of the ground truth for both graphs
5.20a and 5.20b.
The shortest delays are obtained for the same reasons as the other event types when the tweet
count threshold is 50 and the ratio 0.5 or 0.7 (no improvement between the two ratio). We
detect all considered events in around 60 hours, better than the lag value of 74 obtained in
section 5.1.3. The detector is almost always faster than BBC but it isn’t as clear with Reuters as
shown by graph 5.21.

We show the visualization of the wildfire detections in the graph 5.22 using the same settings as
with the other event types and the configuration which gives almost the best delays and almost
the best precision/recall (50 tweets and 0.5 ratio).

As we have seen in section 5.1.3 the spikes are often delayed compared to the events occur-
rences which explains why the detections are also delayed. The numerous smaller spikes get
ignored most of the time showing that the threshold mechanism works.
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5.3.2 Content based Detection

The parameters we focus on is the main threshold of the detector i.e. the minimum number of
tweets in a candidate event cluster before the algorithm triggers an alert. The other parameters
stay constant at 10 for the maximum hashtag count in a cluster and that a cluster’s latest update
isn’t older than one day.

Plane Hijackings

The precision and recall graphs are shown in figure 5.23.

Similarly to what we observed with the frequency event detector we expect that if the cluster
tweet count threshold is set to a high value, the precision will increase (an alert will be raised
only if a large number of tweets with the same hashtags are present which is usually the sign of
an event happening), and the recall will go down (smaller scale events won’t generate enough
tweets with the same hashtags and thus stay undetected).

The graph 5.23 confirms our expectations, the precision goes up with the tweet count threshold
and the recall finally decreases. The overall precision and recall are good, we detect all the 5
events of the ground truth and have a maximum of two false positives over the full year. Let us
now analyze the detection delays in graphs 5.24 obtained over the full set of the plane hijacking
ground truth.

Logically the detector with the smallest cluster tweet count threshold will have the fastest delays
because it needs to wait for less tweets than the detectors with higher thresholds. This expecta-
tion is confirmed by graph 5.24, the shortest delays are obtained when the cluster tweet count
threshold is 5 tweets. We detect all considered events in around 6 hours, better than the fre-
quency based detector which needs 7.5 hours. The detector is almost always faster than BBC
and Reuters as shown by graph 5.25.

We present a visualization of the plane hijacking detections in the graph 5.26 using the config-
uration giving the best delays (cluster tweet count threshold of 5).

We see that the main events are detected but also relatively many detections are triggered
because of small spikes. Two of these detections are viral jokes and the rest unrecognized
event duplicates. The “main” viral jokes (the ones annotated in the graph) probably didn’t have
any hashtags in their tweets and thus stayed undetected.
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Figure 5.23: Detector B precision and recall for plane hijackings
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Figure 5.24: Detector B plane hijacking detection delays
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Figure 5.25: Traditional media delays for plane hijackings against detector B (a positive value
e.g. 5 implies that the detector is 5 hours faster than the media and the opposite for negative
values)
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Figure 5.26: Detector B hijacking detections
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Plane Crashes

The precision and recall graphs are shown in figure 5.27.

Following our intuition, the precision goes up with the tweet count threshold while the recall
decreases. It is more obvious than with plane hijackings because there are more small scaled
plane crashes events which are quickly affected by the higher threshold.

The overall precision and recall are good with a cluster tweet count threshold of 5 but the recall
decreases quickly if we increase this threshold making 5 the only real option. Graph 5.28 present
the detection delays obtained over 50% (as shown in graph 5.27 the detector didn’t reach higher
recall for a threshold of 15 tweets) of the plane crash ground truth.

As expected, the quickest detector is the one using a threshold value of 5 tweets. We detect all
considered events under 15 hours, always faster than BBC but slower than Reuters as shown
by graph 5.29.

We present a visualization of the plane crashes detections in the graph 5.30 using the configu-
ration giving the best delays (cluster tweet count threshold of 5).

Overall there are many more detections and more smaller scale events get detected but most of
the detections are unmatched. The reasons is that our algorithm is based on n-grams and has
only 5 tweets per detection to work upon which makes it harder to match two detections which
may be talking about the same events but about different aspects of it. With so many detections,
even if it is still manageable by a human, it becomes more interesting to cluster the detections.
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Figure 5.27: Detector B precision and recall for plane crashes

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Detection delay in hours

P
ro

ba
bi

lit
y

CDF
10
15
5
BBC
Reuters

Detector B delays CDF for PLANE_CRASH

Figure 5.28: Detector B plane crash detection delays
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Figure 5.29: Traditional media delays for plane crashes against detector B (a positive value e.g.
5 implies that the detector is 5 hours faster than the media and the opposite for negative values)
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Figure 5.30: Detector B crash detections
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Wildfires

The precision and recall graphs are shown in figure 5.31.

We see that the recall follows our expectations and decreases with the cluster tweet count
threshold but the precision also decreases after increasing once. The reason for that is similar
to what we explained in section 5.3.1, it is due to the decreasing recall. If we check the false
positive and detection counts from Appendix D we see that the false positive count which starts
at 18 for 5 tweets decreases to 6 for 10 and 15 tweets and finally 5 for 20 tweets but at the
same time the number of detected events decreases as well resulting in the precision curve
of graph 5.31. So increasing the cluster tweet count threshold really improves the results by
decreasing the false positive count but because it cripples the detections rate, this progress
remains unnoticed.

Detector B really has trouble detecting wildfires, it seems that users reporting wildfires don’t use
hashtags as well as the users reporting plane crashes and hijackings. The only option for the
threshold is 5 or 10 tweets but we have to choose between missing more than half the wildfires
events or having more than half of the detections potential false positives.
Graph 5.32 present the detection delays obtained over 45% of the wildfire ground truth.

As expected, the quickest detector is the one using a threshold value of 5 tweets. We detect
all considered events under 50 hours, always faster than both BBC and Reuters as shown by
graph 5.33.

We present a visualization of the wildfires detections in the graph 5.34 using the configuration
giving the best delays (cluster tweet count threshold of 5).

The obvious problem is that there are too many detections (over one hundred) which highlights
the need of clustering. But not half of all of these detections are false positives as graph 5.31
hints. As shown in Appendix D, there were only 18 false positives out of the hundred detections
showed in the graph, all of the others are related to smaller scale wildfires (in 2014 California
had 5620 wildfires...) or unmatched duplicates. To reduce the number of detections, further
filtering parameters should be introduced like a geographical location for example.
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Figure 5.31: Detector B precision and recall for wildfires
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Figure 5.32: Detector B wildfire detection delays
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Figure 5.33: Traditional media delays for wildfires against detector B (a positive value e.g. 5
implies that the detector is 5 hours faster than the media and the opposite for negative values)
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5.3.3 Comparison of the Detectors Results

In this section we compare for each event types the results obtained by the two detectors. We
call the frequency based algorithm detector A and the content based algorithm detector B.
One could expect the detector B to be always faster than detector A as it requires less tweets
before triggering an event but we will see that it isn’t always the case mainly because detector
B has to wait for the tweets containing similar hashtags while ignoring the other tweets, thus
adding a delay which can be longer than detector A’s delays.
One difference to note is that detector B requires less computations than detector A; for example
running an experiment over the full data without retweets using the setup described in section
4.2 takes around 15 hours with detector A and 8 hours with detector B.
We have seen that the intuition given by the correlation lag values from section 5.1 was not too
far from our results especially for detector A because the lag values gives information on how
lagged is the Twitter data reaction to an event occurrence and the detector A mainly uses the
burst of the Twitter event related activity to decide whether or not to trigger an alert.

Plane Hijackings

We see from the previous sections that we obtain similar precision and recall levels with both
detectors. This is thanks to the popularity of the plane hijackings events which generate enough
Twitter activity for detector A and tweets with relevant hashtags for detector B.
The comparison of the detection delays obtained with their respective optimal parameter choice
is shown in figure 5.35.

We see that detector B is most of the time faster than detector A, with an advance of 45 minutes
in 50% of the cases. We can explain this behavior with the following intuition: detector B works
especially well for very popular events with popular hashtags and we have seen that plane
hijackings events are very popular and well discussed in Twitter.

Regarding the number of detections (graph 5.14 and 5.26), detector B has slightly more detec-
tions than detector A but it isn’t a high difference enough to make any conclusion.
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Plane Crashes

We have seen that detector B can compete with detector A only when we set its cluster tweet
count threshold at 5 tweets in which case B gets the same recall but a weaker precision. This
result is explained by the facts that the plane crash data is noisier than the plane hijacking data
and that detector B is more sensible to noise than detector A because of its lower tweet count
threshold (5 vs 50 tweets).
The comparison of the detection delays are shown in figure 5.36.

We see that detector A can be in 50% of the cases up to 4 hours faster than detector B but
we see in graph 5.36 that the median is very close to 0 meaning also that they have similar
detection performances.

Regarding the number of detections we see that detector B triggers more alerts than detector A
(one reason for this is that it requires only 5 event classified tweets with same hashtags) which
implies that the clustering of detections is more relevant for detector B.
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Wildfires

For both detectors we can only choose the smallest tweet count threshold to get an acceptable
recall illustrating the fact that wildfires events individually don’t generate a lot of tweets. Regard-
ing precision, we get better results with detector A because detector B is more sensible to false
positives (it requires only 5 tweets with same hashtags) and we have see that the wildfire related
Twitter activity is much more noisy than plane hijacking and crash activity.
The comparison of the detection delays is shown in figure 5.37.

The delays range over a wider timespan for detector A (from 10 to 50 hours) than for detector
B (from 20 to 50 hours). Similarly to plane crashes it isn’t perfectly clear which detector gets
better delays. As shown by the median, 50% of the events are detected faster by detector A by
up to 15 hours.

The number of detections raised by detector B is much higher than detector A and we have seen
that most of them aren’t false positives. This is due to the fact that detector B is more sensible
than detector A to smaller scale events, it can also detects concurrent events while detector A
limits to one detection per 24 hours. Clustering is especially important for wildfires but we have
seen that limiting the detection range with further filtering like geographical location is required
because there are just too many wildfires occurrences.
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5.4 Detections Aggregation

In this section, we present the results of the aggregation module with input the detections
triggered by the detectors from section 5.3. We show also the counts of false positives
detections and detected events because ideally the number of aggregates should be the sum
of these counts.

The general intuition on the results comes from the fact that the aggregation method used by
the module relies on n-grams. This means that the fewer tweets in a detection, the more specific
the extracted n-grams will be (fewer elements can be introduced in a shorter text) which can be
a problem when for example two detections are related to the same event but whose tweets are
talking about different aspects/informations of the event. On the other hand, a too high number
of tweets in a detection may result in too general n-grams (e.g. not possible to differ between
two wildfires) and the algorithm will aggregate together detections related to different events.
So this is another trade-off, we have to find the number of tweets which makes the module the
most robust.
This intuition describes the general trend that should happen when using this algorithm but are
cases where using more tweets may actually increase the number of aggregates. This happens
if the newly introduced tweets contain different elements causing the detections to differ where
before they would be considered duplicates.

5.4.1 Plane Hijackings

The count of different aggregate representatives for detector’s A detections is shown in figure
5.38 and for detector B’s detections in figure 5.39.

We see from graph 5.38a that following our intuition, the aggregate count curve general trend
is to decrease as the tweet count threshold increases. The module works well already with
50 tweets as it detects 8 aggregates from an input of 5 events and 2 false positives which
means it miss-aggregate one duplicate detection. It reaches the correct number of aggregates
at 75 tweets but we see that the aggregate count increases while the detected event count
decreases. This implies that previously considered duplicates are now aggregated separately
because the new tweets introduced differences between the detections.

Graph 5.38b also goes in the direction of our argument; we see that the aggregate count stays
constant because the number of tweets in the detections stays constant. Similarly to graph
5.38a, the modules miss-aggregates one detection leading to the count of 8 aggregates. When
the ratio is 0.1, the number of false positive goes down to 1 which makes the aggregate count
go down to 7 showing that the viral joke is aggregated separately as it should be.

Graph 5.39 confirms our intuition. Obviously 5 tweets isn’t enough to be able to aggregate
the duplicate detections properly. Like with the detections from detector A, the algorithm has
trouble to correctly classify one duplicate detection, we see that there is always one aggregate
more than the combined detected event and false positives counts. Aside from this mistake the
algorithm seems to work properly from 10 tweets. The number of tweets to correctly aggregate
detections of detector B will be lower than with the detections from detector A because detector
B selects the tweets according to whether they contain certain hashtags i.e. whether the tweets
core entities are the same and correspond to each other. So detector B gets rid of a lot of
useless tweets which pollute the n-gram extraction from detector A’s detections.
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Figure 5.38: Aggregation of detector A’s detections
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Figure 5.39: Aggregation of detector B’s detections when varying the tweet count threshold

5.4.2 Plane Crashes

The count of different aggregate representatives for detector’s A detections is shown in figure
5.40 and for detector B’s detections in figure 5.41.

We see from graph 5.40a that for plane crashes 50 tweets isn’t enough to be able to differentiate
detections properly. This is a different results from plane hijackings but we have to recall that
there are more plane crashes detections than plane hijacking detections which implies that the
risk to make a wrong aggregation is higher, i.e. the algorithm needs a clearer differentiation
between the detections. We again notice an increase in the aggregate count with 75 tweets
detections. This is probably caused by the fact that these supplementary tweets may contain
different informations which causes the duplicates to be miss-aggregated. The best aggregation
seems to be attained with 60 tweets.

On the other hand, graph 5.40b is very different from its plane hijacking counterpart. We observe
that the aggregate count increases with the number of events detection while the ratio threshold
weakens. The reason behind this behavior is that each additional detected events comes with
its set of potential duplicates detections. We know that a weaker ratio means an increasing
recall thus an increasing number of duplicate detections which can be unrecognized and miss-
aggregated. We have already seen that 50 tweets isn’t enough for the algorithm to correctly
aggregate plane crashes events so this larger number of detections isn’t correctly matched and
thus the number of aggregates increases.

Graph 5.41 confirms that 5 tweets isn’t sufficient for the algorithm to properly aggregate the
detections. It seems that the algorithm works best with 15 tweets. As we explained for plane
hijackings, the algorithm will require less tweets to correctly aggregate detector B’s detections
that detector A’s detections. The slight increase of aggregates with 20 tweets means that the
new tweets contained different elements of information causing the duplicates detections to be
aggregated differently.
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Figure 5.40: Aggregation of detector A’s detections
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5.4.3 Wildfires

The count of different aggregate representatives for detector’s A detections is shown in figure
5.42 and for detector B’s detections in figure 5.43.

We observe from graph 5.42a a similar behavior as with plane hijackings and plane crashes.
It looks like 50 tweets is also not enough to correctly aggregate the wildfire detections. The
aggregate count closest to the detected event count is obtained at 100 tweets. Again we
observe an increase of the aggregate count at 75 tweets meaning that the new tweets contain
new information differentiating the detections from each other.

Graph 5.42b follows as well a very similar behavior to graph 5.40b for the same reasons we
explained with plane crashes.

The graph 5.39 behavior follows our expectation, we understand that the algorithm works best
with detections of 15 to 20 tweets.
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Figure 5.42: Aggregation of detector A’s detections
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Figure 5.43: Aggregation of detector B’s detections when varying the tweet count threshold



Chapter 6

Conclusion

In this master thesis we created a language independent system aiming to detect user defined
events from Twitter data. The system is composed of independent modules which:

1. Read the Twitter data.

2. Classify using a keywords approach the tweets between event related and uninformative
tweets.

3. Analyze the events related tweets and decide whether to trigger an event detection alert
using two approaches: frequency based (focusing only on the Twitter data activity burst),
and content based (focusing on the hashtags of the tweets).

4. Aggregate duplicates detections related to the same event together.

We tested our system for plane hijackings, plane crashes and wildfires events on Twitter data
collected by armasuisse from October 2013 to October 2014. We chose these event types
because they have different characteristics (timespan, number of real occurrences, Twitter
activity) which allowed us to test our detectors on different data behavior.

Without surprise we found that the detectors were performing well mainly on popular well
discussed events like plane hijackings and plane crashes for which we had high precision and
recall values above 75%.
For plane hijackings, both detectors obtained shorter delays than BBC and Reuters (by up to
10 hours), the content based detector being the fastest (by up to 1.5 hour shorter than the
frequency based detector). The obtained detection delays range from 1 to 10 hours.
For plane crashes, Reuters was faster than the detectors (by up to 2 hours) but BBC slower (by
up to 3 hours). The frequency based detector was faster in 50% of the cases than the content
based detector by up to 4 hours otherwise they had similar delays. The detection delays range
from 1 to 18 hours.

On the other hand, for wildfires which have much more occurrences and noisy Twitter activity,
both detectors were able to attain only 60% recall but the content based detector had poor
precision 45% while the frequency based detector reached 80%. Both detectors were faster
than BBC and Reuters by up to 60 hours while obtaining detection delays ranging from 10 to
70 hours. When comparing the obtained delays, the frequency based detector was faster in
50% of the cases than the content based detector by up to 15 hours otherwise they had similar
delays.

Overall we achieved our goal of being able to detect real-world events faster than traditional
media. Reuters still beats us for plane crashes but there are still many possible ideas to improve
the detectors as we explain in chapter 7.

The obvious shortcoming of these Twitter based detectors is that they depend on the Twitter
activity resulting from an event to detect it. Assuming that isn’t an issue, both these detectors
have the advantage of being unsupervised, language independent and to work on any type of
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events once the classification keywords are chosen.

The frequency based detector is limited by the fact that it cannot detect concurrent events of
the same type because it doesn’t pay attention to the content of the tweets. For events which
happen relatively closely in time, the minimum time limit between two events occurrences
threshold can be manipulated to mitigate the problem. Ignoring tweets content is also a
shortcoming because we ignore a lot of information like the geographical location, the user
information, etc. This is a price we pay because we want the detector to be also able to track
general events and concepts described by the set of the classification keywords. For example
we can specify keywords about a country and get alert when its related Twitter activity rises
suddenly which can hints that something is going to happen. With the content detector, we
would probably get an alert once the event has happened if its entities are clear enough for the
detector to recognize them.

The concept of the content based detector is similar to how a human would act in the sense
that when it reads event related tweets, it first tries to find a few other tweets (3 to 5 tweets)
talking about the same entities to confirm the information before deciding that an event is really
happening. In its current implementation the detector depends on hashtags which is its main
limitation. Not all relevant tweets uses “good”/any hashtags and we miss many of the first tweets
before an event becomes popular. As a result, the content based detector isn’t always faster than
the frequency based detector. However as the content based detector requires few tweets (5 to
10 tweets) to trigger an alert, it is better suited to discover smaller scale events as long as the
users mention clearly enough the related entities.



Chapter 7

Future Work

Using this work as a basis, there are many ways to improve the obtained performances; we
present a few ideas in the following sections.
Once satisfying performances are obtained, with section 1.2 Motivation in mind, the next steps
would be to start studying more complex concepts like crowd interests or crowd agitation and
elaborate models which break down these concepts into parameters to track like a set of event
types to monitor, activity indicators, sentiment analysis of tweets, etc. The methods presented
in this work would then be used to obtain parts of these models’ inputs.

7.1 Improving the Classification

Currently the classification relies on manually chosen keywords but this process should be
automatized. An idea is to use dynamic query expansion (DQE, already used in the EMBERS1

project for forecasting civil unrest) to automatically generate the keywords best representing
the event types of interest. The algorithm would start with manually chosen keywords, extract
all relevant tweets containing these keywords from the available data, compute the top most
popular keywords among the obtained tweets and repeat the process until convergence. Then
the obtained classification data can then be correlated like we did in section 5.1 to check if we
obtain better results.

It would be interesting also to dynamically generate related keywords for each events and track
their related tweets directly. Then it would be easier to separate tweets for concurrent events
and aggregate correctly duplicate detections. The overall precision would be improved because
the number of unrelated tweets would be much lower and this would allow to generate better
summaries of the event evolution.

Further analysis should be conducted to be able to separate with more precision event related
tweets from unrelated tweets (e.g. viral jokes tweets). We have seen in section 5.2 that the
retweet count is an indicator, but there are other possibilities like the favorite count, evaluating
the credibility of the author, the sentiment score, etc.

It is possible also to improve the precision of the classification by selecting trusted source for
the tweets for example embassies, well known users, media reporters, etc.

7.2 Improving the Detectors

The frequency based detector currently doesn’t use the content of the tweets. Changing this
can make it possible to detect concurrent events and help further reduce the number of tweets
required to trigger an alert thus reducing the obtained delays. We could use for example the
geographical location of the tweet/user or the extracted entities from the text of the tweets, etc.

1http://www.vbi.vt.edu/ndssl/research/research-detail/EMBERS-Early-Model-Based-Event-Detection-using-
Surrogates
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The idea would be add some grouping mechanism on top of the time window approach i.e.
combining the ideas of the two detectors.
It is important not to make the detector too specific otherwise it looses its main advantage
of being able to monitor the activity of more general concepts defined by the classification
keywords and raise alerts when there is a change in the activity. This track would be interesting
to further develop for example by making the detector able to recognize patterns in the evolution
of the Twitter activity.

We don’t think that the content based detector requires conceptual changes because as we
explain in chapter 6 it is very close to the how a human would recognize an event occurrence
with Twitter. However the extraction process of the tweet core entities can be still greatly
improved. Currently it uses the hashtags which results in many tweets being ignored even
though they are classified as event related tweets. An idea would be to develop natural
language processing techniques adapted for tweets to extract their entities but this question
has to be further explored. With better entity extraction methods the content based detector will
become more robust and faster.

7.3 Improving the Aggregation

There is a lot of room for improving the aggregation of the detections. The detections are
coming in a streaming fashion but that doesn’t mean that we are restricted streaming algorithm.
It is possible for example to apply clustering algorithms after waiting for a sufficient number
of detections. For the number of centers, we can also use assumptions like deciding on an
arbitrary limit on the possible number of clusters in one day.

Similarly to the other methods, the current algorithm doesn’t use any features of the tweets.
For small scale events like wildfires, the geographical location of the tweets/users could help
discriminate detections between each others. We could also study the authors user network
and measure their similarity to come up with a probability that the two detections are related.



Appendix A

Real World Events List

A.1 Events List

Event Type Name Date Time UTC
PLANE HIJACKING Flight 751 2014-02-07 14:25
PLANE HIJACKING Flight 702 2014-02-17 01:30
PLANE HIJACKING Flight 370 2014-03-15 06:15
PLANE HIJACKING Flight 41 2014-04-25 06:00
PLANE HIJACKING Flight EK-612 2014-06-23 03:30
PLANE CRASH Flight 361 2013-10-03 08:00
PLANE CRASH Flight 301 2013-10-16 08:55
PLANE CRASH Flight 363 2013-11-17 15:20
PLANE CRASH Flight 470 2013-11-29 11:30
PLANE CRASH Cessna 208 2013-12-12 01:15
PLANE CRASH Bombardier 600 2014-01-05 19:20
PLANE CRASH C-130 Hercules 2014-02-11 10:38
PLANE CRASH Flight 183 2014-02-16 07:28
PLANE CRASH Flight 370 2014-03-07 17:19
PLANE CRASH Philadelphia 2014-03-13 23:05
PLANE CRASH Hanscom Field 2014-05-31 10:30
PLANE CRASH Flight 17 2014-07-17 13:19
PLANE CRASH Flight 222 2014-07-23 11:06
PLANE CRASH Flight 5017 2014-07-24 01:47
PLANE CRASH Flight 5915 2014-08-10 05:48
PLANE CRASH Brazil candidate 2014-08-13 13:00
PLANE CRASH Grand Manan 2014-08-16 09:00
PLANE CRASH TBM 900 2014-09-05 19:15
WILDFIRE NS Wales 2013-10-13 03:30
WILDFIRE Greater Blue 2013-10-16 03:30
WILDFIRE Big Sur 2013-12-15 21:30
WILDFIRE Colby 2014-01-16 22:00
WILDFIRE Arkansas 2014-01-26 19:30
WILDFIRE Boston 2014-03-26 19:42
WILDFIRE Valparaiso 2014-04-12 19:40
WILDFIRE Etiwanda 2014-04-30 21:30
WILDFIRE Oklahoma 2014-05-04 22:30
WILDFIRE Poinsettia 2014-05-13 18:40
WILDFIRE Two Bulls 2014-06-07 21:30
WILDFIRE Canada 2014-07-03 19:30
WILDFIRE Washington 2014-07-14 18:30
WILDFIRE Yosemite 2014-07-19 21:30
WILDFIRE Eastbourne Pier 2014-07-30 15:00
WILDFIRE Vastmanland 2014-07-31 12:30
WILDFIRE Yellow Point 2014-09-05 21:30
WILDFIRE Nottingham 2014-09-12 22:00
WILDFIRE King 2014-09-13 21:30
WILDFIRE Boles 2014-09-15 21:30

Table A.1: Ground truth of events occurrences
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Appendix B

Traditional Media Detection

B.1 First Articles/Reports Time and Date

Event Type Name BBC Date BBC Time Reuters Date Reuters Time
PLANE HIJACKING Flight 751 NA NA 2014-02-07 20:57
PLANE HIJACKING Flight 702 2014-02-17 21:51 2014-02-17 16:32
PLANE HIJACKING Flight 370 2014-03-15 18:38 2014-03-15 18:44
PLANE HIJACKING Flight 41 2014-04-25 09:48 2014-04-25 10:57
PLANE HIJACKING Flight EK-612 2014-06-23 14:20 2014-06-23 04:39
PLANE CRASH Flight 361 2013-10-03 13:18 2013-10-03 17:26
PLANE CRASH Flight 301 2013-10-16 17:43 2013-10-16 17:21
PLANE CRASH Flight 363 2013-11-18 05:53 2013-11-17 19:16
PLANE CRASH Flight 470 2013-11-29 21:41 2013-11-30 08:56
PLANE CRASH Cessna 208 NA NA 2013-12-12 21:40
PLANE CRASH Bombardier 600 2014-01-05 22:17 2014-01-05 19:40
PLANE CRASH C-130 Hercules 2014-02-11 21:22 2014-02-11 19:25
PLANE CRASH Flight 183 2014-02-17 11:54 2014-02-16 13:42
PLANE CRASH Flight 370 2014-03-08 05:40 2014-03-08 07:30
PLANE CRASH Philadelphia 2014-03-14 02:22 2014-03-14 10:17
PLANE CRASH Hanscom Field 2014-06-01 14:39 2014-06-01 09:55
PLANE CRASH Flight 17 2014-07-18 11:37 2014-07-17 15:21
PLANE CRASH Flight 222 2014-07-23 16:56 2014-07-23 13:24
PLANE CRASH Flight 5017 2014-07-25 13:43 2014-07-24 20:48
PLANE CRASH Flight 5915 2014-08-10 14:16 2014-08-10 07:12
PLANE CRASH Brazil candidate 2014-08-13 19:53 2014-08-13 15:24
PLANE CRASH Grand Manan NA NA NA NA
PLANE CRASH TBM 900 2014-09-06 10:19 2014-09-05 23:00
WILDFIRE NS Wales 2013-10-18 11:26 2013-10-23 00:40
WILDFIRE Greater Blue 2013-10-21 10:23 2013-10-17 07:02
WILDFIRE Big Sur 2013-12-18 16:23 2013-12-17 20:49
WILDFIRE Colby 2014-01-17 02:44 2014-01-16 22:00
WILDFIRE Arkansas NA NA NA NA
WILDFIRE Boston 2014-03-27 08:04 NA NA
WILDFIRE Valparaiso 2014-04-14 01:22 2014-04-13 19:49
WILDFIRE Etiwanda NA NA 2014-04-30 22:28
WILDFIRE Oklahoma 2014-05-06 00:40 2014-05-06 19:17
WILDFIRE Poinsettia 2014-05-15 22:27 2014-05-15 06:26
WILDFIRE Two Bulls NA NA 2014-06-10 06:30
WILDFIRE Canada NA NA 2014-07-18 10:29
WILDFIRE Washington 2014-07-18 21:19 2014-07-21 19:17
WILDFIRE Yosemite NA NA 2014-08-26 17:55
WILDFIRE Eastbourne Pier 2014-07-30 19:54 NA NA
WILDFIRE Vastmanland 2014-08-06 17:09 2014-08-05 09:25
WILDFIRE Yellow Point NA NA NA NA
WILDFIRE Nottingham 2014-09-13 02:17 NA NA
WILDFIRE King 2014-09-18 14:29 2014-09-15 19:31
WILDFIRE Boles NA NA 2014-09-16 09:20

Table B.1: Traditional media event’s latest update timestamps obtained from their websites
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B.2 BBC Articles Source

Event Type Name BBC Article
PLANE HIJACKING Flight 751 NA
PLANE HIJACKING Flight 702 http://www.bbc.com/news/world-europe-26222674
PLANE HIJACKING Flight 370 http://www.bbc.com/news/world-asia-26591056
PLANE HIJACKING Flight 41 http://www.bbc.com/news/world-asia-27154139
PLANE HIJACKING Flight EK-612 http://www.bbc.com/news/world-asia-27971351
PLANE CRASH Flight 361 http://www.bbc.com/news/world-africa-24381066
PLANE CRASH Flight 301 http://www.bbc.com/news/world-asia-24554128
PLANE CRASH Flight 363 http://www.bbc.com/news/world-europe-24980055
PLANE CRASH Flight 470 http://www.bbc.com/news/world-africa-25162278
PLANE CRASH Cessna 208 NA
PLANE CRASH Bombardier 600 http://www.bbc.com/news/world-us-canada-25617026
PLANE CRASH C-130 Hercules http://www.bbc.com/news/world-africa-26138101
PLANE CRASH Flight 183 http://www.bbc.com/news/world-asia-26222528
PLANE CRASH Flight 370 http://www.bbc.com/news/world-asia-26492454
PLANE CRASH Philadelphia http://www.bbc.com/news/world-us-canada-26571993
PLANE CRASH Flight 370 Crash News NA
PLANE CRASH Hanscom Field http://www.bbc.com/news/world-us-canada-27656261
PLANE CRASH Flight 17 http://www.bbc.com/news/business-28356745
PLANE CRASH Flight 222 http://www.bbc.com/news/world-asia-28448763
PLANE CRASH Flight 5017 http://www.bbc.com/news/world-africa-28485503
PLANE CRASH Flight 5915 http://www.bbc.com/news/world-middle-east-28730717
PLANE CRASH Brazil candidate http://www.bbc.com/news/world-latin-america-28775900
PLANE CRASH Grand Manan NA
PLANE CRASH TBM 900 http://www.bbc.com/news/world-us-canada-29082666
WILDFIRE NS Wales http://www.bbc.com/news/world-asia-24575830
WILDFIRE Greater Blue http://www.bbc.com/news/world-asia-24579099
WILDFIRE Big Sur http://www.bbc.co.uk/weather/features/25437220
WILDFIRE Colby http://www.bbc.com/news/world-us-canada-25769904
WILDFIRE Arkansas NA
WILDFIRE Boston http://www.bbc.com/news/world-us-canada-26762938
WILDFIRE Valparaiso http://www.bbc.com/news/world-latin-america-27007884
WILDFIRE Etiwanda NA
WILDFIRE Oklahoma http://www.bbc.com/news/world-us-canada-27284939
WILDFIRE Poinsettia http://www.bbc.com/news/world-us-canada-27420698
WILDFIRE Two Bulls NA
WILDFIRE Canada NA
WILDFIRE Washington http://www.bbc.com/news/world-us-canada-28380964
WILDFIRE Yosemite NA
WILDFIRE Eastbourne Pier http://www.bbc.com/news/uk-england-sussex-28573659
WILDFIRE Vastmanland http://www.bbc.co.uk/weather/feeds/28678478
WILDFIRE Yellow Point NA
WILDFIRE Nottingham http://www.bbc.com/news/uk-england-nottinghamshire-29186169
WILDFIRE King http://www.bbc.com/news/world-us-canada-29257417
WILDFIRE Boles NA

Table B.2: Source of information
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Appendix C

Avro Schema

1 
 

{ 

  "type" : "record", 

  "name" : "TwitterStatusUpdate", 

  "namespace" : 

"ch.armasuisse.twitterdemo.avro.v2", 

  "fields" : [ { 

    "name" : "schemaVersion", 

    "type" : [ "string", "null" ], 

    "default" : "2.0" 

  }, { 

    "name" : "targetId", 

    "type" : [ "string", "null" ], 

    "default" : "ALL" 

  }, { 

    "name" : "isRetweetOriginal", 

    "type" : "boolean", 

    "default" : false 

  }, { 

    "name" : "contributors", 

    "type" : { 

      "type" : "array", 

      "items" : "long" 

    } 

  }, { 

    "name" : "createdAt", 

    "type" : [ "string", "null" ] 

  }, { 

    "name" : "createdAtAsLong", 

    "type" : "long", 

    "default" : 0 

  }, { 

    "name" : "currentUserRetweetId", 

    "type" : "long" 

  }, { 

    "name" : "id", 

    "type" : "long", 

    "default" : -1 

  }, { 

    "name" : "inReplyToScreenName", 

    "type" : [ "string", "null" ] 

  }, { 

    "name" : "inReplyToStatusId", 

    "type" : "long" 

  }, { 

    "name" : "inReplyToUserId", 

    "type" : "long" 

  }, { 

    "name" : "lang", 

    "type" : [ "string", "null" ], 

    "default" : "unknown" 

  }, { 

    "name" : "retweetCount", 

    "type" : "long" 

  }, { 

    "name" : "source", 

    "type" : [ "string", "null" ] 

  }, { 

    "name" : "text", 

    "type" : [ "string", "null" ] 

  }, { 

    "name" : "favoriteCount", 

    "type" : "int", 

    "default" : -1 

  }, { 

    "name" : "isFavorited", 

    "type" : "boolean" 

  }, { 

    "name" : "filterLevel", 

    "type" : [ "string", "null" ], 

    "default" : "unknown" 

  }, { 

    "name" : "isPossiblySensitive", 

    "type" : "boolean" 

  }, { 

    "name" : "isRetweet", 

    "type" : "boolean" 

  }, { 

    "name" : "isRetweetedByMe", 

    "type" : "boolean" 

  }, { 

    "name" : "retweetedStatus", 

    "type" : [ "null", { 

      "type" : "record", 

      "name" : "TwitterRetweetedStatus", 

      "fields" : [ { 

        "name" : "createdAt", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "id", 

        "type" : "long" 

      }, { 

        "name" : "text", 

        "type" : [ "string", "null" ] 

      } ] 

    } ], 

    "default" : null 

  }, { 

    "name" : "isTruncated", 

    "type" : "boolean" 

  }, { 

    "name" : "accessLevel", 

    "type" : "int", 

    "default" : -1 

  }, { 

    "name" : "coordinatesLatitude", 

    "type" : "double" 

  }, { 

    "name" : "coordinatesLongitude", 

    "type" : "double" 

  }, { 

    "name" : "hashtagEntities", 

    "type" : { 

      "type" : "array", 

      "items" : { 

        "type" : "record", 

        "name" : "TwitterHashtagEntity", 

        "fields" : [ { 

          "name" : "end", 

          "type" : "int" 

        }, { 

          "name" : "start", 

          "type" : "int" 

        }, { 

          "name" : "text", 

          "type" : [ "string", "null" ] 

        } ], 

        "description" : "A simpler 

representation of a Twitter4j 

HashtagEntity object" 

      } 
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    } 

  }, { 

    "name" : "mediaEntities", 

    "type" : { 

      "type" : "array", 

      "items" : { 

        "type" : "record", 

        "name" : "TwitterMediaEntity", 

        "fields" : [ { 

          "name" : "id", 

          "type" : "long" 

        }, { 

          "name" : "mediaURL", 

          "type" : [ "string", "null" ] 

        }, { 

          "name" : "mediaURLHttps", 

          "type" : [ "string", "null" ] 

        }, { 

          "name" : "URL", 

          "type" : [ "string", "null" ], 

          "default" : "unknown" 

        }, { 

          "name" : "displayURL", 

          "type" : [ "string", "null" ], 

          "default" : "unknown" 

        }, { 

          "name" : "expandedURL", 

          "type" : [ "string", "null" ], 

          "default" : "unknown" 

        }, { 

          "name" : "type", 

          "type" : [ "string", "null" ] 

        }, { 

          "name" : "end", 

          "type" : "int", 

          "default" : -1 

        }, { 

          "name" : "start", 

          "type" : "int", 

          "default" : -1 

        } ], 

        "description" : "A simpler 

representation of a Twitter4j 

MediaEntity object" 

      } 

    } 

  }, { 

    "name" : "urlEntities", 

    "type" : { 

      "type" : "array", 

      "items" : { 

        "type" : "record", 

        "name" : "TwitterURLEntity", 

        "fields" : [ { 

          "name" : "displayURL", 

          "type" : [ "string", "null" ] 

        }, { 

          "name" : "end", 

          "type" : "int" 

        }, { 

          "name" : "start", 

          "type" : "int" 

        }, { 

          "name" : "URL", 

          "type" : [ "string", "null" ] 

        }, { 

          "name" : "expandedURL", 

          "type" : [ "string", "null" ] 

        } ], 

        "description" : "A simpler 

representation of a Twitter4j URLEntity 

object" 

      } 

    } 

  }, { 

    "name" : "userMentionEntities", 

    "type" : { 

      "type" : "array", 

      "items" : { 

        "type" : "record", 

        "name" : 

"TwitterUserMentionEntity", 

        "fields" : [ { 

          "name" : "end", 

          "type" : "int" 

        }, { 

          "name" : "start", 

          "type" : "int" 

        }, { 

          "name" : "name", 

          "type" : [ "string", "null" ] 

        }, { 

          "name" : "screenName", 

          "type" : [ "string", "null" ] 

        }, { 

          "name" : "id", 

          "type" : "long" 

        } ], 

        "description" : "A simpler 

representation of a Twitter4j 

UserMentionEntity object" 

      } 

    } 

  }, { 

    "name" : "symbolEntities", 

    "type" : [ "null", { 

      "type" : "array", 

      "items" : { 

        "type" : "record", 

        "name" : "TwitterSymbolEntity", 

        "fields" : [ { 

          "name" : "end", 

          "type" : "int" 

        }, { 

          "name" : "start", 

          "type" : "int" 

        }, { 

          "name" : "text", 

          "type" : [ "string", "null" ] 

        } ], 

        "description" : "A simpler 

representation of a Twitter4j 

SymbolEntity object" 

      } 

    } ], 

    "default" : null 

  }, { 

    "name" : "Place", 

    "type" : { 

      "type" : "record", 
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      "name" : "TwitterPlace", 

      "fields" : [ { 

        "name" : "URL", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "streetAddress", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "placeType", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "name", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "fullName", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "id", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "country", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "countryCode", 

        "type" : [ "string", "null" ] 

      }, { 

        "name" : "boundingBoxType", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "boundingBox", 

        "type" : { 

          "type" : "array", 

          "items" : { 

            "type" : "record", 

            "name" : 

"TwitterGeoLocation", 

            "fields" : [ { 

              "name" : "latitude", 

              "type" : "double" 

            }, { 

              "name" : "longitude", 

              "type" : "double" 

            } ], 

            "description" : "A simpler 

representation of a Twitter4j 

GeoLocation object" 

          } 

        } 

      } ] 

    }, 

    "description" : "A simpler 

representation of a Twitter4j Place 

object" 

  }, { 

    "name" : "User", 

    "type" : { 

      "type" : "record", 

      "name" : "TwitterUser", 

      "fields" : [ { 

        "name" : "id", 

        "type" : "long", 

        "default" : -1 

      }, { 

        "name" : "description", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "userURLEntity", 

        "type" : [ "null", { 

          "type" : "record", 

          "name" : "UserURLEntity", 

          "fields" : [ { 

            "name" : "end", 

            "type" : "int" 

          }, { 

            "name" : "start", 

            "type" : "int" 

          }, { 

            "name" : "URL", 

            "type" : [ "string", "null" 

] 

          }, { 

            "name" : "displayURL", 

            "type" : [ "string", "null" 

] 

          }, { 

            "name" : "expandedURL", 

            "type" : [ "string", "null" 

] 

          }, { 

            "name" : "text", 

            "type" : [ "string", "null" 

] 

          } ], 

          "description" : "A simpler 

representation of a Twitter4j UrlEntity 

object" 

        } ], 

        "default" : null 

      }, { 

        "name" : "favoriteCount", 

        "type" : "int", 

        "default" : -1 

      }, { 

        "name" : "isFollowRequestSent", 

        "type" : "boolean", 

        "default" : false 

      }, { 

        "name" : "screenName", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "createdAt", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "followersCount", 

        "type" : "int", 

        "default" : -1 

      }, { 

        "name" : "friendsCount", 

        "type" : "int", 

        "default" : -1 

      }, { 

        "name" : "isGeoEnabled", 

        "type" : "boolean", 

        "default" : false 

      }, { 

        "name" : "listedCount", 
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        "type" : "int", 

        "default" : -1 

      }, { 

        "name" : "statusesCount", 

        "type" : "int", 

        "default" : -1 

      }, { 

        "name" : "isVerified", 

        "type" : "boolean", 

        "default" : false 

      }, { 

        "name" : "isTranslator", 

        "type" : "boolean", 

        "default" : false 

      }, { 

        "name" : "lang", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "location", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "name", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : 

"profileBackgroundColor", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : 

"profileBackgroundImageURL", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : 

"profileBackgroundImageURLHttps", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : 

"isProfileBackgroundTiled", 

        "type" : [ "boolean", "null" ], 

        "default" : false 

      }, { 

        "name" : "profileBannerURL", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "profileImageURL", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "profileImageURLHttps", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "profileLinkColor", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : 

"profileSidebarBorderColor", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : 

"profileSidebarFillColor", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "profileTextColor", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : 

"isProfileUseBackgroundImage", 

        "type" : [ "boolean", "null" ], 

        "default" : false 

      }, { 

        "name" : "isProtected", 

        "type" : "boolean", 

        "default" : false 

      }, { 

        "name" : "isShowAllInlineMedia", 

        "type" : "boolean", 

        "default" : false 

      }, { 

        "name" : "timeZone", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "URL", 

        "type" : [ "string", "null" ], 

        "default" : "unknown" 

      }, { 

        "name" : "utcOffset", 

        "type" : "int", 

        "default" : -1 

      } ] 

    }, 

    "description" : "A simpler 

representation of a Twitter4j User 

object" 

  } ], 

  "description" : "A simpler 

representation of a Twitter4j Status 

object" 

} 



Appendix D

Detectors Precision and Recall
Data

D.1 Frequency Based Detector

D.1.1 Min Tweet Count Threshold

Event Type Min Tweet Count Precision Recall False Positives Detected Events
PLANE HIJACKING 50 71.42 100 2 5
PLANE HIJACKING 60 83.33 100 1 5
PLANE HIJACKING 75 80 80 1 4
PLANE HIJACKING 100 100 80 0 4
PLANE CRASH 50 100 88.88 0 16
PLANE CRASH 60 100 72.22 0 13
PLANE CRASH 75 100 66.66 0 12
PLANE CRASH 100 100 61.11 0 11
WILDFIRE 50 81.25 65 3 13
WILDFIRE 60 76.92 50 3 10
WILDFIRE 75 88.88 40 1 8
WILDFIRE 100 83.33 25 1 5

Table D.1: Detector A results obtained when varying the minimum tweet count threshold

D.1.2 Ratio Threshold

Event Type Ratio Precision Recall False Positives Detected Events
PLANE HIJACKING 0.1 83.33 100 1 5
PLANE HIJACKING 0.3 71.42 100 2 5
PLANE HIJACKING 0.5 71.42 100 2 5
PLANE HIJACKING 0.7 71.42 100 2 5
PLANE CRASH 0.1 92.85 72.22 1 13
PLANE CRASH 0.3 100 77.77 0 14
PLANE CRASH 0.5 100 88.88 0 16
PLANE CRASH 0.7 100 88.88 0 16
WILDFIRE 0.1 85.71 30 1 6
WILDFIRE 0.3 92.3 60 1 12
WILDFIRE 0.5 81.25 65 3 13
WILDFIRE 0.7 82.35 70 3 14

Table D.2: Detector A results obtained when varying the ratio threshold
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D.2 Content Based Detector

D.2.1 Cluster Min Tweet Count Threshold

Event Type Min Tweet Count Precision Recall False Positives Detected Events
PLANE HIJACKING 5 71.42 100 2 5
PLANE HIJACKING 10 83.33 100 1 5
PLANE HIJACKING 15 100 100 0 5
PLANE HIJACKING 20 100 80 0 4
PLANE CRASH 5 84.21 88.88 3 16
PLANE CRASH 10 100 61.11 0 11
PLANE CRASH 15 100 50 0 9
PLANE CRASH 20 100 50 0 9
WILDFIRE 5 43.75 70 18 14
WILDFIRE 10 60 45 6 9
WILDFIRE 15 40 20 6 4
WILDFIRE 20 28.57 10 5 2

Table D.3: Detector B results obtained when varying the cluster minimum tweet count threshold



Appendix E

Master Thesis Schedule

E.1 Original Schedule Plan

Month Week Tasks
06.10.2014 . Discover Twitter, literature

13.10.2014

. Write schedule

. Choose real-world events types

. Read literature

20.10.2014

27.10.2014

03.11.2014
. Prepare avro-impala read/query engine

. Implement tweets classifier

10.11.2014
. Test/improve classifier

. Write classifier description

17.11.2014 . Implement event detector A

24.11.2014 . Test A performance for each event type

01.12.2014
. Improve A separately for each event type

. Write A description

08.12.2014 . Implement event detector B

15.12.2014 . Test B performance for each event type

22.12.2014

29.12.2014

05.01.2015
. Improve B separately for each event type

. Write B description

12.01.2015 . Implement event detector C

19.01.2015 . Test C performance for each event type

26.01.2015
. Improve C separately for each event type

. Write C description

02.02.2015

09.02.2015

16.02.2015

23.02.2015

02.03.2015

09.03.2015

16.03.2015

23.03.2015

30.03.2015

. New ideas, delays …

. Complete master thesis

. Write master thesis body (abstract, introduction, 

data collection, references, etc)

. Add general event detector, new ideas, …

Early Detection of Real-world Events with Twitter

Schedule

----

. Read literature

. Write related work section

. Choose first method to implement

February

March

October

November

December

January
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E.2 Actual Outcome

Month Week Tasks
06.10.2014 . Discover Twitter, literature

13.10.2014

. Write schedule

. Choose real-world events types

. Read literature

20.10.2014

27.10.2014

03.11.2014 . Prepare avro reader (data feed module)

10.11.2014

17.11.2014

24.11.2014

01.12.2014

08.12.2014

15.12.2014

22.12.2014

29.12.2014

05.01.2015

12.01.2015

19.01.2015

26.01.2015

02.02.2015

09.02.2015

16.02.2015

23.02.2015

02.03.2015 . Compare delays with traditional medias

09.03.2015

16.03.2015

23.03.2015

30.03.2015

. Implement detector A

. Test, interpret results and improve detector A 

for each event types

. Prepare experiments (design, ground truth)

. Code refactoring

. Implement tweets classifier

. Test/Improve classifier

. Implement detector B (first attempt with n-

grams, entity recognition, finally hashtags)

. Test, interpret results and improve detector B 

for each event types

Early Detection of Real-world Events with Twitter

Schedule

----

. Read literature

. Prepare related work section

. Choose first method to implement

February

March

October

November

December

January

. Prepare results for report

. Write Master Thesis
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Original Task Description

 

Eidgenössisches Departement für Verteidigung, 

Bevölkerungsschutz und Sport VBS 

armasuisse 

Wissenschaft und Technologie W+T 

 

 

Master Thesis Task Assignment for 

Amruthalingam Ludovic (D-INFK) 
 

EEaarrllyy  DDeetteeccttiioonn  ooff  RReeaall--wwoorrlldd  EEvveennttss  wwiitthh  TTwwiitttteerr  
 

 

 
 Main advisor: Dr. Vincent Lenders (armasuisse) 
 Advisor ETH David Gugelmann (ETH Zürich) 
 Supervisor Prof. Dr. B. Plattner (ETH Zürich) 
 Start Date: October 6th, 2014 
 End Date: April 5th, 2015 

 

1 Background 

Open source intelligence (OSINT) is currently experiencing a big paradigm shift. The classi-

cal OSINT sources were mainly newspapers, magazines, TV, radio etc,. With these sources, 

the set of editors and publishers was closed and limited. Today, new sources have appeared 

in the social media sector and in the Web that allow anybody to publish and contribute con-

tent. This user-generated content has changed OSINT quite significantly.  E.g., Wikipedia, 

the open encyclopedia maintained by volunteers has established itself as the prime source of 

knowledge in the Internet. Social networks like Twitter, Facebook or Youtube have become 

so popular that many persons and organizations are using these sources as one of their pri-

mary source for news.  

2 Thesis Goal 

The goal of this thesis is to evaluate the feasibility to use Twitter as an early warning system 

for real-world events. Events could for example be natural disasters, accidents, revolutions, 

hijacking, conflicts and wars, cyber incidents and attacks, etc. Various studies have shown 

that Twitter was often the first source of information to mention the occurrence of particular 

events. The reports on Twitter were up to hours or even days before the traditional media 

reported about it. This makes Twitter an attractive source of information for early detection. 

The problem however is that the source is very noisy with a lot of Tweets about non-event 

related topics. 

 

To assess whether Twitter could be turned into an early warning system, the student shall 

therefore conduct a systematic study using a one-year long historical data set of Tweets. The 

goal is to understand how signals from Twitter could be exploited to devise a real-time event 

detection system. Ideally, we want to alerted about new events before the classical media 

sources report about it by exploiting the crowd of active users. 

3 Tasks 
The goal of this thesis is to explore how well Twitter data can be used for early detection of 
real-world events.  

The detailed tasks of the thesis are: 

1. Study the content publishing, retweeting and following concepts in Twitter. 
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2. Analyze the type of data and meta-data that can be obtained openly from Twitter 

through the streaming and REST APIs. 

3. Review the open literature on event detection with Twitter.  

4. Select together with your advisors a set of events from different categories (e.g. using 

[1] as categorization). These events will be used to evaluate early detection later on. 

5. Develop a classifier using machine learning techniques to automatically classify 

Tweets to the selected categories of events. Your classifier shall integrate various 

types of features including temporal, content, geo-spacial and social aspects of the 

Tweets and/or combinations thereof.  

6. Evaluate the performance of your classifier using sample Tweets for each event cat-

egory. Analyze the importance of individual features and how these features are cor-

related.  

7. Develop and implement different event detection models based on your classifier. 

Your models could be of statistical or probabilistic nature. Note that your models 

should be developed with the aim of early detection in the context of real-time warn-

ing. That means that we are interested in finding models that best reflect the begin-

ning or pre-phase of events and not the actual event presence or post-phase. 

8. Evaluate the false positive and false negative rates of the implemented models for the 

different event categories. Study the differences in detection rates for the different 

event types and explore which model works best for which category of events. 

9. Evaluate the delay between the event occurrences and detection times using your 

models. 

10. Compare these delays with the times between the event occurrences and the first re-

ports about these events in the traditional media (e.g. CNN, BBC, etc) 

4 Deliverables 

 At the end of the second week, a detailed time schedule of the thesis must be given 
and discussed with the main advisors. 

 At the end of the second month, a short discussion of 15 minutes with the supervisor 
and the advisors will take place. The student has to talk about the major aspects of 
the ongoing work using slides.  

 At the end of month four, another meeting with the supervisor will take place. At this 
point, the student should already have a preliminary version of the written report or at 
least a table of content to hand in to the supervisor. This preliminary version should 
be brought along to the short discussion.  

 At the end of the thesis, a presentation of 15 minutes must be given at armasuisse 
and at ETH (in English). The presentations should give an overview as well as the 
most important details of the work. If possible, a demonstrator should be presented 
(offline after the talk).  

 The final report should be written in English. It must contain a summary, the 
assignment and the time schedule. Its structure should include an introduction, an 
analysis of related work, and a complete documentation of all used 
hardware/software tools. Two written copies of the final report must be delivered to 
the main advisor along with CD that includes developments undergone during the 
thesis. 
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5 References 
[1] http://en.wikipedia.org/wiki/Lists_of_disasters 

 
 
 

armasuisse 

Science and Technology 
C4I Networks 

   

 

 

 

  

Dr. Vincent Lenders 

Thun, 19. September 2014 
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