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Abstract

We have developed Newspaper 2.0, a personalised news app. We show how to track
the user’s reading behaviour implicitly to determine his interests. A recommender
system uses those interest signals identified by the app to create user profiles and
generate personalised recommendations. The user profile in combination with a con-
fidence measure produces a unique news article ranking for each user. The ranking
algorithm is a modified version of the algorithm used to determine the “hot” stories
in Reddit. The recommender system applies semantic enrichment using ABC News
and Freebase, and information filtering using natural language processing. Recom-
mendations produced by the system are a mix of personalised news and trend news.
We show how trends are determined with ABC News and the Reddit rankings. The
recommender system is stored in both a relational database and a graph database.
Results of comparing the personalised news recommendations with randomly picked
news articles show that the personalisation improves the news article selection for a
user.
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Chapter 1

Introduction

The way people access news on a daily basis has changed over time. Reading news
on a paper-printed version has become less popular over the last decade. Nowadays,
most people use a browser or a smartphone to access news online [1]. News are not
only read in the morning and evening, but throughout the day and even throughout
the night [2]. This shift from printed media to online media has led news agencies
to put more effort into online or mobile news. At 20 Minuten Switzerland in the
so-called Newsroom, where the journalists and editorial agents are merged into one
big room, 90% of the effort is put into online news and only 10% into printed media.
News at 20 Minuten is primarily created for mobile devices and only then selected
for the printed version. Other companies, such as Watson, do not even publish a
printed version anymore, all the news is distributed online [3].

News agencies try to find patterns in their user’s reading behaviour. They collect a
vast amount of useful data from their users; either by asking them directly or by per-
forming analytics on reading behaviour data [3]. Some companies also try to present
the user with a user personalised snapshot of their news. Google and Yahoo have
both launched a personalisation mechanism for their users [4, 5]. BBC just recently
published an overhaul of their mobile app to offer the user more personalised news [6].

In many systems where the user is presented a personalised snapshot of the com-
plete set of news articles, the user is forced to define his interests explicitly. This
process of explicit user profiling is too time consuming for the user and leads to a
poor user experience [7].

The glut of news articles produced every day that are available at any time, cre-
ates an information overload. Since users rarely use a single news source to inform
themselves, retaining an overview becomes a challenge for the interested reader. So-
cial media websites offer ways to organise the vast amount of available news. Often,
news agencies have their own account to post news on Twitter and Facebook, and
users are presented the news that are interesting to their friends. Being retweeted
on Twitter or shared on Facebook is important to news agencies, because it helps
them to distribute their articles and reach a much larger audience [8]. Moreover,
the community of social media users distribute and create news themselves. For in-
stance, community members on Reddit post articles published online, vote on their
importance, and discuss their content. Nevertheless, social media alone are not the
ideal way to quickly find interesting news. Friends on Facebook do not necessarily
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1. Introduction 2

have the same interests. On Reddit, the user has to manually select interesting news
channels, his1 taste is not determined automatically.

To help the readers find interesting news in this information overload, we have de-
veloped Newspaper 2.0, a personalised news app. A simple user interface (UI) with
a clear structure lets the user navigate through news articles, one at a time. The
order in which the articles are presented is tailored to each user’s interests. A unique
user profile is created and maintained for each registered reader in order to generate
personalised news recommendations. Whenever the Newspaper 2.0 app is used to
read news, the user interactions on the phone are registered and used to update the
user profiles.

The contributions of this thesis are as follows. First, we present a design and imple-
mentation of an Android News App to display news articles and track the user’s
reading behaviour implicitly to determine his interests. Users can choose from a large
range of different news apps. A good user and reading experience is essential for a
successful news app. Second, we propose an implementation of a Recommender
System to use the interest signals identified by the app and create user profiles to
generate personalised recommendations. We show how content information can be
extracted from news articles using ABC News2 and Freebase3, how it can be en-
riched with natural language processing, and how this information in combination
with Reddit4 generates meaningful recommendations. All news data is scraped from
Reddit through its publicly open API.

In Chapter 2 we discuss related work on existing Android apps for news reading
and different recommender system approaches, including a short description of Red-
dit. The design choices of the Newspaper 2.0 app and the process of identifying
users’ interests while tracking their behaviour are discussed in Chapter 3. Chapter
4 gives a detailed explanation of the inner workings and concrete technologies used
for the recommender system. An evaluation of the recommender system is presented
in Chapter 5. We conclude with a discussion and propositions for future work in
Chapter 6.

1Whenever we write ‘he’ or ‘his’, we mean ‘he or she’ or ‘his or her’.
2http://abcnews.go.com
3https://www.freebase.com
4https://www.reddit.com



Chapter 2

Related Work

2.1 Android Apps

In 2008, the Google Play Store, formerly known as Android Market, offered its first
apps to users running the Android platform. At the time of this writing, the number
of available apps in the Google Play Store was over 1.5 million [8]. Only 32.5% of
all apps are paid Android apps, while 67.5% – more than twice as many – are free
to download [9]. Today, more users access the Internet through a mobile device than
through a fixed Internet connection. Four out of five Internet users own a mobile
phone. People spend roughly 34 hours a month on media using their phone, of which
89% is through mobile apps and only 11% through the mobile web [10].

Most news apps available in the play store are developed by a news agency to extend
their offer from printed version to mobile access. In the case of 20 Minuten Switzer-
land, news is explicitly created for mobile devices, whereas the printed version is
secondary [3, 11]. New news articles are written throughout the day and all users are
presented with the same selection of news articles. Which articles to show at what
time is derived from user surveys and user interaction analytics [3]. In Newspaper
2.0, we interpret user interaction data on our app and feed it to a recommender sys-
tem to create user profiles and generate personalised recommendations. The process
of selecting the news for each user is completely automated.

Other news apps are produced by companies that only offer online news content.
One such representative is Watson News. They write news themselves, but only
publish it online or through mobile apps [12]. Slightly different is the approach of
Yahoo News Digest [13]. Yahoo News Digest is also only made available online, but
Yahoo does not write all the articles themselves, it aggregates the best news articles
from different news agencies. The news are updated once in the morning and once
in the evening, with 7 to 10 articles to read. The articles selected are the most
interesting of the day and all users receive the same articles. We collect our news
through Reddit, which also provides an aggregation of news articles from different
news agencies. Unlike Yahoo News Digest, we create user personalised snapshots of
the collected news articles with an infinite supply of news articles, which are updated
throughout the day. Every user receives a different set of news articles specifically
tailored to his interests.

3



2. Related Work 4

To set apart from the unpersonalised news apps where all users see the same news,
a new trend of personalised news apps has emerged. BBC just recently announced
they would release a personalised news app [14]. With the new app, the users have
the option to add specialised feeds of their choice in addition to the already offered
sections [6]. Apart from being a standard news app like many others, the News
Republic app allows users to specify their interests by choosing from a selection of
sections [15]. The app then provides the user with a digest of the 12 most impor-
tant articles from among those sections accessible on a separate dedicated screen.
What both apps have in common is the fact that the user explicitly has to define his
interests. Google News takes this one step further and, additionally to letting the
user specify his interests, it implicitly learns the users’ preferences from their “click
behaviour” [16, 4, 17]. Both News Republic and Google News aggregate news from
different sources. Similarly, we identify user interests implicitly from the user’s read-
ing behaviour for an enhanced reading experience and aggregate news from different
news sources.

Social Media has affected people’s habits of reading news. Today, 28% of the time
spent online is spent on social networks [18]. Many people not only use social media
to keep in touch with friends and relatives, but also to consume news. As of 2013
over 60% of U.S. citizens used Facebook, of whom 50% used facebook to read news
(Figure 2.1) [19]. On Facebook the news is both shared by the community and di-
rectly by the news agencies. For news agencies like The Huffington Post, Facebook
is an important tool to reach their news readers [20]. As of 2013, Reddit was used by
only 3% of U.S. citizens. However, 62% of all Reddit members used the website to
read news (Figure 2.2) [19]. For Newspaper 2.0, we choose Reddit as the news source
and add user personalisation to facilitate finding interesting news for the readers.

2.2 Recommender Systems

A recommender system is an engine for a storage system that tries to predict the
interests of its users. When the users interact with the storage system, they rate
items stored either explicitly or implicitly. For each user, the recommender system
generates and maintains a user profile. The goal is to present each user a different
ranking of a collection of items, in our case news articles, depending on his interests.
Recommender systems can be implemented in various ways. A very common and
wide spread approach is a combination of Collaborative Filtering (CF) and Informa-
tion Filtering (IF). CF only takes historical data into account, while IF analyses and
matches items depending on their content.

Collaborative Filtering

The CF approach was first mentioned by Goldberg et. al. [22]. The core idea of
CF is to match users with similar ratings and generate recommendations using that
knowledge. CF comes in two flavours: user-to-user CF [23] and item-to-item CF
[24, 25]. User-to-user CF is the most straightforward approach. Users are matched
depending on their rating behaviour: if two users have a similar rating behaviour,
then they are likely to have a similar taste in general. Item-to-item CF matches items
depending on the user ratings: if two items are rated the same by many users, then
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Figure 2.1: U.S. citizens consume a lot of
news through social media. The leading so-
cial network is Facebook with 30% [19, 21].

Figure 2.2: Almost two thirds of
all Reddit users use the website
to read news [21].

the items tend to be similar. This is different form content-based filtering, where the
similarity between items is deduced from their content rather than their similarity in
user ratings. One requirement for a collaborative filtering system to produce valuable
recommendations is a large user base. We build a completely new system with no
initial user base. Thus, as long as the number of users interacting with our system
remains small, we do not include a collaborative filtering approach in our system.
In the future, when more users use Newspaper 2.0, we can extend our recommender
system with a CF approach as explained in Chapter 6.

Information Filtering

While collaborative filtering uses the user behavior to match items for similarity, IF
directly compares the items’ content. If computer processable content information
is already available through metadata, items can easily be matched [26]. In most
cases though, this content metadata is missing and has to be generated for each item
before matching.
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Items can be of different information type: texts, images, videos or sounds. Since we
are processing news articles we only look at items composed of text strings, we call
them documents. Most IF approaches come from the information retrieval domain:
a user translates his information needs into a search query and sends it to an infor-
mation retrieval engine, where it is processed and thereby produces a ranked list of
documents.

A basic approach to extract content features from a document is to simply compute
the term frequency (TF), i.e., the number of times a word appears in the document,
for every word in the document [27]. The most common words can then be used
to represent the content features of that document. In order to improve the results
one can make use of a natural language toolkit to remove stopwords and perform
stemming on the words [28].

By using stopword elimination one can reduce the amount of non-relevant words
appearing in the content features, but they are not eliminated. Words that appear
in less documents are more meaningful and better suited to distinguish documents.
TF-IDF (term frequency - inverse document frequency) solves this issue. The num-
ber of times a word appears in a single text is offset by the inverse frequency of the
word in the complete document space [29, 30]. Just like for simple TF, the higher the
TF-IDF score of a word, the better it reflects the content of a document. TF-IDF
requires the complete document space to be available when computing the scores
for the terms. As thousands of news articles are published every day, this would
not be feasible for our recommender system. The TF-IDF scores would have to be
recomputed when new articles are added to the system.

Not to rely on the knowledge of the complete document space, Reed et al. came
up with a slightly modified approach: which they call IF-ICF [31]. Instead of using
the inverse document frequency, the formula is modified to use the inverse corpus
frequency. The corpus is a set of documents representing the complete document
space and is chosen to meet the following requirements: The corpus has to (i) be
of reasonable size; (ii) be relatively similar to the complete document space; and
(iii) the growth of the unique term count has to be sharply reduced, i.e., the num-
ber of new terms found in documents, which are not part of the corpus, but part
of the complete document space, becomes very small. If a term is not present in
the corpus, it receives a corpus frequency of 0. Apart from not having to know the
complete document space, TF-ICF is also significantly faster: from quadratic time
to linear time in the number of documents in the complete document space. Find-
ing such a representative document space, a corpus, for news articles is challenging.
New terms are used in news articles almost every day: previously unknown people
become famous, organisations are founded, or journalists invent new terms. In our
implementation we present a different information filtering approach using a natural
language toolkit to tag words in texts and extract content features. This approach
does not rely on knowledge of texts of articles other than the one we extract content
features from.
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Hybrid and Unified

Recommender systems using the CF alone can prove ineffective for several reasons:
cold start problem, sparsity problem, and grey sheep [32]. The cold start problem
concerns the issue that the system cannot deduce any recommendations where no
interactions between users and items has taken place. This can occur both when new
users enter the system or new items are added to the collection. Users usually only
interact with a small number of the items in the complete collection, which is known
as the sparsity problem. A grey sheep is a user who’s opinions do not consistently
agree with another group of people, which makes it very difficult to generate mean-
ingful recommendations.

One way to overcome the cold start problem in case a new user enters the sys-
tem is proposed by Yahoo. Trevisiol et al. found out that users are very much
exposed to news articles when they are performing other activities online such as
social media or searching for information. They found out that the user behaviour
is highly dependent on the referrer URL. Using that information they predict what
page a user visits next. Users are matched depending on the external domain where
they came from. Apart from not having to rely on the the user’s history, users do not
even have to log in to make use of the recommendations [5]. We lack the necessary
data to build a referrer graph as described by Trevisiol et al.

A different approach is proposed by Liu et al. In addition to using a combina-
tion of CF and IF the user is presented a set of trend items. An item is considered
a trend when it is rated positively by many other people [4]. In our implementation,
we enrich the recommendations with trend news, which are not personalised, but
the same for every user. The first time a user interacts with our system, he receives
trend news only.

In the case where new items are being added to the collection we can augment
the CF with IF to overcome the cold start problem [32]. P-Tango, a hybrid system,
combines CF and IF and gives more weight to the better performing one, where the
weights are user specific [33]. GroupLens uses filterbots that act as artificial users
which rate new articles depending on the articles’ content [34]. ProfBuilder uses an
interface of two recommendation lists, one generated using CF, the other using IF.
The result is a combined prediction [35]. Liu et al. propose to combine CF and IF
to generate a ranking for the Google News articles. CF is based on the algorithm
described by Das et al. [36]. The IF part is based on the content and the user’s
genuine news interests and general news trends [4]. Our implementation of the rec-
ommender system does not make use of a collaborative filtering approach and hence
does not suffer from the cold start problem for new items.

As an alternative approach, in contrast to the hybrid systems, Popescul et al. pro-
pose a unified recommender system. To overcome the sparsity problem they get rid
of the concept of documents and treat users to be reading words of the document,
instead of the document itself. Since there is only a limited amount of words, in
comparison to the number of possible documents, this drastically reduces sparsity
[37].
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2.2.1 Semantic Enrichment

Recommender systems based on CF and IF in its purest form, only the data and in-
formation generated by the proprietary system are taken into consideration. The vast
amount of publicly available data generated every day by news agencies and through
social networks or collaborative knowledge bases can be used to complement rec-
ommender systems with external data to semantically enrich the recommendation
algorithms.

Abel et al. propose leveraging Twitter to improve user modeling and personalisation.
Entities such as persons, events or products are extracted from Twitter messages us-
ing OpenCalais1 [38]. Cantador and Castells explore the contextualisation of item
recommendations. In order to do so they take advantage of ontologies2. The idea is
that the user’s preferences and concepts, derived from his activities within a given
unit of time, can be semantically linked [39]. Another approach is proposed by Fos-
sati et al. where they make use of a combination of natural language processing
and the knowledge graph Freebase to find logical relationships between entities [40].
Freebase3 is a community oriented database storing information on topics formed
chiefly from member submissions. A Freebase topic represents a single concept or
real-world thing. Currently, Freebase stores over 47 million topics, of which each has
its own web page. Each topic is assigned a unique ID and belongs to a particular
type, e.g., people, organisation, or location. A topic holds properties, such as date
and place of birth for people, or headquarter and founder for organisations. These
properties themselves are links to further topics, creating a logical network of topics.
Google’s Knowledge Graph is fueled to a limited extent by Freebase. The Freebase
database can either be accessed online using a browser or through its publicly avail-
able Topic API4. One can query the database with standard search terms, while
additionally restricting the scope of the topic’s type. As a result, Freebase returns
a set of topics best matching the query. A registered application using the API can
make up to 100’000 requests a day. In Newspaper 2.0, we detect topic candidates in
news articles and validate them with Freebase.

Popular News agencies, such as CNN, BBC, or ABC News provide semantics to news
articles by partitioning them according to their content. The readers can choose news
articles from different news sections. ABC News in particular provides a web page
where news articles are listed under their main topic. An interested reader can choose
one of these topics to reach a collection of articles covering news about that specific
topic. Currently, ABC News provides almost 9’000 topics, of which about 4’200 are
names of famous people and celebrities. Every day, ABC News adds an average of
5 new topics to the website. The most up-to-date and heavily discussed news topics
are shown at the top of the website in a bar labeled with “now” (see Figure 2.3).
The “now” topics are updated several times a day. Topics from frequently read news
are listed under the “hot topics” (see Figure 2.3). The “hot” topics usually remain

1OpenCalais is a text processing API that extracts entities, topic codes, events, relations and
social tags. http://new.opencalais.com

2An ontology is a formal definition of entities and their relationships.
3On 16 December 2014, the Knowledge Graph staff reported that it would be closing down

Freebase over the accompanying six months. All the data will be moved to Wikidata. Google
promised to give help to Freebase clients who need to make Freebase declarations suitable for
incorporation in Wikidata. As of writing this thesis, the new API is not yet available.

4https://developers.google.com/freebase/v1/topic-overview

http://new.opencalais.com
https://developers.google.com/freebase/v1/topic-overview
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Figure 2.3: The “now” and “hot” topics on ABC News, highlighted with red boxes.
The screenshot was taken on June 14 2015.

the same for much longer than the “now” topics. In our implementation, we use the
ABC News Topics as an extension to the topics found using Freebase. The selection
of “new” and “hot” topics is used to derive trend news.

2.2.2 Graph Databases

Graph databases persist data in a graph model instead of a relational model known
from relational databases. A graph consists of vertices, edges, and properties at-
tached to both the vertices and edges. A property can be a label or a key/value pair.

One way to process a graph is via graph traversals. Tinkerpop5 is an opensource
graph computing framework that offers tools to mutate and traverse graph databases,
such as Neo4J, TitanDB, or OrientDB. The Tinkerpop framework provides several
layers, including a webservice for the graph database called Rexster and a traversal
language named Gremlin [41, 42]. Our recommendation system uses TitanDB to
store the relationships between news articles and users. The bulbflow6 library for
Python lets us connect to a running Rexster server and execute Gremlin traversal
code.

5http://tinkerpop.incubator.apache.org
6http://bulbflow.com

http://tinkerpop.incubator.apache.org
http://bulbflow.com
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Ebay uses a graph database to store their recommender system. The products and
users with their relationships are stored in the graph database, while the recommen-
dations themselves are precomputed and stored in a relational database for faster
access. They are regularly updated by a periodically running process [43]. The most
widely used graph database is Neo4J [44]. The Neo4J website advertises the use of a
graph database to produce recommendations as one of their use cases. According to
their website, graph databases permit a flexible schema with high performance and
good scalability [45]. Marko Rodriguez, the co-founder of Tinkerpop, emphasizes in
his online blog how easy it is to implement a basic collaborative filtering for a movie
recommender engine [46].

2.2.3 Reddit

Reddit is an opensource website [47], where community members post stories of in-
teresting and discussion-worthy online content. Every story on Reddit belongs to a
subreddit, a content section comprising user posts of a specific subject. Any member
can create a new subreddit, which is independent and moderated by a team of volun-
teers. Subjects include among others news, gaming, motion pictures, music, books,
wellness, sustenance, and photosharing. We are especially interested in subreddits
that are specifically created to post links to news articles from websites of all sorts of
publishers. News articles posted are not necessarily written by known news agencies,
but can also be published by online magazines or even blog posters. Each subreddit
can be viewed in different tabs, each containing a different ranking or snapshot of
the same posts (see Figure 2.4). The most important are:

• Hot: Posts showing up first are ranked using a combination of recency and
number of upvotes and downvotes.

• New: Most recent posts show up first.

• Rising: Posts that are starting to receive upvotes and downvotes show up first.

• Controversial: Posts that are getting both a lot of upvotes and downvotes
show up first.

• Top: Posts with the highest score show up first.

Reddit stories cannot only be accessed through the browser. Any application can
retrieve Reddit posts through a publicly available API7. We collect all news articles
through Reddit using the Python Reddit API Wrapper (PRAW)8 library for Python,
which takes care of the underlying Reddit API calls. The “top” and “rising” Reddit
rankings are used to derive trend news.

7https://www.reddit.com/dev/api
8http://praw.readthedocs.org/en/v3.0.0/

https://www.reddit.com/dev/api
http://praw.readthedocs.org/en/v3.0.0/
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Figure 2.4: A screenshot from Reddit that shows the ”hot” stories in the Worldnews
subreddit. The red box highlights the tabs that provide different ranking stategies for
the stories.



Chapter 3

Android App

This chapter starts by giving a detailed overview of the actual UI of Newspaper 2.0 in
Section 3.1. The UI is motivated by a questionnaire conducted with 181 participants
in Section 3.2. The personalisation of the news articles for each user requires user
inputs. Section 3.3 explains how the user inputs can be identified. Finally, we
conclude this chapter in Section 3.4, where we evaluate the implemented UI.

3.1 User Interface

When a user first launches the app the navigation drawer is opened up (see Figure
3.1). The navigation drawer can be pulled from the left of the screen at any time
to jump from one screen to another. The user can navigate to the following screens:
(i) the home screen; (ii) the archive tabs; (iii) a screen to choose a single section to
filter the displayed articles; or (iv) log out and go back to the login screen.

The home screen is where the news articles are displayed (see Figure 3.2). At any
time only a single article with image, title and the beginning of its text is shown to
the reader. The user decides to either read the article by scrolling down and revealing
the complete text or move on to the next one by swiping from right to left. A very
similar navigation pattern is known from the popular Tinder1 app, where users like
or dislike other people’s profiles through a simple swipe in order to connect with new
and interesting people [48].

The article text shown to the reader is only a summary of the original article.
By scrolling down the complete summary and three options to reach additional
background information are revealed (see Figure 3.3): (i) the first button lets the
reader load the original, usually much longer, article on the publisher’s website in
the browser. (ii) The second button redirects the user to the comment section of
Reddit, where Reddit members discuss the currently displayed article. (iii) At the
very bottom, a list of similar articles allows the user to choose further reading. To
move between articles the user can simply swipe the article. Swiping from right to
left displays a new article swiping from left to right returns to the previous article.

Additionally to reading the news article and selecting further information to read,

1https://www.gotinder.com

12
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Figure 3.1: The navigation drawer can
be pulled from the left and is used to jump
from one screen to another.

Figure 3.2: The home screen is where the
user reads articles and navigates between
articles.

the home screen allows the user to add articles to his archive (see Figure 3.3). The
archive itself is composed of three tabs, one for each archive type: an article can be
(i) stored to read later; (ii) marked as a favourite; or (iii) shared within the app or
via email. Articles in the archive are presented in a simple list (see Figure 3.4).

Every news article belongs to a news section. Different colors for different sections
help the user to quickly identify his favourite news articles. The reader can choose a
single section to filter the displayed articles. The sections are presented in an order
that depends on the user’s reading habits: the first three sections are the ones that
the user read most articles from, the bottom three sections are the least interesting
sections for the user, while the rest is simply ordered alphabetically (see Figure 3.5).
A bar at the top of the home screen signals the reader that he chooses to filter the
news for a single section only (see Figure 3.6). Clicking on it removes the filter.

News articles on the home screen are updated automatically. If the user keeps swip-
ing, new articles are loaded from the server. When the app is closed, a background
process updates the news every 10 minutes. This way, whenever the user opens the
app, the most recent news articles are already loaded and available to read.
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Figure 3.3: At the bottom of the home
screen, the user can add articles to his
archive or choose to read additional in-
formation by loading the original article
or the Reddit comments, or select a sim-
ilar article from a list.

Figure 3.4: The archive consists of three
tabs for articles to be read later, articles
marked as favourites, and shared arti-
cles.

3.2 Questionnaire and Results

Good usability and a nice UI for the news app is essential for a good news reading
experience. To figure out what people like and dislike about existing news apps, we
conducted a survey with 181 people. Particular interest lies in the users’ reading
habits and their preferences regarding features and the UI in general.

The questionnaire consists of 4 main parts: (i) App Usage; (ii) App Features; (iii) App
Usability and UI; and (iv) Favourite App. This section provides an overview of the
results and analysis of the answers. The complete evaluation and result set can be
found in the appendix (Appendix A.1).

Out of the 181 participants, 81.8% are male and 18.2% are female. With 20.4%
under 25 years old, 42% between 25 and 44 years old, and 33.1% between 45 and
64 we have a decent number of participants from most age groups. Equally many
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Figure 3.5: A user can choose to only
display articles from a specific section.
The sections are ordered by how fre-
quently the user has read articles from
the different sections.

Figure 3.6: A textbar signals the reader
that he filters the news articles for one
section only. Clicking it removes the fil-
ter.

work in a field best described with “Business and Financial” and “Computer and
Mathematical”, both 24.3%. Another 14.4% works in a field linked to “Education”.
The profession of the rest, 37%, is scattered among other fields.

3.2.1 App Usage

Only 3.3% of all the participants have no smartphone or tablet. From the rest, two
thirds have more than one news app installed and almost one third have even more
than 4 news apps installed. The smart phone and tablet are with 50% the preferred
medium to read news. Only one fourth of all participants still prefer to read their
news on print-media. With the easy access to news, people tend to check for news
several times a day. More than half of all participants check the news multiple times
a day — 15% even more than 5 times.
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3.2.2 App Features

Contemporary news apps extend the functionality of news reading with multiple ex-
tra features. We are interested in what features tend to be more useful than others.
A set of common features present in news apps are selected and each participant has
to provide an importance score for each feature. We then ask them to select the three
most important features from the set, which they do not want to miss in a news app
(see Figure 3.7). Finally, we conclude with an open question, where the participants
are asked to provide additional useful features known to them.

According to the results, people find a search function to look for specific articles
the most useful. Many news apps automatically update their news several times a
day. To be able to read interesting news at a later point in time, people would like
to store an article to read it later on. In order to keep interesting articles in arms
reach, participants want to create a private archive, where they store favourites and
share articles with other people. For easier navigation through the news, each article
should provide a list of similar articles and an article once read should be visually
marked. News articles should be assigned to a section. It both helps to identify
interesting articles when scanning over the news and to find a specific news article
by explicitly choosing a section. Not important for the app’s success are features like
rating an article or providing a complete history of all read articles.

We are implementing a news app that focuses on user personalisation. The user
should not have to search for interesting news articles, but the app automatically
selects the most interesting news for the user. We choose not to provide a search
functionality in Newspaper 2.0. Instead, the user can create his personal archive
with interesting articles to read later, with his personal favourites, and with shared
articles. Amongst others, extracting content information from articles is an essen-
tial part of the recommender system we are building to personalise the news. This
information is directly used to find similar articles and present them to the user in
the app. We only present the user one news article at a time. This is different from
most common news apps, where articles are often presented in a list and the user
then selects what he wants to read. Swiping lets the user navigate between articles.
This navigation pattern does not require any articles to be marked as read or seen,
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Figure 3.7: The aggregated results of the three most important features chosen by the
participants.
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interesting articles to the left are seen, whereas all articles to the right are new.
In Newspaper 2.0, each news article belongs to a named section. The user has the
option to filter for a single section only.

3.2.3 App Usability / UI

Good usability and an appealing UI are two key factors for a successful app. We let
the participants choose from a selection of UI alternatives, including article specific
parameters and different layout choices. Half of all the participants prefer having
only a small number of articles available at any time (less than 20 articles). Only one
forth want to be able to select their news from infinitely many texts. News articles
should be updated whenever available; users want to see up-to-date news when they
open up the app. From different layout alternatives 56% choose the simplest UI, the
list, as their favourite. Colors can be a good tool to help the user navigate through
the app, but should not be overplayed and act distracting.

The results show that a simple UI is preferred over a more complicated one. We
choose an even simpler UI than the list by skipping the news selection phase entirely
and directly present the beginning of the article to the user. Presenting the user one
article after the other, but doing so in a user-personalised order, is a compromise
between letting the user choose from only a small set of articles or infinitely many.
The first articles presented are the most trendy and personalised ones. As the user
keeps swiping for more news, the articles become less personalised and often less
up-to-date. A user only interested in a few articles can stop reading after the first
couple of articles. Someone preferring an infinite amount of articles can just keep
swiping and reading less personalised news articles. A background process updates
news every 10 minutes, such that the user is first presented with the most up-to-date
news whenever he opens the app. Each section has a different color. This way the
reader identifies his favourite sections with ease.

3.2.4 Favourite App

As seen in Subsection 3.2.1, two thirds of all polled people have more than one news
app installed. Nevertheless one of these apps is usually used more frequently than the
others. We ask each participant to select his favourite app and give us his reasons. By
far the most favourite app is the 20min app for 38% of the participants. It is followed
by the NZZ app (12%) and the Tages Anzeiger app (6.7%) (see Table 3.1). A nice UI
with a clear structure and sections is the top reason for choosing their favourite app.
People prefer 20min because it is always very up-to-date, offers push notifications,
and the articles are usually short. On the other hand, NZZ enthusiasts enjoy reading
articles with good quality and sufficient research. The common understanding is,
that the app should provide a good variety of news and include local news for the
reader.

We are using Reddit as the data source (see Section 4.1), which restricts our influence
on the choice of news articles. We have no direct influence on the quality of the
articles or the locality. In fact, most news is in English and focuses on the United
States or Great Britain and there is practically no news available for countries like
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App Name People Percent
20min 57 38.0 %
NZZ 18 12.0 %
Tages Anzeiger 10 6.7 %
SRF 6 4.0 %
Feedly 4 2.7 %
Blick 4 2.7 %
Reddit 4 2.7 %
Watson 3 2.0 %
Twitter 3 2.0 %
Others 41 25.0 %

Table 3.1: Ranking of favourite news apps.

Switzerland. Therefore, we limit our news coverage to English articles. On the other
hand, Reddit definitely provides a good variety of news articles and the community is
very active and produces up-to-date news. By providing the user with a summary of
the original article we tend to have short articles. The interested reader can always
choose to load the original news article or select more of the same topic through the
list of similar articles.

3.3 Interest Signals

When the user opens the app and starts scrolling and swiping to read the news,
interest signals are identified and sent to the recommender system for persistence.
We define two types of interest signals: (i) viewed signal, showing user interest in
the article and its topic in general; and (ii) trashed signal, showing user disinterest.
Viewed signals can be of three different levels; from level 1, only expressing low in-
terest, to level 3, high interest (see Table 3.2).

There are five cases we distinguish of how the users shows interest in an article: when
the user (i) marks the article as a favourite; (ii) shares it with a friend; (iii) chooses to
read the whole article in the browser; (iv) selects to read the comment section about
the article on Reddit; or (v) when he uses the list of similar articles to find further
reading. In all these cases we can be sure that the user is interested and therefore
consider it a level 3 viewed signal; the highest level. For the remaining two viewed
levels, level 1 and level 2, we analyse the user’s scroll and swipe behaviour. Simply
speaking, a user shows enough interest in an article to store a viewed signal when he
looks at the complete article and remains on the article page for long enough. De-
termining that the complete article has been revealed can be tracked by the scrolling
behaviour of the reader; if he scrolls down enough, eventually the complete article
text is revealed. Seeing the complete text is a mandatory condition for both, level 1
and level 2, viewed signals. The two viewed levels can be distinguished by how long
the user remains on an article.

Users starts showing interest in an article once they start scrolling down to read
the text. We look at the time interval between starting to scroll down and swiping
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Figure 3.8: The time intervals between starting to scroll down and swiping to the
next article and in how many of those cases the users actually scrolled down all the
way to reveal the complete text.

to the next article (Figure 3.8). Next we check in how many of those cases the users
actually scrolled down all the way to reveal the complete text (Figure 3.8).

As the time a user spends on an article increases, the occurrences of him starting to
scroll, but not revealing the complete text decreases. If a user stays on the same ar-
ticle for more than 13 seconds, in all but four cases he reveals the complete text after
starting to scroll. We assume the user has read, or at least skimmed over, the article
after 13 seconds and as a result identify a level 2 viewed signal, standing for medium
interest. Prior to reaching the 13 seconds threshold, in more than 45% of all cases,
the user started to scroll, but stopped in the middle of the text and moved on to the
next article. The text was not interesting enough to finish reading. Nevertheless, the
reader must have been slightly interested, which made him start to scroll in the first
place. We identify a level 1 viewed signal, standing for low interest, if the user starts
to scroll and stays on the article between 3 seconds and 13 seconds. We choose 3
seconds as a lower bound, because this is where the ratio between starting to scroll
while not revealing the complete text and scrolling all the way down drops below
50%. The lower bound lets us eliminate the cases, where the user mistakenly started
to scroll and revealed the complete article text, even though he has no interest in
the article.

Viewed Level Constraints
Level 1 After starting to scroll, the user scrolls down

to reveal the complete text and remains on the
same article between 3 and 13 seconds.

Level 2 After starting to scroll, the user scrolls down
to reveal the complete text and remains on the
same article for more than 13 seconds.

Level 3 The user explicitly shows interest by marking
an article as favourite, sharing it, or choosing
one of the options for further reading.

Table 3.2: The three different viewed signal levels.
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In all other cases, when no condition for a viewed signal is satisfied, we conclude
disinterest and send a trash signal to the recommender system.

3.4 Evaluation

To evaluate the app, we persist user behaviour data whenever someone makes use of
the Newspaper 2.0 app. The details of the data collection of user interactions can be
found in Section 5.1, which elaborates on the evaluation of the recommender system.
We look at how often a feature has been used during one and a half months of beta
testing with 15 registered users (see Table 3.3). During the beta testing period, 2602
articles where presented to the users, of which 565 (21.7%) resulted in a viewed signal.

The features read later, mark as favourite, and sharing all belong to the archive.
In total, these features have only been used 30 times (see Table 3.3). The sharing
feature is the most popular one amongst the archive features. This is most likely
the case, because it is the most versatile feature. A user can share an article with
his friends or family, but also send himself an email and thereby extract the article
from the app. We have implemented the archive features, because they ranked high
in the questionnaire. We conclude, that people not always know what they like and
will make use of in a news app. Nevertheless, the archive is not completely ignored
and certainly adds value to the app. Most contemporary news apps offer some sort
of archive.

Features concerning further reading or background information find more favour
with the users. The users have clicked on a similar article, the link to the whole
article, and the link to the Reddit comment section for a combined total of 90 times.
If a user finds great interest in an article, additional sources enhance the reading
experience.

Even though the link to the whole article is the most used feature for further reading,
it has only been clicked in 39 (6.9%) out of the 565 viewed articles. We conclude that
the summary is usually enough for the reader to satisfy his interest.

Feature Usage
Read the Whole Article 39

Further ReadingRead the Reddit Comments 32
Select a Similar Article 19
Share an Article 13

ArchiveMark to Read Later 10
Save as a Favourite 7

Table 3.3: Number of times each feature has been used during the one and a half
months of beta testing by 15 users.



Chapter 4

Recommender System

This chapter starts by showing how we scrape news articles from Reddit in Section 4.1
and explains the characteristics of a user profile in Section 4.2. Section 4.3 elaborates
on how we create personalised news article rankings. Three different kinds of trend
news are defined in Section 4.4. Section 4.5 describes the recommendation generation
mechanism in more detail. A similarity score used to find similar articles is presented
in Section 4.6. We finish the chapter in Section 4.7, which talks about the persistence
layer of the recommender system. For an overview of the components see Figure 4.1.

Figure 4.1: An overview of the recommender system and its components.

21
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4.1 News Data Collection

All news articles are collected through the publicly available Reddit API. We restrict
the collection of news articles to a total of 82 subreddits. The following list gives an
overview of which of the 20 sections (left) available in Newspaper 2.0 is fed by which
subreddits (right):

Worldnews: Global Health, In The News, News, World Events,
World News

Europe: Europe, Ireland, Russia, Scotland, UK Politics,
Ukrainian Conflict, United Kingdom

Americas: Canada, Cuba, Politics, USA News

Asia: Asia, India, India News, North Korea News, Pak-
istan, Philippines, Singapore

Middle-East: Israel, Iran, Kurdistan, Levantine War, Middle-
East News, Palestine, Syrian Civil War

Africa: Africa, Southafrica

Oceania: Australia, New Zealand West Papua

Worldplitics: Geo Politics, World Politics

Sports: Boxing, Football, Formula, Hockey, Olympics, Pro-
Golf, Skiing, Soccer, Sports, Tennis

Business: Business, Economics, Economy

Money: Finance, Money

Environment: Environment

Health: Alternative Health, Health, Health Food

Technology: Hardware, Tech, Tech News, Technology

Hacking: Hackernews, Hacking, Intelligence

Science: Earth Science, Everything Science, Science

Future: Dark Futurology, Futurology

Entertainment: Entertainment

TV: Television

Music: Album of the Week, Music, Music News, New
Music

Odd: News of the Stupid, News of the Weird

Food for Thought: Food for Thought, Interesting Article, True Reddit,
True True Reddit, Vignettes

Choosing Reddit as the source for the news articles has its advantages and disad-
vantages. The Reddit community is an active community posting news found on
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most well known news agency websites such as CNN, BBC, or ABC News almost in
real-time. Additionally to posting articles from actual news agencies, Reddit mem-
bers also share articles from other sources such as magazines or blog posts. It is
even possible to implement a bot, an automated process, which feeds a subreddit.
The result is a variety of different news articles of different type and format. Reddit
users reside in over 204 different countries and publish new posts round the clock. A
registered member has the chance to vote posts up or down and discuss with other
Reddit users. The various rankings of the stories provide a glimpse of what many
people find interesting at the moment. On the other hand, we as passive users of
Reddit have no control over what is posted on Reddit and have no influence on the
quality of the articles. Even though the Reddit community is from all over the world,
most news subreddits are in English. Further, the news are mostly focused on En-
glish speaking countries, such as the United States or Great Britain. For German
speaking countries like Switzerland we cannot serve the user with regional or local
news.

A scraper application written in Python periodically polls news stories from Reddit
using the Python Reddit API Wrapper (PRAW)1. From the returned Reddit sub-
missions we select the URL pointing to the actual news article, usually on a different
website than Reddit. We can simply feed that URL to a library called newspaper2,
which downloads the HTML linked by the URL and extracts the article text and the
top image. Articles without a top image are filtered out. Reddit does not restrict
subreddits to only be of a single language. Therefore we take extra measure and
check if the extracted news articles are written in English, using a Python library
called langid.

Reddit members produce a lot of duplicate posts. Sometimes those posts are ac-
tually the same URL link, pointing to the same news articles. Other times, the same
news agency publishes the same news article under two slightly different URLs or
different news agencies publish the same news article. In order to get rid of the most
obvious duplicate news articles, we only add a new article to the system, if both the
URL and the title of the article are not already present in the system.

Before we add a news article to our recommender system, we produce a summary of
the original news article. We use a slightly modified version of textteaser3, a sum-
mary algorithm using natural language processing and machine learning. Textteaser
lets us specify the number of sentences used for the summary. A longer text should
also produce a longer summary. We find an appropriate value using an inverse Fi-
bonacci function on the number of sentences in the original article (see Table 4.2).
We use the inverse Fibonacci function, because its characteristic to increase more
slowly for longer texts suites our purpose. The maximum number of sentences used
for the summary is 10. Additionally, textteaser is not explicitly implemented for
news articles, but texts in general. The first sentence in a news article is called the
lead and is the most important structural element, which holds the story’s essential
facts. Hence, we extend the summary algorithm to always include the first sentence
in the resulting summary.

1http://praw.readthedocs.org/en/v3.0.0/
2http://newspaper.readthedocs.org/en/latest/
3http://www.textteaser.com

http://praw.readthedocs.org/en/v3.0.0/
http://newspaper.readthedocs.org/en/latest/
http://www.textteaser.com
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# of Sentences in
News Article

# of Sentences in
Summary

1 1
2 2
3 3
4−5 4
6−8 5
9−13 6
14−21 7
22−34 8
35−55 9
> 55 10

Table 4.2: Inverse Fibonacci function used to determine the number of sentences in
the article summary.

4.2 User Profile

A very important part of our recommender system is the user profile. It defines what
news interests the reader has. Whenever a registered user interacts with the system,
his user profile is updated. It is the core element used to generate user personalised
recommendations for each reader.

People’s interests can be split into two kinds of interests: the long-term interests
and the short-term interests [4]. Long-term interests are the genuine interests a user
has. They are part of his general interests based on his everyday activities, friends,
and family. On the other hand, the short-term interests depend on current events:
A person not interested in sports in general may very well be interested in the world
cup, or a political vote may be interesting even though the user has not shown much
affection to political issues.

People’s interests are dynamic. The short-term interests are dynamic by nature;
the emergence of a new event influences the person’s interest. Similarly the long-
term interests are not spared from developing over time; simply by becoming older,
everyday activities and people surrounding a person change, and with them his over-
all interests.

We propose a recommender system where we present the reader a mixture of time-
dependent personalised news and trend news. The personalised news reflect the users
long-term interests and the trend news help to satisfy the short-term interests.

Trend news are a product of important events and fulfill the dynamic character-
istic of short-term interests. For the long-term personalisation to become dynamic
and do not get locked-in, the recommender systems learns to forget user interactions
after a certain time. Additionally, recent user interactions are weighted higher.

Besides supporting the user in finding more interesting news, the recommender sys-
tem directly changes and influences the user’s interests through its recommendations
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[32]; the user profile gets locked-in. When a user only receives news that are in sync
with his profile, he has no chance of diversifying his interests. To a certain extent
this is part of the nature of a recommender system. However, the mix of personalised
news and trend news gives the user the possibility to diversify news reading. The
trend news present the user a selection of news articles completely independent of his
interests. In combination with the dynamic properties of the user profile, we reduce
the user profile lock-in effect.

4.3 Personalised News

The goal of this section is to describe how we use ABC News Topics and Freebase
for semantic enrichmant, and natural language processing for information filtering.
The semantic enrichment lets us deduce general topics from news articles and the
information filtering extracts additional content features, possibly missed without.

4.3.1 Semantic Enrichment

We find potential topics in news articles and then check with ABC News Topics
and Freebase, whether we found a valid candidate. Most words in English texts are
written in lower-case. The capitalization rule4 states: (i) Capitalise the first word of
a document and the first word after a period; and (ii) capitalize proper nouns—and
adjectives derived from proper nouns. We can directly make use from the fact that
all proper nouns are capitalized. Proper nouns are names, places, organisations, or
social occasions, in other words topics (see Appendix A.2).

We can find all capitalised words in a text using regular expressions. If two or
more capitalised words appear one after the other, we select all n-grams of the se-
quence of words as potential topics. Every such identified candidate is checked with
ABC News Topics and Freebase. To use ABC News Topics we simply scrape the
ABC News Topics web page and extract the topics from the HTML code to store
them locally in a database. ABC News only provides topics relevant to news arti-
cles. Freebase on the other hand stores all sorts of topics without any focus on news
articles. When querying the Freebase Knowledge Graph, it is possible to confine the
scope of the topic search. We choose to restrict Freebase queries in terms of the
following news relevant types: (i) Organisations; (ii) Locations; (iii) Sports Teams;
(iv) Music Artists; (v) Films; (vi) TV Shows; and (vii) Games.

Names stored in Freebase are not limited to known people, such as celebrities, sports
athletes, or politicians. We do not want to consider every name as a topic, but only
include names of widely known people. ABC News Topics provide over 4’000 well
known people’s names on their topics web page. Therefore, we only check for names
included in the ABC News Topics and ignore names in Freebase.

Verifying topic candidates with Freebase is time consuming and limited to 100’000
requests a day. On average every news article includes 52 possible topics. Currently,
we scrape on average 2’152 news articles every day. To make sure not to exceed

4http://www.grammarbook.com/punctuation/capital.asp

http://www.grammarbook.com/punctuation/capital.asp


4. Recommender System 26

the limit inflicted by Freebase, we reduce the number of topic candidates before we
query Freebase. First, we reduce the amount of candidates, by extracting the topic
candidates from the summary of the article instead of the complete text. Apart from
reducing the amount of potential topics to roughly the same number in every article,
summarising the original article also focuses the extracted topics more on the core
information of the article. The average number of requests per article necessary can
be reduced from 52 to 20. Second, all topic candidates are first checked with our
local database of ABC News Topics, before we query Freebase. Any topic detected in
the ABC News Topics, and all n-grams derived from it, are removed from the set of
potential topics. By first querying ABC News Topics, we further reduce the amount
of topics checked with Freebase from an average of 20 to an average of 15 possible
topics per article.

For each article we sort the topics according to their number of occurrences and
only persist the 10 most relevant topics. This way we get rid of less important
topics.

4.3.2 Information Filtering

Topic detection through ABC News Topics and Freebase finds 5 topics per article
on average. Those topics are extracted from the article summary and are constraint
to capitalized words. But there are other important content features in texts, which
are not capitalised. We capture additional content features from the complete article
text using the natural language toolkit nltk5 for Python to tag every word with its
word type and then merge words to logical terms.

From the natural language toolkit we first train a uni-gram tagger and then a bi-gram
tagger both using the brown corpus6 provided by the nltk library. The nltk library
tags every word in the text. We have special interest in simple nouns (NN), proper
nouns (NNP), and adjectives (JJ). Through a single linear traversal, the tagged terms
are merged together using the following formulas as proposed in [49]:

NNP + NNP ⇒ NNP : Merge two proper nouns.

NN + NN ⇒ NNI: Merge two nouns.

NNI + NN ⇒ NNI: Merge already merged nouns.

JJ + JJ ⇒ JJ : Merge two adjectives.

JJ + NN ⇒ NNI: Merge adjectives and nouns.

where NNI is introduced to tag compound simple nouns. Since compound terms hold
more information and are better suited to distinguish articles or find similar articles,
we only choose terms tagged with NNP and NNI and ignore simple nouns (NN). The
term “presidential election” is more precise than “election”, or “security agency” is
more specific than a simple “agency”. The chosen terms are then aggregated and
sorted according to their number of occurrences. The number of content features we

5http://www.nltk.org
6A computer-readable corpus of texts prepared for linguistic research on modern English. http:

//www.helsinki.fi/varieng/CoRD/corpora/BROWN/

http://www.nltk.org
http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/
http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/
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store depends on how successful prior topic detection was:

number of contents = max(5, 10− number of topics)

where number of contents denotes the number of content features to be stored and
number of topics denotes the number of topics extracted prior by using semantic
enrichment. If the topic detection was successful and we found between 5 to 10
topics, we only store a minimum of 5 content features per article. If no topics were
found we store up to 10 content features. Limiting the number of content features
has the same reason as for limiting topics; we get rid of irrelevant content features.

4.3.3 User Profile Confidence

When a user reads news on the app, the app sends interest signals to the recom-
mender system. We use that information to determine a confidence measure of how
good the user’s profile predicts his interests. The confidence depends on how many of
the presented personalised news articles result in a viewed signal of any level within a
single request session. A request session starts when one batch of articles is requested
by the user and ends, when the next batch is requested.

We distinguish three different confidence levels: (i) low; (ii) medium; and (iii) high
confidence. Analysis of user interaction data shows that approximately 15% of ran-
dom articles are read (see Chapter 5). If a user signals interest on less than 15% of
the personalised articles, we consider the profile to have a low confidence. Between
15% and 30% the profile receives a medium confidence and everything above 30% is
considered a high user profile confidence.

The user confidence measure is used to compute an article ranking for each user
and also to generate recommendations, when the user requests a new batch of news
articles.

4.3.4 Ranking Algorithm

For every article entering the recommender system, we compute a ranking score for
every user. The score tells us how relevant a certain article is for a specific user.
A higher score means that the article is more important. The result is an article
ranking, that is different for each user.

We propose to use a ranking algorithm very similar to the one used for the “hot”
ranking in Reddit [50, 51]:

n = upvote− downvote

water-down = 45000

f(n, t) = log10(n) +
t

water-down

where t is the timestamp at which a new story was posted on Reddit and f(n,t)
denotes the final score a story receives. The Reddit algorithm uses two parameters:
(i) the logarithm of the difference between upvotes and downvotes, and (ii) weights it
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with the recency of the story (water-down factor). The logarithm is used to dampen
the effect of larger upvote-downvote differences. A higher score means that the article
is more important. Including the time (recency) of a story in the algorithm makes
sure, that newer stories receive a higher score when they have the same upvote-
downvote difference. More intuitively, the stories are sorted in order of the time they
were posted, but are moved forward in time by the upvotes minus the downvotes.
Because of the logarithm, each additional upvote moves the post forward in time by
a smaller and smaller amount.

In our version of the algorithm, we translate the sum of upvotes into the sum of
weighted viewed signals and neglect the downvotes. When a user shows interest in
a news article, he implicitly tells us what topics and content features he finds in-
teresting, namely the topics and content features of that article. We can use this
information to compute the sum of weighted viewed signals for a new article for a
specific user. After we extract the topics and content features for the new article,
we check for how many of those topics and content features a user has shown in-
terest. A user can show interest in a single topic or content feature multiple times,
i.e., when he reads multiple articles of the same topic or content feature. Depending
on the confidence level of the reader’s user profile (conf level), what level of viewed
signal an article receives (viewed level), and how long ago the user viewed an article
(timestamp), we derive a different weight. If no viewed signals for any article sharing
topics or content features with the new article are present for a user, the article is
not put into that user’s ranking.

In general, viewed signals from longer ago weigh less than more recent ones. We
distinguish between viewed signals (i) less than 1 day old; (ii) between 1 day and 3
days old; (iii) between 3 days and 1 week old; (iv) between 1 week and 3 weeks old;
and (v) everything older than 3 weeks. For each confidence level we define a func-
tion mon decr(. . . ) that is monotonically decreasing in time and multiply it with a
constant factor depending on the viewed signal level (factor(. . . )):

weighted viewed signal(conf level, timestamp, viewed level) =

mon decr(conf level, timestamp) · factor(viewed level).

The monotonically decreasing functions are:

mon decr(low, timestamp) =



16, if timestamp <= 1 day

4, if 1 day < timestamp <= 3 days

2, if 3 days < timestamp <= 7 days

2, if 7 days < timestamp <= 21 days

0, else
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mon decr(medium, timestamp) =



16, if timestamp <= 1 day

8, if 1 day < timestamp <= 3 days

4, if 3 days < timestamp <= 7 days

2, if 7 days < timestamp <= 21 days

0, else

mon decr(high, timestamp) =



16, if timestamp <= 1 day

12, if 1 day < timestamp <= 3 days

6, if 3 days < timestamp <= 7 days

2, if 7 days < timestamp <= 21 days

0, else

We choose the following constant factors for the viewed signal levels:

factor(1) = 0.5

factor(2) = 1.0

factor(3) = 1.5

Viewed signals older than 3 weeks are ignored, they receive a weighted viewed signal
of 0. This way, the user profile becomes more dynamic and can adapt to the natural
changes in the users’ interests. The time intervals are chosen more fine grained for
more recent user interactions, hence, the system can more quickly react to a change
of interest. For a medium confidence in the user profile, we choose the decreas-
ing sequence of powers of two, starting with 16. For a low confidence and a high
confidence we adapt the decreasing function: we keep the highest and the lowest
weight the same, but multiply the two intermediate weights with 0.5 and 1.5 for a
low confidence and a high confidence respectively. When a user profile receives a low
confidence, the viewed signals stored in the profile do not reflect his interests. We
hope to deduce the user’s real interests from the new and most recent viewed sig-
nals. On the other hand, a high confidence in a user profile tells us that the viewed
signals in that profile reflect the user’s interest very well. We do not want to loose
this information over time and weigh older interactions relatively high. The choice
of constant factors is a mapping of the level number by multiplying it with 0.5. A
single viewed signal can contribute up to 24 to the sum of weighted viewed signals.
With 3 different confidence levels for the user profiles and 3 different viewed signal
levels we have a total of 9 different weighted viewed signal(. . . ) functions decreasing
in time (see Figure 4.2).

A single topic or content feature could potentially contribute an infinite viewed signal
weight. To limit the impact a single topic or content feature can have on the score,
we define an upper bound of 48. This is equivalent to two of the highest weighted
viewed signals.

Analysis of user interaction data shows that the algorithm performs better with-
out taking into account the trashes at all. For the analysis we choose all articles
seen by a single user and compute the ranking for those articles (i) once including
the trashes (as downvotes) and (ii) once where we ignore the trashes completely. We
then compare the ranks of all viewed articles to select the better algorithm. Articles
are ranked higher in 58% without including the trashes. When a user decides to
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Figure 4.2: Viewed weights depend on how long ago the user viewed an article, the
confidence of the user profile, and what level of viewed signal articles receive.

trash an article, it can have several reasons: (i) The obvious one is that the article
content is not interesting for the user. (ii) Information reaching the reader is not
restricted to the use of our app. A user may likely have read about the same topic
on another media before. In that case, the trash simply means, that the user already
knows enough about the article’s topic to bother reading it again. (iii) The general
mood and time of the day also play an important role in what a reader finds interest-
ing. The latter two points do not signal a lack of interest in general. Unfortunately,
there is no way to find out which reason led to a trash other than explicitly asking
the user. We decide to completely exclude the trashes from the ranking computation.

The choice of water-down factor defines how large the sum of weighted viewed sig-
nals has to be for a news article to maintain a high rank while it becomes older and
newer articles are added to the user rankings. In Figure 4.3 we see how increas-
ing the water-down factor makes it more likely for older articles to rank high, i.e.,
the necessary difference between the sums of weighted viewed signals for old articles
and new articles becomes smaller, in order that the older article still ranks higher
than the newer one. The absolute ranking score is irrelevant for the user rankings,
we only need to compare the articles’ relative scores to each other. Reddit uses a
water-down factor of only 45’000 (12.5 hours; the half hour is added to create a
nice round value of 45’000). A very active community voting for stories produces
big differences between upvotes and downvotes. These big differences, even with
the logarithm applied, can outweigh the relatively small water-down factor for very
active stories. But even with a lot of upvotes, a story on Reddit barely ranks on the
front page for more than a day. In Newspaper 2.0, we use weighted viewed signals as
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upvotes and ignore the downvotes. Even though a single viewed signal can contribute
up to 24 times a single upvote (see Figure 4.2), the sums are a lot smaller than in
Reddit. If we choose the same water-down factor as Reddit, a day old article can
only rank higher than a new article with sums of weighted viewed signals of 0, if its
sum of weighted viewed signals is greater than 80. For an article that is two days
old, the sum would have to be greater than 7’000, which is impossible. Therefore,
we choose to modify the water-down parameter to allow older news articles to be
ranked higher as well. We choose the parameter to be 174’600 (48.5 hours; we keep
the half hour introduced by Reddit). With this change, a day old article only needs
a sum of weighted viewed signals, which is greater than 4 to rank higher than a new
article with sums of weighted viewed signals of 0. For an article that is two days old,
the sum only needs to be greater than 10, and for a three days old article a sum of
weighted viewed signals of 31 suffices.
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Figure 4.3: Reddit uses a water-down factor of 45’000 (12.5h). For our implemen-
tation, we changed the water-down factor to 174’600 (48.5h). This way, the score of
an interesting article with a lot of viewed signals can remain high, even one or two
days after it was published: New articles, which are not interesting for a user, are
more likely to receive a lower score, even though their timestamp is larger. Note, the
absolute score is not relevant, but the relative movement between days.
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4.4 Trend News

A trend is “something that is currently popular or fashionable”7, i.e., many people
find interest in it. We use the notion of trend to detect news on important and
noteworthy incidents. With more than 150 million active visitors a month from all
over the world8, there are enough Reddit stories on news to cover most important in-
cidents happening worldwide. The community members upvote and downvote news
articles, discuss, and present their opinions. Reddit provides different ranking strate-
gies of user stories depending on what is “hot”, “top”, or “rising”, in other words
trendy, at the moment. We can make use of Reddit and ABC News to find trend
news. We define three different kinds of trend news: (i) breaking news that are very
recent; (ii) news on important events; and (iii) news on interesting topics in general.

Betternews9 is a subreddit where only a single bot (user rotoreuters) is allowed to
post news articles from different news agencies. Every 15 minutes new news articles
are added to the subreddit. Currently, the bot collects news from 24 different news
RSS feeds. The description of Betternews hints the reader to use the “rising” tab to
find breaking news. Manual checks have verified this functionality. Most of the time
the rising tab is empty, but every so often, stories appear and remain present for
up to an hour. How exactly breaking news are identified and added to the “rising”
tab is not explained. One solution could be to look for news, which are explicitly
labeled as breaking news when adding articles to Betternews. After posting the
breaking news story to the subreddit, artificial activity is created on the post, pos-
sibly generated by the bot itself. Reddit then automatically adds the article to the
“rising” stories. We can directly reach those “rising” stories through the Reddit API.

To find the important events worldwide, we make use of the “now” and “hot” topics
of the ABC News website. We choose the topics from the international tab, named
“World”, of ABC News. The topics can be parsed from the HTML code of the
website. We then search Reddit using the Reddit API for the most recent (“new”)
posts covering those topics. The search is restricted to those subreddits that contain
news from around the world, such as Worldnews and news from specific countries or
regions (see Section 4.1). We include Betternews for a sufficient news coverage.

If trend news are only composed of articles on important events, the news cover-
age is often limited to politics or crime. There are other interesting news not falling
into the important event’s category. Such news can cover among others TV shows,
music artists, or science. We use the Reddit community’s opinion on stories to find
interesting news articles in general. The “top” rankings of the subreddits mentioned
in Section 4.1, excluded the subreddits used for news on important events, serve as
the source of the articles. Stories appearing in the “top” ranking receive a lot of
upvotes and only a few downvotes, whereas recency is less of a concern. To still
find considerably recent posts, we choose the “top” ranked stories within the last
24 hours. We ignore the subreddits used for the important events, because they are
already covered and would prevent us from finding more diverse news.

7http://www.merriam-webster.com/dictionary/trend
8In the month of May 2015, Reddit had over 167 million unique visitors from over 205 different

countries. http://www.Reddit.com/about/
9http://www.reddit.com/r/betternews

http://www.merriam-webster.com/dictionary/trend
http://www.Reddit.com/about/
http://www.reddit.com/r/betternews
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4.5 Recommendation Generation

In Section 4.2, we have motivated the necessity of providing the readers a mix of
personalised news and trend news. The exact ratio depends on the confidence of the
user profile (see Figure 4.4): a medium confidence produces 50% personalised and
50% trend articles. If the confidence drops to low, we reduce the number of person-
alised articles to only 25%, whereas the rest, 75%, are trend articles. In case the
confidence increases to high, we do the opposite and select 75% personalised articles
and only 25% trend articles.

The reasons of mixing in trend news are two fold: (i) show the user important and
noteworthy news of the day, and (ii) offer the user news articles of diverse topics,
potentially very different from the personalisation. In Section 4.4, we have defined,
that trends can be of three kinds: breaking news, important events, and interesting
topics. For the recommendation generation step we consider breaking news to be
part of the important events’ news, but with a higher priority, i.e., they are chosen
first. Hence, we only consider the two types: (i) important events; and (ii) interesting
topics. Again, depending on the confidence of the user profile, we choose a different
ratio of news about important events and news about intersting topics. When the
profile confidence remains medium, we choose 60% news about important events and
40% news about interesting topics. We choose slightly more important events, be-
cause presenting news about important incidents is the core task of a news app. A
low confidence of the profile means, that the user has not viewed many personalised
news. This is either the case, when the profile does not predict the user’s interests
well enough, or when the user wants to read on other topics than just his main in-
terests. In both cases we want to let the user choose from a larger variety of news
articles, but still present enough recent news on important events. We select 40%
of important events’ news and 60% on interesting topics’ news. On the other hand,
when the user views many personalised articles and we find high confidence in his
user profile, we produce 80% news about important events and only 20% news about
interesting topics. The user is obviously interested in what we predicted, but because
we reduce the total number of trend articles, we want to make sure, he sees enough
news about important events. Diversification of the articles has a much lower priority.

Figure 4.4: Depending on the confidence of the user profile we choose different ratios
of personalised news to trend news. The trend news are again split in two different
kinds; news about important events and news about interesting topics. The numbers
in parenthesis indicate the exact number of articles falling in the respective category,
assuming the recommendation generation produces 20 news articles in total.
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The personalised news are selected from the user specific ranking of the articles,
computed when the articles enter the recommender system. If we simply choose the
first articles with the highest scores from the ranking, the chances are high, that we
present the user many articles with the very same topics. To filter similar article, we
take two measures: (i) first, before we add a new article to the user’s ranking, we
compute its similar articles (see Section 4.6). If the user holds any of those articles
in his ranking, we compare the similar articles’ ranking scores to the new article’s
ranking score. Only if the new article’s score is higher, we actually add it to the
user’s ranking. If so, we additionally remove all similar articles from his ranking.
On the other hand, if a similar article has a higher score than the new article, we
do not add the new article to the ranking, but keep the similar articles. We have
to keep all similar articles, because the similarity does not necessarily have to derive
from the same topics and content features; we could remove articles form different
topics. (ii) Second, when selecting the articles from the ranking, we make sure to
include every article topic and content feature at most twice. This second filter only
effects the articles delivered in one request. A next batch will again hold articles of
the filtered topics and content features, but again only twice the same.

From Chapter 2 on related work, we learn that a recommender system can suffer
from the cold start problem. The cold start problem can occur for both new users
and new items, news articles in our case. To overcome the cold start problem for a
new user, we can simply generate 100% trend news and ignore the personalised news
the first time the user logs in. By construction of the recommendation generation
process, the number of personalised news is increased, when the user profile is fed
with more interest signals from the new users. A new article does not suffer from
the cold start problem in our implementation. Recommendations are generated from
the content of the news articles. Articles with no user interactions are automatically
included in the recommendations.

4.6 Article Similarity Score

We recall from Chapter 3, that the Newspaper 2.0 app provides a list of similar ar-
ticles for the users to find further reading. If we would compute the similar articles
whenever a user reads an article, the processing would take too long. Hence, we pre-
compute similar articles whenever we add a new article to the recommender system.
Additionally, the stored information about similar articles is used to remove articles
of similar topics from the personalised recommendations as explained in Section 4.5.

After we extract the topics and content features from a new article, we find those
news articles in the system that share topics and/or content features with the new
article: To do so, we calculate a similarity score between the new article and all
articles already in the system. We define the similarity score (sim score) between
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the new article (anew) and any article in the system (asys):

same section(anew, asys) =

{
1, if section(anew) = section(asys)

0, else

sim score(anew, asys) = 2 · common(topics(anew), topics(asys))

+ common(contents(anew), contents(asys)),

+ same section(anew, asys)

where section returns the section of an article, topics returns the topics of an arti-
cle, contents returns the contents of an article, and common returns the number of
matching elements. A topic is usually more significant in describing an article’s text
than a content feature. All topics are found in either ABC News Topics or Freebase,
whereas the content features are extracted using natural language processing, which
is more error-prone. Therefore, we weigh a topic twice as much as a content feature.
We prefer articles from the same section in the similar articles list. Additionally,
if two articles belong to the same section, they are more likely to talk about the
same topic. Hence, we add 1 to the similarity score. All potentially similar articles
are ordered according to their similarity score. If two or more articles have the same
similarity score, we favour those with a larger timestamp (more recent). To eliminate
similar articles with only a single topic or content feature in common, we only select
those system articles that have a similarity score greater than or equal to 4. In total
we only persist the 5 most similar news articles for a new article. The similarity
relation is symmetric, i.e., it holds in both directions. Even though we limit the
similar article retrieval to return at most 5 news articles, over time, a single article
can potentially be linked to infinitely many similar articles.

4.7 Persistence

All the data collected and computed is persisted for later access and processing. Most
of the data, i.e., the information about users and articles, the cached user rankings,
ABC News Topics, and configuration parameters, are stored in a MySQL database.
The component relationships of the recommender system, i.e., the article–topic and
article–content-feature relationships, and the user profile with the interest signal in-
formation, are stored and processed in a graph database; in our case TitanDB.

A simplified version of the graph model we use for our recommender system is de-
picted in Figure 4.5. For every article scraped from Reddit, we create a new vertex
in the graph model. Additionally, each topic and each content feature receives a
separate vertex. Articles are then connected to the appropriate topic and content
feature vertices.

The user profile is stored by creating a separate vertex for every user. When a
user views or trashes an article, a new relationship is created between the respective
user vertex and the targeting article vertex. By doing so the user profile is directly
updated whenever a user’s interest signal is stored in the graph model. The user’s
interst in topics and content features can be derived from the graph by following the
edges from the user vertex to the articles he viewed and then again follow the edges
from the articles to the topics and content features.
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Figure 4.5: A simplified version of the graph model used for the recommender system.

For the trend news articles, we simply store a trend root vertex, which is connected
to the currently trendy articles. The connections are updated periodically.

In Section 4.3 we have explained how interest in topics and content features are de-
rived from viewed signals of the users and how that information is used to compute
the sum of weighted viewed signals for new articles for each user. The following code
snippets show how the Gremlin traversal language can be used to reach users, who
have viewed articles with the same topics and content features as the new article, for
which we compute the ranking scores.

A reference to the graph is stored in the variable g. The traversal code starts by
finding the relevant new article vertex in the graph model:

g .V( ’ a r t i c l e s q l i d ’ , a r t i c l e i d )

We then find other articles with the same topics and content features:

. out ( ’ has content ’ , ’ h a s t o p i c ’ ) . in ( ’ has content ’ , ’ h a s t o p i c ’ )

The traversal continues by finding all users who have viewed one or several of those
articles:

. in ( ’ viewed ’ )

Finally, the weighted viewed signals are aggregated for every user:

. groupCount ( )

By using a graph database for our recommender system, we explicitly store the rela-
tionships between the vertices. Overall, this is a more intuitive model for the recom-
mender system than using a relational database. Additionally, the graph database
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lets us read and join data very efficiently. The edges explicitly store the join oper-
ations in the model, what makes the queries not only more efficient, but also more
simple.



Chapter 5

Evaluation

In this chapter we evaluate the recommender system. To measure the quality of the
recommendations, we compare the percentage of viewed signals for personalised news
articles to randomly chosen news articles. We first explain how the user interaction
data is collected in Section 5.1. Section 5.2 defines how we randomly choose an article
to present to the user. Finally, we discuss the results of the evaluation in Section 5.3.

5.1 User Interaction Data Collection

The data has been collected over a time span of one and a half months of beta test-
ing. During that time, the app constantly improved and changed its look and feel
several times. In total, 15 people have registered for the app and at least logged in
once to use the app. Of the 15 users, 4 use the app on a more regular basis of an
average of almost 4 times a week.

We recall from Section 4.5, whenever a user requests new data we send a mix of per-
sonalised news and trend news. Apart from sending the user all the data necessary
to display the news article in the app, we additionally provide the recommendation
type, i.e., personalised or trend for each article. This information is not displayed,
but sent back to the recommender system, whenever a user interacts with a news
article. When the user opens up the app and starts reading news articles, we keep
track of his actions and persist various user interactions by sending them to the rec-
ommender system server for persistence. A single user interaction has the following
parameters:

User ID: A unique user id to identify the user interacting
with the app.

Article ID: A unique article id to identify the article the user
is interacting with. The article id is 0 if the inter-
action is not directly connected to an article.

Recommendation
Type:

An article presented to the user can either be a per-
sonalised article, a trend article, or, for evaluation
purposes only, a random article (see Section 5.2).

38
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Interaction Type: The type of interaction a user has performed on
the app. The complete list of interaction types we
are tracking will be presented next.

Value: An additional value may be added to the user in-
teraction in form of a string. This parameter is
optional and not used for every user interaction.

Timestamp: Every interaction is associated with a timestamp.
Differences between timestamps can be used to find
time intervals between interactions.

The goal is to track as much of the user’s behaviour as possible. Not everything is
used for the evaluation, but nevertheless it may prove useful in the future. We are
interested in the following user interaction types:

Resume App: A user opens the app for a new session or to resume
a previous session.

Pause App: A user stops reading news and closes the app.

Resume Archive: A user opens up the archive. It can either be the
read later tab, the favourites tab, or the sharing
tab.

Pause Archive: A user leaves the archive.

Viewed Signal: A user shows interest in the article. The viewed
level is stored in the value parameter. This inter-
action is stored either when the user moves to a
next article or closes the app. Its timestamp can
be used to find out how long the user spent on an
article.

Trashed Signal: When we do not identify a viewed signal, i.e., a user
shows no interest in the article, we store a trashed
signal. This interaction is also stored either when
the user moves to a next article or closes the app.
Its timestamp can be used to find out how long the
user spent on an article.

Read Later: A user chooses to read the article later.

Favourite: A user marks the articles as a favourite to add it
to the archive.

Sharing: A user decides to share the article.

Whole Article: A user chooses to load the original article in the
browser.

Reddit Comment: A user opens the Reddit comments in the browser.

Similar: A user selects an article from the list of similar
articles to continue reading.
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Left-to-Right Swipe: A user swipes left-to-right to reach an already seen
article.

Right-to-Left Swipe: A user swipes right-to-left on an already seen ar-
ticle. If the user shows interest in an already seen
article, we store a viewed signal interaction instead
of the left-to-right swipe interaction.

Start Scroll: A user starts to scroll down to reveal the complete
text.

Scroll Whole Text: A user has scrolled far enough to reveal the com-
plete article text in the app.

All the data is stored in a dedicated table in our MySQL database.

5.2 Random Articles

To evaluate the recommender system’s quality, we measure and compare the viewed
percentage of the personalised news articles to randomly chosen news articles. For
three weeks of the one and a half months of beta testing, we additionally mix in ran-
dom articles to the recommendations, whenever a user requests news articles from
the recommender system. During that period, 8 users have registered for the app
but only 4 of them were actively using it. A user is considered active when he swipes
through at least 100 news articles during the three weeks. We only consider the 4
active users for the evaluation. This way, we eliminate those users who have only
opened up the app once or twice out of curiosity, but did not intend to read the news.

If the random articles are chosen completely at random from articles in the sys-
tem, we could end up presenting the user outdated news articles. The results would
be biased in favour of the personalised articles. Therefore, a random article is chosen
uniformly at random from all articles available in the recommender system, which
are not older than 24 hours.

The random articles might disturb the user experience and reduce the overall user
activity. Hence, we limit the number of random articles to 1/4 of the amount of
personalised articles we present each user.

5.3 Results

In the 3 weeks, a total of 1782 news articles were presented to the 4 active users, of
which 301 returned a viewed signal. In total, 14.6% of all random articles and 15.6%
of all trend articles were considered interesting by the users. The most viewed signals
resulted from the personalised articles, with a viewed percentage of 18.5%. From our
sample, we conclude that the personalisation of the recommender system tends to
increase the viewed percentage of news articles.
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The evaluation was conduced with a more basic solution, which was missing the con-
fidence levels for user profiles and which did not perform any duplicate removal in the
recommendation generation. The 3 weeks served not only for evaluation purposed,
but also for producing feedback to improve the recommendations. In order to receive
better feedback on the recommendations, we stopped producing random articles after
the 3 weeks of evaluation. Now that all the components explained in this thesis are
implemented and deployed, and the app has been released to the public, the effect
of personalisation can be reevaluated with the final version of Newspaper 2.0.

Nevertheless, the user interaction data produced during the evaluation period in-
dicates, that the personalisation of news articles improves the news selection for a
user compared to a random selection of articles.



Chapter 6

Conclusion

Based on a survey with 181 participants, we have presented a design and implemen-
tation of a news Android app, called Newspaper 2.0. We have shown how different
levels of user interests can be inferred from the user’s reading behaviour. For the
Newspaper 2.0 Android app, we have written 6’872 lines of code. Further, we have
implemented a recommender system, which uses the user interest levels produced by
the app to create personalised rankings of the available news articles. To extract
topics from news articles, we introduce a mechanism that leverages ABC News Top-
ics and Freebase. Content feature extraction from news articles has further been
improved with an information filtering approach using natural language processing.
We have implemented the recommender system in Python and Gremlin. The com-
plete recommender code consists of 4231 lines of Python code, and an additional 401
lines are of Gremlin code. We have shown how a mix of user personalised news and
trend news in general can satisfy both the reader’s long-term interests and short-
term interests and overcomes the cold start problem. To identify trend news, we
have introduced a method that combines ABC News Topics and the Reddit rankings
produced by its community members. Results of comparing the personalised news
recommendations with randomly picked news articles have shown that the personal-
isation improves the news article selection for a user.

The beta testing period of one and a half months already produced insightful data
on feature usage of the Newspaper 2.0 app and the quality of the recommendations.
Now that the app has been released to the public, we hope to reach more people. A
larger user base can produce more useful data to both (i) evaluate the recommender
system and further improve the quality of the personalised news articles and (ii) en-
hance the features and UI of the Android app.

Many parameters chosen for the inner workings of the recommender system are
merely based on assumptions and not hard factual data. Further analysis and in-
terpretation of user interaction data of more users over a longer period of time can
be leveraged to adjust those parameters and support their values with more robust
data. Additional computational steps might be necessary to improve the recommen-
dations. On the other hand, implemented mechanisms might prove unnecessary.

Using a first prototype of our recommender system, we found that CF is ineffec-
tive with the currently low number of users in comparison to the vast number of
articles available in the system. In the future, when the user base of Newspaper 2.0
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is large enough, we can extend our recommender system with a CF approach. A
set of similar articles is precomputed whenever a new article is added to the rec-
ommender system. This relationship is already stored in the graph model for later
access. The CF approach can directly make use of this information. When a new
article is added to the recommender system, it suffers from the cold start problem,
because it is missing any user interactions. To overcome the cold start problem we
could exploit its similarity to other articles and make use of their user interactions.
Another realisation of a CF extension could be implemented as follows: whenever
a user shows interest in an article, the recommender system increases the ranking
scores – for that user – for all news articles that have been viewed by users who have
also viewed this particular news article. The exact amount a single score would have
to be increased by depends on the parameter choices made for the ranking algorithm
and is subject to further research.

The Newspaper 2.0 app identifies 3 levels of user interest, so called viewed signals,
and one level of disinterest, the so called trash signal. The user interaction data
suggests that user interest is not a binary function, but a continuous one. We have
simplified the model to three discrete levels. The detection of user interest could be
made more fine grained and make use of more behavioural data than only timing.
The scrolling speed is one parameter that comes to mind to further extend the viewed
signal identification. Additionally, different users have different reading behaviours:
Some users are faster in reading a news article than others, or instead of actually
reading an article, most of the time, they simply skim over the text. These differences
ask for different time intervals for different users. The app would have to learn from
the user’s behaviour and automatically adjust its interest detection for each user sep-
arately. The reading behaviours could be detected with new eye-tracking capabilities
of mobile phones [52]. Analysis of user data has shown that neglecting the trash sig-
nals as downvotes improves the article rankings for the users. Nevertheless, trashes
are stored in the graph model. This data might still prove useful for recommendation
enhancements or can be used for further reading behaviour analyses. Currently, we
only detect a single level of trash signal. This model can be extended to find different
levels of trash signals, e.g., by also looking more closely at time intervals or other
user interaction patterns.

Some users read news several times a day, others might only open up the app once
a week. One group of people is only interested in the most recent news articles,
another group prefers reading older stories of greater interest to them. The reading
habits of different groups can vary. The recommender system would have to learn
the users’ reading patterns from their interest signals and adjust its recommendation
mechanism accordingly to satisfy the different groups of readers.
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A.1 Questionnaire

A.1.1 Participants
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A.1.2 App Usage
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A.1.3 App Features
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Additional Features (Aggregated Results of Open Question)

A.1.4 App Usability and UI
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A.1.5 Favourite App

Favourite Apps

Reasons for Favourite App (Aggregated Results of Open Question)



Appendix A-10

Wish List (Aggregated Results of Open Question)
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A.2 Capitalisation Rules

Capitalization Reference List (Source http://www.grammarbook.com/punctuation
/capital.asp)
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