
Institut für
Technische Informatik und
Kommunikationsnetze

Easy Breathe: Health-Optimal
Routing in Urban Areas

Semester Thesis

Ivo de Concini

December 23rd 2014

Advisors: Prof. Dr. Lothar Thiele, David Hasenfratz

Computer Engineering Group, ETH Zürich

Abstract

Air pollution, especially particulate matter (PM), has very serious ef-
fects on human health. According to the World Health Organization,
diseases caused by PM reduce the average live expectancy in Europe by
9 months. This is a significant number, especially considering that 80%
of the European population lives in cities with levels of PM exceeding
the levels considered save by the WHO Air Quality Guidelines [1].

In this project we propose a smart phone application, which enables in-
habitants of the city of Zurich to choose health-optimal paths between
arbitrary locations in the city. We show in this thesis that by using
health optimal paths, the exposure to particulate matter can be reduced
by 6.5% on average. The paths are computed using the high resolution
urban air pollution maps obtained by the OpenSense project [2].

The application does not rely on server infrastructure for the compu-
tation of the optimal paths: It uses kd-tree based nearest neighbour
search along with a bidirectional shortest path search using a prior-
ity queue based variant of Dijkstra’s algorithm to compute the health-
optimal paths on the limited smart phone hardware.

We tested the application on a real smart phone, achieving an average
computation time of 170ms for a health-optimal path.

i

Contents

Contents iii

1 Introduction 1
1.1 Contributions . 1
1.2 Related Work . 2
1.3 Overview . 2

2 Nearest Neighbour Search 5
2.1 KD-Tree . 6

3 Optimal Path Problem 9
3.1 Dijkstra’s Algorithm . 10
3.2 Speeding up Dijkstra’s Algorithm: Priority Queue 12
3.3 Bidirectional Search . 13

4 Graph Implementation 17
4.1 Graph Structure . 17
4.2 Graph Generator . 18

5 Final Application 21
5.1 Functionality . 21
5.2 Structure . 22

6 Results 25
6.1 Dataset . 26
6.2 Performance of Nearest Neighbour Search 26
6.3 Dijkstra’s Algorithm with Priority Queue 27
6.4 Bidirectional Search using Dijkstra’s Algorithm 27
6.5 Performance Improvements on Android 29
6.6 Pollution and Distance Scores 30

iii

Contents

7 Conclusions and Outlook 33

A Dijkstra’s Algorithm 35

Bibliography 37

iv

Chapter 1

Introduction

The adverse health effects of air pollution on human health have been docu-
mented for many years. The World Health Organization (WHO) especially
warns from the substantial burden of disease created by particulate matter
(PM), which reduces the average live expectancy in Europe by 9 months.
This is a significant number, considering that 80% of the European popula-
tion lives in cities with levels of PM exceeding the levels considered save by
the WHO Air Quality Guidelines [1].

The OpenSense project of ETH Zurich and EPF Lausanne investigates means
of using distributed wireless sensor network technology to monitor air pol-
lution and to gain measurements with high spatial and temporal resolution.
The high precision of this data creates a variety of new possibilities to reduce
the daily exposure to air pollution of the population of urban areas, for in-
stance by enabling people to choose healthier paths in their daily commute.

1.1 Contributions

In this project we developed an application for Android smart phones, which
provides users with the healthiest path and the shortest path between two
arbitrary locations in the city of Zurich, using the urban air pollution maps
derived in [2].

Additionally, the application provides the user with a comparison of the two
paths, indicating how much less polluted the healthiest path is compared to
the shortest path in percentages and how much longer it is in meters. This
allows users to make an informed choice, when deciding which path to take.

Although the application does not rely on external server infrastructure to
compute the optimal paths, it is still fast and responsive. To achieve this, we
studied and compared the performance of various routing algorithms. We
then implemented the most promising algorithms and benchmarked them

1

1. Introduction

on real smart phones and evaluated how well they perform on the limited
hardware of the mobile devices. We chose the best performing algorithm
and further optimized it for Dalvik, the Java Virtual Machine (JVM) running
on Android, and used it to develop the final application.

1.2 Related Work

A prototype for a health-optimal route planner for Android was already de-
veloped as part of a previous project and presented as a possible use for
air pollution maps in [2]. However, this previous application works with a
server-client infrastructure, using a server to compute the healthiest and the
shortest paths, and is not optimized for performance. While it works well as
proof of concept, it has some significant drawbacks: On one hand, the cost
of maintaining the server infrastructure on the other hand, the high average
computation time for the healthiest path (4.1 seconds) [3]. Those two prob-
lems make it unsuitable for public distribution on an Android marketplace.

1.3 Overview

The health-optimal route planner developed in this project will be intro-
duced in this report using a bottom-up approach. The first sections will
present the graph algorithms which were used to develop an optimal path
provider, whose actual implementation into a working smart phone applica-
tion will be described later on.

Find
Nearest
Node in

G(V, E, W)

Find
Optimal
Path in

G(V, E, W)

~s

~t

vs

vt

min
〈vs, ..., vt〉

Optimal Path Provider

Figure 1.1: Illustrates the operations performed by the Optimal Path Provider in order to find
the optimal path in a road graph G(V, E, W) between the latitude / longitude pairs ~s and ~t.

Optimal Path Provider. The optimal path provider is at the core of the de-
veloped application. It contains a weighted directed graph G(V, E, W), whose
nodes and edges represents the road-network of the city of Zurich and
whose weights contain the distance and the pollution data. The input to

2

1.3. Overview

the optimal path provider are the coordinates of two arbitrary positions in
the city. It then performs a nearest neighbour search to determine the closest
nodes inside the graph, between which it will then perform an optimal path
search, using the two sets of edge-weights to determine the healthiest and
the shortest path respectively.

Implementation. The finally implemented Android application takes the
names of two locations in Zurich and uses the Google Places API to map
them to real GPS coordinates. These coordinates are then fed to the optimal
path provider and the resulting path is then displayed on a map, along with
the current user location. Furthermore, already computed paths are stored
into a database and made available through a history view.

During the implementation of the Android application, special attention
was posed to performance aspects. This includes the choice of suitable algo-
rithms and data-structures, as well as an implementation which takes into
account particular properties of the Android Java Virtual Machine (JVM).

The last section of this report will present some performance comparisons
and results, gathered from tests performed on a smart phone.

3

Chapter 2

Nearest Neighbour Search

As illustrated in Figure 1.1, the first step performed by the optimal path
provider in order to determine the shortest path between two arbitrary lo-
cations ~s and ~t in the city of Zurich, is to match those two locations to the
closest nodes inside the road graph. This problem is known in the litera-
ture as the Nearest Neighbour Search, which for the two dimensional case of
finding the closest geographical node inside a road-graph G(V, E) can be
formally described as follows:

We are given a set of nodes V, where each node vi ∈ V maps to a point:

~vi =

(
xi

yi

)
, (2.1)

and where xi and yi represent a latitude / longitude pair inside a deter-
mined geographic area. We are also given some input vector

~s =
(

xs

ys

)
, (2.2)

which represents a point in the same area. We now want to find the node
vs ∈ V that minimizes the euclidean distance d(~s, ~vs) for all vi ∈ V:

vs = arg min
vi∈V
|~s− ~vi| (2.3)

Linear Search. The naive solution to the nearest neighbour search is to
compute the distance between~s and all ~vi ∈ V and then to choose the node
vi with the smallest distance d(~s,~vi). This approach has a time complexity
of O(|V|), which does not scale well for larger road graphs and is quite
high, considering that the shortest path algorithm chosen for this project
(see Chapter 3) runs in O(|V| log (|V|)). Therefore, a special data structure
was adopted, which allows significantly faster searches.

5

2. Nearest Neighbour Search

(35, 90)

(70, 80)

(50, 90)(80, 40)

(10, 75)

(20, 85)(25, 10)

85 > 75

20 < 35

x-split

y-split

x-split

Figure 2.1: Shows how a new (x, y) pair is sorted into a two dimensional kd-tree using the
x-coordinate in the first level and the y-coordinate in the second.

2.1 KD-Tree

A kd-tree (k-dimensional-tree) is a spatial data structure that hierarchically
decomposes a k-dimensional space into a smaller number of cells, each of
which contains some points from an input-set, by alternatingly splitting it
along its dimensions [4].

In the two-dimensional case road-graph case, a kd-tree is obtained by sorting
the nodes ~vi ∈ V into a binary tree by comparing the latitude (x-split) at even
levels and the longitude (y-split) at uneven levels.

Algorithm 1 Recursive function to build two dimensional kd-tree
. Input: Set |V| of nodes to insert in tree, current level of tree.
. Output: Balanced kd-tree.
function 2d-tree(V, level)

if level mod 2 = 0 then . Even level
vm ← select vi ∈ V where xi = median ∀xi

else . Uneven level
vm ← select vi ∈ V where yi median ∀yi

end if
vm.leftChild← 2d-tree(vi < vm, level + 1)
vm.rightChild← 2d-tree(vi > vm, level + 1)
return vm

end function

Construction. The kd-tree can be built recursively as shown in Algorithm
1 starting from the root node at level 0, and inserting smaller nodes to the
left and larger nodes to the right according to the current splitting axis.
In order to obtain a balanced kd-tree, in which each leaf node has about

6

2.1. KD-Tree

the same distance from the root node, one has to select the node with the
median coordinate along the splitting axis from the set of nodes V in each
step. This operation is quite expensive, which however is not a problem for
this application, since the kd-tree can be computed upfront once and stored
together with the graph.

Nearest Neighbour Search. A balanced kd-tree allows to perform nearest
neighbour searches very efficiently in O(log |V|) time [5]. The idea is to
recursively go down the tree, as if the search node was being inserted, until
reaching a leaf node. This node is not necessarily the nearest neighbour,
since there still could be closer nodes on another sub-tree, but it is a good
first estimate. After reaching this node, the algorithm walks up the tree
again, looking at each node if it is closer than the current estimate and if
the sub-tree on the other side of the splitting axis could potentially contain
a closer node. If that it the case, it starts a new search on that sub-tree but
if not, a whole part of the tree can be dismissed. How the algorithm can
determine if a sub-tree can be dismissed, will be explained in the following
step to step description of the algorithm:

The search of the node ~vi closest to the input coordinate ~s is performed as
follows:

1. Recursively move down the tree starting from the root node, as if ~s
was being inserted into the tree.

2. Once a leaf node vb is reached, mark it as current best.

3. Walk up the tree (unwind the recursion) performing the following
steps at each node vi:

• Compute the distance d(~s,~vi) and set vb ← vi if d(~s,~vi) < d(~s, ~vb).

• Check if there could exist any closer points on the other side of
the splitting axis, by looking if the circle centred at the search
point~s and with the minimum distance d(~s, ~vb) as radius crosses
the splitting coordinate, which can be performed by a very simple
comparison operation:

d(xi, xs) < d(xb, xs), (2.4)

assuming that x is the current splitting axis. If the radius crosses
the splitting coordinate, there could be a nearer point on the other
sub-tree of vi and the algorithm starts a new search on that sub-
tree. Else, the algorithm can continue walking up, dismissing the
other sub-tree.

4. The algorithm terminates, as soon as it reaches the root node again
and returns the nearest neighbouring node vb.

7

Chapter 3

Optimal Path Problem

A road-network can be considered as a graph, where road junctions are
represented by nodes and the roads are represented by positively weighted
edges between two junctions. Therefore, finding the best route inside a
road-network, can be achieved by solving the single source least-cost path
problem for a graph, which consists in finding, the path from a source node
vs to a target node vt which minimizes the sum of the weights of its edges.

In this section, we will assume that we are given a weighted directed graph
G(V, E, W), where V denotes the set of vertices vi, E the set of edges ei,j
between two nodes vi,vj ∈ V and W : E → R a weight function, mapping
edges to real-valued weights. In order to fulfil the requirements of show-
ing the user the healthiest path and the shortest path, there are two sets
of weights: one indicating the air pollution density in particles per cm3 be-
tween two nodes and one indicating the distance in meters.

The potential ϕp of a path p0,k = 〈v0, v1, ..., vk〉 is given by the sum of the
weights of its constituent edges:

ϕp =
k

∑
i=1

W(ei−1,i). (3.1)

The lowest potential of a path from vs to vt is defined as:

µs,t =

{
min{ϕp : vs vt} if at least one ps,t exists
∞ otherwise.

(3.2)

The least-cost path between vs and vt is defined as any path with the poten-
tial µs,t [6].

9

3. Optimal Path Problem

3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm, which was first published by Edgar Dijkstra in 1959
[7], is a greedy algorithm which solves the least-cost path problem on a
weighted, directed graph G = (V, E, W) for the case in which all edge
weights are non-negative.

The idea of the algorithm is to visit all nodes of the graph in ascending order
of their distances from the source node (closest nodes first), until the target
node is reached.

47.325

47.350

47.375

47.400

47.425

8.50 8.55 8.60
Longitude

L
at
it
u
d
e

Figure 3.1: Map showing the nodes visited during the execution of a shortest path search
between two nodes in the city of Zurich using Dijkstra’s algorithm. The resulting shortest path
is depicted in red. One can see, that the algorithm terminates as soon as the target (below) is
reached.

Formal Description. More formally, the algorithm maintains a set of al-
ready visited nodes S, whose potential ϕ, the shortest path weight to the
source, has already been determined. Furthermore it keeps a set of unvis-
ited nodes Q, a map Φ(V → ϕ), that contains the potentials ϕi of all vi ∈ G
and a map P(V → V), mapping each node in the shortest path to its previ-
ous node in the path. To find the shortest path between the source node vs
and the target node vt, the algorithm proceeds as described in Algorithm 2.

After the initialization phase, the set of visited nodes S is empty, while the

10

3.1. Dijkstra’s Algorithm

Algorithm 2 Dijkstra’s algorithm.
. Input: Weighted graph G(V, E, W), start and target nodes (vs, vt) ∈ V
. Output: Least-cost path vs vt
function dijkstra(G, vs, vt)

initialize(G, vs) . Initialize S, Q, Φ and P
while Q 6= ∅ do

vu ← Get-Min(Q) . Get unvisited node closest to source
if vu = vt then

return P . Found closest path to target!
end if
S← S ∪ {vu} . Add vu to set of visited nodes
for all Neighbours vi of vu do

if vi ∈ Q then
. Update potential ϕi, if path through vu has lower potential
update-potential(vu, vi)

end if
end for

end while
return Error: Target node vt 6∈ G or not reachable.

end function

set of unvisited nodes Q contains all nodes vi ∈ G. The potentials ϕi are set
to ∞ for all nodes, except for the source node vs, where the potential is set
to 0. The set of previous nodes in the optimal path P is set to null for each
node.

In each step, the algorithm visits the unvisited node vu ∈ Q with the lowest
potential, which corresponds to the unvisited node closest to the source vs.
Since in the beginning the potential ϕi of all nodes is set to ∞, except for the
source node vs, the algorithm starts at vs.

The algorithm proceeds by going through all adjacencies of vu, scanning
each unvisited neighbour vi ∈ Q and computing its distance from the source
through vu. More formally, if vu has the source potential ϕu and the potential
between vu and vi is given by the edge-weight wu,i, the potential ϕs→u→i for
node vi going through vu is equal to the sum ϕu + wu,i. If ϕs→u→i ≤ ϕi, the
potential ϕi is updated to ϕs→u→i and the predecessor pi of vi is set to vu
(see Algorithm 3).

The algorithm terminates as soon as it reaches the target node and returns
the map of previous nodes P, which can than be used to trace back the
shortest path from the target to the source.

11

3. Optimal Path Problem

Algorithm 3 Function to update the potential.
. Input: Visited node vu and one of its neighbours vi
. Output: Updated potential of vi going through vu if it is smaller than
the previous potential.
function update-potential(vu, vi)

ϕs→u→i := ϕu + w(vu, vi) . Potential of vi going through vu
if ϕs→u→i ≤ ϕi then

Φ(vi)← ϕs→u→i . Update potential
P(vi)← vu . Update predecessor

end if
end function

Optimality. Since Dijkstra’s algorithm chooses to visit the closest unvisited
node in each step and does not change the least-cost path to this node after
that, it can be classified as a greedy algorithm. However, it still yields the
optimal solution to the least-cost path problem. The proof of optimality is
based on the fact, that if vi is a node on the least-cost path between vs and
vt, the knowledge of the latter implies the knowledge of the least-cost path
between vs and vi [7]. Since the algorithm searches the closest unvisited
node to the source in each step, it can be shown by induction that the least-
cost path is known to each visited node vi ∈ S [6].

Time Complexity. As shown above, in order to find the shortest path be-
tween to nodes (vs, vt) ∈ V, Dijkstra’s algorithm needs to visit at least all
nodes on the path and scan all of their adjacencies each time it visits a
node. This yields a running time of O(|V|+ |E|), where |V| is the number
of nodes vi ∈ G and |E| the number of edges. Additionally in each step
the algorithm needs to find the closest unvisited node to the source vu ∈ Q,
which assuming a naive implementation of Q as an array- or linked-list adds
O(|V|) computation steps for each visited node (see Appendix A for imple-
mentation). This yields a running time of O(|V|2 + |E|) = O(|V|2). The
next section will show, how the running time can be significantly reduced
by using a more efficient data structure for Q.

3.2 Speeding up Dijkstra’s Algorithm: Priority Queue

As shown in the previous section, the linear search of the next unvisited
node to visit adds a complexity of O(|V|) to each computation step in Di-
jkstra’s algorithm. This complexity can be significantly reduced by storing
the set of unvisited nodes Q in a priority queue.

A priority queue is a queue structure, in which each element has an attached
priority. It supports methods to enqueue elements with a certain priority,

12

3.3. Bidirectional Search

change an elements priority and to dequeue elements in order of their pri-
ority. In 1987, Fredman et al. proposed the Fibonacci-Heap implementation
of a priority queue [8], which allows to dequeue the element with the mini-
mum priority in O(log |V|) time and to decrease a priority of an element in
constant time O(1) [6].

Algorithm 4 Function to update the potential using a min-priority-queue.
. Input: Visited node vu and one of its neighbours vi
. Output: Updated potential of vi going through vu if it is smaller than
the previous potential.
function update-potential(vu, vi)

ϕs→u→i := ϕu + w(vu, vi)
if ϕs→u→i ≤ ϕi then

Φ(vi)← ϕs→u→i
P(vi)← vu
. Lower priority of vi using the new potential ϕs→u→i
Q.decrease-priority(vi,ϕs→u→i)

end if
end function

Time Complexity. By using the Fibonacci-Heap min-priority queue imple-
mentation for the set of unvisited nodes Q and by changing the implemen-
tation of the update-potential function according to Algorithm 4, to always
decrease the priority when the potential of an unvisited node is decreased,
the time complexity of the search of the closest node in each step can be re-
duced to O(log (|V|). Considering the time complexity needed to decrease
the priority of the unvisited nodes in each update, this yields a total execu-
tion time of O(|V| log |V|+ |E| ∗ 1) = O(|V| log |V|).

3.3 Bidirectional Search

One shortcoming of Dijkstra’s algorithm, is that it uniformly searches in all
directions, when computing the shortest path between a node vs and a node
vt, regardless of the direction of vt (see Figure 3.1). Some algorithms, like
the A* algorithm, correct this shortcoming by adding heuristics based on the
knowledge of the geographical position of the target [9]. This heuristics are
however usually based on the euclidean distance between the two points,
which requires the triangle inequality to be valid [9]. Unfortunately, this
assumption can not be made when dealing with pollution data. A* finds the
optimal path if the heuristic is a admissible heuristic. Hence, it is possible to
compute the health-optimal path using A*, but the heuristic needs to be very
pessimistic in order to be optimal (e.g., heuristic could be the multiplication

13

3. Optimal Path Problem

47.325

47.350

47.375

47.400

47.425

8.50 8.55 8.60
Longitude

L
at
it
u
d
e

Figure 3.2: Map showing the nodes visited during the front (green) and the back shortest path
search (blue), between two random nodes in the city of Zurich, while performing a bidirectional
search using Dijkstra’s algorithm. The resulting shortest path is depicted in red.

of the distance with the minimum pollution level in the whole area). As a
result A* does not perform very well and, hence, is often even slower than
bidirectional Dijkstra [3].

While in unidirectional search algorithms the destination plays a minor role
than the origin, bidirectional search algorithms utilize both the origin and
the destination uniformly by searching alternatingly from the origin side
and from the destination side [9]. When the two searches meet at an inter-
section and the optimal stopping criterion is reached, the path can be traced
back from the intersection to the source and to the target.

Termination. Intuitively, a bidirectional search from node vs to vt grows
two search areas, one around the source and one around the target, until
the they both meet (see Figure 3.2). Therefore, a possible stopping criterion
could be when a center-node vc was visited by both the forward and the
backward search. More formally, assuming that S f is the set of nodes visited
by the forward search, while Sb is the set of nodes visited by the backward
search, it would terminate as soon as S f ∩ Sb = {vc} 6= ∅.

Although this criterion yields a valid path between vs and vt, it does not
guarantee an optimal path, since there could still exist a valid edge ei,j be-

14

3.3. Bidirectional Search

Algorithm 5 Bidirectional search using Dijkstra’s algorithm.
. Input: Weighted graph G(V, E, W), start and target nodes (vs, vt) ∈ V
. Output: Least-cost path vs vt
function bidirectional-search(G, vs, vt)

µ := ∞ . Score of best path seen so far.
f := new dijkstra(vs,vt) . Initialize forward search.
b := new dijkstra(vt,vs) . Initialize backward search.
while ϕ f ,next + ϕb,next ≥ µ do

f .do-step-and-update-µ-if-necessary()
b.do-step-and-update-µ-if-necessary()

end while
end function

tween node vi ∈ S f and node vj ∈ Sb which leads to a path with a better
score than the path through vc. Therefore, a stronger condition must be
introduced.

In order to achieve this, the algorithm must maintain the length µ of the
best path seen so far, which is initially set to µ = ∞. For simplicity we can
assume that the algorithm is in the forward search, since the solution is sym-
metric for the backward search. When Dijkstra’s algorithm scans through
the neighbours of a node vi ∈ S f and sees a node vj ∈ Sb, it determines that
there is a potential shortest path from vs to vt with the score:

µi,j = ϕ f ,i + wi,j + ϕb,j, (3.3)

where ϕ f ,i is the shortest path score from vs to vi, wi,j the edge-weight of the
edge between vi and vj and ϕb,j the shortest path score between vj and vt.
If the newly observed path-score is better than all previously observed, µ is
updated µ = µj,i.

The algorithm terminates as soon as the sum of the potentials of the closest
unvisited nodes in both, forward and backward search, is greater or equal
than the best observed path score µ:

ϕ f ,next + ϕb,next ≥ µ (3.4)

which due to the greedy nature of Dijkstra’s algorithm guarantees that µ is
the score of the optimal path [10].

15

Chapter 4

Graph Implementation

The graph lies at the core of the optimal path provider, as it contains all the ge-
ographical and pollution information that allow health-optimal routing. The
graph data is provided by the OpenSense project [2], and consists of a list
of approximately 27’000 nodes, representing road intersections, and 74’000
weighted edges, representing the walkable paths between those intersections.
An edge has two distinct weights. One indicates the pollution grade and
one the distance between two intersections.

This chapter describes the data structures and methods chosen to implement
a graph, which can be efficiently stored and loaded by the application and
enables fast nearest neighbour and shortest path queries.

4.1 Graph Structure

In general there are two ways to store a directed weighted graph G(V, E, W)
with n nodes: As adjacency matrix, an n × n matrix where each entry ai,j
represents the weight of the edge between vi and vj, or as an adjacency list, a
collection of lists containing the neighbouring nodes and the weight of the
edge connecting them for each node vi. Since in given road graph there are
approximately three edges for each node, it was chosen to implement the
graph as adjacency list, which is more memory efficient for sparse graphs.

As illustrated by the class diagram in figure 5.2 the graph implementation
uses four different classes of objects:

Graph The main graph object, which holds an array of nodes, an array con-
taining an array with the adjacencies for each node and the kd-tree
representation. All those arrays can be directly queried with the the id
of a node, which allows a very efficient constant access speed.

It also provides the methods to access the road-network data needed

17

4. Graph Implementation

ch.ethz.easybreathe.opp.graph

Graph

getNode(Integer): Node

getAdjacencies(Integer): Adjacency

findClosestNode(Node): Node

getNrOfNodes(): Integer

Adjacency

target: Integer

pollution: Integer

distance: Integer

Node

nodeId: Integer

latitude: Real

longitude: Real

KdTree

leftChildren: Integer[1..*]

rightChildren: Integer[1..*]

getLeftChildIdOf(Integer): Integer

getRightChildIdOf(Integer): Integer

adjacencies1..*

nodes1..*

kdTree1

Figure 4.1: Class diagram of the graph implementation, showing the different classes, fields and
methods implemented.

by the shortest path algorithm and a method to perform nearest neigh-
bour queries using the kd-tree.

Node A simple data representation of a node holding its unique id, as well
as its latitude and longitude.

Adjacency Contains the target of an adjacency, as well as the distance and the
pollution of that edge.

KdTree Stores the child-nodes in the kd-tree for each node and is queries by
the graph to perform nearest neighbour searches.

4.2 Graph Generator

The graph is generated by a stand-alone program, which takes two lists
of comma-separated values, one containing the nodes and one containing
the adjacencies, and creates a serialized graph object, which can then be
loaded and used by the health-optimal routing application. The approach of
generating the graph object in advance and to only load the serialized graph-
object during the application runtime, has proven to be very advantageous,
because it allows to perform a series of rather expensive computation steps
in advance, without negatively influencing the application’s performance:

18

4.2. Graph Generator

Filter
not

Reach-
able

Create
Graph
with

KD-Tree

Serialize
nodes

edges

serialized
graph

Generator

Figure 4.2: Shows the steps performed by the generator in order to create the serialized graph
object from a list of nodes and a list of adjacencies.

Filtering Unreachable Nodes. The data provided for the road-graph, which
is based on OpenStreetMap1, contains a few nodes (≈ 1%) that are not con-
nected to the rest of the road-network. These can cause faulty results and
therefore need to be removed from the graph before the shortest path algo-
rithm can be applied. This is accomplished by running Dijkstra’s algorithm
from a well connected graph node, without terminating when the target
node is reached, and by removing all nodes that have not been visited by
the algorithm after its execution.

Generate Graph The filtered data is then used to generate the graph: All
nodes are instantiated with a unique sequential id starting from 1, the ad-
jacencies are instantiated and mapped to the corresponding node-id in the
adjacency list and the kd-tree is computed - a rather expensive task, which
does not have to be performed at application runtime.

Graph Serialization Serialization is the process of translating an object into
a state, from which it can be permanently stored and later re-loaded. Java
provides two mechanisms to serialize an object:

The first approach is automatic serialization. In order to do this, all objects
in the object graph that need to be serialized need to be marked, by im-
plementing the empty ”Serializable” interface. Java then applies a generic
recursive algorithm, which first writes out the meta-data of all super classes
of the object being serialized until if finds the ”java.lang.Object” super-type
and then starts to recursively serialize all objects top-down, starting from
the topmost super-class and going down to the most derived class2. This ap-
proach is very easy to use, but better performance can be achieved by using
manual serialization.

1http://www.openstreetmap.org
2Java Object Serialization Specification: https://docs.oracle.com/javase/7/docs/

platform/serialization/spec/serialTOC.html

19

http://www.openstreetmap.org
https://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html

4. Graph Implementation

Manual serialization in Java is achieved by implementing the ”Externaliz-
able” interface, which contains two methods to serialize and to de-serialize
the object. This allows to iteratively serialize the components of the graph,
which leads to a significant speed-up (in the case of this project ≈ 50%) in
the de-serialization time.

The finally serialized graph object has a size of 3.1MB.

20

Chapter 5

Final Application

The final application allows the user to query the name of a starting and a
target location in the city of Zurich and displays the healthiest along with the
shortest path on a map, along with information comparing the two paths.

5.1 Functionality

The first view displayed upon starting the app is the main view, which
consists of two input fields and a history view. It allows to perform the
following actions:

Select a new pair of locations. This is achieved simply by starting to type
the names of a start and a target destination in the dedicated query fields.
While typing, the application provides suggestions for places in a drop-
down list. As soon as a valid pair of locations is selected, the healthiest
and the shortest path will be computed and displayed on a map, together
with information comparing the two paths.

Select a pair of locations from the history. The user can also select a recent
pair of start and target destinations form the history view by simply tapping
on it. In this case it is not necessary to compute the paths and they can be
directly displayed.

The healthiest and the shortest path are displayed along with the current
position of the user on a Google map provided by the Android SDK. The
healthiest path is displayed in green, while the shortest path is displayed
in red. When the two paths overlap, a thinner green line is displayed on a
broader red line.

Above the visualization of the map, the application displays information
about the two computed paths. This information consists of how much

21

5. Final Application

Figure 5.1: Shows the two main activities of the developed application. The activity on the
left, allows to choose the start and destination locations, the activity on the right, displays the
shortest and the healthiest path along with some information.

pollution can be avoided by choosing the healthiest path in percentages and
how much longer the healthiest path is in meters. Below the map there is a
button, which allows the user to view the map in full-screen.

The navigation between the views is consistent with the Android design
guidelines1: New views are opened by performing actions, while the back-
button of the smart-phone can be used to navigate back.

5.2 Structure

The functionality of this application is achieved through various providers
and background jobs, which will be described in this section by following
the standard use cases.

1http://developer.android.com/design/patterns/index.html

22

http://developer.android.com/design/patterns/index.html

5.2. Structure

Start Input Type History DB

Display
suggestions

Load GraphGraph
Initialized?

De-Serialize
Graph

Graph is ready

Compute
Optimal Paths

Display Paths
on Map

Fetch
suggestions
from Google

API

Query from History

New Query

No

Yes

Start & Stop Selected

Background Processes

Foreground Processes

Figure 5.2: Shows how the main activity handles user input and initialization at the same time.

When the application starts, it needs to load and de-serialize the graph from
the assets folder in the application directory in order to initialize the Optimal
Path Provider. Since this operation is relatively time consuming, it is not per-
formed on the main-thread of the application, but in a background thread.
The ongoing de-serialization process is displayed to the user through a ro-
tating progress indication in the bottom right corner of the screen.

While the application is initializing, the user can already input a new pair of
locations in the two search-fields. While the user is typing, the application
uses the partial input to get suggestions from the Google Places API2 by
sending JSON3-queries over http. This task is performed by the Places Auto
Complete Provider, which, along with the name suggestions, also retrieves the
GPS-coordinates of those places. These are first used to make sure, that only
suggestions inside the boundaries of the city of Zurich are displayed and
are later needed to compute the optimal paths.

Once two valid locations inside Zurich are selected, the application requests
the healthiest and the shortest path from the Optimal Path Provider, which
will then proceed to compute them in a background thread using a bidirec-
tional search with Dijkstra’s Algorithm. If the graph is not initialized yet at

2https://developers.google.com/places/
3http://json.org

23

https://developers.google.com/places/
http://json.org

5. Final Application

this point in time, then the background thread will request a callback from
the graph loader.

Once the two paths are computed, the Optimal Path Provider returns them
to the main activity, which first proceeds to display the map with the paths
and the path information and then stores the new paths, along with their
path scores, into the history database.

Since the history database contains all information needed to display the
optimal paths, history queries can be displayed directly, without waiting for
the graph initialization.

24

Chapter 6

Results

47.325

47.350

47.375

47.400

47.425

8.50 8.55 8.60
Longitude

L
at
it
u
d
e

Figure 6.1: Displays the distribution of the 1000 randomly selected coordinate pairs used to
perform the performance tests.

In order to compare different solution approaches to the shortest path prob-
lem for healthy routing on Android platforms and to choose and improve
the most promising, various performance tests were performed on a LG
Nexus 5 smart phone running Android 4.4 KitKat with 2 GB RAM and a
quad-core 2.3GHz Snapdragon CPU.

25

6. Results

0 50 100 150 200 250
Query Time on KD-Tree [µs]

40

50

60

70

80

90

100

110

120

130
Q

ue
ry

Ti
m

e
Li

ne
ar

Se
ar

ch
[m

s]

Figure 6.2: Compares the execution times of the priority queue implementation of Dijkstra’s
algorithm, with the execution times of its bidirectional variant for 1000 randomly distributed
coordinate pairs in Zurich.

6.1 Dataset

The following results where gathered using on a road-network graph of
the city of Zurich containing 26’748 nodes and 73’582 edges, with distance
and pollution weights. The performance of the shortest path algorithms
was measured using 1000 uniformly randomly selected start and target co-
ordinates inside the city of Zurich, that are at least 1000 meters apart and
excluding points that are not accessible, like the lake. (Figure 6.1).

6.2 Performance of Nearest Neighbour Search

To better quantify the speed-up obtained by adopting a kd-tree based search,
rather than the linear search, both algorithms were run for 1000 points of the
dataset. The average time for a linear nearest neighbour search was 65289µs
(≈ 65ms), while it was 73µs for searches on the kd-tree.

This means, the kd-tree search was almost 1000 times faster than the linear
nearest node search. Considering, that the road graph contains roughly
30’000 nodes, this result is consistent with the time complexities O(|V|) vs.
O(log (|V|) derived in Chapter 2.1.

As Figure 6.2 illustrates, the query times on the kd-tree are, with the excep-

26

6.3. Dijkstra’s Algorithm with Priority Queue

0 2 4 6 8 10 12
Linear distance [km]

0

2

4

6

8

10

12

Ti
m

e
[s

]

Classic
Priority Queue

Figure 6.3: Compares the execution times of the classic implementation of Dijkstra’s algorithm
with the execution times of the priority-queue implementation for 100 randomly distributed
coordinate pairs in Zurich.

tion of a few outliers, distributed quite regularly around the average. This
shows that the tree is well balanced.

6.3 Dijkstra’s Algorithm with Priority Queue

In Section 3.2 it was claimed that the time complexity of Dijkstra’s algorithm
could be reduced by an exponential factor by introducing a priority queue
to determine the next node to visit in each step. This claim was confirmed
by the time measurements taken while computing the healthiest (Figure 6.3)
and the shortest paths between 100 locations from the dataset displayed in
Figure 6.1.

6.4 Bidirectional Search using Dijkstra’s Algorithm

After introducing the implementation of Dijkstra’s algorithm using a prior-
ity queue, it was claimed that the shortest path search could be further sped
by using the algorithm in a bidirectional search, that alternatingly searches
from source and target. Intuitively this result was already illustrated in Fig-
ures 3.1 and 3.2, that showed that the bidirectional search needs to visit less
nodes during a shortest path search than the unidirectional search. How-
ever, the bidirectional search also introduces additional overhead, because it
needs to allocate memory for two unidirectional searches and needs to syn-

27

6. Results

0 2 4 6 8 10 12
Linear distance [km]

0

100

200

300

400

500

600

Ti
m

e
[m

s]

Unidirectional

Bidirectional

(a) Healthiest path computation time.

0 2 4 6 8 10 12
Linear distance [km]

0

100

200

300

400

500

600

Ti
m

e
[m

s]

Unidirectional

Bidirectional

(b) Shortest path computation time.

Figure 6.4: Compares the execution times of the priority queue implementation of Dijkstra’s
algorithm, with the execution times of its bidirectional variant for 1000 randomly distributed
coordinate pairs in Zurich. The average computation time of the healthiest path (a) was brought
down from 290ms to 170ms, the average computation time for the shortest path (b) from 283ms
to 196ms.

28

6.5. Performance Improvements on Android

0 2 4 6 8 10 12
Linear distance [km]

0

100

200

300

400

500

Ti
m

e
[m

s]

Not Optimized

Optimized

Figure 6.5: Compares the execution times of the priority queue implementation of Dijkstra’s
algorithm, with the execution times of its bidirectional variant for 1000 randomly distributed
coordinate pairs in Zurich.

chronize between both searches, in order to achieve an optimal termination
criterion.

Nevertheless, as shown in Figure 6.4, the bidirectional search performed bet-
ter than the unidirectional search by a constant factor during 1000 executions
between the points from our dataset, decreasing the average computation
time from 290ms to 170ms for the health-optimal paths and from 283ms to
196ms for the shortest paths.

Additionally to the theoretical proof outlined in Section 3.3 the optimality
of the bidirectional search was empirically verified by direct comparison to
the results obtained by the unidirectional search.

6.5 Performance Improvements on Android

There are a few differences between Dalvik, the Android JVM1, and other
JVMs. Two of those had a particular impact on the performance of the
shortest path algorithms implemented in this project:

1Java Virtual Machine

29

6. Results

Internal Setters and Getters. In object oriented programming languages,
it is common practice to access internal fields through setter and getter meth-
ods (e.g. int s = getSize() rather than: int s = this.size()), because
it has various advantages for the developer, some of which are centralized
access control, easier debugging or more flexibility through sub-classing.

In native languages, such as C++, such methods get simply inlined at compi-
lation time and therefore do not introduce any overhead at run-time. In stan-
dard JVMs, the inlining is usually performed by the Just In Time-compiler
(JIT), a feature which is however not available in Dalvik. Therefore, accord-
ing to the official Android documentation2, direct field access is about three
times faster than invoking a trivial getter-method.

Enhanced Loop Syntax. When iterating over an array A[] a in the follow-
ing way: for (int i = 0; i < a.length; i++) {...}, Dalvik, not having
a JIT, does not cache the length of the array and therefore needs to query it
at every iteration step. This can be avoided using the enhanced loop syntax:
for (A element : a){...}, which again makes to loop about three times
faster.

Figure 6.5 shows the performance improvement achieved by taking into ac-
count the aforementioned performance tips.

6.6 Pollution and Distance Scores

Running the shortest path algorithm on the test data showed, that the aver-
age healthiest path in Zurich has approximately 6.5% less pollution exposure
and is approximately 489m longer, than its corresponding shortest path.

The scores for the healthiest and the shortest paths are displayed in Figure
6.6. The fact, that no shortest path has a lower pollution than the healthiest
path and the fact, that no healthiest path is shorter than a shortest path,
suggest that the bidirectional search was implemented correctly and gives
optimal results.

2http://developer.android.com/training/articles/perf-tips.html

30

http://developer.android.com/training/articles/perf-tips.html

6.6. Pollution and Distance Scores

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Healthiest Paths [particles
cm3] ×108

0.0

0.5

1.0

1.5

2.0

Sh
or

te
st

Pa
th

s

[pa
rt

ic
le

s
cm

3
]

×108

(a) Pollution scores.

0 5 10 15 20
Healthiest Paths [km]

0

2

4

6

8

10

12

14

16

Sh
or

te
st

Pa
th

s
[k

m
]

(b) Distance scores.

Figure 6.6: Compares the pollution and the distances of the healthiest and the shortest paths.

31

Chapter 7

Conclusions and Outlook

In this project we proposed a combination of the kd-tree nearest neighbour
search and the bidirectional shortest path search using Dijkstra’s algorithm
enhanced by a priority queue in order to solve the problem of health optimal
routing on the limited hardware resource provided by a smart phone.

The implementation of this approach into a working smart phone applica-
tion for Android has proven its quality, reducing the average computation
time for a health-optimal path in the city of Zurich to 170ms.

Particular attention was also posed to the efficient implementation of the
graph, which in the case of Zurich can be stored into a file of approximately
3.1MB size and loaded into memory by the application in around 2.3 seconds
on average.

The final application is ready to be distributed through the Google Play
Store, but leaves room for further development: While at the moment the
road-graph is deployed as part of the application and has to be updated
together with the latter, it would be advantageous to de-couple the deploy-
ment of the graph data from the deployment of the application. This should
be a quite easy task to achieve, especially given the contained size of the
graph-file, and will enable users to profit from the high temporal resolution
offered by the data gathered in the OpenSense project.

33

Appendix A

Dijkstra’s Algorithm

This appendix contains the pseudo-code implementation of a few methods
which were omitted in chapter 2.

Algorithm 6 Function to initialize S, Q, Φ and P
function initialize(G, s)

S← ∅ . Initially, set of visited nodes is empty
for all vi ∈ V do

if vi 6= s then
Φ(vi)← ∞ . Initially, distance from source is ∞

else
Φ(si)← 0

end if
P(vi)← null . Initially, all previous nodes are null
Q← Q ∪ {vi} . Add all nodes to set of unvisited nodes

end for
end function

35

A. Dijkstra’s Algorithm

Algorithm 7 Function to extract closest unvisited node from Q assuming a
naive implementation of Q as array- or linked-list.

function get-min(Q)
dmin := ∞
vclosest := null
for all Nodes vi ∈ Q do

if dmin ≤ Φ(vi) then
dmin ← Φ(vi)
vclosest ← vi

end if
end for
Q← Q \ {vclosest}
return vclosest

end function

36

Bibliography

[1] WHO, “Review of evidence on health aspects of air pollution – REVI-
HAAP project: final technical report,” 2013.

[2] D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, T. Arn, J. Beu-
tel, and L. Thiele, “Deriving High-Resolution Urban Air Pollution Maps
Using Mobile Sensor Nodes.,” Journal of Pervasive and Mobile Computing,
Elsevier, 2015.

[3] T. Arn, Healthy Navigation. Semester thesis, ETH Zurich, 2014.

[4] S. S. Skiena, The Algorithm Design Manual. London: Springer London,
2008.

[5] J. H. Freidman, J. L. Bentley, and R. A. Finkel, “An Algorithm for Find-
ing Best Matches in Logarithmic Expected Time,” ACM Transactions on
Mathematical Software, vol. 3, pp. 209–226, Sept. 1977.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to algo-
rithms. 2001.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, Dec. 1959.

[8] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” Journal of the ACM, vol. 34,
pp. 596–615, July 1987.

[9] T. Ikeda, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Ten-
moku, and K. Mitoh, “A fast algorithm for finding better routes by AI
search techniques,” in Proceedings of VNIS’94 - 1994 Vehicle Navigation
and Information Systems Conference, pp. 291–296, IEEE.

37

Bibliography

[10] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory,” pp. 156–165, Jan. 2005.

38

