m Institut fur
. . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Semester Thesis
at the Department of Information Technology
and Electrical Engineering

A DAL backend for the Parallella platform

AS 2014

Dominik Bohi

Advisors: Andreas Tretter
Lars Schor
Professor: Prof. Dr. Lothar Thiele

Zurich
23rd January 2015

Abstract

To satisfy the need for increased performance, embedded systems are getting
more complex and more intregraded. The trend is to integrate multiple cores
on the same chip. These systems offer increased performance, but are harder
to program.

The Parallella platfrom. produced by Adapteva, is an example of such a
system which contains a chip containing 16 cores. To offer an easier way of
programming such a system, this thesis presents a new backend for the Dis-
tributed Application Layer (DAL), a software framework for the development
of parallel applications. This backends allows the execution of applications
developed using DAL on the Parallella.

— III —

IV —

Acknowledgements

First of all, I would like to thank Prof. Dr. Lothar Thiele for giving me the
opportunity to write this thesis in his research group.

I would also like to thank my advisors, Andreas Tretter and Lars Schor, for
their invaluable support during this thesis. They always had time to answer
my questions, and were a big help in making in this thesis possible.

— VI —

2 Background|

Contents

|A List of Acronyms|

B P ron STides

— VII —

13
13

17
17
17

19

21

— VIII —

List of Figures

2.1 Example of a Kahn process network with 4 processes and 4 |

channelsl 6
4.1 KPN for a FIR filter with order 14! 14
4.2 Achieved speedup for a FIR filter with order 14| 15

Introduction

1.1 Motivation

To satisfy the demand for increasing computing performance, processor de-
signs are getting more complex and more integrated. In the world of embed-
ded systems, the current trend is to increase the number of cores integrated
in the same chip, and to combine different architectures. These systems offer
increased computing power, but are also harder to program.

One way to offer a better experience to developers is to abstract away the
low level details of the platform. An interesting approach for this is the
use of process networks to specify parallel applications, where an application
is designed as a set of processes connected with FIFO (first-in, first-out)
channels. A supporting software framework is then responsible for compiling
and running such an application on the actual hardware, and providing the
necessary communication methods. The distributed application layer (DAL),
developed at ETH Zurich, is an example of such a system. There are already
backends for a number of systems, such as the Intel Xeon Phi, OpenCL
capable devices, and the Intel SCC.

However, these systems are not very portable and usually not designed with
power efficieny as a main goal. The Epiphany is a new architecture designed
by Adapteva Inc. with the goal to provide a power efficient manycore archi-
tecture. To raise interest in the architecture, Adapteva raised funds using
Kickstarter to produce the open-source Parallella board, which combines a
16-core Epiphany chip with the Xilinx Zynq chip to produce a credit-card

CHAPTER 1. INTRODUCTION

sized computing platform similar to the popular Raspberry Pi.

This thesis presents a new backend for DAL with the capability to run DAL
applications on the Parallella.

1.2 Contributions

e A new backend for DAL is presented, which enables the execution of
DAL applications on the Parallella.

e Using existing benchmark applications for DAL, we offer an inital eval-
uation of the backend.

1.3 Related Work

Most of the existing work discussing the Parallella is focussed on the perfo-
mance characteristics or the power consumption of the platform. There is
only one paper which looks at code generation for the Parallella.

In [1], a code generation framework for applications written using the CAL
actor language is presented and its output compared to applications hand-
written for the Epiphany. Their results show that auto-generated code is
able to achieve comparable perfomance, while requiring significantly less code
lines to be written. This work is similar to ours, with the biggest difference
to our work lying in the specification of the original program, which is done
using Kahn process networks and a finite state machine in DAL, and the
added capabilites of DAL to change active applications during runtime.

A performance analysis of the 64 core Epiphany chip is done in [2], using
microbenchmarks to analyse the performance characteristics of individual
compomenents, and discussing the implementation of different algorithms.
Especially mentioned is the problem of the limited memory size, which re-
quires finetuning an application to make optimal use of the Epiphany.

There is also a set of papers looking at the possibility of using the Epiphany
to save Energy: [3] looking at compiler options, and [4] and [5] discussing
power saving opportunies for specific problems.

1.4 Outline

Chapter 2 will describe Kahn process networks, how they are used in DAL
to allow efficient development of parallel applications, and the Parallella
platform. In chapter 3, the main challenges for running DAL applications

1.4. OUTLINE

on the Epiphany and the proposed solutions are presented. The results of
running a sample DAL application on the Parallella are shown in chapter 4.
Finally, the achieved work is summarised and possibilities for improvements
are discussed in chapter 5.

CHAPTER 1.

INTRODUCTION

Background

This chapter will introduce the Kahn process networks used to specify appli-
cations which are executed by DAL, and give an overview over the Parallella
platform.

2.1 Kahn Process Networks

Kahn process networks (KPNs) [6] are a method to specify parallel applica-
tions. They consist of a set of processes connected using one way channels,
which are the only method for processeses to communicate with each other.
Figure shows a simple KPN. The channels have infinite capacity, which
means that a process can always send a message over a channel. When a
process decides to read from a channel, however, it has to wait until data
is available. It cannot check whether there is data available before reading.
This leads to an important property of KPNs, namely that the execution is
deterministic and only depends on the input itself, and not on the time of
arrival of the input.

2.2 DAL Framework

The DAL [7] is a software development framework which allows the devel-
opmenent of distributed applications specified as KPNs, and the ability to
map these applications onto different hardware platforms and execute them.

CHAPTER 2. BACKGROUND

Figure 2.1: Example of a Kahn process network with 4 processes and 4
channels

A single application for DAL consists of a Kahn process network, specified
as an XML-File, which describes the connections between the individual
processes, and the source code of these processes. A process for a DAL
application has to implement three functions, an nit function, which is used
to initialize the process on startup, a fire function, which is the main part of
a process and is continuously executed during the run time of the process,
and a finish function, which can be used to clean up ressources when the
process is shut down.

To create executable source code for the target platform, a mapping from
processes to actual hardware resources has to be specified. Using this map-
ping, DAL is used to create wrapper code for the processes which allows them
to be compiled and executed on the target platform. This wrapper code also
ensures that the correct library functions are used when the processes use
the channels to communicate.

To manage the startup of the individual processes and to setup the commu-
nication channel, DAL also creates an additional controller application. This
application consists of multiple processes, which are hierarchically organised.
A main process is responsible for overall coordination, and several slave pro-
cesses are created to manage the actual processes. In a typical architecture,
one slave process is responsible for a related group of processors. Chapter
will discuss how the controller for the Epiphany is implemented.

2.3 Parallella

The Parallella is a new credit-card sized computing platform designed and
sold by Adapteva Inc. [§]. It was developed with funds raised by a Kick-
starter campaign in 2012, with the goal to provide an open-source platform
to raise interest in their Epiphany chip architecture and start a software-
ecosystem.

The Epiphany is an energy-efficient manycore architecture with floating point
support. This makes it especially suitable for streaming applications like

2.3. PARALLELLA

radar signal processing or audio filtering. Current versions support up to 64
cores, and there are plans to create versions with up to 1024 cores [9).

The Parallella model P1602 used in this project consists of a Zynq Dual-Core
ARM A9 processor with an integrated FPGA, manufactured by Xilinx, and
the 16-core Epiphany chip E16G301 [10], together with 1 GB of external
SDRAM, which is shared between the ARM processor and the Epiphany.

The ARM processor is the main processor of the system, and responsible for
all I/O functions and for programming the Epiphany chip. It runs a Linux
OS provided by Adapteva which includes the necessary driver and SDK to
use the Epiphany chip.

The integrated FPGA is used for communication between the ARM core
and the Epiphany chip. It allows direct write access from the ARM core to
the memory of the Epiphany, and is also responsible for access to the shared
DRAM from the Epiphany.

The Epiphany contains multiple RISC cores arranged in a grid and connected
using a network on chip (NoC). The version used in this projects contains 16
cores, arranged in a four by four grid. Samples of an epiphany chip with 64
exist, and the architecture allows for up to 1024 cores on the same chip [9].
It is also possible to transparently connect multiple Epiphany chips, and use
them in the same way as a single chip with the equivalent amount of cores.

Each individual processing core on the Epiphany counsists of a eCore CPU
s upporting the Epiphany Instruction set, 32 kB of local memory, a DMA
engine and an interface to the network on chip.

The eCore CPU is a 32-bit RISC architecture which contains an integer
arithmetic unit, a floating point unit, and a 64 word register file. It runs
at a frequency of 600 MHz, has a variable length instruction pipeline and is
able to issue two instructions simultaneously.

The DMA engine can be used to transfer data to other cores or to the shared
DRAM. It works at the same frequency as the eCore CPU, and can transfer
one 64-bit double word per second, enabling a sustained data transfer rate
of 8 GB/sec.

The Epiphany is a shared memory multiprocessor. The local memory of each
core is accessible using a global address, where the coordinates of the core
are encoded in the upper 12 bits of the address. The upper 6 bits are used
to encode the row, the lower 6 bits to encode the column. In addition, each
core can access its local memory using a local address, where these upper 12
bits are set to zero.

To access memory on other cores, the memory accesses are done using the
network-on-chip. The Epiphany contains three seperate network-on-chips,
the rMesh for read requests, the cMesh for on-chip write requests, and the

— 7 —

CHAPTER 2. BACKGROUND

xMesh for off-chip write requests. These architecture favoures write requests,
since each read requires sending a read request and waiting for the answer,
whereas writes only have to be sent tot the destination.

Transactions on the mesh are routed according to their destination. First, a
packet gets routed east or west, and then, when it has arrived in the right
column, it gets routed north and south, until it arrives at the destination
node.

Parallella backend implementaion

This chapter describes the main part of this report, the design an implemen-
tation of a new backend for DAL with the capabilty to run DAL applications
on the Parallella platform.

As mentioned in the background section about DAL, the DAL backend is
responsible for providing the communication method between the individ-

ual processes. The next section will present the solution choosen for the
Parallella backend.

3.1 Communication between processes

Communication between processes in DAL applications is done using point-
to-point, one-way FIFO channels. These channels are setup in several stages.
First, each channel is installed. This generally means that memory for the
channel is allocated and necessary data structures are initialized. In a second
round, channels are linked to the correspondending ports of the processes.
The following sections will explain how this is achieved on the parallella.

3.1.1 Communication method

The FIFO channels are implemented using a simple ringbuffer, which is
placed in a memory location accessible by all processes which use the channel.

CHAPTER 3. PARALLELLA BACKEND IMPLEMENTAION

3.1.2 Installation

Channels which are ending at a process running on the Epihany are placed
in the local memory of the core where tise process is running. The reasoning
for this is the much higher write speed of the NoC on the Epiphany [§].
These channels are installed by the wrapper generated for processes running
on the Epiphany.

Communication from processes on the Epiphany to processes on the ARM is
done using FIFOs allocated in the shared memory. The allocation and setup
of these channels is done by the controller running on the ARM.

3.1.3 Linking of channels

After the channels are installed, they have to be linked to the corresponding
ports of the processes. This can only be done at runtime because the same
generated code is used for all active instances of a process, which means that
the channel details are not yet known at the time of code generation.

On the Parallella, linking is done in two steps. First, each process is sent
the channel ids of all its incoming and outgoing processes. This ungiue
channel ids are then used, together with the application id to look up the
actual location of the channel. A fixed location in shared memory is used to
exchange the addresses of these channels.

3.2 Code generation

This section describes the process of generating an executable for an Epiphany
core from the source code of a DAL process. Currently, there exists no oper-
ating system or library support for multihreading on a single Epiphany core,
which led us to the decision to only allow mapping of a single DAL process
onto one core.

The DAL Parallella backend will create a wrapper for each process which is
responsible for communication with the controller based on the ARM proces-
sor and for initialisation of the incoming channels. To allow communication
with the controller running on the ARM, a special FIFO is allocated. In
addition, the code is linked with the libraries implementing the DAL com-
munication functions.

The main problem during code generation is the limited amount of memory
available. The existing benchmarks for the DAL framework often assume
the availability of several megabytes of memory for a process, which is not
possible on the Epiphany without using the shared memory for code and

10 —

3.3. CONTROLLER

data, which greatly slows down an application. The wrapper allocates as
much variables as possible statically outside the main function, to help with
the detection of memory issues during compilation.

3.3 Controller

This section will describe the controller architecture choosen for the Paral-
lella backend. It is based on the controller for the backend for single processor
Linux systems. On the Parallella platform, one slave controller is responsible
for processes on the ARM, and one slave controller responsible for processes
on the Epiphany was choosen.

The Epiphany controller is running on the ARM processor, and not on an
Epiphany core. This is mainly due to the reason that a significant part of
the work of a controller is the ability to start and stop the processes of an
application. As the binaries for these processes have to be loaded from the
filesystem of the Linux system, it makes sense to run the controller as a
Linux thread, to allow it easy access to these binaries. An additional ability
is the possibility to reuse code from the controller for the Linux backend.

The controller responsible for the Epiphany uses functions provided by the
Epiphany SDK in version 5.13.09.10 to load the compiled code for a pro-
cess into the memory of the corresponding epiphany core, and starting the
processor.

It is also responsible for managing the shared memory and allocating space
for channels leading from the Epiphany to the ARM, and for linking channels
to the appropriate ports of processes.

After the processor has started, it is also responsible for sending control
messages to the process. This is done using an extra FIFO channel installed
for this purpose.

3.4 Limitations

The current implementation has several limits, some of which are due to
limits of the Epiphany platform, while others could be improved with future
work.

One of the main limitations of the Epiphany is the small amount of local
memory available to each processor. Applications written for DAL often as-
sume the availability of at least several megabytes of memory, which is not
the case on the Epiphany. The only solution, except rewriting the applica-
tion, is to place code and data in the shared memory. This is possible with

CHAPTER 3. PARALLELLA BACKEND IMPLEMENTAION

an adapted linker script, but reduces performance due to longer memory
access times. A future version of the Epiphany SDK will include a software
caching mechanism, which could help alleviate this problem.

The Epiphany SDK only includes a limited implementation of the C stan-
dard libraries, some functions (eg. erand48) are completely missing, while
other functions are only implemented for use with an attached debugger
(eg. printf). This leads to problems with DAL applications that need these
functions.

The generation of DAL events is currently not implemented for processes
running on the Epiphany. This could be implemented by installing an addi-
tional back channel for each process, which could be used to send an event
message to the controller.

Evaluation

This chapter will present an evaluation of the backend implemented in this
thesis. This was done using a FIR filter of order 15. The runtime of the
filter is compared to the runtime of a filter running on the ARM core, using
the Linux backend.

The FIR filter application contains 17 processes. Figure[.I|shows an overview
over the KPN. One process, the producer, is responsible for generation of
the input data. It will send the generated tokens to the first stage of the
actual filter, labeled F1. All stages of the filter are implemented using the
same process source code.

Each filter process has two input and two output channels. During each
execution of the fire function, the process reads one token each from all both
incoming channels, and sends out one token each over all outgoing channels.
The incoming token from input channel A is sent out unchanged over output
channel A. It is also is multiplied with the filter coefficient, which is randomly
generated during the process initialisation, added to the token from input
channel B, and then sent out over output channel B.

4.1 Speed up

In theory, using the Epiphany should lead to a speedup of 15, due to 15
simultaneous calculations. The achieved speedup is far lower, as can be
seen in figure[£.2] A posible explanation for this is the low amount of actual

13 —

CHAPTER 4. EVALUATION

O--0
MT

e

w

i Vs

D

g

Figure 4.1: KPN for a FIR filter with order 14

calculation done in each process. Most of the time executing this application
is spent transfering data between the cores. In addition to this, the transfer
sizes are very small, which means that the ability of the Epiphany Network on
Chip to transfer a double word in one clock cycle cannot really be exploited.

This evaluation shows that merely using additional processes does not au-
tomatically lead to a big speedup. Care has to be taken to also design the
program in a way exploits parallelity.

4.1. SPEED UP

Speedup

1000 10000

2
15
1
. l
0
10 100

Number of Samples

Figure 4.2: Achieved speedup for a FIR filter with order 14

15 —

CHAPTER 4. EVALUATION

16

Conclusion and Outlook

5.1 Conclusion

This semester thesis proposed to implement a DAL backend with the ability
to execute DAL applications on the Epiphany chip. To achieve this, the code
generation backend in DAL has been extended with the ability to create the
necessary wrapper code to execute a single DAL process on an Epiphany
core. Additional capabilities for the runtime controller have been developed,
which allow it to controll processes on the Epiphany. The necessary libraries
for communication between processes on the ARM and the Epiphany have
also been added.

5.2 Outlook

There are several possibilities to improve and extend the current implemen-
tation.

e The current implementation of the FIFOs used to communicate be-
tween processes does not use the DMA engine. Depending on the size
of the transfer, it could be worthwhile to use DMA to offload work
from the Epiphany processor and to increase transfer speed.

o Investigate new features in the Epiphany SDK. The next version of the
Epiphany SDK will provide software caching, where application code is

17—

CHAPTER 5. CONCLUSION AND OUTLOOK

placed in shared memory, but often used functions are automatically
cached in local memory. This could help with running applications
with larger memory requirements on the Epiphany.

18 —

List of Acronyms

DAL Distributed Application Layer. III
KPN Kahn process network. 5

NoC network on chip. 7

19 —

Acronyms

20

Presentation Slides

91 —

APPENDIX B. PRESENTATION SLIDES

22

Bibliography

[1] S. Savas, E. Gebrewahid, Z. Ul-Abdin, T. Nordstrom, and M. Yang,
“An evaluation of code generation of dataflow languages on manycore
architectures,” in EFmbedded and Real-Time Computing Systems and
Applications (RTCSA), 2014 IEEE 20th International Conference on.
IEEE, 2014, pp. 1-9.

[2] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell, “Programming
the adapteva epiphany 64-core network-on-chip coprocessor,” arXiv
preprint arXiv:1410.8772, 2014. |Online|. Available:
http://arxiv.org/abs/1410.8772

[3] J. Pallister, S. J. Hollis, and J. Bennett, “Identifying compiler options
to minimize energy consumption for embedded platforms,” The
Computer Journal, p. bxt129, 2013.

[4] K. Malvoni and J. Knezovic, “Are your passwords safe: energy-efficient
berypt cracking with low-cost parallel hardware,” in WOOT’14 8th
Useniz Workshop on Offensive Technologies Proceedings 23rd USENIX
Security Symposium, 2014.

[5] Z. Ul-Abdin, A. Ahlander, and B. Svensson, “Energy-efficient
synthetic-aperture radarprocessing on a manycore architecture,” in
Proceedings of the 42nd Annual International Conference on Parallel
Processing (ICPP-2013), 2013.

[6] K. Gilles, “The semantics of a simple language for parallel
programming,” in In Information Processing’74: Proceedings of the
IFIP Congress, vol. 74, 1974, pp. 471-475.

[7] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele,
“Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems,” in Proceedings of the 2012 international

conference on Compilers, architectures and synthesis for embedded
systems. ACM, 2012, pp. 71-80.

[8] Adapteva Inc., Epiphany Architecture Reference, March 2014, revision
14.03.11. [Online]. Available:
http://adapteva.com/docs/epiphany arch ref.pdf

93

http://arxiv.org/abs/1410.8772
http://adapteva.com/docs/epiphany_arch_ref.pdf

BIBLIOGRAPHY

[9] A. Olofsson, “A 1024-core 70 gflop/w floating point manycore
microprocessor,” 2011.

[10] Adapteva Inc., Parallella-1.z Reference Manual, September 2014, REV
14.09.09. [Online|. Available:
http://www.parallella.org/docs/parallellamanual.pdf

94 —

http://www.parallella.org/docs/parallella_manual.pdf

	Introduction
	Motivation
	Contributions
	Related Work
	Outline

	Background
	Kahn Process Networks
	DAL Framework
	Parallella

	Parallella backend implementaion
	Communication between processes
	Communication method
	Installation
	Linking of channels

	Code generation
	Controller
	Limitations

	Evaluation
	Speed up

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Acronyms
	Presentation Slides

