
Distributed
 Computing

A Smart Situational Reminder

Semester Thesis

Steffen Schmidt

steffsch@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zurich

Supervisors:

Barbara Keller, Jara Uitto

Prof. Dr. Roger Wattenhofer

January 12, 2015

Acknowledgements

At this point, I would like to thank my supervisors Barbara Keller and Jara
Uitto for their great support during the last 14 weeks.

Working on this thesis has been a great experience, not only, because I per-
sonally enjoy having a smart phone assistant now, who reminds me of important
events depending on my environment, but also, because it was a great opportu-
nity to dig deep into a very interesting area of engineering and computer science.

i

Abstract

Obliviousness is one of the few flaws in human nature, for which technology does
not yet provide a rather satisfactory solution. Current reminder systems for mo-
bile devices only offer reminders based on time or location, or only provide static
information, which is shown to the user upon request, leaving the discovery of an
almost forgotten event up to chance rather than reason. This thesis introduces
the notion of reminders, which are based on a user’s social surrounding. It also
covers combinations of these reminders with location and time based solutions.
In addition, it covers the establishment and use of a reminder community in order
to enable reminder push notifications, whenever they are really necessary, offer
the opportunity to share reminders between community members and embed the
new functionalities in already existing reminder solutions and infrastructures.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 1

1.2.1 Related Android Applications 1

1.2.2 Related Scientific Work 3

1.3 The Goal of this Thesis . 3

2 The SmartR Android Application 5

2.1 Registration . 5

2.2 The Main User Interface . 7

2.3 Managing Friendships . 7

2.4 Managing and Editing Wifi Zones 8

2.5 Adding Reminders . 11

2.5.1 Reminders Based on Physical Surrounding 11

2.5.2 Reminders Based on Social Surrounding 14

2.5.3 Reminders Based on Wifi Zones 14

2.5.4 Reminders Based on Geofences (Geographic Location) . . 16

2.6 Managing Reminders . 17

2.7 Reminder Retrieval . 18

2.8 Location Upload . 18

3 Reminder Architecture 20

3.1 General/ Shared Properties . 20

3.1.1 Reminder Parameters Shared by All Reminder Categories 20

iii

Contents iv

3.1.2 General Remarks on Reminder Retrieval 20

3.2 Reminders Based on Social or Physical Surrounding 22

3.2.1 Social Reminders . 22

3.2.2 Physical Surrounding Reminders 24

3.3 Reminders Based on Wifi Zones and Geofences 27

3.3.1 Wifi Zone Reminders . 27

3.3.2 Geofence Reminders . 29

3.3.3 Social Components for Wifi Zone and Geofence Based Re-
minders . 31

3.4 Reminder Sharing . 31

3.4.1 Use Cases . 32

4 Application Infrastructure Backbone 33

4.1 Data Storage . 33

4.1.1 Calendar Data Sets . 33

4.1.2 User Data Sets . 34

4.1.3 Local Data Sets . 35

4.2 Data Modification and User Authentication 35

4.2.1 User Authentication . 35

4.2.2 Modifying Calendar Data Sets 37

4.2.3 Retrieve Calendar Data Sets 37

4.2.4 Modifying and Retrieving User Data Sets 37

4.3 Embedment in Existing Infrastructure 38

5 SmartR Utility Structures 40

5.1 Location . 40

5.1.1 Location Data Storage . 40

5.1.2 Location Retrieval and Use 41

5.2 Friendship Structure . 41

5.3 Word Association . 42

5.4 Google Cloud Messaging . 42

5.5 Google Developers’ Console . 43

Contents v

6 Outlook and Conclusion 44

6.1 Future Work . 44

6.2 Conclusion . 45

Bibliography 46

Chapter 1

Introduction

1.1 Motivation

Remembering important events at the right time is a crucial skill for well-
functioning social systems. Disruptions in one’s private relationships can be
caused by such simple things as a forgotten birthday and personal schedules can
be completely messed up, if forgotten actions (such as shopping everyday goods
in the local supermarket) have to be caught up upon later, even though they
could have been conducted very easily at an earlier point in time (e.g. when the
given individual was waiting for the tram in front of a supermarket, anyway).

Therefore, there is a demand for applications, which simplify the current
solutions for setting up reminder assistance and triggering reminder notifications
not only based on a configured time or location, but rather based on the social
and physical environment at a given point in time.

1.2 Related Work

1.2.1 Related Android Applications

Google Now

Google Now[1] is Google’s solution for a digital personal assistant. It offers a
lot of information based on preconfigured settings upon opening the application,
such as stock price monitoring, sports events etc. In addition, it features re-
minders with time and location triggers, so that, for example, the user can be
reminded of his or her shopping duties, if he or she is near a supermarket. How-
ever, it neither allows direct reminder sharing via the Google Now application,
nor can social surroundings be taken into account.

1

1. Introduction 2

Geobells

Geobells[2] is an Android application that offers location based reminders. Not
only does it send push notifications, but it can also be configured to take certain
actions (e.g. muting the user’s phone) upon reaching a certain location. How-
ever, the reminders set in Geobells are not visible in the user’s Google Calendar
and reminder sharing and the combination with any other reminder type is not
possible.

Wifi Alarm

Wifi Alarm[3] offers its users the possibility to relate reminders to certain wifi
networks and therefore offers a way to provide location based reminders without
depending on the user’s location coordinates. Yet, it does not feature a wifi
categorization and therefore retrieving reminders on entering or leaving a certain
group of wifis is only possible upon configuring reminders for all of them. In
addition, wifi alarm reminders are also not visible in other calendars or reminder
systems.

Friend Reminder

Friend reminder[4] features location and time based reminders, which can be
connected to a friend’s name. Despite its name, however, it does not feature any
reminders based on a user’s social surrounding, therefore basically only adding
another piece of information for the user himself to the reminder, which could
have been also done with the standard Google Calendar application.

IFTTT

IFTTT[5] enables users to easily program the phone to conduct actions once
a certain event has occurred. Reminders based on location, time or events on
the web can be easily configured. It also enables users to share the so called
recipes which contain the if-then-else logics for these reminders. Again, reminders
based on the user’s social environment are not possible, and the large scope of
possible configurations makes it hard for users with non-technical background to
effectively use the offered functionalities.

Finde Meine Freunde

Finde meine Freunde[6] is not really a reminder application. However, it is the
application closest to an social environment aware application, since user’s have
the possibility to view their friends’ current position on a map and can get

1. Introduction 3

notifications, when their friends reach certain locations. In addition, location
based to-do lists can be shared among friends. Yet, it does not feature reminders
based on the social surrounding of a user. In addition, like all other presented
solutions it is not compatible with any other standard solution for calendars or
reminders offered in Android.

1.2.2 Related Scientific Work

In general, scientific work on situational reminders which has been conducted so
far focuses on two main fields.

The first one is to build systems that help people, suffering from diseases like
Alzheimer, to finish an activity successfully once they started it [7] or to build
reminder systems that help nursing elderly people [8].

The second main focus lies on using location information to remind users of
certain events. This work yielded outcomes that are very similar to the com-
mercial android applications, presented in Section 1.2.1. Some present enhanced
solutions, e.g. iReminder [9], which pushes reminders based on forecasted fu-
ture user locations or RemindU [10], which offers location based reminders and
enables cloud servers to trigger these reminders, while keeping the user location
secret to any third party (servers, etc.). In addition, NAMA [11], MemoClip
[12] and A location based task reminder for moblie users [13] present enhanced
solutions for location based reminders.

An exception is CybReminder [14], which has already been developed in 2000
and, in addition to location based reminders, also offers reminders based on user
co-location and enables reminder sharing. However, the system has been built
over a decade ago, prior to the smart phone era. Reminders need to be set using
a computer client and are pushed to users via SMS, printer or e-mail. Therefore
it is no a solution for today’s smart phone systems, since no Android or iOS
versions of CybReminder exist. In addition, nowadays, smart phone operating
systems provide means that enable developers to create reminder applications,
which are way more user friendly than CybReminder. However, one needs to
consider, that these means were not available at the time, when CybReminder
was created.

1.3 The Goal of this Thesis

As described above, applications and approaches for situational reminders have
already been deployed. However, the presented solutions for Android are all
limited to reminders based on physical surroundings and time and therefore,
social environments are not taken into account, when deciding whether or not
to remind the user. Using available information about friends surrounding the

1. Introduction 4

user can possibly lead to a reduced number of false positives and empower the
application to remind users of non-static events, that cannot be related to a
certain location, but rather to the proximity of a friend or peer. In addition,
none of the presented Android applications offers the opportunity to actually
cooperate with the user’s standard calendar, but rather establishes an individual
reminder environment of its own, leaving space for duplicates and inefficiencies.
Further reminders in current Android solutions cannot be shared with other
members of a reminder community, who seek to help each other by sharing
important reminders (with Finde meine Freunde being an exception here). This
thesis is an approach to combine the described, already known reminder methods
for Android with so far neglected social components, to enable a reminder sharing
community and to offer an environment designed to cooperate with calendar
solutions, which are already in use.

Chapter 2

The SmartR Android
Application

2.1 Registration

After having installed the SmartR Android Application, users are prompted to
choose a SmartR user name (Figure 2.1). The user then has to give SmartR
the right to manage her calendar information, in order to synchronize every
reminder set via SmartR with the Google Calendar of the Google account, with
which her Android smart phone is connected. If two or more Google accounts
are connected with the respective android phone, the user has to choose, which
one she would like to use in combination with SmartR (Figure 2.4). Important :
Please note that SmartR always uses the calendar on the user’s Google account,
labelled as primary, which is also the default label for the first calendar used on
a Google Account. In case a user does not have a calendar with this label, she
needs to create one in her Google account. However, this should only happen
rarely, since very few users decide to alter the standard configuration as far as
calendar names are concerned.

In case, the chosen user name is already taken, a pop-up window appears
informing the user about this problem. Users can then change their selected
user name by pressing Create/update Account (Figure 2.3).

In case, the Google Play Services, which are needed for the location retrieval
and geofencing functionalities of the SmartR Android application, are not up to
date, a dialogue appears, prompting the user to update the phone’s play service
application (Figure 2.4). After having conducted this step, the whole registration
procedure has to be repeated. Again, this is achieved by pressing Create/update
Account.

After the user registered without any complaint dialogues appearing on your
screen, the user profile has been set-up and the application can be used. Via the
Go to main menu option, users are led to the main user interface of SmartR.

Users are not able to go beyond the registration process interface (e.g. open

5

2. The SmartR Android Application 6

the main user interface), as long as they are not registered.

Figure 2.1: Dialogue
to specify the SmartR
Username

Figure 2.2: Prompt to
update Google play ser-
vices with direct link

Figure 2.3: Notification
of user name unavail-
ability

Figure 2.4: Prompt
to choose one of the
Google account

2. The SmartR Android Application 7

2.2 The Main User Interface

In the main user interface (Figure 2.5), which is shown upon opening the applica-
tion (if the user is already registered), the user is presented with several options
that represent the core functionalities (adding and editing reminders as well as
retrieving reminders) and auxiliary configuration options, which are needed for
the evaluation of a situation (e.g. friendship relations, location, wifi-options).
The following sections will give an introduction on how to use the main func-
tionalities of SmartR and how they can be accessed from the main user interface.

Figure 2.5: SmartR main user interface

2.3 Managing Friendships

Since SmartR offers reminders based on the social surrounding in addition to
location, POI and wifi-zone based reminders, it makes sense to connect to some
other members (e.g. family, friends) of the SmartR community in order to use
this functionality properly.

This can be done by choosing the Search for Friends option in the main
user interface. This allows users to search for a friend by entering her respective
SmartR user name. Search results are shown below the input upon their receipt
(Figure 2.6). Upon clicking onto a found name, a dialogue appears asking if the
user would like to add this SmartR community member as a friend. If a friend
request has already been sent by the searching user or the user is already friends
with this member, she is told so and no further actions can be taken. Existing
friendships and friend requests can be edited using the Buddy overview (Figure
2.8), at which we will have a closer look at in a moment.

In case no friendship exists, no friend request has been sent by the user yet,
and the user decides to request or answer a friendship, a window with options
to specify and characterize the friendship from your side opens (Figure 2.7).
The characterisation parameters are the buddy level, which specifies depth of

2. The SmartR Android Application 8

Figure 2.6: User inter-
face for searching mem-
bers of the SmartR com-
munity

Figure 2.7: User in-
terface for specifying
friendship characteris-
tics

the friendship, the buddy type, which is an informal textual description of the
nature of your friendship and the number and name of different buddy groups,
which embed the friendship into a larger social context. In addition, the user has
the possibility to specify whether the given friendship is visible to other SmartR
members, however, this parameter is not yet quite meaningful, since currently
friendships are not visible to anyone but the two concerned friends in SmartR.

Users can add buddy groups by choosing the Add Group option, which ap-
pears, when clicking on the Buddy Group Spinner. A dialogue appears prompting
to give a name to the new buddy group (Figure 2.9). Upon clicking OK, the
buddy group is created and added to your local memory. Buddy group member-
ships are saved in the SmartR MYSQL database, which is discussed later on in
this thesis.

After submitting a friend request, the given request can be monitored and
edited in the buddy overview (Figure 2.8).

2.4 Managing and Editing Wifi Zones

SmartR also features reminders which are based on wifi zones, meaning that
those reminders are pushed to the user, once she enters or leaves a zone, in

2. The SmartR Android Application 9

Figure 2.8: Overview
over friendships and
friend requests

Figure 2.9: Dialogue for
creating a new buddy
group

which a wifi network with the specified SSID is available. In order to enable
this service, wifis have to be added to a list of relevant wifis and associated to a
wifi group. This is done by choosing the Configure App option in the main user
interface and then pressing Stationary Wifis in the newly opened window (Figure
2.10). The user then gets presented a dialogue, which offers her the possibility
to choose a wifi network SSID from the ones, which are within her reach or to
type the SSID of the wifi network she would like to add, manually (Figure 2.11).

In case the user decides to take the Choose option, she can select the desired
wifi network SSID from a spinner and then has to assign it to a wifi group (Figure
2.13). In case the Type option is chosen, the user types the wifi network SSID
manually and then, allocates a wifi group to this SSID (Figure 2.12). Pressing
the Add Wifi to list button will add this SSID-wifi group pair to the list of known
pairs and can be chosen later, when creating a reminder based on wifi zones.

In addition, users have the possibility to view all existing SSID-wifi category
pairs via the Show Wifi groups button and to clear all existing pairs with the
RESET button.

2. The SmartR Android Application 10

Figure 2.10: App con-
figuration user interface

Figure 2.11: User can
choose different options
for adding wifis

Figure 2.12: Wifi
setting user interface
Choose option

Figure 2.13: Wifi set-
ting user interface Type
option

2. The SmartR Android Application 11

2.5 Adding Reminders

Pressing the Add reminder button in the SmartR main user interface, opens a
dialogue, asking the user which type of reminder she would like to add. The user
has the possibility to choose between reminders based on physical surrounding
(i.e. POI (point of interest) based reminders), social surrounding, wifi zones and
geofences (i.e. geographic locations with a specified radius around them). Please
consult Figure 2.14 for a screen shot of the reminder option dialogue.

Figure 2.14: Reminder options

2.5.1 Reminders Based on Physical Surrounding

Reminders based on physical surrounding (Figure 2.15) feature the possibility
to specify a description and a venue, which are not directly used to evaluate
whether a reminder should be triggered or not and therefore can be left blank
(which of course does not make too much sense in the case of the description). In
addition, there is the possibility to specify a radius, which will be used to search
for relevant POIs around the user. This radius marks the border of the circle
around the user, in which POIs should be searched. After this, an expiration
date or a time frame (start and end date) for the given reminder can be specified
(see Figure 2.16 for the a user interface screen shot, in case the time frame option
was chosen). Based on which case is chosen, the reminder is only evaluated, if
the evaluation takes place before the expiration date, or within the specified
time frame. Users then have to choose a reminder type, which specifies the kind
of POI that should trigger a reminder. At first, a general category (e.g. public
transport, daily goods shopping, etc.) is chosen. Following this, a second spinner
(field from which to choose an option), appears with more specific options based
on the more general type selection. The chosen detailed type will be used in
the reminder evaluation process to check for relevant POIs around the user’s
location.

The reminder could now be submitted, unless the user would like to add

2. The SmartR Android Application 12

a social component. Choosing this option (Figure 2.17) enables the reminder
to also be aware of a user’s social surrounding and take it into account, when
SmartR assesses whether or not to trigger a reminder notification. The user has
the opportunity to either specify one or several buddy groups and buddy level, add
one or more buddies directly or to do both. These parameters define, which social
surrounding is necessary to trigger a push notification for a given reminder. If the
user chooses to specify a buddy group, she needs to also indicate a buddy level. At
the time of evaluation, all members of a buddy group specified in the evaluated
reminder, who have a lower buddy level than the one stated in the evaluated
reminder are not considered for assessing a user’s social surrounding. Buddies
that have been added directly by the user, are always taken into consideration at
evaluation time, so there is no need to specify a buddy level, if a user exclusively
chooses this option. Additionally, users can set a social reminder radius. This
radius specifies the area around a user, in which friends have to be located in
order to be seen as relevant for triggering the reminder. The default value of
this field is set to 100 meters.

Once a reminder has been submitted, users have the possibility to share the
reminder with some of their friends, if they wish. They can choose the friends,
they would like to share the reminder with, from the list of all SmartR friends
and add them to the list of friends, who are sent the reminder (Figure 2.18).

Important : In the reminder setting interface, every buddy or buddy group,
which has been chosen, is added to the list of parameters which are evaluated
later, no matter if the Add Buddy Group or Add another buddy buttons have
been pressed. When sharing reminders, you have to explicitly add friends to the
Sharing buddies so far list by pressing the Add Another Buddy button.

2. The SmartR Android Application 13

Figure 2.15: User inter-
face for setting physical
surrounding reminders

Figure 2.16: User inter-
face for setting physical
surrounding reminders
for time frame option

Figure 2.17: User inter-
face for setting physical
surrounding reminders
with social component

Figure 2.18: Reminder
sharing dialogue

2. The SmartR Android Application 14

2.5.2 Reminders Based on Social Surrounding

The procedure of adding reminders based on a user’s social surrounding (for the
user interface, please see Figure 2.19) is quite similar to the one for those based
on physical surrounding with the social component check box being checked.
The user interface, again, features fields for a reminder description, a venue
description, and the possibility to set a time frame or expiration date for the
reminder. Further, the configuration possibilities for buddy groups, the buddy
level, the social reminder radius and buddies are the same as for the physical
environment based reminders with a social component. In addition, users have
the same reminder sharing opportunities as with physical surrounding reminders.

Figure 2.19: Social reminder user interface

2.5.3 Reminders Based on Wifi Zones

For reminders based on wifi zones (Figure 2.20), the configuration process, again,
is very similar to that of physical surrounding reminders, as far as description,
venue, time settings and adding a social component is concerned.

However, users now have the possibility to specify a wifi group and whether
they would like to get reminded of an event when they leave or enter a wifi
network, which belongs to this group. Furthermore, upon choosing a wifi group,
a check box appears, giving users the opportunity to indicate whether they would
like not to get reminded, when they reach any wifi from a group, but only if they
enter one wifi network of this group (Figure 2.21 and Figure 2.22). This network
can be chosen from a spinner, which appears, once the Would you like to further
specify your wifi zone? checkbox is checked.

In case users enter the wifi zone reminder setting user interface for the first
time, a dialogue appears, informing users about the necessity to configure the list
of wifis known to the SmartR application and offering the opportunity to open
the application settings, in order to directly configure some SSID-wifi group pairs
(Figure 2.23).

2. The SmartR Android Application 15

Figure 2.20: Wifi zone
reminder user interface

Figure 2.21: Wifi zone
reminder filled in for
category only

Figure 2.22: Wifi zone
reminder filled in for
specific wifi network

Figure 2.23: Info dia-
logue for wifi configura-
tion

2. The SmartR Android Application 16

2.5.4 Reminders Based on Geofences (Geographic Location)

Again, the configuration process regarding description, time settings and adding
a social component are similar to the previously presented modes of reminders.

Reminders based on geofences additionally enable the user to specify a loca-
tion on the shown map and a radius around this location. The so defined area
is used to trigger reminders upon users entering or leaving it, based on which
option the user decided to choose in the user interface (Figure 2.24).

The shown map is initialized with the location that was last uploaded to the
SmartR database by the user’s phone. In case no locations have been uploaded
yet, the map is initialized to show the default value, which is the location of
ETH. User’s can easily navigate to their current location by tapping the button
in the upper right corner of the map.

When users enter the configuration interface for the first time, they are pre-
sented information, about which location settings should be enabled on their
phone and offered to either return (No, thanks), alter their settings (Open set-
tings) or indicate that they do not need (or want) to change anything and go on
(That’s already the case) (Figure 2.25).

Figure 2.24: Geofence
based reminder user in-
terface

Figure 2.25:
Information about
appropriate location
settings

2. The SmartR Android Application 17

2.6 Managing Reminders

After having added a reminder, users can view and edit their reminders by
simply choosing the View and edit reminders option in the main user interface.
Hereafter, a list of all reminders, whose start times are still in the future, is
presented (Figure 2.26) and clicking on one of the reminder titles, will open
the respective reminder configuration environment with the previously chosen
configuration. Users can then simply edit the previously made configurations,
update and re-share their reminders, if they wish to do so.

In addition, all reminders, which were added, edited or shared via the SmartR
Android application are also visible in any Google Calendar application on the
user’s smart phone and also on the internet, since SmartR uses Google Calendar
as container for its reminder data. Therefore, all changes made by the user to an
event via one of these applications, directly influence the evaluation of the altered
reminder event, once a SmartR evaluation process is initialized. Reminders can
also be shared via these interfaces, if the user prefers to do so. Figure 2.27 shows
the interface of the S Planner application, which comes pre-installed with the
phone’s Android OS. It can be seen, that the reminders set with SmartR are also
visible in this calendar environment.

Figure 2.26: SmartR re-
minder overview

Figure 2.27: Events
created with SmartR
shown in the S Planner
app

2. The SmartR Android Application 18

2.7 Reminder Retrieval

Now that the user has added and possibly edited her reminders, it stays to
explain how she can control and initiate the process of evaluating reminders.
This procedure differs a bit between different kinds of reminders. The wifi zone
and geofence based reminders are always triggered, when the specified conditions
are met and the application is running in the fore- or background, even if they
contain a social component.

In case of the social reminders and physical surrounding reminders, the user
has the choice to either directly check for current situational reminders by press-
ing the Get situational reminders button or to be presented with a reminder when
the app deems appropriate by checking the Continuously retrieve reminder infor-
mation check box in SmartR’s main user interface (Figure 2.5). For the second
option, the SmartR Android application regularly polls the server back-bone for
its analysis of the current situation (more on this later).

The user can set the polling interval by pressing the Configure App button,
choose an interval on the shown spinner and then pressing the Submit interval
button (Figure 2.28). The default polling interval is set to one minute.

Figure 2.28: SmartR app configuration interface; use spinner to alter polling
interval

2.8 Location Upload

Users have three possibilities to upload their current location onto the SmartR
database. First of all, they can choose the Upload current location option in the
main user interface, which triggers the upload of the current location. Secondly,
the Continuously broadcast location check box can be checked, which tells the
SmartR Android application to upload the current geographic position every
minute. Last but not least, if the Continuously retrieve reminder information
check box is checked, with every call to the server back-bone for a reminder

2. The SmartR Android Application 19

evaluation, the current location is also added to the SmartR MYSQL database.

Chapter 3

Reminder Architecture

The key part of SmartR are the reminders, which can be set using the SmartR
Android application. SmartR offers four basic reminder options: Social envi-
ronment reminders, physical environment reminders, wifi-zone reminders and
geofencing reminders. SmartR enables users to combine any of the non-social
environment reminders with a social environment reminder.

3.1 General/ Shared Properties

3.1.1 Reminder Parameters Shared by All Reminder Categories

Even though the presented reminder options are evaluated quite differently, they
all share certain parameters, which are enlisted and described in Table 3.1.

Reminders are stored as a Google Calendar Event. Parameters, which are not
directly supported by these Events, are saved in a JSON-String in the descrip-
tion field of the respective Event. This makes it possible to create a key-value
mappings upon receiving a request to analyse an event.

It is important to notice that the description field in the SmartR reminder
configuration user interfaces equals the summary or title fields in the Google
Calendar Event, since the description field is already used to store the SmartR
reminder parameters for future evaluations.

3.1.2 General Remarks on Reminder Retrieval

Before the actual evaluation process of the relation between the current user
environment and a previously configured reminder takes place, it is verified that
either the expiration date of a reminder has not been passed or that the current
time lies in the time frame, which the user configured upon submitting the re-
minder. Which of these constraints are assessed depends on whether or not the
time frame set field is set to true.

20

3. Reminder Architecture 21

Reminder category Contains the category description
of a reminder (e.g. geofencing, wifi

zone, etc.), to enable a correct
decision, on what to evaluate

Time frame set Contains true or false based on
whether the reminder should be
evaluated only within a certain
time frame or only before an

expiration date specified by the
user

Social component Contains true or false based on
whether the reminder is also

evaluated based on the user’s social
environment in addition to another
reminder modus; please note that
for reminders solely based on the

social environment, this field is set
to false, since the need for social
surrounding evaluation is already

indicated by the reminder category
in this case

Table 3.1: Reminder parameters shared by all reminder categories

3. Reminder Architecture 22

3.2 Reminders Based on Social or Physical Surround-
ing

The triggering process for evaluating reminders based on social or physical sur-
rounding starts on the user’s smart phone by either turning on the polling func-
tionality with a certain polling frequency or choosing to directly retrieve all
currently relevant situational reminders. Since the evaluation of these reminders
needs data from the SmartR MYSQL database anyway, which is accessed through
the SmartR server back-bone, it makes sense to perform the complete reminder
evaluation on the server in order to minimize computational effort (and thereby
battery usage) on the mobile device.

These two reminder categories also share the last reminder parameter, for
the detailed specification please see Table 3.2.

The last reminder parameter is used to be able to compare the current time,
to the last time, that this reminder has been triggered. This evaluation is nec-
essary, since users would receive the same reminder over and over again, if their
social or physical surrounding stays the same and they have checked the Con-
tinuously retrieve reminder information check box in the SmartR application’s
main user interface (Figure 2.5). At the moment, a reminder notification for so-
cial or physical surrounding reminders is only triggered, if a given reminder has
not been triggered for the last two hours. If the reminder has the last reminder
parameter set to -1 (value set, when initializing a reminder), the SmartR evalua-
tion process senses that the given reminder has never been triggered before and
continues with the evaluation process of the user’s surrounding.

Last reminder Contains the unix timestamp of the
last time, that the respective
reminder was triggered. It is
initialized with -1, when the

reminder is created.

Table 3.2: Social and physical surrounding shared reminder parameters

3.2.1 Social Reminders

The social environment visible to SmartR consists of a user’s friends who regu-
larly upload their location. The data structure described in Section 5.1.1 makes
it possible to quickly assess the user’s social environment.

3. Reminder Architecture 23

Social Reminder Parameters

Since the evaluation of social reminders needs internet connectivity, they are
directly uploaded into the Google Calendar cloud and are only visible in the
local calendar instance upon synchronization (which usually happens quickly
and automatically). Parameters exclusively used by social reminders, and their
respective use, are listed in Table 3.3.

Buddy groups JSON-String containing group(s) of
friends relevant for this reminder ;
a reminder is triggered, if one of

the group members with a sufficient
buddy level is near

Buddies JSON-String containing user ids of
friends relevant for this reminder; a

reminder is triggered, if one of
specified friends is near

Buddy level Scale from one to five; reminders
are only triggered, if the buddy

level of surrounding buddy group
members are higher than this level

Social radius Radius, defining the area around
the user’s geographic position, in

which friends need to be located in
order to be seen as near enough to

trigger a reminder. The default
value is one hundred meters.

Table 3.3: Social reminder parameters

Social Reminder Evaluation

Upon an evaluation request, the SmartR Server Backbone firstly assembles a list
of all friends that are relevant for triggering the reminder based on the submitted
list of buddies, buddy groups and the buddy level. Friends that have been directly
added to the list of buddies by the user for a given reminder, are always deemed
as relevant. Friends, who belong to a buddy group, which is contained in the list
of buddy groups for a given reminder, but whose friend level with the requester
is not above the one asked for by in the reminder’s buddy level parameter, are
not added to the list of relevant friends.

Thereafter, it is checked whether any of the relevant friends are within a
certain area of the requesting user. The social radius marks the edges of this
area. It is important to note that the social radius is actually not a radius, but

3. Reminder Architecture 24

rather indicates the edge length of a square, in which friends need to be located
in order to be considered close enough to trigger a social reminder. This is due
to the chosen data structure for storing user locations as described in Section
5.1.1. The process of retrieving surrounding friends is described in great detail
in Section 5.1.2.

Once a relevant friend has been spotted in the so marked surrounding area,
it is verified that the last location update by the requesting user and the last
location update by the relevant friend are at maximum five minutes apart, to
avoid triggering an outdated reminder, which would have been relevant and
correct some hours ago, when the relevant friend last updated her location. Since
the user location is always updated, when calling reminder evaluation requests
on the server, and it is also checked (for resiliency reasons) that the last user
location update is no older than five minutes, before even starting the evaluation,
this guarantees to trigger no false positives from time shift effects.

If there are relevant friends left after this filtering process, the user receives
a push notification which contains the names of the nearby SmartR friends and
the title of the reminder.

Use Cases

Possible use cases of social reminders range from being reminded that the friend
a user is about to meet has her birthday today, to being reminded that someone
the user still owes money is currently around, so that she has the possibility to
pay back her debt.

3.2.2 Physical Surrounding Reminders

Another important reminder type are physical surrounding reminders. These
reminders are triggered once a certain type of place is spotted near the user.
The search of nearby places is conducted via a nearby search, which is featured
by the Google Places API.

Google Places API

The Google Places API [15] enables developers to make use of Google’s database
on point of interests (POIs). These POIs are categorised according to Google’s
list of supported types for searches conducted with the Google Places API[16].
These categories equal the possible reminder types that the user can choose from
in the SmartR Android application, when configuring a reminder based on the
physical environment. SmartR uses the nearby search and place details requests
possible via this API to retrieve information on relevant POIs around the user
and to retrieve further information, once a POI has been chosen to be eligible to

3. Reminder Architecture 25

Reminder radius Specifies the radius around a user’s
last location, in which a nearby

search shall be conducted via the
Google Places API

Upper reminder type number Specifies the position of the chosen
general reminder type category,

within the list of general reminder
types, visible to the user in the

physical reminder user interface;
used to show the previously

configured general reminder type,
when the user opens a reminder for

editing

Detailed reminder type number Specifies the position of the chosen
detailed reminder type category,

within the list of detailed reminder
types, visible to the user in the

physical reminder user interface;
used to show the previously

configured detailed reminder type,
when the user opens a reminder for

editing

Reminder type Specifies the detailed reminder
type, for which a nearby search is

conducted; the reminder type
represents a value from the list of

supported place types in the
Google Places API [15]

Table 3.4: Physical reminder parameters

trigger a push notification, indicating the respective reminder to the user. This
information comes in JSON format and is parsed in the SmartR server back-bone
in the course of the evaluation process.

Physical Reminder Parameters

The physical reminder parameters are mainly used to conduct nearby searches
for the specified reminder type and to reconstruct the reminder setting view,
when the user wishes to edit an existing physical reminder. An overview can be
found in Table 3.4.

3. Reminder Architecture 26

Physical Reminder Evaluation

First of all, a Google Places nearby search is conducted for the user’s last up-
loaded location and the radius specified by the user (its default value in the
SmartR Android application is set to 100 meters), upon receiving a request to
evaluate a physical reminder. If the search delivers a set of possible results, it is
checked, whether the results contain an opening hours field, which features a field
open now, specifying whether or not a place is currently open. Unfortunately,
not all POIs, for which information on the opening hours would be interesting
and necessary to save the user from false positive reminder notifications, offer
this information. Therefore, at the moment, being close to these POIs might
trigger reminder notifications, even if they are currently closed.

A possible solution for this would be to assume these POIs to be open, if
the majority of places, discovered during the nearby search, who feature an
open now field have true assigned to this field. Otherwise, these results would
be assumed to be closed. Another possible solution would be to choose the
opening hours of the place with the most customer friendly (e.g. longest opening
hours), meaning that if one place has set the open now field to true, all places
without a opening hours field are assumed to be open, leading to a minimization
of false negatives. Of course the opposite decision of using the most customer
unfriendly opening hour policy would be possible, leading to a minimization of
false positives. However, this filter is not yet implemented, since, for now, the
given solution suffices for most use cases at the moment.

The opening hour evaluation is done by iterating through the result set,
returned by the nearby search in the order of the returned ranking and stopped
as soon as an open place is found.

After this, if there has been at least one result that has been found to be
open, the name and place id of the place are retrieved and a Google Places place
details request is performed, to retrieve website and address data for the relevant
place. The user is then sent a push notification containing the event title of the
triggered reminder, the name of the relevant place and its address.

Use Cases

Physical surrounding reminders can be used to remind users of their shopping
duties, whenever they pass a store, which fits these duties. In addition, these
reminders are rather convenient in foreign environments. Users could for example
specify that they need to draw some cash and wish to receive a reminder, if
an ATM is located in a certain area around them. As mentioned above, this
reminder will contain the address of the ATM, so that users can easily find it.
This makes the presented use case very attractive in foreign places, where the user
has no knowledge about the location of important infrastructure components.

3. Reminder Architecture 27

On in Contains whether a reminder is
triggered on entering an area (if set
to true) or on leaving it (if set to

false).

Table 3.5: Wifi zone and geofence shared reminder parameters

3.3 Reminders Based on Wifi Zones and Geofences

These two reminder options do not need any server support, when they are not
combined with a social surrounding reminder functionality. Therefore, they are
firstly stored locally in the user’s Google Calendar, and uploaded onto the cloud
in the next synchronization cycle between the users smart phone calendar and
the Google Calendar cloud. As in the case of social and physical surrounding
reminders, the parameters that can not be saved in fields of a Google Calendar
Event are stored using a JSON string in the description field of the respective
Google Calendar Event. These two types again share a parameter for evaluating
the necessity to trigger a reminder notification to the user. Further specifications
on this parameters can be found in Table 3.5.

3.3.1 Wifi Zone Reminders

Wifi zone reminders are triggered, if a user enters or leaves the area covered by
a specific wifi network. Users can specify whether reminders should depend on
a single wifi network or whether they would like to get reminded, when entering
or leaving a network from a group of networks.

Wifi Zone Reminder Parameters

In addition to the already mentioned shared parameters, reminders based on
wifi zones feature three further parameters to correctly evaluate whether or not
a reminder should be triggered and to enable a smooth reminder editing process
via SmartR for the user. For further documentation on these parameters, please
consult Table 3.6.

Wifi Zone Reminder Evaluation

SmartR periodically scans the environment for available wifi networks, when
it is running. In order to sense, whether there are wifi networks, which have
been added in the time between two scans, the SmartR Android application
updates a list of all available wifis everytime a wifi scan result is returned. Upon
receiving a new result of a wifi scan, SmartR compares the list from the previous

3. Reminder Architecture 28

Wifi zone Contains the SSID or the name of
the wifi group for which users
would like to receive reminders

Upper wifi zone number Contains the position of the chosen
wifi group in the spinner containing

the wifi groups

Detailed wifi zone number Contains the position of the chosen
wifi zone in case the user chose to

get reminded, when he enters a
specific wifi network

Table 3.6: Wifi zone reminder parameters

scan with the currently detected wifis. In this process, a list of wifis that have
been removed and one of wifis that have been added, is created. The broadcast
receiver (a class instantiation called when scan results are available) then calls
an intent service, which initiates the evaluation process, if the lists of removed
or added wifi networks contain at least one member.

Following this, the set of events saved in the users local Google Calendar
partition is retrieved and the time constraints are checked as described in Section
3.1.2. After that, the reminder category is retrieved and all reminders that do not
contain the keyword wifi zone in their reminder category, field are filtered out.
If a reminder survives this filter it is evaluated, whether the specific reminder
should be triggered on entering or leaving a wifi zone and the corresponding list
of relevant wifis is retrieved accordingly (the list of added wifis, in case the user
specified to be reminded on entering a zone and the list of removed wifis, in case
the user specified to be reminded on leaving a zone).

If the wifi zone or group specified in the reminder equals one of the zones
in the list of relevant wifis or one of the wifi groups, the relevant wifis belong
to, a notification is send to the user. However, if the field social component of
the reminder is set to true, the notification is not yet sent and an evaluation of
the social surrounding is started. If one of the social contacts specified in the
reminder is around the user, a the reminder notification is pushed to the user.
The evaluation of the social surrounding itself in the case of wifi zones is similar
to the assessment of pure social surrounding reminders and explained in further
depth in Section 3.3.3.

Use Cases

A possible use case for wifi-zone reminders is to be reminded of important house-
hold duties, like taking out the trash, or feeding a pet, upon leaving a HOME
wifi-zone. In addition, in combination with a social component, this reminder

3. Reminder Architecture 29

category could, for example, be employed to remind students of getting a coffee,
if the smart phones senses the wifi of the user’s favorite coffee shop (e.g. when
the user passes it on the street) and one of her friends from the buddy group with
the name coffee shop is around her.

3.3.2 Geofence Reminders

Geofence reminders are, very much like their wifi zone equivalents, triggered once
a user enters or leaves a previously defined geofence.

Geofences

Geofences are geographic constructs, which are based on a geographic position
and a radius around this position. Android offers an API [17] to register and
monitor geofences, meaning that it is possible for an application to implement
and register a service that is triggered by this API, if a user leaves or enters a
geofence. Geofences are registered with an expiration date, which in the case of
SmartR equals either the reminder’s end date or the reminder’s expiration date,
depending on whether or not the time frame set field is set to true. In addition,
each geofence is given an ID, which in the case of SmartR equals the title of the
corresponding Google Calendar Event, created upon the reminder submission.
At this point, please remember that the title of the Google Calendar Event equals
the description given by the user in one of the SmartR reminder configuration
user interfaces.

In addition, geofences are no longer monitored by the corresponding Google
API client, after the application, for which they where registered, is terminated
and need to be re-added to the Google API client responsible for monitoring
geofences. Therefore, geofence reminders only work, if the application is running
(either in the fore- or background) and the geofence data has to be stored locally,
in order to be able to re-add geofences, which have not yet passed their expiration
date/end date, to the Google API client, upon the re-start of the SmartR Android
application.

In addition, the SmartR Android application senses, whether a reminder
that has been shared with a user by a friend is based on a geofence and adds the
geofence needed for the shared reminder to the set of geofences monitored by
the Google API client. Along with adding the geofence, the Google API client
is given the specifics of the SmartR service handling the geofence transitions,
necessary to call it, once a transition happens. This service then deals with the
reminder evaluation.

3. Reminder Architecture 30

Radius Radius around the chosen
geographic position, which together
with this position defines the area

of the geofence

Table 3.7: Geofence reminder parameter

Geofence Reminder Parameters

In the special case of a geofence reminder, the coordinates of the chosen circle
center are not saved in the JSON string like all other parameters that are usually
not specified, when adding a normal Google Calendar Event entry, but instead
directly written into the location field of the respective event. Further details on
the only additional reminder parameter for geofence reminders can be found in
Table 3.7.

Important : Please note that the ID of the geofences registered together with
the reminders, which the depend on them, equals the title of these respective
reminders.

Geofence Reminder Evaluation

Every time a geofence is entered or left, the SmartR service, handling these
transitions, is called. This service then retrieves the ID of the geofence(s), which
triggered the intent service from the given intent and compares it to the ids of all
events which have geofencing specified as their reminder category. If there is a
match between the titles of the retrieved events in the calendar and the geofence
id, a notification containing the reminder information is pushed to the user.
However, again, if the social component field is set to true, the same restrictions
as for the reminders based on wifi zones to pushing the notification apply.

Use Cases

Geofence reminders can be employed similar to physical surrounding reminders,
however, they should be used for event reminders, which should not be triggered,
if a certain point of interest category is passed, but which are linked to a specific
place. For example, the case of a student, who wishes to be reminded to get
some coffee prior to joining a lecture in the morning fulfils these constraints.
Even better, in combination with a social component the user could be reminded
to grab some more cups of coffee, in order to serve the coffee wishes of her
co-students.

3. Reminder Architecture 31

3.3.3 Social Components for Wifi Zone and Geofence Based Re-
minders

In case wifi zone and geofence reminders have been complemented with a social
component, the SmartR Android application sends a request to the SmartR server
back-bone to assess the current social environment of the user. This request is
only sent for a given reminder, if all conditions for meeting the requirements
for notifying the user are satisfied, as far as the geofence or wifi zone compo-
nent of the reminder is concerned. In addition to the standard user information
(e.g. Google account name and registration ID of the device for Google Cloud
Messaging), which is sent to the server, when analysing social surrounding re-
minders, the title of the assessed reminder, the value of the on in variable and
the reminder category to which the given reminder belongs to, are uploaded.
The title is used to enable the server to retrieve the given event from the user’s
Google Calendar, in order to retrieve the social reminder parameters for this
reminder. Due to this, the SmartR Android application does not have to upload
the complete event data in order to enable evaluating the social surrounding of
the reminder. Thereafter, the same evaluation process as for reminders based
on social parameters applies (see Section 2.19). If a friend, who is relevant for
triggering the reminder, is sensed within the area of the user in by this process,
she is notified with a push notification. The on in variable and the reminder
category of the reminder, uploaded together with the request, are used to deter-
mine, which message to send to the user (e.g. informing the user about whether
she left a geofence or a wifi zone).

3.4 Reminder Sharing

Reminder sharing in SmartR is implemented using the possibility to add a list
of attendees to a Google Calendar Event. These attendees are identified within
the Google Calendar Event by their mail addresses associated with their Google
account. As shown in the user table section of Table 4.1, a users SmartR identity
consists of both, their unique SmartR user name and their Google Account e-
mail address in the user table of the SmartR MYSQL database. Due to the
bijective nature of this mapping (considering only the set of Google Accounts,
whose users are also SmartR users and knowing, that all e-mail addresses are
unique), the Google e-mail addresses of the friends, who have been added to the
list of recipients of the shared reminder, can be easily retrieved from their SmartR
names and then used to create an attendee object. This object is then added to
the list of attendees for the Google Calendar Event associated with the reminder.
Recipients can not only see the shared reminder in their SmartR application and
any other Android application using the user’s Google Calendar, but also receive
a notification e-mail with the specifics of the shared event, if this functionality is
turned on in their Google Calendar configuration. At the moment, receiving a

3. Reminder Architecture 32

shared reminder means that this reminder is automatically evaluated along with
all evaluations of the reminders set by the receiving party herself. In order to
stop the received reminder from being evaluated, users need to delete it via a
Google Calendar application.

3.4.1 Use Cases

Use cases for reminder sharing, include virtually all reminders with a social
component, where the sender would like the receiver to remember something,
when both parties are near to each other. This might be the case at a large
event like the Oktoberfest, where the sender, who is still on her way to one of the
tents, would like to share a reminder with a friend, who is already inside, that
reminds this friend of already ordering food and beverages, once the sender has
reached the outer layers of the festivity area.

Chapter 4

Application Infrastructure
Backbone

This section describes the data storage system, user authentication processes and
how SmartR is embedded into the existing calendar and reminder infrastructure
of the Google/Android system.

4.1 Data Storage

The data provided by users is stored in different environments. The decision on
where to store a piece of data depends on whether the specific piece contains
data of a calendar event (reminders), whether it contains information about the
user (e.g. location, friends,etc.), which is saved on the central SmartR MYSQL
database or whether data is only needed locally.

4.1.1 Calendar Data Sets

Definition 4.1 (Calendar data sets). Data sets, which specify characteristics
of an event for which the user has submitted a reminder via SmartR, are called
calendar data sets.

As already mentioned in Section 2.1, SmartR uses the Google Calendar within
the user’s account, which is labelled as primary. If no such calendar exists, the
user has to add a calendar with this label. This, however, has not been a problem
with test users so far, since primary is the default label given to the first calendar
created in a user’s Google Account and this setting is changed rather rarely by
users.

Calendar data sets are basically modified Google Calendar Events, which are
created once a reminder has been submitted and are automatically stored in the
users Google Calendar. These data sets contain characteristics, ranging from the
title of the event to the reminder type or friends, whose current location should

33

4. Application Infrastructure Backbone 34

Figure 4.1: SmartR database scheme

be taken into account when triggering a reminder. Characteristics, that will be
used by the SmartR server back-bone later, in order to evaluate, whether or not
a reminder should be triggered, are stored as a JSON string in the description
field of a Google Calendar Event. The user can update or change this data di-
rectly via the SmartR Android application or via the Google Calendar interface.
The use of Google Calendar Events also facilitates the implementation of the
reminder sharing functionality by using the existing Google Calendar infrastruc-
ture. In addition, users are offered a visible representation of the time and date
configurations of a given reminder within their standard Android calendar appli-
cation. For more information on available fields in a Google Calendar Event and
the Google Calendar API in general, please refer to the documentation listed in
the bibliography[18][19].

4.1.2 User Data Sets

Definition 4.2 (User data sets). Data sets, which contain specific information
about the user, which need to be known by the SmartR server back-bone and
are independent of any reminders that have been submitted, are called user data
sets.

User data sets are stored in a MYSQL database. These data sets range from
general user information like the user id and the user name over information
about current user locations to friendship relationships between various users.
This data is used to create a picture of the users current social and geographic
environment and can be updated by the user at any time via the SmartR Android

4. Application Infrastructure Backbone 35

application.

The SmartR MYSQL Database

The SmartR MYSQL database contains seven tables, which store user informa-
tion, needed for authentication and evaluating reminders. In addition, it covers
a table containing word associations. For further specifications of the SmartR
MYSQL database, please refer to Table 4.1.

4.1.3 Local Data Sets

Definition 4.3 (Internal data sets). Data sets, which contain information which
is only saved locally to enable services in a non-connected environment, are called
user data sets.

Local data sets are mostly used for information, which might not be consistent
across different devices, used by a user, or which is needed to evaluate reminders,
which do not depend on dynamic data, saved as user data sets in the SmartR
MYSQL database. The most important local data sets are the wifi zones and
geofences, which are used as an invisible fence to check whether a user is within
a certain area. While wifi zones are saved in a local SQL database, all other local
datasets are shared as key-value mappings in the applications shared preferences.

In addition, to the already mentioned kinds of local data sets, all impor-
tant state parameters (e.g. check state of the Continuously retrieve reminder
information check box in the main user interface) of the SmartR application
are saved, in order to be able to reconstruct the application in a user friendly
manner, after a possible restart. In addition, preferences like the polling interval
for the continuous reminder information retrieval are saved locally. Last but not
least, also the buddy groups, which have been used by a user in the past to cat-
egorize friends, are stored locally, to avoid time consuming network operations
for retrieving the already used group. The locally saved groups are offered to
the user as choice, when he wishes to add relevant buddy groups to a reminder,
or when she seeks to add a friend to a buddy group.

4.2 Data Modification and User Authentication

4.2.1 User Authentication

In order to authenticate the user with Google Calendar, SmartR needs to acquire
an access token for a user’s calendar. The specifics of the actions necessary
to acquire such a token can be read in Google’s documentation for calendar
authentication [20] and the general Google OAuth2 documentation [21]. SmartR

4. Application Infrastructure Backbone 36

User table Contains a user’s unique SmartR
name and the e-mail address of the

Google Account connected to
SmartR

Buddy table Contains all friendship relationships
between SmartR users and stores

the respective characterization
parameters of a friendship (e.g.
buddy level, buddy group, etc.)

Location table Contains the last uploaded location
of each user in terms of coordinates

and the membership of a certain
square (see Section 5.1.1)

Cell user table (Deprecated) Also contains the last uploaded
location of each user, but only in
terms of the square membership

(see Section 5.1.1). Location
updates only still happen due to

historical reasons

Location mapping Contains the squares laid over the
earth surface in terms of their edge

coordinates; is used to map the
user’s uploaded geographic position

to one of these squares

Pending friend requests table Contains all still pending friend
requests sent from one user to

another

Word assoc table Used to store association
relationships between two words.

Each time a social reminder is
uploaded containing more than one

buddy group, the given buddy
groups are registered pairwise and
inserted as a row into this table, if
this pair has not appeared before.

If the given pair has already
appeared, the counter field of this

row is incremented (see Section 5.3)

Table 4.1: SmartR MYSQL Database Tables

4. Application Infrastructure Backbone 37

continuously refreshes access tokens, especially before important commits or data
retrieval actions to guarantee a working data transmission. These access tokens
are used in different ways depending on the wished action.

4.2.2 Modifying Calendar Data Sets

Reminder submissions and the following creation of a Google Calendar Event
are handled by the Google Calendar API[19] for Java, more specifically by an
instantiation of the CalendarService class to which the access token is handed.
This instantiation is handed the event, which contains the information about the
reminder the user would like to submit and the calendar, to which it should be
submitted. It then handles the build and execution of the according http request
for uploading the payload into the Google Calendar cloud with the correct access
token.

4.2.3 Retrieve Calendar Data Sets

Since calendar data sets are evaluated by the SmartR server backbone, the server
has to somehow retrieve the information about the calendar events, which store
the reminder information. Therefore, it also needs the access token in order to
retrieve the relevant data. To avoid saving the user’s Google account password or
a refresh token in the SmartR database for the access token retrieval, the access
token is handed to the server by the SmartR application on the user’s phone.
This is possible since all evaluation rounds are triggered by the application on
the user’s phone, which knows the needed access token at any point in time.
The server can then send a request to the Google Calendar Cloud to ask for the
needed information.

4.2.4 Modifying and Retrieving User Data Sets

As mentioned earlier, the SmartR MYSQL database is accessed via the SmartR
server back-bone, which creates and handles the SQL queries. For this purpose,
the SmartR server back-bone makes use of prepared statements[22], which offer
security against SQL injection attacks.

However, even with prepared statements in use, a malicious party could access
the database by just knowing the URL of the corresponding php script and
specifying the GET and POST parameters of his http request to support his evil
motives and goals. In order to prevent such actions, access to the SmartR server
back-bone is subject to a user authentication process.

Algorithm 1 presents the way a session is started. The php script in the
server back-bone checks, whether the user is indeed the person, she claims to
be by comparing the SmartR user id, which, for every SmartR user, equals the

4. Application Infrastructure Backbone 38

google mail address, given in the request cookie, to the id that is returned, when
meta data for the Google Calendar is requested with the access token. If the user
ids match, the access token is saved into the super global $ SESSION variable.

Algorithm 1 SmartR database user authentication set-up

1: procedure User authentication set-up(user id, access token)
2: retrieved google id← retrieveGoogleCalendarMetaData(access token)
3: if retrieved google id == user id then
4: startSession()
5: Session.accessToken← access token
6: else return

Every further call of a script that accesses the database asks for the access
token first and only continues to the requested service if the provided token
matches the one in the $ SESSION variable as shown in Algorithm 2. Therefore,
the user authentication set up is called, every time, the user receives a new access
token. Since the correct combination of access token and user id can only be
provided, if a specific user knows the Google account password, and every further
call asks for the access token, this method is safe.

Algorithm 2 User authentication set-up

1: procedure User authentication(access token)
2: if access token == Session.accessToken then
3: continue to functionality
4: else return

4.3 Embedment in Existing Infrastructure

All reminders set with SmartR are saved as events in the users Google Calendar
account and can therefore be viewed and accessed by any Android calendar
application, which also make use of this account.

In order to provide as many functionalities as fast as possibilities, SmartR
uses two different ways to write events to the calendar account.

Reminders that require internet connectivity (e.g. social and physical sur-
rounding reminders) for their situational evaluation (because for example data
from the SmartR MYSQL database is needed) are directly uploaded to the
Google Calendar Cloud, and are visible in local calendar instances upon syn-
chronization with the Google Calendar Cloud. Their situational evaluation takes
place on the SmartR Server.

Reminders that do not require internet connectivity for the situational evalua-
tion (e.g. geofencing and wifi-zone reminders) are directly written into the local

4. Application Infrastructure Backbone 39

calendar instance of the user. The situational evaluation takes place directly
on the user’s phone in order to provide connectionless functionality. These re-
minders are directly visible in the local calendar instance and become visible in
the Google Calendar cloud upon the first synchronization of the local Google
Calendar instance, following the setting of the respective reminder. Please note,
that geofencing and wifi-zone reminder are connectivity dependent, if they con-
tain a social component. However, also these reminders are directly written into
the local calendar instance.

Figure 4.2: SmartR reminder setting information flow

Chapter 5

SmartR Utility Structures

5.1 Location

Providing reminders based on the social environment depends heavily on the
availability of geographic location data of SmartR users. Therefore it is crucial,
to use data structures that minimize the algorithmic effort necessary to verify if
a friend is currently near the user.

5.1.1 Location Data Storage

The naive approach to storing a user’s location data would be to just write
her position in terms of geographic coordinates into the database. However,
this would make it necessary to calculate the distance between any two relevant
friends upon the evaluation of a situational reminder, which offers the social
reminder functionality. To save time and computational effort, SmartR uses a
data structure (similar to the one in RemindU [10]), which splits the earth into
squares. Currently these squares have an edge length of 50 meters. These squares
are saved in the SmartR MYSQL database in terms of there edge coordinates.
Once a user uploads her location, the uploaded coordinates are used to determine
the square, in which the user is currently located. The square is saved in terms
of a square id, a row id and a column id. This enables an easy comparison of
a set of friends, relevant for triggering a reminder to a set of friends, who are
currently nearby, for retrieving information, about whether or not to trigger a
reminder.

In addition to the location storage in the SmartR MYSQL database, the last
uploaded location is stored on the phone, as already mentioned earlier. This
offers the possibility to initialize the map in the geofence reminder configuration
user interface to this position. Since the map also enables users to quickly nav-
igate to their current position by pressing the upper right button on the map,
this reduces the risk that a user has to navigate through the map manually, by
basically offering her two different map initialization positions.

40

5. SmartR Utility Structures 41

5.1.2 Location Retrieval and Use

Now, knowing that user locations are saved in terms of square memberships,
one could ask whether it is necessary at all, to store a user location in terms of
geographic coordinates. However, since a user’s physical surrounding is analysed
by performing nearby searches via the Google Places API [15], which needs
geographic coordinates to check the surrounding area for points of interest, this
is still a necessity.

The user location in terms of the square, in which a user is located, is used to
check for neighboring friends, which are relevant for a given reminder. This check
is conducted using the social radius as specified in Table 3.3. The algorithm for
nearby friends is described in Algorithm 3. It is important to notice, that the
social radius is converted into a relevant sequence of squares around the user
which should be searched (including the square in which the user is currently
located) for friends relevant to a given reminder. In the end, a list of reminder
relevant buddies in the desired area is generated, which is then further used as
described in Section 3.2.1.

Algorithm 3 Relevant Buddy Location Retrieval

1: procedure Relevant Buddy Location retrieval
2: relevantSurroundingBuddies← newList()
3: widthInSquares← b socialRadius50 c
4: if widthInSquares < 2 then
5: widthInSquares← 2

6: for i = −dwidthInSquares2 e; i < bwidthInSquares2 c+ 1; i++ do

7: for j = −dwidthInSquares2 e; j < bwidthInSquares2 c+ 1; j++ do
8: curRowId← userRowId + i
9: curColumnId← userColumnId + j

10: relevantBuddiesInSquare← retrieveRelevantBuddiesInCell(curRowId, curColumnId)

11: for relevantBuddyInSquare : relevantBuddiesInSquare do
12: if locationUpdatedRecently(relevantBuddyInSquare) then
13: relevantSurroundingBuddies.add(relevantBuddyInSquare)

return relevantSurroundingBuddies

5.2 Friendship Structure

In order to be able to analyse the current social environment of the user, it is
necessary, that she provides SmartR with information about her social relation-
ships by adding friends and associating them with certain characteristics, such
as the level of friendship, the membership in a certain group of friends and an
informal description of the friend as already described in previous sections.

5. SmartR Utility Structures 42

Friendships in SmartR are only possible, if both parties mutually agree to
become friends. This is necessary, since sensitive location data of friends is
retrieved for the reminder evaluation, which should only be used, if these friends
approved SmartR of using this data by agreeing to be friends with the requesting
party.

In SmartR, friendship characteristics can be changed without consent of the
respective friends, since such changes only affect the individual reminder evalu-
ation of the changing party and do not have effects on the reminder evaluation
of the respective SmartR friend.

5.3 Word Association

In order to be able to offer more meaningful reminder suggestions in the future,
SmartR already features a word association mechanism. Every time, a reminder,
based on social environment, with more than one buddy group specified, is sub-
mitted by a user, SmartR records all buddy groups submitted with this reminder
pairwise as rows in the word assoc table. If a pair does not yet exist in the table,
a new row is added to the table, otherwise, the appearance counter of this pair
is incremented. The so gained information, of which words or buddy groups are
very much linked is not yet used, but will be available for future use, in order to
offer new and better reminder options or suggestions to users.

5.4 Google Cloud Messaging

In order to be able to send notifications to the user, once the evaluation of re-
minders, which are evaluated on the SmartR server back-bone (e.g. all reminders
with a social component, physical surrounding reminders, etc.), is done, SmartR
makes use of the Google Cloud Messaging For Android[23] service. This service
enables servers to send data to a specific android device. The Google Cloud
Messaging service needs a registration id, in order to be able to forward the
notifications sent by the server to the right smart phone. SmartR creates this
registration id, on the first call of the SmartR main user interface. The registra-
tion process is conducted by calling the register function of an instance of the
Google Cloud Messaging class and provide it with the project number of SmartR
given in the Google Developers’ Console (see Section 5.5). This routine registers
the users phone with the service and then returns the registration id for the given
Android device. Every time, the SmartR Android application polls for an evalu-
ation of all social and physical surrounding reminders, or a wifi-zone or geofence
reminder triggers the social component evaluation process for a single reminder,
this registration id is uploaded and needs to be handed over to the Google Cloud
Messaging service, in case a notification is sent from the server to the smart

5. SmartR Utility Structures 43

phone. The message send by the SmartR server back-bone and forwarded by the
Google Cloud Messaging server, is sensed by a broadcast receiver in the SmartR
application. This broadcast receiver calls the SmartR service, which is responsi-
ble to build and push the desired notification to the user. Further specifications
on how to use the Google Cloud Messaging service can be found in the relevant
documentation[23].

5.5 Google Developers’ Console

In order to be able to retrieve Google Calendar data for a specific user, con-
duct nearby searches via the Google Places API, show the (Google) map in the
geofence reminder user interface and use the Google Cloud Messaging service,
an application needs to be registered with the Google Developers’ Console. For
functionalities with a great need for authentication like retrieving a user’s calen-
dar data, the application must be registered as an OAuth client.

For functionalities like Google Maps or the Google Places API, it suffices to
register an application forPublic API Access.

Further documentation on this can be found in the official Google documentation[24].

Chapter 6

Outlook and Conclusion

6.1 Future Work

SmartR enables users to combine a variety of situational reminder options and
connect to a community of technology aware peers, who enjoy the possibility to
configure reminders suitable for any situation. However, in order to reach a large
scale audience, SmartR needs to be further tested and developed.

In order to qualify for regular use, the effects of running SmartR on a phone’s
battery need to be further studied. Smart phone owners will only use an applica-
tion, if this does not mean that they need to recharge their phone within a short
time interval. In addition, SmartR is currently still rather dependent on internet
connectivity and can only offer a limited functionality, once the user enters a
region without or limited connectivity. This problem can be solved by further
enlarging the pool of cached data and more buffers, to milden the consequences
of short disruptions of network connections.

In addition, users should have the possibility to upload and store their loca-
tion data encrypted. This might be realised by using a protocol that keeps the
user’s location a secret to everyone, but her friends, or by using a master secret in
the SmartR server back-bone, to encrypt the uploaded locations upon receiving
them. Choosing the first method would imply, that the complete reminder eval-
uation process would need to take place at the user’s Android device, since the
SmartR server back-end would have no means to decrypt the uploaded, already
encrypted location. This might lead to rather heavy computational effort on the
user’s smart phone. Therefore, option two should be preferably implemented
first, before option one has been tested thoroughly. A possible solution has been
presented in RemindU [10], however, this system would have to be adapted for
the use with reminders based on physical and/or social surrounding.

Furthermore, the word and buddy group associations saved in the word as-
soc table should be used to provide a better reminding service to the user. This
should be done by using the stored data to assess, whether it might make sense
to trigger a social reminder, even though the user has not specified the buddy

44

6. Outlook and Conclusion 45

groups, to which a currently nearby user belongs, as relevant for the given re-
minder.

Once SmartR has taken all hurdles for being used by all sorts of people on a
daily basis, it should be possible to offer professional services in reminder form.
This means that users could be reminded that a plumber is sitting right next
to them on the tram, if they had trouble with their sanitary equipment in the
morning and set a reminder to search for a plumber later that day.

6.2 Conclusion

This thesis has presented a convenient way of implementing a smart situational
reminder, covering a variety of categories of situational reminders and combining
them, where these combinations maximize the user’s possibilities to use such a
smart situational reminder application. In addition, it has been shown that it
is possible to create new reminder applications, which can be used harmonically
with existing reminder and calendar solutions, thereby minimizing the hurdles
for users to apply the offered service on a daily basis.

Bibliography

[1] : Google now; URL: https://www.google.com/landing/now/.

[2] : Geobells; URL: https://play.google.com/store/apps/details?id=

com.patil.geobells.lite.

[3] : Wifi alarm; URL: https://play.google.com/store/apps/details?id=
com.jdr_software.wifi_alarm&hl=de.

[4] : Friend reminder; URL: https://play.google.com/store/apps/

details?id=com.arconsis.friendreminder&hl=en.

[5] : Ifttt; URL: https://ifttt.com/wtf.

[6] : Finde meine freunde; URL: https://play.google.com/store/apps/

details?id=com.fsp.android.friendlocator&hl=de.

[7] Chaminda, H.T., Klyuev, V., Naruse, K.: A smart reminder system for com-
plex human activities. 14th International Conference on Advanced Commu-
nication Technology (February 2012)

[8] Phyo Wai, A., Foo, S., Biswas, J., Donnelly, M., Parente, G. nad Nugent,
C., Yap, P.: Smart phone reminder system for managing incontinence at
nursing home. Proceedings of the International Symposium on Consumer
Electronics, ISCE (2011)

[9] Tu, Y., Chen, L., Lv, M., Ye, Y., Huang, W., Chen, G.: ireminder: An intu-
itive location-based reminder that knows where you are going. International
Journal Of Human-Computer Interaction (December 2013)

[10] Zhao, X., Li, L., Xue, G.: Remindu: A secure and efficient location based re-
minder system. IEEE ICC 2014 - Communication and Information Systems
Security Symposium (2014)

[11] Kwon, O., Choi, S., Park, G.: Nama: a context-aware multi-agent based web
service approach to proactive need identification for personalized reminder
systems. Expert Systems With Applications (2005)

[12] Beigl, M.: Memoclip: A location-based remembrance appliance. Personal
Technologies (2000)

[13] Lin, C.Y., Hung, M.T.: A location-based personal task reminder for mobile
users. Personal and Ubiquitous Computing (2014)

46

https://www.google.com/landing/now/
https://play.google.com/store/apps/details?id=com.patil.geobells.lite
https://play.google.com/store/apps/details?id=com.patil.geobells.lite
https://play.google.com/store/apps/details?id=com.jdr_software.wifi_alarm&hl=de
https://play.google.com/store/apps/details?id=com.jdr_software.wifi_alarm&hl=de
https://play.google.com/store/apps/details?id=com.arconsis.friendreminder&hl=en
https://play.google.com/store/apps/details?id=com.arconsis.friendreminder&hl=en
https://ifttt.com/wtf
https://play.google.com/store/apps/details?id=com.fsp.android.friendlocator&hl=de
https://play.google.com/store/apps/details?id=com.fsp.android.friendlocator&hl=de

Bibliography 47

[14] Dey, A.K., Abowd, G.D.: Cybreminder: A context-aware system for sup-
porting reminders. HUC ’00 Proceedings of the 2nd international sympo-
sium on Handheld and Ubiquitous Computing (2000)

[15] : Google places api; URL: https://developers.google.com/places/

documentation/.

[16] : Supported types for google places api; URL: https://developers.

google.com/places/documentation/supported_types.

[17] : Geofencing api; URL: https://developer.android.com/reference/

com/google/android/gms/location/Geofence.html.

[18] : Google calendar api event documentation; URL: https://developers.
google.com/google-apps/calendar/v3/reference/events#resource.

[19] : Google calendar api documentation; URL: https://developers.google.
com/google-apps/calendar/.

[20] : Google calendar authentication; URL: https://developers.google.

com/google-apps/calendar/auth.

[21] : Google oauth2; URL: https://developers.google.com/accounts/

docs/OAuth2.

[22] : Prepared statements in php; URL: http://php.net/manual/de/mysqli.
quickstart.prepared-statements.php.

[23] : Google cloud messaging for android; URL: https://developer.android.
com/google/gcm/index.html.

[24] : Google developers’ console; URL: https://developers.google.com/

console/help/new/.

https://developers.google.com/places/documentation/
https://developers.google.com/places/documentation/
https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types
https://developer.android.com/reference/com/google/android/gms/location/Geofence.html
https://developer.android.com/reference/com/google/android/gms/location/Geofence.html
https://developers.google.com/google-apps/calendar/v3/reference/events#resource
https://developers.google.com/google-apps/calendar/v3/reference/events#resource
https://developers.google.com/google-apps/calendar/
https://developers.google.com/google-apps/calendar/
https://developers.google.com/google-apps/calendar/auth
https://developers.google.com/google-apps/calendar/auth
https://developers.google.com/accounts/docs/OAuth2
https://developers.google.com/accounts/docs/OAuth2
http://php.net/manual/de/mysqli.quickstart.prepared-statements.php
http://php.net/manual/de/mysqli.quickstart.prepared-statements.php
https://developer.android.com/google/gcm/index.html
https://developer.android.com/google/gcm/index.html
https://developers.google.com/console/help/new/
https://developers.google.com/console/help/new/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.2.1 Related Android Applications
	1.2.2 Related Scientific Work

	1.3 The Goal of this Thesis

	2 The SmartR Android Application
	2.1 Registration
	2.2 The Main User Interface
	2.3 Managing Friendships
	2.4 Managing and Editing Wifi Zones
	2.5 Adding Reminders
	2.5.1 Reminders Based on Physical Surrounding
	2.5.2 Reminders Based on Social Surrounding
	2.5.3 Reminders Based on Wifi Zones
	2.5.4 Reminders Based on Geofences (Geographic Location)

	2.6 Managing Reminders
	2.7 Reminder Retrieval
	2.8 Location Upload

	3 Reminder Architecture
	3.1 General/ Shared Properties
	3.1.1 Reminder Parameters Shared by All Reminder Categories
	3.1.2 General Remarks on Reminder Retrieval

	3.2 Reminders Based on Social or Physical Surrounding
	3.2.1 Social Reminders
	3.2.2 Physical Surrounding Reminders

	3.3 Reminders Based on Wifi Zones and Geofences
	3.3.1 Wifi Zone Reminders
	3.3.2 Geofence Reminders
	3.3.3 Social Components for Wifi Zone and Geofence Based Reminders

	3.4 Reminder Sharing
	3.4.1 Use Cases

	4 Application Infrastructure Backbone
	4.1 Data Storage
	4.1.1 Calendar Data Sets
	4.1.2 User Data Sets
	4.1.3 Local Data Sets

	4.2 Data Modification and User Authentication
	4.2.1 User Authentication
	4.2.2 Modifying Calendar Data Sets
	4.2.3 Retrieve Calendar Data Sets
	4.2.4 Modifying and Retrieving User Data Sets

	4.3 Embedment in Existing Infrastructure

	5 SmartR Utility Structures
	5.1 Location
	5.1.1 Location Data Storage
	5.1.2 Location Retrieval and Use

	5.2 Friendship Structure
	5.3 Word Association
	5.4 Google Cloud Messaging
	5.5 Google Developers' Console

	6 Outlook and Conclusion
	6.1 Future Work
	6.2 Conclusion

	Bibliography

