
Distributed
    Computing 

A Faster Bitcoin Network

Semester Thesis

Chrysoula Stathakopoulou

csathak@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich
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Abstract

Bitcoin is an electronic currency based on a peer-to-peer network for the propa-
gation and verification of the transactions. Nowadays, cashless transactions are
becoming increasingly popular and bitcoin could be an established currency for
such transactions. Its distributed nature, though, and more specifically the delay
overhead in transaction verification, not only makes the use of bitcoin inefficient
for instant transactions, but also makes it vulnerable to double spend attacks.
In this work we introduce a modified version of the bitcoin protocol and argue its
impact on the delay of information dissemination in the bitcoin network. More
specifically we examine how pipelining the message exchange between nodes in
the bitcoin network as well as encouraging the connection of the geographically
closest nodes affect the delay in propagation.
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Chapter 1

Introduction

Bitcoin is a decentralized cryptocurrecny that allows users to perform transac-
tions without a need of third trusted authority. Bitcoin transactions are anony-
mous, in the sense that users can hold multiple addresses that are not linked to
any personal identifying information, yet transparent, since every single trans-
action ever made is recorded in a public ledger. The authenticity of the trans-
actions can be easily verified since the owner of the coins, in order to perform a
transaction, creates a message signed by her private key. Moreover, users con-
tribute to the transactions verification, transaction fees are negligible. To those
characteristics mainly Bitcoin owes its emerging popularity as an electronic cash
system.

1.1 Motivation

Transaction validation is not trivial. The bitcoin network nodes must agree to a
common public ledger. Due to Bitcoin’s decentralized nature, inconsistencies to
the replicas of the ledger that each node keeps are unavoidable, thereby introduc-
ing uncertainty about transactions until the nodes are synchronized to reflect a
common transaction history. Moreover, a desynchronized network is prone to at-
tackers that will attempt to impose their own transaction history, possibly trying
to reverse transactions that they sent so as to use the same Bitcoins more than
once (double-spending). Bitcoin network nodes can with high probability reach
an agreement about transaction history, even in the presence of an adversary,
but the latency in communication between nodes is critical [1][2].

The bitcoin network might require tens of minutes to reach a consensus [3].
Therefore merchants may choose not to wait so long and release their product
as soon as they notice the transaction in the network, a method known as fast
payment. However, Karame et al. argue that the probability of a double-spend is
not negligible in such a case. The probability of success of the payment though,
increases as message propagation decreases, which indicates the importance of
fast information dissemination. Bamert et al. in [4] on the other hand, managed

1



1. Introduction 2

to perform fast payments within seconds with a probability of double-spends
only 0.088%.

In this work, we try to tackle the problem of the agreement on a common
transaction history among the nodes of the bitcoin network by speeding up the
information propagation. Pipelining the message exchange between nodes and
forcing connectivity between nodes that are geographically close we observe ac-
celeration of message exchange.

1.2 Bitcoin Protocol Overview

Bitcoin was first introduced by Nakamoto in [5]. He proposes a distributed
system for transactions directly between peers based on digital signatures so as
to overcome the need of a financial institution. Furthermore, Nakamoto explicitly
addresses the double spending problem in a peer-to-peer network and he suggests
a timestamped chain of transactions that will serve as a verification network.

Two core entities of the bitcoin protocol are transactions and blocks. Trans-
actions describe the transfer of Bitcoins between two accounts. As specified in
[6], transactions have inputs and outputs. Inputs are records which reference the
funds from other previous transactions and outputs are records which determine
the new owner of the transferred Bitcoins, and which will be referenced as inputs
in future transactions as those funds are present. For a transaction to be valid it
must be digitally signed with the private key of the spending account. Moreover,
the sum of all inputs must be equal to or greater than the sum of all outputs.
Sole exception are the base transactions which have no inputs and correspond
to the newly created Bitcoins, as a reward for the bitcoin miners. Miners collect
and verify newly broadcast transactions into a new group of transactions called
a Block.

A transaction must be included in a block, in order to be considered legiti-
mate. The block as specified in [7], apart from the verified transactions, contains
an answer to a hard-to-solve mathematical problem, unique for each block, that
the miner must have found before the broadcast. The answer to the problem can
be easily verified by the rest of the network. The difficulty of the mathematical
problem is automatically adjusted by the network, such that it targets a goal of
solving an average of 6 blocks per hour.

Every block that is created contains a hash of the previous block. This has
the effect of creating a Chain of Blocks from the genesis block to the current
block that defines a chronological order. For a block to be added in the chain it
must have been found after its father, since its parents hash has to be included.
Therefore a transaction in a lower block must have been verified before a trans-
action in a higher block. Editing data in a block would therefore require to
change all the previous blocks in the blockchain, making it thus computational
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impractical. These properties make double-spending of Bitcoins very difficult.

The Block chain forms a public ledger that must be kept in each node of the
network and serves the verification of the bitcoin transactions. Miners, are nodes
that can add a new block to the block chain. A transaction can only be found
once in a blockchain, or it would have already been verified in the past. However,
more than one miners may have received the same transactions so they have to
compete on adding the block to the blockchain by solving the afore mentioned
hard-to-solve problem. The miner that gets to solve the problem first is the
one that can announce the new block. The network must then verify the block
and add it to the block-chain as the block-chain head, i.e. the block that is the
furthest away from the genesis block.

Due to the distributed nature of the Bitcoin System, though, inconsisten-
cies are unavoidable. It can happen that not all the nodes agree on the same
blockchain header, a situation known as blockchain fork. As specified in [8] forks
are created when the two blocks are created only few seconds apart, so that the
information of the first block has not yet arrived to the miner that created the
second. When that happens, generating nodes build onto whichever one of the
blocks they received first. Whichever of the blocks is included in the next block
then becomes part of the main block chain. A transaction can happen to exist in
two different branches of the chain. When the bitcoin client switches to another,
longer chain, because it has discovered block whose ancestor is head of a longer
chain, all valid transactions of the blocks inside the shorter chain are re-added
to the pool of queued transactions and will be included in another block. These
blocks on the shorter chains are often called orphan blocks.

Decker and Wattenhofer [9] provide a model for the blockchain forks and
estimate the probability of a blockchain fork at 1.78% in the current bitcoin
network. As they pointed out, a transaction is never actually verified. The
longer the chain in which the transaction is included, the more sure we can be
about its validity. However, if a longer chain starts below the block containing the
transaction, the transaction may be invalidated. Even after 60 seconds there still
exist some probability that a block message is not known to the whole network.
Thus, forks can lead in invalidating transactions due to the inconsistency in
the network. Therefore, it is of paramount importance for the nodes to keep a
consistent with the rest of the network replica of the ledger.

In order to synchronize their replica of the public ledger, nodes exchange
tx and block messages. A tx message describes a bitcoin transaction and also
contains the block number or timestamp at which this transaction is locked. A
block message includes, apart a set of transactions, the reference to the previous
block, the calculated difficulty target being used for this block, a timestamp
recording when this block was created, version information, a nonce used to
generate this block and the reference to a Merkle tree collection which is a hash
of all transactions related to this block [6].



1. Introduction 4

Figure 1.1: Message exchange with in order to forward a block message from
node nA to node nB

When a node wants to send a set of tx messages it first sends an inv message,
i.e. a list of the hashes of the available transactions. It then waits to receive a
getdata message that includes the hashes of the transactions which the source
of the message actually needs, in the sense that it could already know for some
transactions. It then forwards the requested transactions. The receiver must
then validate the transactions it receives and then is ready to announce the
transactions to its neighbors. A node who is generating blocks will collect valid
received transactions and work on including them in a block. When someone
does find a block, they send an inv containing it to all of their peers, as above
[10]. The message exchange is presented in Fig. 1.1.

1.3 Related Work

The problem of reaching a consensus in the bitcoin network falls into the Byzan-
tine Fault Tolerance field. The objective of Byzantine fault tolerance is for a
system to to be able to work despite Byzantine failures, in which the partic-
ipants of the system fail in arbitrary ways. Reaching a Byzantine Agreement
in a distributed system was first studied by Pease et al. [11] proving that in a
synchronous system, it is possible to reach a Byzantine consensus regardless the
number of faulty participants, provided that faulty participants are fewer than
one third of the participants.

Regarding the Bitcoin network, Miller et al. [1] proved that it can reach a
Byzantine Agreement with negligible disagreement probability in bounded run-
ning time, since the computational puzzles that nodes have to solve before broad-
casting a new block prevent a computationally bounded adversary from claiming
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too many identities. The time interval required, though, depends on communi-
cation latency. Similarly, Garay et al. [2] prove that as long as the network
is synchronized, in the sense that only few new blocks are announced within a
round, where a round is defined as the time interval requested for the messages to
be delivered to the whole network, nodes can establish a long common prefix in
their block chains, even for an adversary with computational power close to 50%
of the computational power of the network. However, when a network is desyn-
chronized, it can tolerate an adversary with strict bounds on its computational
power for the nodes to derive a long common prefix.

On information propagation, Decker and Wattenhofer [9] observed that the
size of the message is strongly correlated to the propagation delay in the network.
More specifically, for block messages delay is caused mainly due to verification
time and therefore be considered a linear function of size. On the other hand for
small messages delay is mainly due to the round-trip time for inv and getdata
messages. Hence, they propose to pipeline the block propagation by forwarding
invitation messages as soon as they arrive, an idea adopted in this work. Addi-
tionally, showing that the block propagation delay is responsible for blockchain
forks, and in order to accelerate information dissemination, they propose to mini-
mize the verification process by sending an invitation message for a block as soon
as the proof-of-work solution is checked. They finally suggest that maintaining a
large pool of connections decreases the distance between the nodes in the network
and therefore contributes to the faster propagation of the messages.

Summing up, the bitcoin network must be well synchronized so as to be
secure. Low latency in the message exchange contributes to this direction and
thus fast information propagation is vital. Our contribution is to experiment with
nodes that implement a simplified diversified version of the bitcoin protocol, as
described in the next chapter, so as to accelerate the information dissemination.



Chapter 2

A Faster Bitcoin Network

As explained above, delay in information propagation can be responsible for
inconsistencies in the bitcoin network. As a result, transaction verification is
slower. Furthermore, attackers can take advantage of the inconsistencies to per-
form double spending attacks that in a slow network are more difficult to discover.
Taking that into account, in this work we experiment with the bitcoin protocol to
examine how we can accelerate the information propagation. More specifically,
we introduce two changes:

• First, as suggested in [9] we pipeline the information propagation. When
nodes receive an invitation message for new transaction, they immediately
forward the invitation, instead of waiting for receiving the transaction.
By doing this we aim to reduce to delay due to the waiting time for the
transaction to arrive. While waiting for the transaction message, a time
interval that would otherwise be idle, the invitation is forwarded to the
network and the network replies with the getdata message. Ideally, when
the transaction actually arrives, it can be immediately forwarded, assuming
that the getdata message has already been received.

• We then examine how increasing the locality of connectivity speeds up the
information propagation. A node suggests the other nodes in the network
proximate nodes to connect to, in terms of geographic coordinates. We
hypothesize that this approach will speed up the information dissemination
by minimizing the delay due to propagation of the messages exchange on
unnecessarily long links.

2.1 Implementation Details

2.1.1 A Content Distribution Network

The core idea of our approach is the implementation of Content Distribution Net-
work. We deploy five points of presents in a number of geographical locations as
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uniformly distributed as possible. The nodes of the CDN are fully connected and
known to each other. Each CDN node learns about available bitcoin nodes from
a list of DNS services. It can then either connect to the bitcoin network nodes it
discovers or wait for the other CDN nodes to suggest a set of the geographically
closest bitcoin network nodes. Each CDN node is allowed to connect to up to 100
nodes of the bitcoin network. Since connection to a bitcoin network node can be
lost, or new nodes can be discovered, node discovery, suggestion and connection
are repeated periodically.

Among the nodes of the CDN we are able to apply our own optimized proto-
col, as described below. Our purpose is to examine if the information propagation
among the CDN nodes is accelerated. Moreover, we want to test how faster we
will be able to announce transactions to the nodes of the bitcoin network.

2.1.2 The CDN Bitcoin Client

In order to examine how the alternatives to the bitcoin protocol suggested above
affect the information propagation, we first created a simple bitcoin client. The
client neither keeps a replica of the ledger, nor verifies the transaction mes-
sages it receives, since our purpose is to focus on the message exchange between
the nodes. It therefore, simply accepts invitation messages for transactions, it
replies with getdata messages for transactions unknown so far, accepts the trans-
action messages for the requested transactions and stores the transactions for a
predefined interval and finally sends invitation messages for the transactions it
received.

So far the client is well behaved and complies with the bitcoin protocol spec-
ification. We now add the following functionality. The CDN client can forward
invitation messages for new transactions to the rest of the CDN nodes, as soon as
they are received and before the actual transaction arrives Fig. 2.1. According to
when the transaction arrives we encounter the two following scenarios. Suppose
that CDN node nA receives invitation invT message for a transaction T from
node bB. It forwards the transaction to the set of known CDN nodes Nk.

• Transaction arrives before any getgataT message arrives from a node nk ∈
Nk. When later a getgataT arrives the client forwards the stored transac-
tion.

• A getgataT arrives form nk ∈ Nk before the transaction. The client has
to store the request and when the transaction arrives it then forwards the
transaction to all the nodes that have requested it.
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(a)

(b)

Figure 2.1: Message exchange with early inv forwarding when (a) getdata arrives
before tx, (b) tx arrives before getdata

The CDN client does not store the transactions it receives indefinitely. Trans-
actions expire after a chosen time interval. We apply this policy since memory
in the CDN nodes is limited. This can have as an impact that a node will ask
in the future for a transaction that is not available. According to [9], however,
after 60 seconds information will have been disseminated with high probability
over the whole network. We choose, therefore, to remove transactions 60 seconds
after we receive them.

Additionally, as mentioned above, we can enable the client to make sugges-
tions for connections to a set of known peers. Having a cluster of CDN nodes
that know each other’s IP, each node in the cluster periodically calculates the
distance between the bitcoin nodes that she has discovered and the other nodes
in the cluster. The CDN node then suggests to the other CDN nodes to connect
to those of the discovered nodes that are proximate to the latter. We define
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proximity in terms of actual geographical location. Using MaxMind GeoLite
City database [12] we retrieve from the IP adress of the node the Latitude and
Longitude. We then calculate the great circle distance, i.e. the shortest distance
between two points on the surface of Earth, in meters between the two nodes
using the haversine formula. Harvesine a is defined as:

α = sin2 ∆φ

2
+ cosφ1 · cosφ2 · sin2 ∆λ

2
(2.1)

where φ is the latitude, λ the longitude and R is the radius of Earth. The
distance d in meters is then calculated as:

d = R · 2 · atan2(
√
α,
√

1− a) (2.2)

Two nodes are considered to be close when their distance is lower than a chosen
threshold dt

In Fig 2.2 we can see an example of the CDN connected to suggested nodes
for a threshold dt = 2000km

Figure 2.2: CDN nodes (red), connected with great circle arches and suggested
bitcoin network nodes (blue)

2.1.3 Gathering Metadata

In order to evaluate the proposed protocol implementations a special node is set
up as coordinator. The bitcoin clients send a message to the coordinator in the
following cases:

• the client receives an inv message



2. A Faster Bitcoin Network 10

• the client receives a getdata message

• the client receives a tx message

• the client connects to a proximate node after it receives a suggestion from
another client

An important issue is how to synchronize the clocks of the clients so that
the information gathered can be compared in order to reach to conclusions. The
issue rises from the fact that bitcoin nodes do not synchronize clocks, but rather
sample the current time of their neighbors [9]. To tackle this issue we calculate
the difference between each client’s clock and the clock of the coordinator. Pe-
riodically, the coordinator sends a message that includes a timestamp T1 to the
clients. The clients then subtract this timestamp from their clock’s indication
the time the message arrives T2 and calculate an offset To = T2 − T1 that they
send back to the pool. As it follows the offset can be estimated as the time shift
Ts that the client’s clock may have plus half the round-trip time RTT .

To ' Ts +
1

2
RTT (2.3)

The equation above provides only a best effort estimation as RTT is not bal-
anced. Finally we estimate RTT by subtracting from T1 the pool’s clock indica-
tion T3 when the response arrives.



Chapter 3

Performance Evaluation

In order to evaluate the proposed modifications to the bitcoin protocol we com-
pare the following scenarios:

1. The CDN nodes comply with the bitcoin protocol and connect to the ran-
dom bitcoin nodes they discover

2. The CDN nodes comply with the bitcoin protocol and connect to the geo-
graphically closest nodes as suggest by the other CDN nodes

3. The CDN nodes pipeline the message exchange to each other and connect
to the random bitcoin nodes they discover

4. The CDN nodes pipeline the message exchange to each other and connect
to the geographically closest nodes as suggest by the other CDN nodes

For each scenario five experiments where conducted where the CDN was con-
nected to the bitcoin network and real traffic was exchanged. For the experiments
each CDN node was allowed up to 100 connections with bitcoin peers. Moreover,
new peers where being discovered every 30 seconds. Transactions at CDN nodes
would expire, as discussed above, after 60 seconds of their arrival. Messages
for the synchronization of the CDN nodes with the coordinator were exchanged
every 10 seconds. Finally, the threshold for a bitcoin peer to be considered close
to a CDN node and thus suggested was dt = 2000km.

We first examine whether connecting CDN nodes to the closest bitcoin peers
available speeds up the information propagation. More specifically, we calculate
how many getdata messages a CDN node receives from the bitcoin nodes per
new inv message over the number of connected peers. Receiving more getdata
per inv per connection, indicates that the CDN node communicates with the
bitcoin nodes faster and gets to announce more transactions first. Comparing
scenarios 1 and 2 we present the average values derived from the five experiments
in Table 3.1
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Figure 3.1: Transaction propagation within the CDN

connecting to random peers connecting to the closest peers

0.86 1.14

Table 3.1: Average getdata messages per new inv message per connection

We indeed observe that getdata messages per new inv message per connection
increase 32.6%. This result could be explained as follows. Connecting to peers
that are geographically close we reduce the overhead due to message propagation
as we expect less hops in the network and shorter likns; we don’t send information
over the Atlantic ocean for instance. Hence, message exchange among the nodes
is faster.

Additionally, we want to examine how pipelining message exchange affects
information propagation. To this purpose we calculate how fast a transaction
is exchanged between the CDN nodes. More specifically, suppose tx message
arrives at the CDN node nA at t1 and reaches the CDN node nB at t2, as
illustrated in Fig. 3.1. We want to calculate ∆t = t1 − t2

For scenarios 1 and 3 the arithmetic mean for ∆t is presented in Table 3.2

without pipelining with pipelining

0.7474 sec 0.2943 sec

Table 3.2: Average time a tx message needs to be propagates within the CDN

We therefore observe that tx messages exchange needs 60.6% less time when
we forward inv messages, as soon as they arrive. Such an improvement was
expected since while we wait for the getdata message to reach the initial source
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of the inv message and then for a tx message to arrive, we can already receive
the getdata message from the new destination node and therefore forward the
tx message as soon as possible.

We finally calculate the number of new transactions are announced to a CDN
node from the other CDN nodes as a percentage of the total new transactions
announced. We now compare scenarios 1,3,4. The average values derived from
the experiments is presented in Table 3.3.

without pipelining with pipelining with pipelining and suggestions

48% 64% 71%

Table 3.3: Average percentage of tx messages announced by the CDN nodes

We observe that both adding pipelining and connecting to closest bitcoin
peers decrease the time interval that the CDN node needs so as to announce the
transaction and, therefore, less transactions get to be announced from the rest of
the bitcoin network. When pipelining the messages, inv messages are forwarded
immediately and therefore much faster than the rest of the network. When
connecting to proximate bitcoin peers, the delay due to message propagation
in the links between the nodes is reduced and therefore tx messages can arrive
faster. The combination, as expected leads to the optimal result.
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Conclusion

The purpose of this work was to speed up information propagation in the bitcoin
network so as to tackle the problem of inconsistencies in the bitcoin network that
rises due to its distributed nature and results in slower transactions verification
as well as jeopardizes its safety against an adversary that wants to perform a
double-spent attack. To this direction, we implemented a Content Distribution
Network that can apply an optimized version of the bitcoin protocol among its
nodes. As an optimization, we pipelined the message exchange between the
CND nodes and observed 60.6% average acceleration or transaction messages
propagation between the CDN nodes. We also experimented with the bitcoin
network topology by forcing the CDN nodes to connect to a set of geographical
proximate nodes. As a result the CDN nodes where able to announce on average
32.6% more transactions than when connected to random bitcoin network nodes.

Numerous modifications of the bitcoin protocol can be, however, explored.
The impact of a different message pipelining can be examined; e.g. forwarding
tx messages as soon as they arrive, regardless if a getdata message has arrived.
Different ways to connect the bitcoin nodes can also be explored, such as the
number of hopes between the nodes and the link bandwidth. Finally, bitcoin
nodes could be prompted to actively connect to such a CDN according to their
geographic location, instead of the CDN nodes searching and suggesting bitcoin
network nodes to each other. We hope that this work will be a motivation for
such experimentations in the future.
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