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Abstract

Shopping lists are still written mostly on paper, even though a high percentage
of the population owns a smartphone. We aim at improving shopping experience
with the use of a smartphone, more specifically by developing an app for Android
smartphones which serves as a shopping list with extended functionality. The
main improvement over common shopping lists is the automatic prediction of
purchases by analyzing the user’s previous shopping behaviour. We will evaluate
the algorithm and show that it is possible to predict a part of user’s shopping
list, especially items bought regularly.
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Chapter 1

Motivation

Today, a big part of everyday life is made easier by the help of some electronical
device. However, the common task of shopping is still largely paper-based. This
leads to frustration, be it by forgetting to include that item you usually buy in
your hand-written shopping list, by having to cross the whole store several times
because the items on the list are noted randomly, or by having to check your
supplies first to know what you are missing.

This thesis addresses these issues by offering an app for Android smartphones
which serves as a regular shopping list with additional features. The app com-
municates with a server that excutes analysis functions and stores purchase data.

To help the user in compiling a list even though they do not know the exact
supplies they have at home, the server analyzes previous purchases, identifies
items bought regularly and uses this information to estimate whether the user
has to buy that item because his supply is likely to run out.

To prevent unnecessary distance covered in the store, the system learns from
app users by analyzing in what order they get items and infering a possible order
in which items are placed in the store.

The resulting app improves shopping experience as it not only offers an easy
way to keep track of the items in a paperless way but also addresses the above-
mentioned issues and further offers easy extensibility.
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Chapter 2

Related Work

2.1 Recommender Systems

The most widespread use of predicting shopping lists today are recommender
systems. These learn from user preferences and try to find users with similar
interests to recommend an item one of these users liked or bought to all of
the other users. One of the most interesting applications is recommending new
movies to users (e.g. done by Netflix [1]) or displaying items bought together
(e.g. used by Amazon [2]).

These are, however, not suitable for the task tackled in this paper. The main
conceptual difference lies in the fact that items bought in convenience stores such
as Migros are bought every so often, while movies are typically watched once and
items bought once, meaning they are only recommended once.

Implementation-wise, most recommender systems apply some sort of matrix
factorization to the matrix containing known information such as movie ratings
to obtain a guess for the missing entries. The success of this approach is based
on the fact that for every row, some values are known (e.g. ratings for movies
by one user) and the missing values in the row are then predicted, a task highly
suitable for matrix factorization. However, the creation of a shopping list from
scratch is equal to guessing the contents of a whole new row in a matrix, a task
not suitable for any matrix factorization techniques.

The approach at predicting shopping lists in this paper is therefore different,
and will be explained in-depth in the following chapter.
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Chapter 3

Predicting Shopping Lists

To explain the prediction algorithm introduced in this section, Table 3.1 will be
used. It features a collection of made-up receipts of a user who only buys the
four items listed, with an x indicating that an item has been bought on a specific
date at the amount noted in brackets. The algorithm tries to predict what the
user should buy next (2015-03-12) and in what quantity.

Table 3.1: Example list of purchases of four different items

Coca-Cola Zero Ice Tea Vollmilch Chips

2015-02-03 x (2) x (1) x (2)

2015-02-08 x (2) x (3)

2015-02-14 x (2) x (1) x (2) x (2)

2015-02-15 x (4)

2015-02-18 x (1)

2015-02-25 x (3) x (1) x (1)

2015-03-01 x (1) x (2)

2015-03-07 x (3) x (1) x (3) x (5)

2015-03-12 ? ? ? ?

3.1 Concept

The main idea of this algorithm is to determine how regularly each item is
bought and then check whether enough time has passed since the last purchase.
To obtain this information, for each item the average a of the time difference
between every pair of receipts containing that item is calculated. Next, the
algorithm determines the time difference t between the time the function is
called and the last known time the user bought the item (date & time). To
check whether enough time has passed, the algorithm calculates the difference
ratio r given by the following division:

3



3. Predicting Shopping Lists 4

r =
t

a

It can be seen that r will increase linearly with the time passed since the last
purchase, and items should most likely be proposed at a value around 1. For the
example data introduced before, the values of a, t, and r can be seen in Table
3.2

Table 3.2: Values for a, t, and r

Coca-Cola Zero Ice Tea Vollmilch Chips

a 128 256 162 228

t 120 120 120 120

r 0.94 0.47 0.74 0.53

3.2 Algorithm

As a first step, the algorithm iterates over all receipts and excludes all items that
were bought less than four times by the user. This adds a certain significance to
the regularity of purchases of that item. On the downside, items the user just
started buying regularly will only show up after some purchases.

Items with similar names are now merged into a single, generic item (For
implementation details, see Section 4.1.2). This is to improve the quality of the
data used, as for example two items called Bio Vollmilch and Milch 1L denote
the same generic item Milch. Since the user selects one of the two by personal
preference, it suffices to propose the generic item Milch and leave the choice
of what item to buy up to the user. The mapping aids in deriving this generic
proposal by checking each item’s name against the database and, if the database
holds an entry for a mapping of the item to a more generic item, applying said
mapping.

Next, the algorithm iterates over the items determined before and then, for
each of these items, iterates over all receipts containing the item, making note of
the average time difference in hours between every pair of subsequent receipts,
which yields the average time difference a. Additionally, the standard deviation
σ of a is calculated. In the same iteration, the algorithm notes the average
amount each item is bought at. This gives an intermediate result containing all
items not excluded in the first step, along with values for r, a and σ for every
item.

At this point a first threshold is applied. If the standard deviation is more
than twice as high than the average a, the item will not be predicted. This rules
out accidental predictions of items users do not seem to buy regularly, but are
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rather bought in a random fashion (e.g. for a party), and would therefore be
hard to predict correctly. As can be seen in Table 3.3, none of the four example
items will be excluded by this threshold.

Table 3.3: Values for a and σ for the four example items. All items are kept,
as the standard deviation σ of the time difference between purchases is less than
twice the average of said time difference for all items.

Coca-Cola Zero Ice Tea Vollmilch Chips

a 128 256 162 228

σ 29.07 13.86 71.67 288.50

a/σ 0.23 0.05 0.44 1.27

Finally, the before-mentioned ratio r is calculated and compared to the two
input parameters rmin and rmax, which are bordering values for r. The lower
limit’s necessity is obvious, the upper limit however is less so. It is used to
prevent items from being predicted over and over again. This is due to the fact
that an item not bought for a long time (e.g. if the user does not buy it any
more) will have a constantly increasing value of r. Setting an upper bound will,
after this bound was crossed, exclude the item from all future predictions. The
process of tuning these parameters is explained in Section 5.1.

If r lies between or is equal to one of the two values, the item is added to
the result list. The amount the user should buy is calculated by multiplying
the average amount the item was bought at by the value of r, rounding to the
nearest integer.

After the algorithm checked all items a shopping list like in Table 3.4 is
obtained, containing all items proposed to the user and the quantity in which
they will be proposed.

Table 3.4: Decision on which items to propose in what quantity (assuming
rmin = 0.8 and rmax = 1.8)

Coca-Cola Zero Ice Tea Vollmilch Chips

r 0.94 0.47 0.74 0.53

Average amount 2 1 2.17 3.67

Buy item (Y/N) Y N N N

Predicted amount 1.88 (2) - - -

In a final step, the algorithm determines the order in which the items are
likely to be placed in the store. This is done by learning from previous pur-
chases. The algorithm analyzes in what order users check items and determines
an approximate order in which the user will likely find the items in the store.
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Implementation details are described in Section 4.1.1.

Pseudocode for this algorithm can be seen in Algorithm 1.

Algorithm 1 Basic Prediction

1: function predict(rmin, rmax)
2: items to check← Items bought at least 4 times
3: generic items← merge similar items(items to check)
4: all receipts← All receipts present in DB for user
5: t← Time passed since last purchase
6: predictions← [ ]
7: for item in items to check: do
8: a← Average time diff. between two purchases of item
9: σ ← Standard deviation of a

10: aamount ← Average amount the item was bought at before
11: if σ > 2 · a then
12: r← t/a
13: if rmin ≤ r ≤ rmax then
14: p amount← aamount/r
15: Append (item, p amount) to predictions
16: end if
17: end if
18: end for
19: sorted predictions← sort in store order(predictions)
20: return sorted predictions
21: end function



Chapter 4

Implementation

4.1 Features

4.1.1 Sorting Predictions

As briefly mentioned in Section 3.2, predictions proposed to the user are in an
order that is likely to be close to the order in which the user will find the items
proposed to them in the store. This feature is based on the assumption that the
layout in all stores is approximately the same.

In order to sort predictions, the system learns from previous purchases. For
every new purchase stored in the database (independent of the user), the system
looks at the order in which the items were checked by the user and, for every
pair of items, determines which of the two was checked later. Consider the four
items in Table 4.1. The numbers in the table represent the order in which items
were checked during different purchases.

Table 4.1: Numerical order in which items were checked during purchases, i.e.
an entry of 1 for a purchase means that the corresponding item was checked first
during that purchase (- = not bought)

Date Tomaten Coca-Cola Milch Brot

2015-02-03 1 4 2 3

2015-02-08 1 - 3 2

2015-02-14 1 2 3 -

2015-02-15 2 3 - 1

2015-02-18 - 2 1 -

2015-02-25 2 - 1 -

2015-03-01 2 1 - 3

2015-03-07 1 - 3 2

2015-03-12 1 4 2 3

7



4. Implementation 8

For every purchase and every pair of items the item with the higher associated
number in the ordering was checked later. This information is stored in a matrix
M , as seen in Table 4.2, where for each pair {i, j}, the entry Mi,j states the
amount of times the item represented by row i was checked earlier than the item
represented by column j.

Items that are checked as one of the last items in most purchases will have low
entries in their respective column, while items that are checked at the beginning
of purchases will have high entries.

Table 4.2: Matrix M : Stores how often items were checked later than other
items. Each entry Mi,j denotes the amount of purchases so far where the item of
row i was checked later than the item of column j. Example: The item Coca-Cola
was checked after the item Tomaten during 4 different purchases before.

Tomaten Coca-Cola Milch Brot

Tomaten - 1 1 1

Coca-Cola 4 - 3 3

Milch 5 1 - 2

Brot 5 1 2 -

Next, for the set of items that should be ordered, the corresponding entries
in the above-mentioned matrix are extracted into a new matrix N . For each row
the entries are then scaled proportionally such that they scale up to 1, i.e. each
entry Ni,j is given by

Ni,j =
Mi,j∑

s∈S
Mi,s

,

where S is the set of items to be ordered.

Items that were bought at the beginning in most purchases will, as before,
have relatively high entries in their respective column.

Keeping the above conclusion in mind, the matrix is now represented as a
state diagram (Figure 4.1), where the items denote the states (abbreviated by
their first letter) and the entries in N denote the probabilities of state changes,
i.e. Ni,j denotes the probability that after state i, the system will be in j.
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Table 4.3: Probability of state changes

Tomaten Coca-Cola Milch Brot

Tomaten - 0.33 0.33 0.34

Coca-Cola 0.4 - 0.3 0.3

Milch 0.625 0.125 - 0.25

Brot 0.625 0.125 0.25 -

T C

M B

0.33

0.33

0.34

0.4

0.3

0.30.625

0.125

0.25

0.625

0.125

0.25

Figure 4.1: State Diagram showing the state change probabilities

As stated before, an item checked late in many purchases will have low entries
in its respective column, therefore implying that the edges going into its state
will be of lower weight than ingoing edges of other states. This item should at
the same time show up late in the ordering that the algorithm determines. Items
that are represented by states with ingoing edges of low weight should thus be
placed near the end of the ordered list. In turn, items represented by a state
with ingoing edges of high weight should be placed at the beginning of the list.

In order to obtain a measure for how high each state’s ingoing weights are in
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comparison to the other states and in what order items should thus be placed,
a Markov Chain is used to model the states and probabilities of state changes.
For one, the state diagram obtained is a representation of a Markov Chain and
therefore no additional work is required for creation. Additionally, the given
restriction on the input data (all rows sum up to 1) leads to the fact that one
can deduce steady-state probabilities of the Markov Chain obtained.

In a Markov Chain of the format explained above, the steady-state probabil-
ities are denoted by a vector which, for each state i, denotes the probability that
at a random time, the system will be in that state. It can be verified that a state
with relatively high-weighted incoming edges is likely to have a high steady-state
probability compared to the other states. Therefore, items checked early, whose
states have, as explained above, high-weighted incoming edges, will have a higher
steady-state probability and should be proposed early.

The algorithm thus orders the items by creating a Markov Chain as explained
above, calculating the steady-state probabilities, ordering them by value and
mapping them back to their respective items as seen in Table 4.4.

Table 4.4: Steady-state probability (SSP) for example data and the order in
which items should be placed (Rank 1 through 4). The state T corresponding
to the item Tomaten has the highest steady-state probability and the item is
therefore placed at the top of the list (Rank 1)

SSP Rank

Tomaten 0.360 1

Coca-Cola 0.177 4

Milch 0.230 3

Brot 0.233 2

4.1.2 Generic Items

As briefly mentioned in Section 3.2, users who need a specific generic item (e.g.
Milch) do not always buy the exact same article in the store. The items Bio
Vollmilch and Milch 1L, for example, both represent an item Milch but have
different names. Further, there may be users that do not always purchase items in
the same size. Ice Tea 1L and Ice Tea 2L, for example, both denote the same item
(Ice Tea) but in different sizes. Nevertheless, users should be sent predictions
where the purchases of the two items were taken into account together.

To visualize the feature, consider the mock-up overview of purchases of a user
for the four items mentioned above shown in Table 4.5.
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Table 4.5: Example list of purchases of four different items

Bio Vollmilch M-Budget Milch Ice Tea 1L Ice Tea 2L

2015-02-03 x (2) x (1)

2015-02-08 x (2) x (2)

2015-02-14 x (2) x (1)

2015-02-15 x (1)

2015-02-18 x (1)

2015-02-25 x (3) x (2)

2015-03-01 x (1) x (2)

2015-03-07 x (2) x (1)

2015-03-12 ? ? ? ?

If the prediction algorithm was applied to the given table, it would yield
the values in Table 4.6 for the difference ratio r and lead to an empty list of
predictions. This is clearly not the desired result, as one can see that the user
purchases the generic items Milch and Ice Tea regularly, but in different versions.

Table 4.6: The four items have low values of r. These would, depending on the
lower bound for r, lead to an empty or only half-full prediction list, despite the
fact that common sense dictates that both items should be proposed.

Bio Vollmilch M-Budget Milch Ice Tea 1L Ice Tea 2L

a 256 180 168 384

t 120 120 120 120

r 0.47 0.67 0.71 0.31

Buy item (Y/N) N N N N

The solution approach used is a mapping of item names given by receipts
or by the user to more generic names (e.g. mapping the two ICE TEA items
of different sizes to a generic item ICE TEA (with no notion of size)). This
mapping is applied to all items a user has bought prior to calling the prediction
algorithm from Section 3.2. The algorithm will then run on fewer items with
more purchase data per item and will deliver more accurate predictions.

To determine this mapping, it proved to be easiest to run through the list of
items and determine meaningful generic names by hand. These are then checked
against all item names and, where one of the manually determined names is a
substring of the item’s name, a new entry in the table of mappings is created.

The above-mentioned mapping is implemented as a table with four columns,
as shown in the example in Table 4.7. The columns old name and new name
denote the old and the new, more generic name of the item, while new id is, for
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all sets of items mapping to the same generic name, the id of one of the items in
the set.

Table 4.7: Excerpt of the table containing all mappings

old id new id old name new name

31 31 Bio Vollmilch MILCH

41 31 M-Budget Milch MILCH

59 59 Ice Tea 1L ICE TEA

26 59 Ice Tea 2L ICE TEA

The application of this mapping leads to a merge of the four initial items
into just two items (MILCH and ICE TEA), which hold the purchase data of
all items that were mapped to them. This leads to more exact knowledge of the
user’s shopping behaviour, as more data is available per item.

4.1.3 Displaying Discounts

The items that are currently discounted are obtained by using Scrapy [3] to
crawl the website displaying all discounts. Items are loaded by emulating AJAX
requests and extracting the necessary information from the responses. Next,
each item is checked against the list of known generic items and, if a mapping
exists, the item is renamed to the generic item’s name. The item is then stored
in the database.

When a user requests predictions, the prediction algorithm is run as usual
to obtain a shopping list. For every item in the list, the known discounts are
checked and if a discount exists for that item, this information is added to the
list.

On the client side, when displaying the predictions, every item that is marked
as discounted will feature a small icon (c.f. Figure 4.2).

4.2 System Structure

The system is implemented as a Client-Server structure (c.f. Figure 4.3). The
client is an Android App running on the user’s smartphone, while the server is
based on the Django Web Framework [4]. Communication is based on JSON [5]
and a REST [6] interface on the server side.



4. Implementation 13

Figure 4.2: Discounts are indicated by an icon with a percentage sign

Figure 4.3: Architecture diagram of the System

4.3 Authentication

Users authenticate themselves with their Google Accounts. This is achieved by
using Google Sign-In for Android [7]. The process is similar to the OAuth [8]



4. Implementation 14

authentication process. The app asks the user to log in with their Google account
and, if consent is given, obtains a token from Google’s OAuth servers. This token
is then sent to the server, which verifies its validity. Next the necessary login
information (mail address & unique id) is extracted and checked against the
database.

If a user with the given data exists, a unique session id is created by the
server and sent back to the user. All subsequent requests include said session id
and are authenticated by it.

If no user is found, a new user is created and the App asks the user to enter
the login credentials for his Cumulus account. This data is then sent to the
server and stored. As above, a session id is created and sent to the user to finish
the login process.

4.4 Communication

All communication between client and server is stateless in the sense that the
server does not keep track of what request is received by which client. Requests
are sent to the server’s REST interface, with all additional data added in JSON
format.

On the client side, requests are sent asynchronously to the corresponding
interface, however the client does not block while waiting for a response. The
response is, as soon as received, handled by a callback function.

Furthermore, communication is kept to a minimum. The only app functions
triggering a request are logging in, requesting predictions, loading old receipts,
and uploading shopping lists at the end of a purchase. All other functions are
executed locally on the client side, and results are stored on the client’s device.

4.5 Client

As mentioned before, the client is an Android App running on the user’s smart-
phone. The client functionality consists mainly of offering a shopping list to the
user. All calculations are done on the server, the app only displays the resulting
predictions.

After successfully logging in, the user is presented a screen similar to the one
depicted in Figure 4.4. Items displayed in red font are predictions loaded from
the server, items in black are created by the user or predicted items that have
been edited.

Predictions are loaded automatically when logging in, but can also be re-
quested manually by pressing the button in the title bar. They are received in
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Figure 4.4: Screen presented to the user after Login

JSON format, converted into objects of the class Item and displayed in the list.

Any changes to the list (addition, editing or deletion of items) is stored locally
on the user’s device, but not uploaded to the server.

Items are checked or unchecked by either pressing the checkbox or the line
the item is displayed on. Subfigure 4.5b shows a list with two items checked.

Editing items is achieved by pressing the pencil icon of the respective item
(c.f. Figure 4.5), changing name and amount and confirming the change. The
change is then reflected on the list.

The list is sorted by first listing all checked items and then displaying the
rest in the order they are proposed or were added.

The tab Receipts shows an overview over the user’s previous purchases. De-
tailed information such as the items bought and the amount they were bought at
is available by pressing the corresponding receipt (c.f. Figure 4.6). It is further
possible to add previously bought items to the list by pressing the button next
to it that shows a + sign.

Upon completion of the purchase, the user confirms this by pressing the black
checkmark icon. The list is converted into JSON format and sent to the server.
The server stores the data and then sends an acknowledgment to the App. As
soon as that is received, the list is cleared and the user informed about the
successful upload of the list.
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(a) Edit Dialog (b) List after edit

Figure 4.5: Editing items

4.6 Server

The server is implemented in Python. The Django Web Framework [4] is used
for generation and management of the server logic and the data models, as well
as for communication (by offering REST interfaces). The requests are routed
through the views of the interface to the respective functions.

4.6.1 Data Retrieval

All data about user purchases is obtained by downloading the receipts associated
with the user’s Cumulus account and stored by Migros. Migros offers an online
platform [9] which displays the receipts of all purchases where the user presented
his Cumulus card, along with what items were purchased at what amount and
what price, as well as date, time and store where the purchase took place.

Whenever a user is authenticated as described in Section 4.3, the server
gets and stores any new receipts added to the user’s Cumulus account. This
is achieved by opening a browser session using the python package mechanize
[10], authenticating said session with the credentials stored in the database and
emulating JavaScript to display and download any receipts not stored yet.
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(a) Edit Dialog (b) List after edit

Figure 4.6: Editing items



Chapter 5

Tuning & Evaluation

5.1 Parameter Tuning

The bordering parameters rmin and rmax of the prediction algorithm are deter-
mined by evaluating predictions for different values. This is done by taking a
subset of a user’s receipts stored in the database and, for different parameter
values, predicting the items appearing on the first half of the remaining receipts.

Note that this split is necessary, since the second half will be used as a test set
to evaluate predictions (and therefore also the parameters tuned in this section),
and should therefore differ from the test set used in this section. The predictions
are then evaluated to determine the best values for the parameters. For this
evaluation, the following three scores are taken into consideration:

1. Average amount of items predicted: How many items the predicted shop-
ping lists contained on average. This score is necessary to prevent selection
of parameters which would lead to lists of predictions with either too few
or too many items.

2. Correct predictions: How many of the predicted items appeared on the
actual receipt

3. Percentage of correct predictions: Percentage of correct predictions to av-
erage amount of items predicted

To determine rmin, rmax is set to a reasonable value of 1.8. Then, the evalu-
ation function runs over the test set mentioned above for values of rmin ranging
from 0.3 to 1.2, in steps of 0.1.

Figures 5.1 and 5.2 display the three scores for the range under test. Since
the percentage of predictions that are correct stays almost the same, it seems
best to set rmin to a value that leads to a reasonable amount of predictions, since
neither two nor nine predictions appear good for usability. The value of rmin is
therefore set to 0.7.

18
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Figure 5.1: The upper line represents the average amount of items predicted,
the bottom line shows the amount of correct predictions, i.e. items that were
predicted and bought by the user. It can be seen that both the average amount of
items predicted and the amount of correct predictions decreases with increasing
values of tmin.
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Figure 5.2: The percentage of correct predictions varies little for all values of
rmin under test.

Determining a value for rmax is more complicated. A static upper bound
is not the ideal solution, as items purchased very often (e.g. every three days)
would cross the upper bound after a relatively short amount of time and would
from then on not be proposed again.
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Consider an example similar to the one used in Section 1, reduced to one
item (ICE TEA), in Table 5.1. The item, as shown in Table 5.2 is bought every
three days. Such a small difference between purchases leads to the difference
ratio r growing quickly in few days time (e.g. r = 2.28 after only seven days).
Any static upper bound on r in a sensible range will therefore be crossed in
a relatively small period of time, meaning that items bought often will not be
predicted anymore after only a few days.

It is also not a good option to increase the upper bound indefinitely, as for
example an upper bound of rmax = 3.0 applied to an item every 20 days means
that the item will be predicted until 60 days have passed since the last purchase,
which decreases user-friendliness.

Table 5.1: Example list of regular purchases the item ICE TEA

ICE TEA

2015-02-03 x (2)

2015-02-06 x (2)

2015-02-08 x (3)

2015-02-12 x (2)

2015-02-15 x (2)

2015-02-22 ?

Table 5.2: The value of r increases quickly and crosses sensible upper bounds
early

ICE TEA

a 72

t 164

r 2.28

To fix this issue, the upper bound is implemented as a dynamic bound that
is different for each item and is inversely proportional to the value of a for the
item under test. This ensures that items with a low a will have a higher upper
bound rmax on r, i.e. they will be predicted for a longer time.

We are therefore looking for an equation for the upper bound rmax depen-
dening on the average time difference a introduced in Section 3.2 of the form

rmax =
c

an
+ b,

with three unknown parameters c, b, and n.
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To determine good values for these parameters, n and c, b are in turn fixed and
the other paramater(s) are optimized with regard to the percentage of correct
predictions and the average amount of predictions. To visualize this process,
Figures 5.3 and 5.4 show the resulting scores of an optimization step for n with
fixed c = 18 and b = 0.8.
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Figure 5.3: The average amount of items predicted decreases for increasing
values of n for given parameters c = 18 and b = 0.8
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Figure 5.4: The percentage of predicted items that was bought reaches a max-
imum for n = 0.6

The values obtained in the end were c = 17, n = 0.6 and b = 1, leading to
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the following equation for determining the upper bound rmax:

rmax =
17

a0.6
+ 1.0,

where a is the average time difference between purchases of the item.

Adding this formula to the existing prediction algorithm and applying it to
the example data results in a higher upper bound for the item ICE TEA and
leads to the item being predicted.

The effectiveness of this dynamic bound is evaluated in Section 5.2.

5.2 Evaluation of Predictions

The prediction algorithm is evaluated by first running it without any features
tuned on (i.e. evaluating the concept used), and then turning on features one
by one. This approach helps in visualizing the effect the features described in
Section 4.1 have on the predictions and thus also helps evaluating them and
justifying their use in the algorithm

Evaluation of the predictions is done by taking all but the last 100 receipts
of a user as a base for predictions and predicting each of the 100 receipts. The
two scores used to evaluate the correctness of the predictions are:

1. The percentage of predicted items that showed up on the actual receipt

2. The amount of items that were bought by the user but not predicted by
the algorithm.

The following four evaluations are run as described and the two scores are
obtained for each one of them:

• Evaluation 1: The base algorithm runs without merging items into generic
items and by using a static upper bound instead of a dynamic one.

• Evaluation 2: The dynamic upper bound as determined in Section 5.1 is
added to the algorithm.

• Evaluation 3: The merging of items into generic items is turned on again,
but the algorithm runs with a static upper bound.

• Evaluation 4: Both merging of items and the dynamic upper bound are
turned on.
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In Figures 5.5 and 5.6, the two scores are displayed for each of the four
evaluations described above.
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Figure 5.5: Both features lead to an increase of the percentage of correct
predictions
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Figure 5.6: The percentage of bought items that were not predicted decreases
when merging items

The results imply that merging items has a significant positive effect on
both the percentage of correct predictions, which almost doubled (Evaluation 1
vs. Evaluation 3), and the percentage of bought items that were not predicted.
Thus, the feature’s inclusion in the algorithm is justified.
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Analyzing the effect of the dynamic upper bound leads to an interesting
notion. The percentage of correct predictions increases as desired, but the per-
centage of bought items that were not predicted increases as well. This is a result
of the dynamic upper bound leading to less predictions per purchase (3.7 instead
of 4.3 predictions per purchase on average). As the increase in the percentage
of correct predictions is higher than the increase in items bought that were not
predicted, the inclusion of this feature in the predictions algorithm is justified as
well.



Chapter 6

Future Work & Conclusion

The prediction algorithm as well as the different features shown are by themselves
a solid result, but can also be enriched further.

First, in Section 5.1, the value of the lower bound for the prediction algorithm
was chosen by aiming at an average of four items per prediction. This value
could also be determined dynamically for each user, for example by analyzing
the amount of items the user buys on average per purchase. Especially for users
with few, but big purchases, a higher amount of predictions may be desirable.

Next, it would be interesting to come up with a different approach at pre-
dicting items and evaluate it against the prediction algorithm presented in this
paper. Alternatively, the algorithm could be extended with more features that
would improve the predictions.

Further, the app only works when the user is connected to the internet.
However not all stores offer good coverage. One could therefore extend the app
by, for example, loading predictions and old receipts in a background service.

Finally, the current version of the app only collects the order in which the
items were checked in, meaning a lot of usage data is not analyzed. Surely,
additional functionality and possibly improved predictions could be derived from
collecting more data.

All in all, the paper presents a solid structure for improving shopping ex-
perience by offering a digital shopping list with prediction of items and other
features helping the user. These have been shown to have a significant positive
effect. The presented solution could be improved easily by adding additional
features or addressing some of the issues mentioned above.
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