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Abstract

As a decentralized digital currency, one of the features Bitcoin draws its security
from is that its clients broadcast transaction or block messages to a number of
randomly selected peers to share their view of the current state of the transac-
tion history. This feature makes it very hard for an attacker to manipulate the
victim’s view of the network for fraud.

In this thesis we show that the Bitcoin network leaks information about the
topology. For this purpose we introduce BiPI, a program which reveals the peers
of a Bitcoin Core client with high probability using timestamps. We measure the
efficiency of BiPI before and after the release of the patch targeting this leak. To
show how powerful this knowledge can be we then execute double-spend attacks
with and without the identified peers and quantify the increase of the success
probability.
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Chapter 1

Introduction

What started 2008 with Satoshi Nakamoto’s White Paper [1] has now grown to
the most prominent digital currency. Bitcoin has an estimated market capitali-
sation of around 4 billion USD, as of July 2015, and more than 7.5 million digital
wallets.

Bitcoin is used all over the globe. Online as well as regular shops accept Bit-
coin as a payment method, large exchange platforms for Bitcoin such as Coinbase
or Bitstamp exist, and Bitcoin ATMs have been deployed in many countries.1

Some of these uses rely on fast payment, meaning the service offered must be
delivered seconds after the transaction has been made. The merchant cannot
wait for the transaction to be confirmed as this may take several minutes. This
scenario is prone to the double-spend attack in which an attacker can use the
same coins for two or more payments. However our measurements show that the
success probability of a plain double-spend attack lies only around 12%. This
kind of double-spend attack makes no assumption about the topology. Therefore
the dissemination behaviour of transactions cannot be controlled.

Our hypothesis states that it is indeed possible to obtain insights about which
peers a victim is connected to and, based on this advantage, that an adversary
can boost his success probability of a double-spend to 60%. To prove this we
developed the Bitcoin Peer Investigator (BiPI), a program which exploits an
information leak in the gossiping mechanism for address dissemination.

A variety of clients implement the Bitcoin protocol and enable users to store
and trade with Bitcoins. For the course of this thesis we concentrate on the most
common one: Bitcoin Core. We use this client as an example of the protocol, but
similar results can be achieved with other clients as we do not exploit specific
properties of this client. Instead we only rely on the Bitcoin protocol.

1www.coindesk.com/bitcoin-atm-map
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1. Introduction 2

1.1 Transaction

Bitcoins are transferred from one Bitcoin address to another through transac-
tions. A Bitcoin address represents a destination for payments and is a hash
from the public portion of a public/private keypair. Each transaction contains
at least one input and one output as well as the number of Bitcoins transferred to
each output. An input is a reference to an output of a previous transaction, thus
creating a directed acyclic graph. The transaction graph is public knowledge
and everyone is able to track and verify the complete transaction history since
the beginning of Bitcoin. An output references a Bitcoin address and contains
the amount of Bitcoins transferred.

Bitcoin ensures that only the owner of the address can claim the output by
using digital signatures. When a user wants to send Bitcoins to an address,
she creates a transaction specifying the inputs and outputs and signs it with
her private key before she broadcasts it to the network. Every receiving node
checks whether the transaction is valid and correct and if so the transaction is
further relayed to the node’s peers. In particular every node checks whether
the output claimed has not been used before. Bitcoin Core will only relay the
first transaction, but any subsequent transaction claiming the same output will
not be relayed. This way the transaction is spread through the whole network
reaching clients and eventually the recipient.

In a fast payment scenario the transaction is considered to be confirmed for
the merchant, which also runs a Bitcoin client, upon reception. Contrary to that
in a non-fast payment scenario the merchant waits for the confirmation of the
network.

1.2 Blockchain

The blockchain is Bitcoin’s public ledger. It is Bitcoin’s approach of eventually
reaching consensus in its peer-to-peer network about, which transactions effec-
tively happened and in which order. Every node in the network possesses its
own blockchain, which denotes its own view of the transaction history. These
views should not differ too much from node to node.

The blockchain consists, in the best case, of a single sequence of blocks, start-
ing from the first genesis block all the way to the current block (Fig. 1.1). Every
block carries a timestamp, a hash to a previous block, a collection of transactions
and a nonce. Following the sequence from the first to the last block is equivalent
to reviewing all the transactions ever made in chronological order. Therefore a
transaction contained in a block must have its inputs point to transactions in
previous blocks or in the same block. Creating one of these blocks is based on a
proof-of-work (PoW) system and requires a significant amount of computational
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power. By appending the right nonce to the binary representation of the pay-
load mentioned above, the value of a given cryptographic hash function must lie
below a target value in order to be accepted by the network. This requirement
can only be met by brute-forcing. The target value is adjusted dynamically so
that in average such a block is found roughly every ten minutes. Nevertheless
studies show this duration has a standard deviation of 15 minutes [2]. Some
nodes, called miners, in the network are solely dedicated to finding such blocks.
They listen to newly announced transactions in the network, validate them and
keep them in a pool. For every block found the miner is rewarded with a certain
amount of Bitcoins plus the sum of all transaction fees from the transactions
included in the block. As soon as a block is found the miner broadcasts it into
the network and the receiving nodes can check for validity by computing the
hash of the block and verifying all the transaction contained. If valid, the nodes
append their block to their own blockchain. Note that modifying the block, and
thus claiming the reward for the own sake, is equally as hard as mining a new
block because every modification to a block results in a change of the hash value.

It can happen that during the propagation of a newly mined block another
block is found by another miner, which has not yet heard of the new block, leading
to a split of the network and ultimately to two different views of the transaction
history [3]. This is called a fork. In order to resolve it both partitions enter a race
about which one finds the next block and creates a longer chain, which is accepted
by both partitions. The race can potentially go on for multiple blocks but the
probability of it decreases exponentially for every additional block. However if
a miner happens to create a longer chain originating from a non-current block,
thus creating another history, the rest of the network has to rollback its history
to the point where the fork happened. This requires theoretically a majority of
the mining power of the Bitcoin network [1].

Nonce Nonce

Hash Hash Hash

Block n-1 Block n

Nonce

Previous block Previous block

Transactions Transactions Transactions

Block n+1

Previous block

Figure 1.1: Example of a blockchain segment
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1.3 Double-spend attack

The double-spend attack tries to spend the same Bitcoins more than once. Upon
a successful attack the victim is left with an invalidated payment while having
already delivered the service. Multiple variants of the double-spend attack ex-
ist. The one we consider in the thesis, the race attack, does only work for fast
payment scenarios, e.g., ATMs, cafes or fast food chains.

A merchant using fast payment has to accept the payment once it receives
the respective transaction and cannot afford to wait for the confirmation from
the blockchain. Her transaction, however, can be rendered invalid afterwards, if
another transaction claiming the same output is included in the blockchain and
thus going to be accepted by the network. An attacker performing a double-
spend injects two transactions into the network. A transaction seemingly paying
for the service claimed and a transaction for the miners. The one for the miners
can pay for another service or can transfer the Bitcoins back to another address
owned by the attacker.

1.4 Related work

Since double-spend attacks still remain a problem in the Bitcoin protocol it
has been topic of some research which study the difficulty of executing such an
attack [2, 4, 5]. Also other types of related attacks has received considerable
attention such as the eclipse attack which is much more powerful once set up
but requires a tremendous effort to do so [6]. This attack goes much further than
just knowing the peers of the victim. It tries to monopolize all connections of
the victim. This enables the attacker to temporarily alter the victim’s view of
the network to her advantage.

While both of these methods target the victim directly, a successful 51% at-
tack affects multiple clients at once. This attack was mentioned as a hypothetical
security issue in Satoshi Nakamoto’s paper [1]. As long as an attacker possesses
the majority of CPU power in the network she could change transaction history.
However, the research of Eyal and Sirer has shown that this statement does not
hold. Even with less mining power than the majority it is worth mining self-
ish [7]. A much more general discussed aspect is the topology itself. Andrew
Miller et al. present a method to find influential nodes and mining pools, which
in return could be used to improve our results even further [8].

In conjunction with Bitcoin being a peer-to-peer network, the degree of
anonymity is another widely discussed topic [9]. Ober et al. analyzes which
dynamical effects increase or decrease anonymity [10]. A method proposed by
Koshy et al. maps Bitcoin addresses to IP addresses [11]. Their method ana-
lyzes real-time transaction data collected over 5 months and tries to detect relay
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patterns in the transaction graph.



Chapter 2

Revealing peers

In this chapter we introduce our program BiPI (Bitcoin Peer Investigator) to
showcase that it is possible to identify the victim’s peers. The goal of BiPI is to
return a result set of peers which covers the victim’s peers with high probability
by observing the updates of timestamps in the victim’s address pool.

Every node manages a pool of IP addresses which it can resort to if a con-
nection to another Bitcoin peer is lost. In the case of Bitcoin Core, 8 of these
connections are maintained. Those peers are used to broadcast and relay data
messages, such as addresses, blocks or transactions. Each address carries a times-
tamp from the last time when the address was heard from. On startup, the client
performs a DNS lookup in order to obtain a list of IP addresses believed to be
active. The domains of the DNS servers are hardcoded into the Bitcoin Core
client. It then connects itself to those peers and starts exchanging information
about their view of the network. One part of this process involves updating
the address pool using addr messages. Those messages are sent either as a re-
sponse to a getaddr request or unsolicited. An addr message contains a random
selection of addresses from the sender’s pool, each carrying a timestamp of the
most recent appearance in the network. Those addresses are updated under two
conditions:

1. The address was sent as a part of an addr message and carries a more
recent timestamp than the timestamp stored in the pool.

2. When a connected peer sends a addr, version, inv, getdata or a ping mes-
sage the timestamp of its address is then updated in the pool of the receiv-
ing node.

Note that this behaviour only applies to Bitcoin Core version 0.10.0 and
older. Condition 2 has been changed in version 0.10.1 which was released during
the writing of this paper and we will address that in chapter 2.3.

The key idea is that the addresses which the victim is connected to are
updated much more frequently because of condition 2. Therefore repeatedly

6



2. Revealing peers 7

requesting addresses through getaddr messages first leads to a good coverage of
the victim’s address pool and second allows an estimate of the update frequency
of her addresses.

For the course of this thesis we introduce two terms:

• Those peers which the victim is connected to are called true peers.

• Peers which the attacker believes to be potential true peers are called pos-
itive peers.

By default Bitcoin Core runs 8 of these outgoing connections, meaning the
victim actively establishes the connection to those peers, in contrast to incoming
connections which do not fall under the definition of true peers and are passively
accepted by the victim. The set of positive peers should be larger than the set
of true peers in order to mitigate the chance of having false negatives.

2.1 Implementation

BiPI is a Python program which operates in the Bitcoin network by using the
data messages specified in the Bitcoin protocol. In particular it only relies on the
messages belonging to the gossiping of addresses. BiPI only tries to identify the
peers of a victim and will not perform double-spends. The victim’s IP address
has to be known in advance and be given as an input for BiPI. On startup it
connects itself to the victim and attempts to take snapshots of the address pool
at different points in time. The assumption is that each of those true peers’
addresses has a more recent timestamp due to being updated more frequently.
Together with other snapshots a score can be constructed about which addresses
are the most likely ones to be the true peers. However there is no direct way to
take a full snapshot from the victim’s address pool. Instead different methods
exist which approximate snapshots and thus produce an estimate of the update
frequency. The whole procedure should not take up too much time as the peers
of Bitcoin Core change from time to time and thus disturb the measurements.

BiPI approximates one snapshot by sending a burst of getaddr requests for
having a meaningful coverage of the pool. We defined a snapshot to be 10
successive getaddr messages in a 2 second interval. Between every snapshot the
program waits for 10 seconds until a total of 5 snapshots are taken. In the
evaluation phase the 10 most recent addresses from every snapshot are collected
into an intermediate set of (address, timestamp) tuples. These tuples are then
aggregated into buckets, where each bucket is associated with an address. In a
final step we sort the addresses by their buckets size in descending order and
return the list. Hence the first address in the list is the likeliest one to be a
true peer. Contrary, the last address is the likeliest to be a false positive. The
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parameters chosen turned out to be producing the best results while keeping the
running time at 3 minutes.

One alternative to the implemented method is to alter the sorting criterion.
Instead of just sorting by the most recent timestamp one could also assign a
high weight to multiple occurrences of the same address but with a different
timestamp within a snapshot. Multiple occurrences of the same address are the
result of overlapping addr packets due to the randomness of their content. This
means that during the relatively short time of a snapshot the address has been
updated which is a strong indicator for a true peer.

2.2 Evaluation

In order to test BiPI we set up a controlled environment. As a measure of success
we use the coverage defined as the ratio between the numbers of peers correctly
identified as true positive peers and the total number of true peers.

coverage :=
|true peers| ∩ |positive peers|

|true peers|

Bitcoin Core represents 97% of all clients used in the network, so we choose
this as the victim in our measurements.1 We ran Bitcoin Core on a local machine
with default settings, i.e., allowing incoming connections and randomly establish-
ing 8 outgoing connections. Using netstat we gather the outgoing connections,
i.e., the ground truth. BiPI was tested with three different versions of Bitcoin
Core which were released during writing, namely 0.9.3, 0.10.0 and 0.10.1. All
three versions brought changes to the peer-to-peer behaviour and these become
apparent in the results. Fig. 2.1 represent the average of 120 test instances for
every version.

The first plot illustrates the results under version 0.9.3 showing that the gos-
sip of addresses indeed leaks additional information about the connected peers.
Even looking only at the top 16 positive addresses yields a coverage of 93% and
looking at the top 32 addresses the coverage reaches 97%.

Interestingly version 0.10.0 introduced a change to the gossiping behaviour
which improved the success rate of the method developped for version 0.9.3.
Clients running this version would not include obviously poor addresses in an
addr message, e.g., addresses having an old timestamp or addresses which have
had 10 successive failures in a week, etc. For comparison, an addr response under
0.9.3 usually contained 1000 addresses, whereas under version 0.10.0 it contains
only around 300 addresses. The true peers are by definition never filtered out

1getaddr.bitnodes.io/api/v1/snapshots/1437935137
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Figure 2.1: Average coverage for all three versions

and consequently the probability of including false positives is reduced. The
second plot in Fig. 2.1 shows that it would be sufficient to only consider the top
10 addresses in order to achieve a 100% coverage.

This leak has been reported to the Bitcoin Core developers and a fix was
released in version 0.10.1. The patch contained a change to the update condition
2 which rendered BiPI ineffective. As long as a the client maintains a connection
to the peer, the peer’s timestamp is not updated anymore. Only a connection
establishment and a disconnect triggers an update. Hence the update frequency
cannot be derived from the timestamps anymore. A timestamp of a connected
node has now roughly the same update frequency as an unconnected one and
sorting the addresses by timestamp yield which addresses have been included the
most in addr packets because of condition 1. Note that the alternative methods
proposed in chapter 2.1 would also not work as they rely on the update frequency.
The third plot illustrates the effect: the coverage does not exceed 8% for the first
64 addresses.



Chapter 3

Double-spend with revealed
peers

Now that we have found a method to reveal the peers we can start inspecting the
security issues this leak causes. The double-spend attack serves as an example
of an attack which benefits from additional knowledge about the topology of the
network. In this chapter we quantify the benefit by examining the success chance
of the attack without further insight about the topology compared to the case
with insight. Referring to chapter 1.3 about how the double-spend attack works
we define the two transactions:

1. Txv denotes the transaction which seemingly confirms the payment for the
service claimed, but is then invalidated.

2. Txa denotes the transaction which the attacker broadcasts to the other
peers and is included in the blockchain in the end.

For a double-spend to be successful two requirements have to be met (Fig. 3.2):

1. The victim should not hear from Txa until the service has been delivered
and only receive Txv.

2. Txa has to be confirmed by the blockchain.

The first requirement implies that the victim has a local detection mechanism
whether there is a conflicting transaction or not. Bitcoin Core shows conflicting
transactions (Fig. 3.1), so the victim is able to abort before delivery if suspicion
arises. But eventually she is going to detect the double-spend, namely when
her blockchain is updated. The case, where the victim hears from Txa, after
delivery, by a peer which relays the double-spend is very unlikely. This is due
to the short transaction propagation time which lies within the acceptable range
of waiting time for fast payments. The 50th percentile of a transaction to be
propagated through the Bitcoin network lies currently around 1 second.1 The

1bitcoinstats.com/network/propagation

10
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second requirement ultimately invalidates Txv and sends the Bitcoins to the
output of Txa.

Figure 3.1: Bitcoin Core shows conflicting payments

In the traditional case, where the topology is unknown, the attacker must
choose the recipients of these two transactions randomly. This makes it impossi-
ble to have some control over the success chance of any of the two requirements.
The victim’s peers could sit among the recipients of Txa as wells as the miners
could sit among the recipients of Txv.

Once the true peers are known we can influence the success chance of both
requirements. Under the assumption that the nodes do not relay transactions
claiming an already used output, which is true for Bitcoin Core, we can create a
temporarily isolated view for the victim from the rest of network. She believes
that her payment is going to be confirmed while the attacker announces Txa to
a large set of other peers. The larger this set is the more likely it is that the
mining pools receive and process Txa and therefore meeting second requirement.
It is important to point out that sending Txa and Txv at the same time is an
issue because of the network latency. In some cases Txa would still reach the
victim faster over two hops than Txv in only one hop. Therefore it is necessary
to implement a delay between sending out Txv and Txa, with Txv being first,
in the hope to sufficiently isolate the victim from the dissemination of Txa. But
choosing the delay too large results in Txv being included in the blockchain.

Note that in order to avoid congestion Bitcoin nodes do not directly relay
full tx messages to the peers upon reception. Instead the node first announces
the availability of a new tx packet by broadcasting the hash of the packet. Only
if a peer does not possess this hash the full tx packet is requested by issuing a
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getdata request containing the hash.

attacker victim

other peers

true positive peers

Txa Txv

isolated view

Figure 3.2: Attack scenario

3.1 Evaluation

For the attack scenario we implemented on the victim’s side a Python dummy
client, which mimics the network behaviour of Bitcoin Core, including estab-
lishing 8 outgoing connections and requesting the transactions announced in inv
messages. The dummy client enables us to log all incoming messages for further
evaluation which would not be possible with Bitcoin Core. On the attacker’s
side we also implemented a client with Python. The attacker is able to connect
to other Bitcoin clients as well as to create, announce and send transactions. All
Bitcoin addresses used in transactions throughout the thesis are owned by us.
No third-party Bitcoin address was involved nor defrauded.

In this test environment we assumed the attacker ran BiPI from chapter 2
with a coverage of 100% having 16 positive peers, i.e., 8 false positives and 8 true
positives. Furthermore, she chooses 128 other peers uniformly at random from
getaddr.bitnodes.io/api/v1/snapshots. There is a trade-off in choosing the set size
of positive peers. The size has to be sufficiently large in order to guarantee high
coverage, but choosing the set too large increases the chance that Txv reaches
some mining nodes before Txa and possibly resulting in Txv being confirmed.
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We set the size to 16 which yields a 93% coverage. The set size of the other peers
was chosen to be large relative to the positive peers set in order to increase the
chance of Txa being confirmed.

The double-spend scenario is set up as follows (Fig. 3.6):

1. Attacker and victim connect to the their respective peers.

2. Attacker announces the availability of both transactions to the respective
peers simultaneously in order to prime both groups by sending inv mes-
sages.

3. Attacker waits 5 seconds for incoming getdata request.

4. Attacker sends Txv to the positive peers.

5. After waiting a given delay the attacker sends Txa to the other peers.

6. Victim listens for messages for another 60 seconds before the test run is
terminated.

After waiting for at least one hour we check which transaction has been con-
firmed by the blockchain by querying the local Bitcoin Core client and examine
the log files to see whether the victim has heard of Txa. We ran this setup with
several different delays ranging from 0.0 seconds to 0.5 seconds with 0.025 as
step-size. In order to measure the improvement we also set up a base scenario as
reference. In the base scenario we assume that the attacker has not run BiPI and
broadcasts Txv to 16 randomly chosen peers. Every other parameter remains
the same.
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3.1.1 Base scenario

As expected the base scenario has only a 12% success rate with 0.475 seconds
delay (Fig. 3.3). The reason for failing lies in the early detection of Txa at
the victim’s side as both transactions are broadcast to a random set of peers
(Fig. 3.5). While Txa has a much larger number of recipients than Txv it is clear
that the victim has a very high probability of hearing from the wrong transaction
even though Txv is given a headstart. On the contrary the probability which
transaction is ultimately going to be confirmed does not depend on the different
choice of the peers. Fig. 3.4 therefore shows almost the same distribution.
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3.1.2 BiPI scenario

As soon as the set of positive peers covers the true peers the chance of success
increases to almost 60% with a delay of 0.025 seconds (Fig. 3.3). Surprisingly
the delay has less influence on the detection chance than we expected (Fig. 3.5).
A major reason is the diversity of clients for Bitcoin, some of which break the
assumed isolation of the victim. Most of theses cases are attributed to a client
named Bitcoin XT which is a patch on top of Bitcoin Core. It relays the first
double-spend to its neighbours which acts as an alert signal for an attack. Further
transactions conflicting with the same output, however, will not be relayed in
order to avoid congestion in the network.
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Chapter 4

Conclusion

We have shown that it is indeed possible to gain significant advantage for double-
spends if the topology is known beforehand. This knowledge directly translates
into an increase from 12% to 60% success probability. Furthermore, we developed
a program which is able to find the peers very reliably using timestamps in addr
packages. However Bitcoin’s recent update to the behaviour of timestamps under
version 0.10.1 proved to be successful as it leaves no fingerprints of the currently
connected peers on a client anymore. But if an attacker manages to identify
the true peers on an alternative way, which can involve methods that operate
beyond the Bitcoin protocol, then she is able to achieve the performance shown
in chapter 3.

The only recommendation Bitcoin gives to the merchants is only offering fast
payment for products not of high value. Nonetheless, because fast payment is
very common this recommendation is a restriction to an otherwise promising
technology, so the Bitcoin community developed detection and protection mech-
anisms against double-spends. But yet none of them can guarantee absolute
security or has gained enough recognition.

16
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