
Distributed
 Computing

Routing Scalable Bitcoin Payments

Bachelor Thesis

Adrian van Schie

vadrian@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Christian Decker

Prof. Dr. Roger Wattenhofer

September 18, 2015

Abstract

With current block size limitations, Bitcoin does not scale to a level where it can
be used in everyday life by the whole world. As remedy, off-blockchain solutions
have been proposed. Bidirectional payment channels allow users to make se-
cure payments with instant confirmation, unlike blockchain transactions whose
confirmation takes several minutes. A network of payment service providers,
connected by bidirectional micropayment channels, enables clients to make pay-
ments to each other that are routed over the network. In this thesis we propose a
routing protocol that provides routing information exchange and payment rout-
ing.

i

Contents

Abstract i

1 Introduction 1

1.1 Related Work . 2

2 Background 3

2.1 Bitcoin . 3

2.2 Contracts, Shared Accounts and Micropayment Channels 4

2.3 Hashed Timelock Contracts . 5

3 Protocol Design 7

3.1 Routing Information Exchange 8

3.2 Payment Routing . 9

4 Evaluation 12

4.1 Implementation . 12

4.2 Measurements . 13

5 Conclusion 15

Bibliography 16

ii

Chapter 1

Introduction

Bitcoin [4] has several advantages over centralized payment systems. Due to
its high decentralization, Bitcoin is more resilient; there is no central point of
failure. With the blockchain, a transaction database shared by all nodes on the
Bitcoin network, all transactions are publicly available enabling anyone to verify
transactions. Despite this transparency, the identity of people behind payments
is private by default.

One prevailing disadvantage of Bitcoin to other payment systems is scalabil-
ity. Bitcoin can handle a maximum of 7 transactions per second with the current
maximum block size of 1 MB. VISA, on the other hand, handles on average 2000
transactions per second. Bitcoin can only match or even surpass this number if
the scalability problem has been resolved.

The main issue is that every Bitcoin transaction is stored on the blockchain.
One proposed solution to support more transactions is increasing the block sizes.
Larger blocks, though, make full nodes more expensive to operate: more stor-
age is needed, higher bandwidths are required. Higher operating costs have a
centralizing effect, since running a full node becomes more expensive. One of
Bitcoins core features, though, is its decentralized nature. Fewer entities running
full nodes with higher operating costs could also result in higher transaction fees,
since they want to remain profitable. Higher fees may keep users from making
small payments, hurting the development of Bitcoin.

Another approach to tackle the scalability problem are off-blockchain so-
lutions, where only a few Bitcoin transactions need to be committed to the
blockchain. These solutions are still trustless and secure. Additionally, they
grant instant confirmation of transactions and don’t take minutes to be con-
firmed as is the case with current Bitcoin transactions on the blockchain. The
foundation of such off-blockchain solutions are micropayment channels that allow
two parties to securely make payments to each other without needing a commit
to the blockchain for each transfer. These schemes summarize the transfers made
between the parties of the micropayment channel in a single Bitcoin transaction.

A network of client nodes and payment service provider (PSP) nodes, con-

1

1. Introduction 2

Figure 1.1: A payment network consisting of clients nodes (grey) and payment
servicer providers (black).

nected by bidirectional micropayment channels as in figure 1.1, represents a
scalable solution. Clients are able to make payments among each other, that are
routed over PSP nodes, with guaranteed end-to-end security.

In this paper we propose a routing protocol for a network of bidirectional
micropayment channels. The protocol manages routing information exchange
as well as payment routing over the network. Routing information exchange
is performed in a similar way to the Border Gateway Protocol (BGP) for the
Internet. The major difference, though, is that the connections in our network
are limited by capacities: only a certain amount can be maximally sent to another
node. In addition, the fact that payments can be split up opens new possibilities
for routing decisions.

We implemented the protocol in a modular fashion in order to reuse it for
real-world scenarios as well as simulations. We achieved high payment success
rates in simulations with our proposed protocol.

1.1 Related Work

A faster block generation rate can be achieved with the GHOST protocol pro-
posed by Sompolinsky and Zohar [7] by modifying the selection of the main chain.
Fast payments were shown to be susceptible to double-spend attacks [2, 8].

Contracts and Simple micropayment channels have been introduced by Hearn
[3]. Work on Hub-and-Spoke Micropayments has been done by Todd [9]. The
Lightning Network by Poon and Dryja [5] comprises a network of bidirectional
payment channels. Duplex Micropayment Channels introduced by Decker and
Wattenhofer [1] are bidirectional channels that allow the parties to reset a chan-
nel, e.g., when one direction of the channel is depleted.

The Border Gateway Protocol [6] is designed to exchange network reachabil-
ity information between autonomous systems on the Internet.

Chapter 2

Background

2.1 Bitcoin

Bitcoin is a fully decentralized payment system. Every Bitcoin transaction is
recorded in a public ledger called the blockchain. The blockchain consists of a
sequence of validated blocks, which are groupings of transactions. Each block
is marked with a timestamp and a link to its predecessor, thus the transaction
history is built incrementally.

The shared state of Bitcoin is the unspent transaction output (UTXO) set.
UTXOs consist of two parts: an amount of bitcoins, and a locking script that
specifies conditions that must be met by the spending transaction. A transac-
tion consists of one or more inputs and creates one or more outputs, which are
confirmed by the whole network and available for the new owner to spend in a
future transaction. Each input is the output of a previous transaction on the
blockchain. No transaction input must have been spent in any other previous
transaction on the blockchain, otherwise the transaction is not valid. Bitcoin
uses ECDSA public key cryptography to establish proof of ownership; transac-
tions are signed with the sender’s private key. Transactions are broadcast over
the peer-to-peer network and are included in new blocks.

Bitcoin uses a proof-of-work system based on computation. On average ev-
ery 10 minutes a new block is created, i.e., a valid proof-of-work is found by a
network node. The process of finding a valid proof-of-work is called mining. Min-
ers are incentivized by receiving two types of rewards for creating valid blocks:
newly created coins and transaction fees collected from the transactions that
are included in the block. The amount of generated coins per block is halved
every 4 years. This exponential decrease limits the total amount of bitcoins to
21 million, which will have been issued around the year 2140.

Because of the decentralized structure, blocks might arrive at different nodes
at different times. Inconsistencies are possible in the form of competing chains
(forks), since each full node has its local version of the blockchain. Majority
consensus in Bitcoin is resolved by selecting the chain with the most proof of

3

2. Background 4

Setup

Refund

Shared AccountA

B
A

B

t = 30d

Figure 2.1: Setup of a shared account with a setup transaction and a refund
transaction that becomes valid after 30 days.

work, i.e., the longest chain. This way inconsistencies are eventually resolved as
more blocks are added to one of the forks.

2.2 Contracts, Shared Accounts and Micropayment
Channels

Every Bitcoin transaction can have a locktime associated with it. Transactions
will not be confirmed until the locktime. This makes a transaction replaceable
until the agreed-upon time. The Bitcoin multi-signature feature allows the cre-
ation of m-of-n multi-sig outputs, requiring m signatures from a total of n public
keys. A 2 -of-2 multi-sig output requires both parties to agree on spending the
output. Shared accounts are a form of contracts based on timelocks and multi-
sig outputs. In order to create a shared account, two transactions are required:
a setup transaction and a refund transaction. The setup transaction specifies as
inputs the funds that both parties want to deposit on the shared account. The
output is a 2 -of-2 multi-sig output, the shared account. Before the parties sign
this transaction, they create the refund transaction: a transaction that refunds
multi-sig output to their original owners. This transaction is encumbered with
a locktime in the near future, e.g., 30 days. Once the refund transaction has
been signed by both parties, they are guaranteed to get a refund in case one
becomes unresponsive. Finally, the setup transaction is signed and committed
to the blockchain. This procedure is trustless and secure. In the worst case
one’s funds are locked up until the refund transaction becomes valid. Figure 2.1
depicts a shared account between two parties A and B.

Unidirectional micropayment channels enable a sender A to make small pay-
ments to a receiver B. Micropayment channels have two advantages over regular
Bitcoin transactions on the blockchain: firstly, few commits to the blockchain are
needed and secondly, the transfers are confirmed instantly. The setup consists
of creating a shared account. In order to pay B, A creates a new transaction
spending the funds of the shared account such that the new balance factors in

2. Background 5

A B C D

t = 30d t = 29d t = 28d

Figure 2.2: Multi-hop payment from A to D through a chain of hashed timelock
contracts. Each node has a minimum time frame of 1 day to claim the previous
output.

the payment. The transaction is partially signed by A. B can either claim the
money right away by signing the transaction and committing it to the blockchain
or she can wait in case she expects more payments from A. Every time a new
transfer is made, the updated transaction takes the old balance and the payment
into account. Unidirectionality follows from the fact that if B were to pay A, she
could sign and commit a previous transaction received from A. If this transaction
is included in a valid block before A’s newer version of the transaction, the latest
transaction from B to A is reverted.

Bidirectional micropayment channels such as Duplex Micropayment Chan-
nels [1], or as micropayment channels in the Lightning Network [5], enable two
parties to make transactions in both directions. As with unidirectional micro-
payment channels, the amount a party in a bidirectional micropayment channel
can send is limited by a capacity, i.e., one’s funds on the shared account. For
example, if A pays B, A’s capacity on the micropayment channel decreases and
B ’s increases. The initial funds for a bidirectional payment channel can be kept
fairly small, if the two parties are expected to make small, frequent payments
among each other. In order to prevent exhausted capacities, both parties should
transfer roughly the same amounts over a period of time.

2.3 Hashed Timelock Contracts

In order to forward funds over a series of bidirectional micropayment channels,
end-to-end security is required. The initial sender wants the guarantee that only
the final recipient can claim funds. Hashed timelock contracts (HTLCs) satisfy
this requirement. Hashed timelock contracts are contracts where the recipient
can unlock an output with the knowledge of a secret S. The recipient B requests
a payment from sender A by providing the hash h(S) of secret S. A settlement
transaction is the payment from A to B if B can provide the secret. A refund
transaction is set up, encumbered with a timelock in the near future. Should the
counterparty not be able to provide the secret S within a given timeframe, the
refund transaction becomes valid. In the other case, the counterparties can agree
on making an update transaction on their shared account. A third transaction,
the forfeiture transaction, gives B the opportunity to free the funds of the HTLC
output back to A even if the secret is eventually revealed.

2. Background 6

End-to-end secure multi-hop payments can be made by chaining HTLCs to-
gether. Each HTLC along the chain is encumbered with the same hash h(S).
Figure 2.2 depicts a multi-hop payment from sender A to recipient D. Once a
path from A to D is set up, D can claim the output by disclosing the secret
S to its predecessor C. With knowledge of S, C can claim the HTLC output
from its own predecessor B. Finally, B can claim the HTLC output from A,
making the multi-hop payment complete. In order to guarantee security, the
timelocks of the refund transactions of successive HTLCs along the path must
be strictly decreasing. The difference between two successive timelocks must be
big enough in order to give a node time to claim the previous HTLC output, i.e.,
the transaction needs to be confirmed.

Trustless, end-to-end secure, multi-hop payments can be made by using
HTLCs on top of bidirectional micropayment channels.

Chapter 3

Protocol Design

The goal is to enable clients to make payments to each other that are routed
over a network of payment service providers. PSPs operate in a similar way to
autonomous systems on the Internet, and there may be PSPs whose sole business
is to grant interconnection to other PSPs. A node in our network denotes a whole
PSP. Whether or not two PSPs connect is a business decision and we assume it is
negotiated directly. We concentrate on the routing part on an existing network.

To address sender and recipient we use payment protocol addresses (PPAs).
PPAs differ from Bitcoin addresses and are rather similar to Internet Protocol
addresses, e.g., IPv6 addresses. The key advantage is the ability to aggregate
individual addresses to prefix sets, which allows routing based on network pre-
fixes. One solution for the distribution of PPAs to the PSPs is the appointment
of a central authority, similar to the Regional Internet Registries for the Internet.
Another possibility is letting each PSP announce its network prefixes with the
aid of cryptographic methods, e.g., randomly positioning in the address space
by generating a matching public key.

It is in the PSPs’ interest to incorporate fees. For example, in the Lightning
Network fees are paid directly between counterparties within a channel. They
pay for the time-value of money for consuming the channel for a determined
maximum period of time, and for the counterparty risk of non-communication.
Fees are simply implemented by transferring more money than necessary. Then,
each PSPs along the routing path can claim a fraction of the fee amount specified
by the sender.

Network nodes make routing decisions based on their routing tables. A rout-
ing table entry consists of a network prefix and a set of next hops with additional
information to each hop, e.g., expected number of hops to the destination. A
routing decision for a payment consists of one or more next hops, each with an
associated amount. Payments can be routed over several next hops concurrently
by splitting the amount, e.g., due to insufficient capacities. Heuristics and cur-
rent measurements help a node in making routing decisions. For example, in
figure 3.1 node A wants to make a payment of 1 BTC to node E. B ’s routing

7

3. Protocol Design 8

0,5

0,5

0,5

0,5

1

C

D

EBA

Figure 3.1: A payment is split along the path to the recipient.

table returns C and D as possible next hops for reaching E. B has not enough
capacity to C nor to D in order to forward 1 BTC to one of them. Therefore, B
decides to split the payment, sending 0.5 BTC to C and 0.5 BTC to D. It is in
E ’s interest to wait until the full amount of 1 BTC is guaranteed. Once E can
claim 0.5 BTC from C and 0.5 BTC from D, it discloses the secret to C and D.

The protocol is divided into two parts. The first is routing information ex-
change, enabling nodes to set up their routing tables. The second part is payment
routing; nodes should be able to make routing requests to other nodes, decline
routing requests and claim funds by settlement.

3.1 Routing Information Exchange

The RoutingInfo message (see figure 3.2a) allows nodes to announce reachable
prefixes to their neighbors. RoutingInfo messages are broadcast periodically and
for each known network prefix a set of routing paths is included. Initially, a
routing table consists only of a PSP’s direct neighbors.

On the receiver side, a node performs two checks on each path. First, paths
whose length exceeds a threshold are discarded. The reason for this lies in the
fact that we work with time to live (TTL) values in payment routing. In a second
check, a node declines paths that already contain the node itself, such that no
loops arise in the stored paths. New paths are added to the routing tables and
included in future RoutingInfo messages. This incrementally builds a complete
list of reachable subnetworks and corresponding paths.

Network nodes may disconnect. One possibility to remove paths including a
disconnected node is to assign a timeout value to each path. The timeout of a
path is renewed every time it is included in an incoming RoutingInfo message.
Paths whose timeout has reached zero are eventually removed from the routing
table. Another possibility is to ping nodes that are suspected to be offline. If
the pinged node does not respond within a given time, paths including this node

3. Protocol Design 9

message RoutingInfo {

message Entry {

string prefix;

string path;

}

repeated Entry entry;

}

(a) RoutingInfo message

message Propose {

string sender

string recipient;

string hash;

int32 htlc_id;

int32 amount;

int32 fee;

int32 TTL;

string payload;

}

(b) Propose message

message NACK {

string sender;

string recipient;

string hash;

int32 htlc_id;

int32 amount;

string payload;

}

(c) NACK message

message ACK {

string sender;

string recipient;

string hash;

string secret;

string payload;

}

(d) ACK message

Figure 3.2: The four protocol messages.

are removed from the routing table.

3.2 Payment Routing

Payments consist of a flow of chained HTLCs. A payment can be identified
by the tuple (Sender, Recipient, h(S)), where Sender and Recipient denote the
corresponding PPAs and h(S) denotes the hash of the secret provided by the
recipient. A routing decision consists of one or more tuples (next hop, amount),
where an amount is sent to a neighboring node next hop.

The Propose message (see figure 3.2b) enables nodes to set up an HTLC. The
first three fields (Sender, Recipient, h(s)) identify the payment. Due to payment
splits, multiple HTLCs may be set up between two nodes, all corresponding to the
same payment. The htlc id field associates every HTLC with a unique identifier,
making HTLCs distinguishable. The amount denotes how much money is being
routed. If a payment is split up, several Propose messages are sent to neighbors.

3. Protocol Design 10

1. P{2}

2. N{2}

3. P{2} 4. P{2}

5. ACK6. ACK

B

A

C

D

Figure 3.3: Node A initiates a payment of 2 bitcoins to D by sending a Propose
message to B. Since B cannot reach D, it answers with a NACK message.
Then, the payment is routed over node C. Finally, D claims funds by sending
an ACK message.

In the fee field, the inital sender can specify an amount that can be used for
paying fees along the routing paths. It is in everybody’s interest to claim only
a fraction of this amount at each hop. Otherwise, if there is no amount left for
fees, the payment may not reach the recipient. Although we check for loops in
the routing information exchange, we cannot completely eliminate loops. A node
does not know the prior path of an incoming Propose message. Therefore, there
is no possibility to detect loops. Loops are undesirable, since they unnecessarily
lock up funds until the corresponding HTLCs are cleared. For this reason we
introduce TTLs in order to avoid infinite loops consuming all capacities. The
TTL value is decreased at each hop, limiting the maximum HTLC chain length.
Additional data can be added to the payload field, e.g., the partially signed
Bitcoin transactions coordinating the HTLC.

In the case where a node cannot fully route a payment, e.g., due to exhausted
capacities, it needs a way to cancel the previously set up HTLC by settling the
forfeiture transaction, such that its predecessor can continue routing the amount.
The NACK message (see figure 3.2c) lets two nodes cancel a previously set up
HTLC. Again, the first three fields identify the payment and the htlc id field
identifies a HTLC of a payment. The amount specifies how much money is
forfeited. If there is a remaining amount, the recipient of the NACK message
responds with a Propose message, referring to the same htlc id ; a new HTLC
with the remaining amount is set up. In order to guarantee security, the timelock
of the new forfeiture transaction must be smaller than the timelock of the old
settlement transaction. As with all HTLCs, the timelock of the new settlement
transaction must be smaller than the locktime of the new forfeiture transaction.
Several NACK messages may be sent successively, each forfeiting a larger part
of the total HTLC value. Every time the TTL value of a Propose message is
zero, a NACK message is sent back.

The payment recipient waits until the amounts of incoming Propose messages

3. Protocol Design 11

sum up to the amount she is expecting, guaranteeing complete payment. Funds
can be claimed by disclosure of S. The ACK message (see figure 3.2d) enables
a node to disclose the secret to its predecessors. Two counterparties can then
agree on making an update transaction on their payment channel. The update
transaction can be included in the payload field. All HTLCs belonging to the
same payment can be unlocked with the same secret.

Figure 3.3 shows a payment routed over a network with the aid of the protocol
messages.

Chapter 4

Evaluation

4.1 Implementation

We implemented the protocol for both a real-world scenario and discrete event
simulations. In the real-world scenario, nodes establish connection to each other
through network sockets. Protocol messages are serialized and sent over the
network. Larger networks were implemented in a simulation. We simulated the
network layer, such that sending a message did not require sockets nor serializa-
tion. Small propagation delays were taken into account. This is important, so
that HTLCs are active for some time and lock part of the capacities, otherwise
HTLCs would be cleared immediately.

In both cases the dynamic parameters were:

• Number of nodes: the number of PSP nodes in the network.

• Number of connections: the minimum number of connections each node
has. Nodes are randomly connected, taking the minimum number into
account.

• Channel capacity : the capacity a node has on a micropayment channel.
The amount is chosen uniformely at random from a specified range.

• Time between two payments: the expected average time between a node’s
two successive payments. After each payment, the time is chosen uni-
formely at random from a specified range.

• Payment amount : the expected amount per payment. The amount is cho-
sen randomly, following the power law. It is scaled, such that the expected
value of all amounts is equal to the desired amount per payment.

We let the nodes exchange RoutingInfo messages in order to build their routing
tables. After some time, nodes would start making payments to each other.

The metric used for routing decisions was the number of hops to a destination,
i.e., the length of the shortest path to the destination in the routing table. If

12

4. Evaluation 13

(a) payment amount/capacity ratio: 0.05 (b) payment amount/capacity ratio: 0.2

Figure 4.1: Simulations with different payment amount/capacity ratios on the
same network topology. 64 nodes with at least 6 connections. On average, a
node made 2000 payments during the simulation.

there were multiple equivalent candidates, the next hop was selected randomly.
In case there was a remaining amount, the procedure of selecting a next hop
was repeated. If a node would receive a payment expected to be routed to
an unknown destination, i.e., a destination not included in its routing table, it
responded with a NACK message. If a node received a NACK message from a
neighbor, it excluded this neighbor from future Propose messages regarding this
payment. Therefore, if a node received NACK messages from all its neighbors,
and it could not route the whole amount, it would send back a NACK message
itself. Apart from that, amounts from NACK messages were routed the same as
amounts from Propose messages.

4.2 Measurements

Evaluation was performed on simulations with 64, 128 and 256 network nodes.
A payment was considered successful when the full payment amount could be
routed to the recipient. On the other hand, a payment was considered unsuc-
cessful when the initial sender had to abort due to exhausted capacities, i.e., it
was not possible to route the full payment to the recipient.

With fewer connections, local shortages are more likely to occur; more NACK
messages are sent and payments take longer to be completed, which means that
funds are locked up longer. More connections, on the other hand, generally
require more initial funds for setting up the micropayment channels.

Our assumption that a higher ratio between average amount per payment
and average capacity between nodes leads to a lower success ratio was supported
by the simulation results. Figure 4.1 shows a comparison between different ratios
on the same setting, i.e., same topology and same capacities. A higher payment
amount/capacity ratio generally leads to more overall NACK messages, more
unsuccessful payments and a higher average completion time for successful pay-
ments. In most cases, these numbers converged to a stable value, but there were
also scenarios where no stabilization could be observed during the simulation time

4. Evaluation 14

Figure 4.2: Two simulation with same parameters: payment amount/capacity
ratio of 0.5, 64 nodes, at least 6 connections. On average, a node made 2000
payments during the simulation. On the left, the success rate slowly decreases
with time while on the right, we see an early drop followed by a recovery phase.

frame. Simulations on the same setting with same payment amount/capacity ra-
tios have been compared and showed that there can be notable differences in
terms of success ratio. Figure 4.2 shows different success ratios for two simula-
tions on the same setting. This behavior can be explained by local shortages,
i.e., single nodes with exhausted capacities due to several big payments. An-
other point is that our routing strategy followed a greedy approach. Payments
were split up where needed, capacities were fully exhausted if that meant fewer
routing hops.

Simulations with a payment amount/capacity ratio around 0.05 had in most
cases a high success rate above 0.99. For a PSP network of 64 nodes with 6
minimum connections and a capacity of 1 BTC for each micropayment channel,
778 BTC are needed. If we assume a payment amount/capacity ratio of 0.02, 1000
payments per second and a constant success rate of 0.98, payments amounting
to 1 728 000 BTC could be made daily.

We predict an improvement by making smarter routing decisions, taking low
capacities and other parameters into account. Dynamically increasing capacities
could eliminate temporary shortages. Another point is connectedness: connec-
tions were selected at random; a more careful selection of the network topology
is likely to improve results.

Chapter 5

Conclusion

A network of payment service providers, connected by bidirectional micropay-
ment channels, provides a scalable environment to make end-to-end secure Bit-
coin payments with instant confirmation.

The proposed protocol enables nodes to exchange routing information, similar
to BGP for the Internet. Network nodes route payments by creating HTLCs
using the protocol messages. Routing tables, heuristics and other measures can
help the nodes in making routing decisions. Once a routing flow is set up,
the funds can be claimed node by node until the initial sender is reached. We
observed that the ratio between payment amount and channel capacity influences
the ratio of successful payment transactions. Results can possibly be improved
by a careful selection of network neighbors, dynamic capacity adjustment and
more sophisticated routing strategies.

15

Bibliography

[1] Christian Decker and Roger Wattenhofer. A Fast and Scalable Payment Net-
work with Bitcoin Duplex Micropayment Channels. In International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS),
Edmonton, Canada, 2015.

[2] Srdjan Capkun Ghassan O. Karame, Elli Androulaki. Two Bitcoins at the
Price of One? Double-Spending Attacks on Fast Payments in Bitcoin. In
Proc. of Conference on Computer and Communication Security, 2012.

[3] Mike Hearn. Bitcoin Contracts. https://en.bitcoin.it/wiki/Contract. [Online;
accessed March 2015].

[4] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf. [Online; accessed March 2015].

[5] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments. https://lightning.network/lightning-network-
paper.pdf. [Online; accessed March 2015].

[6] Yakov Rekhter and Tony Li. A Border Gateway Protocol 4 (BGP-4).
https://tools.ietf.org/html/rfc4271. [Online; accessed April 2015].

[7] Yonatan Sompolinsky and Aviv Zohar. Accelerating Bitcoin’s Transaction
Processing.

[8] Lennart Elsen Roger Wattenhofer Samuel Welten Tobias Bamert, Chris-
tian Decker. Have a Snack, Pay with Bitcoins. In IEEE International Con-
ference on Peer-to-Peer Computing (P2P), Trento, Italy, 2013.

[9] Peter Todd. Near-Zero Fee Transactions with Hub-and-Spoke Micropay-
ments. http://sourceforge.net/p/bitcoin/mailman/message/33144746/. [On-
line; accessed August 2015].

16

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Bitcoin
	2.2 Contracts, Shared Accounts and Micropayment Channels
	2.3 Hashed Timelock Contracts

	3 Protocol Design
	3.1 Routing Information Exchange
	3.2 Payment Routing

	4 Evaluation
	4.1 Implementation
	4.2 Measurements

	5 Conclusion
	Bibliography

