
Distributed
 Computing

Drawing Questions from Wikidata

Bachelor Thesis

Fabian Bissig

fbissig@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Philipp Brandes, Laura Peer

Prof. Dr. Roger Wattenhofer

October 22, 2015

Acknowledgements

I am grateful for the participation in the evaluation and the provided feedback
by the Distributed Computing Group and my family and friends.

i

Abstract

Quiz apps for mobile devices have recently been gaining in popularity. Questions
for those are created manually. We introduce Wikidata Quiz, an application that
accesses the structured data set of knowledge base Wikidata. We construct a
graph by querying multiple Wikidata items originating from any chosen topic.
The structure of the resulting graph is used to generate relevant questions with
answer options. We evaluate the algorithm to learn if automatically generated
questions are a viable replacement.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . 2

1.2 Outline . 2

2 Background 3

2.1 Semantic Web . 3

2.2 Wikidata . 4

3 Generation of Questions and Answers 5

3.1 Graph Generation . 5

3.1.1 Outgoing Claims . 7

3.1.2 Incoming Claims . 7

3.1.3 Pruning the Graph . 8

3.2 Extraction of Questions . 8

3.2.1 Weighting and Varying of Edges (Questions) 9

3.3 Extraction of Answer Options . 9

3.3.1 Getting Items of Same Instance 10

3.3.2 Weighting and Varying of Vertices (Answers) 11

4 Implementation 12

4.1 Wikibase RDF Query . 12

4.2 Python Web Application (Flask) 12

4.3 NetworkX . 13

4.4 Redis . 13

iii

Contents iv

5 Results 14

5.1 Public Evaluation of Questions 14

5.2 Runtime . 16

6 Conclusion and Future Work 18

Bibliography 19

Chapter 1

Introduction

Quiz apps are popular among owners of mobile devices for improving general
knowledge. What is more, they offer social media features such as playing against
a friend of yours. The quiz questions are commonly created beforehand by
humans, which guarantees a certain quality standard, but limits the number of
questions and puts them at risk of becoming outdated.

Automated question generation is desirable for the following reasons:

• wider area of topics that can be covered
• finding outdated questions does not require examining them all
• effortless internationalisation through use of global knowledge covering all

parts of the world and localised labels
• access to complementary descriptions and images of objects appearing in

questions whose display improves learning effect

While Wikipedia’s great source of knowledge is a huge benefit for humankind,
its unstructured nature renders it very difficult for parsing by machines. This
issue is addressed by Wikidata [1], a collaboratively edited knowledge base,
launched in 2012. Knowledge bases contain facts about the world, such as gender
and date of birth of individuals. Wikidata’s initial purpose was to serve other
Wikimedia projects [2], first and foremost by centralising interlanguage links
connecting Wikipedias of different languages. The data is available under a free
licence and can be downloaded. Wikidata’s support by the Wikimedia Founda-
tion led Google to shut down Freebase [3], the main structured knowledge base
before Wikidata [4] that launched in 2007.

Knowledge bases may play a much more vital role in the near future because
of the emergence of intelligent personal assistants such as Apple’s Siri, Google’s
Google Now and Microsoft’s Cortana, which could feed off of structured infor-
mation such as Wikidata.

In our project we develop an application that can be utilised to generate
quiz questions with answer options. We introduce an algorithm to find relevant
questions to a topic the user chooses. We subsequently analyse the perceived
quality of those questions judged by users.

1

1. Introduction 2

1.1 Related Work

QuizUp [5] is a mobile trivia game that achieved remarkable success. Its ques-
tions are tailored to young people and its highlights are the ability to play against
friends and the time pressure when answering questions.

Automatic question generation works well for lexical databases. Brown et
al. [6] automatically generate questions to assess users’ vocabulary. They make
use of WordNet, a lexical database that groups English words into sets of syn-
onyms. This allows their system to provide users with texts to read targeted to
their individual reading levels.

Knowledge bases play a vital part in finding answers to questions posed by
humans in a natural language. This is what the computer science discipline
Question Answering (QA) is concerned about. Yao & Van Durme [7] have out-
lined how to extract answers from Freebase. They parse a question such as “what
is the name of Albert Einstein’s sister” and search for the answer in Freebase.

A considerable challenge is to generate questions about the contents of an
English story. Kunichika et al. [8] realise adaptive Question and Answer, so that
learners of different understanding states are given suitable questions. Heilman
& Smith [9] go a similar route but they overgenerate questions, then rate them.

1.2 Outline

We start by explaining important terms and concepts in Chapter 2. In Chapter 3
we offer a detailed look on how we use the info on Wikidata to generate questions
and answers. We provide an overview of the technologies used in Chapter 4. In
Chapter 5 we explain how we evaluate the application and present the type of
questions that work best. Chapter 6 summarises the findings and suggests future
work.

Chapter 2

Background

2.1 Semantic Web

The World Wide Web revolutionised the way how we access information. It re-
moved the restrictions caused by costly physical storage and the lengthy transfer
of physical mail. Quick distribution of information was facilitated. However, the
Web is concerned with the structure of data – not its meaning. The Semantic
Web, on the other hand, connects objects, i.e. it is used to represent interactions
and relationships between objects. It can be seen as the next evolutionary step
of the World Wide Web.

Relationships in the Semantic Web are stored in form of a triplestore com-
posed of subject–predicate–object. When a website claims “Lisa Simpson was
born in Springfield.”, it would have the following HTML markup:

<div vocab="http://schema.org/" typeof="Person"

href="https://www.wikidata.org/wiki/Q5846">

Lisa Simpson was born in

<span property="birthPlace" typeof="Place"

href="https://www.wikidata.org/wiki/Q151076">

Springfield.

</div>

This can be written in triples (each terminated by a .):

<https://www.wikidata.org/wiki/Q5846>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://schema.org/Person> .

<https://www.wikidata.org/wiki/Q5846> <http://schema.org/name>

"Lisa Simpson" .

<https://www.wikidata.org/wiki/Q5846> <http://schema.org/birthPlace>

<https://www.wikidata.org/wiki/Q151076> .

<https://www.wikidata.org/wiki/Q151076> <http://schema.org/itemtype>

<http://schema.org/Place> .

3

2. Background 4

<https://www.wikidata.org/wiki/Q151076> <http://schema.org/name>

"Springfield" .

The HTML markup illustrates how the information could be embedded on
a website. It can be scraped by a machine and transformed into triples. Each
triple then represents an edge in the graph.

Wikidata’s role in the Semantic Web is to be one source of information like
all others, available for getting referenced.

2.2 Wikidata

Wikidata stores a multitude of items with an identifier. An item consists of
statements, which are comprised of a claim and an optional reference supporting
that claim. A claim consists of a property, a value and optional qualifiers. Values
can be either other items or a variable of some complex type (e.g. integers and
dates of designated precision, strings, URLs, geographical coordinates).

statementclaim

Springfield (Q151076)
identifier

population

predicate

30 720

value

point in time

qualifier

2002

[1 source]

reference

Figure 2.1: Exemplary Wikidata item

For example, we consider the Wikidata item for the fictional town Springfield,
identified by Q151076 (see figure 2.1). It contains a statement that consists of a
claim and a reference (collapsed to [1 source] in the figure) to an episode where
the claim was made. The claim consists of a property population (identified by
P1082) and a value 30 720. This claim also has a qualifier point in time with
value 2002.

Chapter 3

Generation of Questions and
Answers

Q: The Simpsons: production company

1. 20th Century Fox
2. Dan Castellaneta
3. Maggie Simpson
4. Sitcom

Question 3.1: Trivial answer

There are lots of items in Wikidata,
connected by claims. Posing a ques-
tion with the use of Wikidata is
straight forward: As demonstrated
in question 3.1, displaying an item
and the property of a claim as well
as multiple possible values (with at
least one value correct) suffices.

However, there are two main is-
sues that have to be addressed here:

1. How to find relevant questions that are somehow connected to a topic the
user requests questions about and are relatively rich in variety

2. How to find possible answers for the user to choose from, with them being
somehow related to the type of question, but only one answer possibility
being correct

To start with, the user selects a topic, i.e. a Wikidata item. We place this
topic as the origin vertex of our directed graph.

This chapter examines how we generate a graph consisting of vertices and
edges starting from a single Wikidata item and how to find relevant questions
and possible answers to the questions. For that, we make use of the claims that
connect Wikidata items.

3.1 Graph Generation

As we are constructing a graph based on a structured but sometimes partially
incomplete data set, we need to make an assumption. We assume that well
connected vertices in a graph built around a primary topic express particular

5

3. Generation of Questions and Answers 6

The Simpsons

Homer SimpsonMarge Simpson

Bart Simpson

Lisa Simpson

television series English

20th Century Fox Gracie FilmsMatt Groening

17 December 1989

United
States of
America

situation comedy

characters

characters

characters

characters

inst. of

original language of work

production
company

production
company

creator

genre

start time

country of
origin

father
mother

father

mother

spouse

sibling

Figure 3.1: Illustrative graph for The Simpsons

relevance to the topic. This can be justified by the fact that all vertices are
connected with the origin with maximum distance 2.

The graph is constructed using linked data stored in Wikidata. It has the
form of subject–predicate–object, corresponding to a single claim. This results
in a graph as shown in figure 3.1. There are two functions available to the graph
generation algorithm: one for receiving outgoing claims, a set of predicate–object
pairs for a subject (e.g. mother : Marge Simpson for Lisa Simpson) and one for
receiving incoming claims, a set of subject–predicate pairs for an object (e.g.
The Simpsons: country of origin for United States of America).

We perform a breadth-first search on the linked data stored in Wikidata. The
procedure is driven by a queue that contains the Wikidata items to be processed.
When processing an item, a new vertex and an edge that connects the two is
added to the graph for each Wikidata item that is connected by a Wikidata
property to the original Wikidata item. Additionally, each new Wikidata item is
added to the queue for future processing. For instance, the Wikidata item The
Simpsons contains a claim with property creator and value Matt Groening. This
means that the graph gets a node for the creator Matt Groening and an edge
labelled creator connected to The Simpsons.

When added, each vertex in the graph is assigned a number (the level), which

3. Generation of Questions and Answers 7

denotes the distance to the origin. The level increases by one for each hop from
the origin. The procedure stops at a certain level so as not to run indefinitely. It
is important to choose the optimal maximum distance. Its choice is influenced
by two factors:

1. keep waiting time low
2. stay on topic

Testing showed that the maximum distance to the origin necessary for good
questions is 2. Rising that level leads to questions too irrelevant to the chosen
topic, while still taking a long time to generate.

3.1.1 Outgoing Claims

Outgoing claims are predominantly useful because they are relevant to the Wiki-
data item. They state some fact that is directly concerned with the item. This
allows them to be considered for the most part without severe performance im-
pact.

Wikidata’s data model allows claims to have qualifiers, which are additional
property–value pairs. Qualifiers further describe or refine the claim in a state-
ment. Qualifiers are not modelled in the graph. However, each encountered
Wikidata item in a qualifier is added to the queue. For example, The Simpsons
contains a claim with the property voice actor and the value Dan Castellaneta.
Additional qualifiers with property role list characters Homer Simpson, Krusty
the Clown and Mayor Quimby. The graph is not modified for those qualifiers.
However, the characters are added to the queue, as they form important items
that would get lost if ignored or not referenced in another way.

3.1.2 Incoming Claims

There can be an enormous amount of incoming claims. Large countries get
referenced for every piece of art (each book, movie, TV series, etc.)

Incoming claims must only be considered cautiously because they introduce
mostly distant and potentially irrelevant items. In addition, their consideration
causes a massive performance impact.

Additional measures are taken to reduce the number of Wikidata items that
get introduced through incoming claims. Only up to a specific number of claims
with the same property (e.g. actor) are kept. In a movie with dozens of actors,
only a subset thereof is kept. This means that we have to determine which ones to
keep and which ones to discard by assigning a number called importance to each
Wikidata item. Finding important items is done by determining their degree of
connectivity within Wikidata. This procedure also relies on the assumption that
items with more claims are more relevant.

3. Generation of Questions and Answers 8

Testing revealed that considering incoming claims could only be done for
the origin. Finding incoming claims and especially sorting them by importance
takes up to 10 seconds for each Wikidata item. Finding them for an entire level
except for the origin would drastically delay graph generation. Either way, if the
algorithm deems that there are enough outgoing claims for the origin already,
incoming claims will not be considered at all.

3.1.3 Pruning the Graph

The finished graph with vertices with maximum distance 2 to the origin is often
large and contains many leaves. Such a graph is suitable for finding answer
options. However, this graph has a bias towards vertices with many leaves,
complicating question generation. Additionally, the graph is unnecessarily large
for finding relevant questions, which always involve well connected vertices. That
is why a duplicate of the graph is pruned for finding relevant questions.

To prune the graph, we use a simple heuristic approach. We iterate over all
vertices, calculating their respective degree, removing all vertices with a degree
lower than a specified threshold.

3.2 Extraction of Questions

The graph consists of a multitude of vertices all representing a single Wikidata
item (such as a human, an administrative territorial entity, an architectural
structure, a movie, etc.). Each edge in the graph is a Wikidata property and
represents a potential question (e.g. mother connecting Bart Simpson to Marge
Simpson). We will use the terms subject and property for the question and
answers, divided into solution and answer options, for the correct and wrong
answers provided. Note that the subject as well as the answers are Wikidata
items, while the property is a Wikidata property.

However, simply posing questions based on random edges in the graph would
likely lead to irrelevant ones getting asked for the most part. Taking into consid-
eration vertices’ degrees allows us to find edges evolving around well connected
vertices. On the assumption that well connected vertices in the graph are partic-
ularly relevant to the topic, this allows us to find the most interesting questions
for a user to answer.

We face two challenges concerning the edges, our prospective questions, but
also the vertices, our prospective answer options:

1. How to weigh them such that more relevant ones are prioritised
2. How to vary them such that we get great variety with little repetition

3. Generation of Questions and Answers 9

3.2.1 Weighting and Varying of Edges (Questions)

Based on the assumption, we iterate over all edges and assign them a weight that
is calculated by adding together the outdegrees of the two vertices connected by
the edge. We sort the edges by weight in descending order, preferring edges with
high weights for prospective questions. A vital observation was to not take into
account the indegree. As an example, the indegree is very high for countries as
those are referenced by many vertices. This would then lead to a bias pushing
questions with that country as the answer to the top.

Without variation, clusters build up. For instance, questions about a country
involve the property contains administrative territorial entity a lot because those
administrative territorial entites are well connected among themselves in the
graph. To counteract that, the weights of edges with the same property are
increased depending on whether they are first, second, third and so on to appear.

Determining the order of questions that get asked based on the graph’s con-
nections leads to monotonous questions appearing in clusters. For example, most
Wikidata items representing humans contain a property country of citizenship.
Those then often point to the same country (e.g. to the United States of America
for actors of a movie from Hollywood). Because of the apparent significance of
such a country, demonstrated by many incoming claims, such questions would
accumulate. This is tackled by limiting the number of questions with the same
property or solution. Additionally, the position of questions in the result set is
adjusted such that similar ones do not cluster together.

3.3 Extraction of Answer Options

Q: Marge Simpson: sister

1. Patty Bouvier
2.

::::::
sitcom

3. Selma Bouvier
4. Jacqueline Bouvier

Question 3.2: Answer options
of different validity and qual-
ity

The simplest solution to obtaining answer op-
tions is grabbing random vertices from the graph
and verifying they are not a correct answer. For
example, question 3.2 Marge Simpson: sister with
solution Patty Bouvier may offer sitcom, which is
a vertex in the graph but makes no sense in this
context. As we only want one correct answer,
it must not offer Selma Bouvier as an answer
option, because they both are sisters of Marge
Simpson, indicated by an edge sister connecting
Marge Simpson to Selma Bouvier.

It is evident that answer options should at least be of the same instance (e.g.
human) as the solution to the question to prevent the user from being able to
rule out all answer options because they simply do not apply to the question.
For instance, proposing names of movies or locations when actually asking for
a relative of a cartoon character would make it too easy for the user. Again,

3. Generation of Questions and Answers 10

we continue with the assumption that vertices with high outdegrees are more
relevant. We justify this by the fact that all vertices in the graph are connected
to the origin with maximum distance 2.

3.3.1 Getting Items of Same Instance

fictional human

Homer Simpson

Marge Simpson

Bart Simpson

Lisa Simpson

Maggie Simpson

Yeardley Smith

human

Hank Azaria

Dan Castellaneta

Julie Kavner

Nancy Cartwright

instance of

instance of

inst.

instance of

instance of

instance of

instance of

inst.

instance of

instance of

Figure 3.2: Classes of various instances

Wikidata by itself does not have
an object model that requires Wiki-
data editors to classify items. On-
tologies with classes, subclasses and
instances are ideal for organising
knowledge bases. However, there is
a single property instance of that es-
tablished itself as the way to achieve
exactly that. We follow instance of
to another Wikidata item (e.g. film)
to get relevant answer options.

We consider the vertices con-
nected by an instance of edge as in-
stances and classes. They are only
Wikidata items too, though. As
shown in figure 3.2, fictional human
will have an incoming edge for each
Simpsons character. Likewise, hu-
man has an incoming edge for each
voice actor. By following the edge
instance of to the class, we can
choose any of the other incoming
edges with the same label instance
of to find a suitable answer option.

We notice that Wikidata items
can be instances of multiple classes.
For example, a member of the Simp-
sons family might be a fictional hu-
man, fictional character, animated
character and television character. A
country might be an instance of a
country, sovereign state, federation,
etc. When trying to find answer op-
tions, we use this to our advantage
by taking the union of instances of
all those classes.

3. Generation of Questions and Answers 11

3.3.2 Weighting and Varying of Vertices (Answers)

Based on the assumption, we sort all instances of one or multiple classes by
outdegree in descending order. Similar to the weights of the edges, we observed
that the indegrees should not be considered. Vertices with high indegrees tend
to be the same for different topics (e.g. the two genders or large countries).

As our questions offer four answers with one of them being the solution, we
need up to three answer options. If we always take the three vertices with highest
outdegree, answer options become highly repetitive. We use a queue from which
we can dequeue as desired to get varying answer options.

We investigated further approaches to eliminate irrelevant answer options.
For example, we wanted questions that have a human as the solution to only
offer humans with the same gender. To achieve that, we follow the edge sex or
gender to either male or female. In the queue containing the answer options we
check the gender of each item and skip it if it does not match.

Chapter 4

Implementation

The application is written in Python using the Flask web framework. A graph
database stores the dataset of Wikidata for efficient access. A Python software
package is used for the creation and handling of the graph.

4.1 Wikibase RDF Query

Wikibase RDF Query is a software package that combines the graph database
Blazegraph with tools to import a dump of Wikidata. The dataset of Wikidata is
expressed in the Resource Description Framework (RDF) data model. It consists
of a long list of triples in the form of subject–predicate–object. This dataset is
imported into Blazegraph, which optimises it for faster access.

The necessary data is requested by SPARQL queries. Because of the fact
that multiple extensive queries have to be answered in quick succession, the
graph database Blazegraph is running locally on the same server as the website.
Blazegraph accesses a file stored on an SSD with a 7 GB compressed Wikidata
dump inflated to over 50 GB with indexes.

4.2 Python Web Application (Flask)

Flask is a simple web framework for Python. We chose Python because of its
simplicity when writing code that handles data. We chose to write a web ap-
plication with Flask because it allows universal access from all sorts of mobile
devices.

Communication with the graph database Blazegraph is achieved by using the
Python package SPARQLWrapper. It forwards SPARQL queries to the graph
database and returns the requested data in the form of nested Python dictionar-
ies, which can easily be worked with.

12

4. Implementation 13

4.3 NetworkX

NetworkX offers efficient implementations for querying and modifying a graph.
It is used for creating the directed graph that contains the prospective questions
and answers.

For debugging and curiosity reasons, it must be possible to inspect the graph
visually by rendering it with a suitable layouting algorithm. The pruned version
of the graph is used for that purpose, as it is more compact. Graphviz is a
package of tools for drawing graphs. It has multiple layouting algorithms, of
which dot is used. It draws directed graphs as hierarchies, which leads to neatly
arranged graphs after moderate rendering times.

4.4 Redis

Redis is a data structure server. It maps keys to types of values. Redis was
chosen to supply a way of caching both generated questions and labels.

Keys are given an expiration time such that questions and labels are regen-
erated periodically. As Wikidata gets updated regularly, this ensures that stale
data does not remain in the cache for too long.

Cached questions are stored in terms of a Redis list, which provides both
constant time push and pop operations. A user successively answering questions
only triggers pop commands on Redis until the user changes topic.

Redis is also used to cache labels in various languages. If a required label
is not cached, it is requested from the local Wikidata dump. For languages not
included in the dump, labels can be requested from the official Wikidata server,
increasing waiting time, though.

Chapter 5

Results

5.1 Public Evaluation of Questions

To evaluate the generated questions and answers, we invited participants to
choose a topic and let our backend generate questions. The generated questions
are cached, and on request one question after the other is shown to the partici-
pant. Participants are prompted to rate single questions on a scale from 1 to 5
(worst to best). At any time, participants can choose to change the topic or to
reset questions for the current topic.

Of all the participants, 18 rated at least 10 questions. Altogether, 1262
questions were rated in the course of five releases. The three versions 0.1, 0.4
and 0.5 have received enough ratings to be of sufficient statistical significance.

Q: 1973 World Rally Championship for Manufacturers: followed by

1. 1976 World Rally Championship for Manufacturers
2. 1975 World Rally Championship for Manufacturers
3. 1974 World Rally Championship for Manufacturers
4. 1973 World Rally Championship for Manufacturers

Question 5.1: Trivial question referring to next such event

Q: Alexis Arquette: sister

1. Rosanna Arquette
2. Paul Calderón
3. Julia Sweeney
4. Frank Whaley

Question 5.2: Illogical gender

Public evaluation has uncovered a few
smaller bugs in the beginning. Badly rated
questions helped us detect ones that are triv-
ial to solve, do not make sense or are illogical.
Trivial questions include ones about events
asking for the next/previous such event, with
the answer options only differing in the year
(see question 5.1). When asking about rela-
tives of a person, participants requested the
answer options to be of the same gender to remain logical (see question 5.2).

Participants ranked poorly questions that are related to Wikipedia’s struc-
ture with categories and templates (see question 5.3). While those are used for

14

5. Results 15

Q: Sri Lanka: category for films shot at this location

1. Category:Republics
2. Category:North Central Province, Sri Lanka
3. Category:Films shot in Sri Lanka
4. Category:Island countries

Question 5.3: Related to Wikipedia’s categorisation function

Wikipedia internal purposes (to link to the corresponding Wikipedia article),
they do not make sense to the participant and should thus be eliminated. Like-
wise, questions involving Wikidata’s class structure (with edges like instance of
and subclass of) were also eliminated.

Q: Dave: said to be the same as

1. Davy
2. Dave
3. David
4. Dafydd

Question 5.4: Undesirable question

The evaluation also uncovered ques-
tions with certain properties that were un-
desirable in the opinion of the participants.
This includes properties sister city, said to
be the same as, forename and surname (see
question 5.4).

Participants praised the ability of
Wikidata Quiz to generate a whole range
of questions about movies and TV series.
They were also impressed by how it maps entire family trees, originating from a
single person, to a whole array of questions.

Q: Clark County: located in the administrative territorial entity

1. California
2. Idaho
3. Nevada
4. Arizona

Question 5.5: Only question for Las Vegas

The evaluation showed that the quality of questions is primarily dependent
on the completeness of Wikidata’s dataset. It revealed that Wikidata is still
highly incomplete in certain areas. Most cities we looked into are well covered
with a notable exception being Las Vegas (see question 5.5). Coverage is good for
all topics surrounding pop culture while still sometimes being incomplete. As an
example, TV series exist but Wikidata items for single episodes are mostly still
lacking. But in time we expect the quality of questions to rise with improvements
in Wikidata’s contents.

In general, the application sparked the participants’ interest and curiosity in
further digging into the large dataset of Wikidata. We found that the work of
contributors to Wikidata can be interactively evaluated by Wikidata Quiz.

5. Results 16

1 2 3 4 5
0%

10%

20%

30%
27%

25%

20%

17%

11%

35%

25%

18%

14%

8%8%

16%

23%

36%

17%

Version 0.1 Version 0.4 Version 0.5

Figure 5.1: Ratings of 1191 questions from 1 to 5 (worst to best) for three
versions

Figure 5.1 shows how 1191 generated questions were rated for the three sta-
tistically significant versions 0.1, 0.4 and 0.5. Initially, participants noticed many
trivial questions and reported them, as can be seen from the low ratings. Follow-
ing versions were under even higher scrutiny, with participants reporting further
trivial and also illogical questions.

For the last version, participants reported mostly good questions, as is evident
from the higher ratings. Questions with low ratings are ones on topics with few
Wikidata claims or are caused by wrong information in Wikidata. Additionally,
participants also praised the mixed order that was established by shuffling the
generated questions in the last version.

5.2 Runtime

Runtime is a great challenge for an application accessing a large knowledge base.
The graph is constructed gradually by executing consecutive queries on the graph
database. Each query takes several tens of milliseconds. The query for getting
incoming claims, i.e. items that reference the current item, even takes several
seconds. Depending on subject (e.g. large countries that are referenced a lot)
it takes even considerably longer. All these milliseconds accumulate to multiple
seconds for large graphs.

5. Results 17

To give an idea on how long participants approximately waited, we deter-
mined the average waiting time. For that, we regenerated all questions for the
86 topics participants chose and that were logged. This resulted in an average
waiting time of 3.3 seconds. Note that labels were cached in the Redis instance.

We provide an overview of topics and their respective generation time below:

Switzerland 17.3 s

Volkswagen 2.3 s

mathematics 6.3 s

Sun 9.0 s

The Simpsons 4.5 s

Albert Einstein 7.4 s

Roger Federer 4.3 s

Linus Torvalds 3.3 s

Super Nintendo Entertainment System 0.4 s

Table 5.6: Generation times for popular Wikidata items in seconds

Chapter 6

Conclusion and Future Work

We introduced an algorithm that allows for automated generation of questions
with answers. The algorithm uses a graph that is constructed using structured
data from knowledge base Wikidata. We set up a website where users can give
feedback on generated questions. Analysis shows that participants found good
questions and they saw improvements in the algorithm over time. We found that
the incomplete status of Wikidata negatively impacts the quality of the generated
graph. We found limits in the types of questions that are suitable for generating
from knowledge bases. Based on the positive feedback especially on questions
regarding pop culture, we conclude that automated question generation provides
benefits for quiz applications in that questions no longer become outdated.

Wikidata is expected to considerably grow over the following years. It has
the potential to reduce time spent on the repetitive task of keeping information
up to date in general. We see Wikidata Quiz as only one application to depend
on structured data. In the future, with knowledge bases becoming more reliable,
we predict more reliance on such datasets in other domains as well.

We believe that future work should invest in finding new question types.
Good questions can involve asking for values like integers and dates, or requesting
users to compare images.

The dataset is so large that even research in graph databases that are opti-
mised for question generation might be of interest. This could include prepro-
cessing the data to find well connected items. Different approaches to finding
the major vertices and edges in a subgraph may also be investigated.

18

Bibliography

[1] Wikimedia Foundation: Wikidata. https://www.wikidata.org/ Accessed:
2015-10-17.

[2] Vrandečić, D.: Wikidata: A new platform for collaborative data collection.
In: Proceedings of the 21st international conference companion on World
Wide Web, ACM (2012) 1063–1064

[3] Metaweb Technologies: Freebase. https://www.freebase.com/ Accessed:
2015-10-17.

[4] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a
collaboratively created graph database for structuring human knowledge. In:
Proceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, ACM (2008) 1247–1250

[5] Plain Vanilla Games: QuizUp. https://www.quizup.com/ Accessed: 2015-
10-17.

[6] Brown, J.C., Frishkoff, G.A., Eskenazi, M.: Automatic question generation
for vocabulary assessment. In: Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Processing,
Association for Computational Linguistics (2005) 819–826

[7] Yao, X., Van Durme, B.: Information extraction over structured data: Ques-
tion answering with Freebase. In: Proceedings of ACL. (2014)

[8] Kunichika, H., Katayama, T., Hirashima, T., Takeuchi, A.: Automated
question generation methods for intelligent English learning systems and its
evaluation. In: Proc. of ICCE. (2004)

[9] Heilman, M., Smith, N.A.: Good question! statistical ranking for question
generation. In: Human Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association for Computational
Linguistics, Association for Computational Linguistics (2010) 609–617

19

https://www.wikidata.org/
https://www.freebase.com/
https://www.quizup.com/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Background
	2.1 Semantic Web
	2.2 Wikidata

	3 Generation of Questions and Answers
	3.1 Graph Generation
	3.1.1 Outgoing Claims
	3.1.2 Incoming Claims
	3.1.3 Pruning the Graph

	3.2 Extraction of Questions
	3.2.1 Weighting and Varying of Edges (Questions)

	3.3 Extraction of Answer Options
	3.3.1 Getting Items of Same Instance
	3.3.2 Weighting and Varying of Vertices (Answers)

	4 Implementation
	4.1 Wikibase RDF Query
	4.2 Python Web Application (Flask)
	4.3 NetworkX
	4.4 Redis

	5 Results
	5.1 Public Evaluation of Questions
	5.2 Runtime

	6 Conclusion and Future Work
	Bibliography

