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Abstract

State-of-the-art speech recognition systems include a hybrid architecture of hidden Markov

models and deep neural networks (DNNs) for classifying phonemes. DNNs that are appropri-

ately tuned can show significant improvement for phoneme classification. However, multi-layer

perceptrons are complex models to tune, and now with even deeper neural networks, new meth-

ods are continually sprouting in the field to improve generalization of such models. We aim

to disambiguate how new approaches better cope with the variability of phonemes between

speakers and improve phoneme classification.

This task was achieved by conducting exploratory studies on feed-forward DNNs with ar-

tificial data to approximate optimal performance, i.e. Bayes classification rate. The report is

divided in two parts that aim to answer: (1) how to build an appropriate DNN architecture given

an infinite sample size, (2) at least how many training samples are required to build an optimal

classifier for our data sets, (3) which features in processed TIMIT data contribute the most con-

textual information, and (4) does pre-training a DNN with artificial "speech-like" data configure

weights of a DNN optimally for training TIMIT data.

Four sets of data were used in this study: three artificial sets that ranged from simple to com-

plex and the TIMIT corpus. TIMIT is a widely used speech database for phoneme recognition.

Part one of the report showed DNNs trained with artificial data achieved the Bayes error with

dropout and rectified linear units. We observed a logarithmic relationship between the training

sample size and the generalization error. In part two, delta features are found to improve classi-

fication performance of phonemes on the TIMIT test. Pre-training with artificial data and later

fine-tuning DNNs with TIMIT data does improve generlization performance for networks of

depth between two and six hidden layers. Deeper networks than six hidden layers are prone to

shift weights away from an optimal configuration. Conclusively, we demonstrated DNNs are

optimal discriminant classifiers when appropriately tuned and given sufficient samples. Future

investigations would aim to apply alternative deep learning methods for feature extraction of

speech data, e.g. convolutional neural networks, and investigating how recurrent neural net-

works can improve phoneme classification.
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Chapter 1

Preliminaries

1.1 Introduction

Deep neural networks (DNNs) for phoneme classification have provided state-of-the-art re-

sults compared to the classical approach with hidden Markov models (HMMs) and Gaussian

mixture models (GMMs). HMMs statistically describe temporal variability of phonemes and

GMMs are used to approximate the statistical distributions of phonemes. One of the advantages

of introducing a DNN to speech recognition systems is that a neural network can estimate the

phoneme posteriors of feature vectors processed from speech fairly well which can be used fur-

ther up the recognition pipeline. This approach replaces GMM for approximating likelihoods.

Even though GMMs are suitable for modeling the probability distributions over feature vectors,

their shortcoming is that GMMs require large covariance matrices and most often the under-

lying structure of speech is low-dimensional, not requiring a full-covariance matrix to capture

parameters within a frame [HDY+12].

Recent advancements in deep neural networks have focused to improve initialization tech-

niques, regularization methods to prevent networks from overfitting on training data, activation

functions to improve trainability of a network, and computational power harnessed in the ap-

plication of Graphical Processing Units (GPUs) to build deeper networks. In this thesis, the

objective was to apply popular methods to build a good DNN for the task of phoneme classifi-

cation. We methodically approached this task by first working with artificial data and computed

its Bayes error rates. For clarification, we consider a DNN good when its classification perfor-

mance has reached the Bayes error for data that the underlying distribution is known. The Bayes

error is the lowest error bound on any given classifier and can be thought of as the ground truth

for what a classifier can potentially predict correctly.

In Chapter II, we introduce the background on DNNs and HMMs, and describe the methods

used to conduct our experiments. Chapter III and part of Chapter IV present DNN experiments

performed on artificial data with known Bayes error rates. These studies evaluate how well

DNNs can approximate the Bayes error for a given data set. Specifically, we investigated how

certain hyperparameters can affect training and the number of samples needed to achieve the

5



CHAPTER 1. PRELIMINARIES 6

Bayes error. Also in Chapter IV, we conduct exploratory studies on feature vectors processed

from speech data and utilize this information to select an appropriate set of features. Altogether,

we combine the results from previous chapters to pre-train DNNs with artificial data and later

fine-tune with feature vectors processed from speech. We motivate this study by attempting to

understand how DNNs can be improved for phoneme classification, and therefore, decrease the

classification error on a widely used speech database.



Chapter 2

Materials and methods

2.1 Hidden Markov models for phoneme recognition

Current speech recognizers include HMMs to model the temporal structure of speech flow and

GMMs for estimating the likelihood of a phoneme. GMM is a parametric probability density

function represented as a weighted sum of Gaussian component densities. In this study, we use a

frame-based approach to train a HMM-GMM framework to estimate the means and covariances

of 39 phoneme distributions. The setup of the framework was provided in the hidden Markov

model toolkit (HTK), a software package developed by [SY06] in Cambridge University .

2.2 Deep neural networks

Deep, feedforward neural networks have been successfully applied to applications in speech

recognition [HDY+12]. The basic framework of a DNN include three types of layers stacked

in the following manner: an input layer, multiple hidden layers, and an output layer. Figure 2.1

illustrates an example of a feedforward network with units in the input layer (xinput = h0),

followed by the kth hidden layer consisting of d units (hk
d), and an output layer (ŷoutput = hℓ).

The last layer of the neural network outputs posterior probability predictions for a realized

model when given an observation, x i . Unlike output values from hidden layers, units in the last

layer transform values into probabilities via a softmax function Equation 2.2.

Each unit in a hidden layer is defined by Equation 2.1. A unit computes a linear transfor-

mation followed by a squashing nonlinearity. For example, a set of inputs hk−1 is projected to

a different space by the weight matrix Wk and are then shifted by values in the bias vector bk.

This result is sent through a saturating nonlinear function φ called an activation function,

hk = φ
(

bk +Wk,hk−1
)

(2.1)

hℓ
i =

exp(bℓi +W ℓ
i h

ℓ−1)
∑J

j=1 exp(b
ℓ
j +W ℓ

j h
ℓ−1)

(2.2)
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Figure 2.1: Illustration of a feedforward neural network. A feature vector is representative

of units in the input layer. Hidden units perform operations on incoming values sent from its

previous layer and are squashed through a rectified linear function. Probabilities for class as-

signments are outputs from a softmax function only assigned in the last layer.
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Figure 2.2 shows three types of commonly used activation functions found in DNN literature:

sigmoid, hyperbolic tangent, and rectified linear. In the next chapter, it is described how to

properly work with certain types of activation functions in order to achieve good classification

performance.

DNNs are discriminative classifiers and are trained with backpropagation and stochastic

gradient descent [RHW88]. For computational efficiency, it is advisable to compute derivatives

on small subsets of training data called "mini batches" rather than the whole training set itself

[HDY+12]. Weights are updated in proportion to the gradients and can be fine-tuned by directly

applying hyperparameters such as learning rate, momentum term, and regularizers (e.g. L1- ,

L2-norms, or dropout).

2.2.1 Experimental setup

Hardware, software, and libraries Experiments were performed on NVIDIA GPUs and

a Macintosh laptop. DNNs were implemented in Python using Theano libraries [BLP+12] and

extended from an open-source deep learning toolkit [Mia14].

Initialization of weights DNN weights were randomly drawn between:

Wij ∼ U

[

−

√

6

ninput + noutput

,

√

6

ninput + noutput

]

(2.3)

where U [−a, a] is the uniform distribution in the interval (−a, a), ninput is the size of the pre-

vious layer, and noutput is the size of the current layer. A random generator was initialized by a

seed to make the results in these experiments repeatable.

Dropout in neural networks When applying dropout for training, the number of active

weights signifies connections that were not randomly chosen by the dropout algorithm to be

silenced. These numbers were computed as the product of two adjacent layers, hk−1 and hk,

and a probability dropout term Pdropout that certain connections will be turned off during an

epoch.

wactive = (hk−1
i × hk

j )× (1− Pdropout), i = 1...N, j = 1...M (2.4)

where wactive is the number of active weights during an epoch.

Monitoring DNN performance During training, the state of a network was measured

by closely monitoring classification errors between training and validation sets. This method

allowed us to diagnose DNNs for signs of underfitting or overfitting. In addition, we measured

the generalization performance on a third set called the test. The test set serves as a measure for

how good the generalization ability of a trained network actually is.
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2.3 Datasets

Four types of data sets are used in this thesis of which three sets are generated artificially. Data

generated from a normal distrubution is described first. A second set is natural speech data. In

third place, data sets generated from Gaussian mixture densities (GMD) are discussed. Lastly,

data generated from a HMM-based synthesis (HBS) method is discussed. A summary of all

data sets can be found on Table 2.1.

Data set Type Dimensions # Gaussian components Bayes error ( % )

1) Normal distribution Artificial 2 – 26

13 – 22

2) TIMIT Natural 273 – –

3) Gaussian mixtures (GMD) Artificial 39 1 40

39 12 28

273 12 ∼ 1

4) HMM-based synthesis (HBS) Artificial 273 – –

Table 2.1: Summary of data used in this thesis

TIMIT database

The TIMIT database contains natural speech data. It is the most widely used database for

phoneme recognition [HDY+12], and has provided a convenient way of testing new approaches

to speech recognition problems. TIMIT contains recordings of phonetically-balanced prompted

English speech which are captured in a total of 6300 sentences (5.4 hours) [LP11]. A total of

630 speakers from 8 major dialects across the United States recited 10 sentences that were later

manually segmented at the phoneme level [LP11]. Table 2.2 summarizes the TIMIT corpus

training and test sets as described in [LP11]. A detailed description about the database itself can

be found in [ZSG90].

The original number of phonemes in TIMIT was 61. Later proposals of how data in TIMIT

should be utilized resulted in transforming the 61 classes into 39 phonemes, which has become

standard practice. Table 2.3 presents 39 phonemes used for classification in this thesis.

Set Number of speakers Number of sentences Number of Hours

Training 462 3696 3.14

Core test 24 192 0.16

Complete test 168 1344 0.81

Table 2.2: Summary of TIMIT corpus training and test sets [ZSG90]
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1: b 9: r 17: ae 25: eh 33: ng

2: d 10: s 18: ah 26: em 34: ow

3: f 11: t 19: aw 27: er 35: oy

4: g 12: v 20: ay 28: ey 36: sh

5: k 13: w 21: ch 29: hh 37: th

6: l 14: y 22: cl 30: ih 38: uh

7: n 15: z 23: dh 31: iy 39: uw

8: p 16: aa 24: dx 32: jh

Table 2.3: A list of 39 phonemes

Data generated from normal distributions

Random samples were drawn from a multivariate normal distribution function in Python. Dis-

tributions were defined by their means and covariances which were drawn at random from a

uniform distribution. Chapter III presents experiments for two subsets of normally distributed

data. Each subset is different in dimensionality. Subset one included 4 clusters of 2-dimensions

and subset two included 20 clusters of 13-dimensions. As shown in Figure 2.3, clusters were

designed to overlap by some amount in order to generate data with Bayes error rates between

20 and 30%.

X

X
Cluster 1Cluster 1

Cluster 2

Cluster 3

Cluster 4

2

1

Figure 2.3: Samples were randomly drawn from a 2-dimensional normal distribution. Four

colors (red, blue, green, and cyan) label each cluster. Clusters intentionally overlap to give the

dataset a Bayes error of 26%
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Data generated from Gaussian mixture densities

A second type of artificial data are drawn from a mixture of Gaussians. Gaussian likelihoods

were estimated with feature vectors created from natural speech data (TIMIT). Specifically, the

HMM-GMM framework (provided in the HTK software) was used to estimate distributions

for 39 phonemes. One can specifiy the number of Gaussian components used to estimate the

likelihood distribution of a phoneme.

In total, three subsets of data using GMD were created. Each subset differed according to the

number of Gaussian components defined and its dimensionality. For example, a subset of feature

vectors were created with only one Gaussian component and the dimensionality of the feature

vector was 39. A second subset of feature vectors were created with 12 Gaussian components

and its dimensionality was 39. A third subset of feature vectors were created from reusing

samples in subset two. This was accomplished by taking 7 sequential samples from subset two,

each of 39 dimensions, and appending them together. The result was a feature vector with 273
dimensions. Because samples in subset two were estimated from 12 Gaussian components,

samples in subset three are also documented with 12 Gaussian components (Table 2.1). The

Bayes error rates for all subsets were determined.

An important remark about samples drawn from this method is that values within a single

feature vector were independently drawn at random. Unlike a feature vector processed from

speech, discrete values are co-dependent and one value can influence another within a lag time.

Therefore, it is incorrect to assume feature vectors generated from GMD closely resemble nat-

ural speech. Instead samples only contain information about the estimation of phoneme distri-

butions by approximating them with Gaussians.

Data generated with HMM-based speech synthesis

HBS for speech generation is a method for synthesizing a unit of speech. In this system, HMMs

are trained from a natural speech database (TIMIT) to generate speech waveforms from HMMs

themselves. This system offers the ability to create variations of speech without requiring a large

database of recordings. The training part is similar to that used in speech recognition systems

[ZNY+07].

Speech waveforms generated from HMMs are speaker-dependent. This implies that each

speech waveform was modeled from properties that differentiate speech across genders, di-

alects, and prosodic aspects. The system was trained on 461 speakers. For each speaker, 500
non-sensible sentences were artificially generated and were given labels at the phoneme level.

Because the artificially generated data is speaker-dependent, it is impossible to determine the

Bayes error rate of the data set. The advantage sought behind using this method is that data

generation is cheap and contains properties that closely mimic natural speech data.
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2.4 Feature extraction

Many feature extraction techinques exist for speech recognition. Here we used a common ap-

proach for converting natural speech waveforms into feature vectors called Mel-frequency cep-

strals coefficients (MFCCs). MFCCs were chosen as the preferred features of choice because

the filter banks are designed to resemble human hearing frequencies. Below we describe two

stages to create 39-dimensioal MFCC feature vectors from the TIMIT training set.

Initially, a raw waveform is partitioned into frames. The window size of the frame was 25
msec and is shifted by 10 msec across the file. The next step is to apply the discrete fourier

transform to each frame, which is followed by performing a computation with a Mel-spaced

filterbank. A total of 13 triangular filters comprise the Mel-spaced filterbank. The final output

of the extraction process is a 13-dimensional MFCC vector.

The second stage focuses on how to compute delta and delta-delta coefficients, which are ap-

pended to the 13-dimensional MFCCs computed in the last stage. In contrast to "static" MFCCs,

deltas and delta-deltas carry "dynamical" information about frame-to-frame differences from

the 13-dimensional MFCC vectors. An intuitive way to understand delta features is that it re-

lates to differential coefficients whereas delta-delta features contain information about the ac-

celeration amongst frames.

Initial steps for computing the first set of deltas is taking a single MFCC vector and its three

sequential vectors that come before it and three vectors that follow after. Coefficients from the

same time position in the seven vectors are added together and divided by the number of total

coefficients, in this case seven. The weighted sum of coefficients for that one time point is

then representative of one delta coefficient. This step is repeated for all time points in a set of

13-dimensional MFCC vector. The equation for computing delta vectors can be found under

Equation 2.5.

dt =

∑N

n=1 n (ct+n − ct−n)

2
∑n=1

N n2
(2.5)

Delta-deltas are computed in the same manner as delta coefficients. The dimensions of the

final delta and delta-delta vectors are both 13-dimensional. The last step is to append each 13-

dimensional MFCC vector to its corresponding delta and delta-delta vectors. The result is a

39-dimensional MFCC-delta vector.

Normalization

Data processing plays a crucial role in training a neural network. Normalization of all datasets

was carefully considered as a factor that could affect how well a network were to train and

perform on the test set. We investigated two types of normalization techniques, standardization

and feature scaling, to determine which of the two would perform best when training DNNs.
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Standardization

Data are transformed to obtain a new data set with zero mean and a unit variance. It is important

to note that the transformed data is not bounded between 0 and 1, which can affect the learn-

ing of a DNN designed with sigmoid and hyperbolic tangent activation functions. Data was

transformed using a pre-processing function in the scikit-learn library for Python.

x′ =
x− µ

σ
(2.6)

Feature scaling

Data was normalized using Equation 2.7. The normalized values are bounded between 0 and 1.

A suitable function used for feature scaling can be found in Python’s scikit-learn library.

x′ =
x− xmin

xmax − xmin

(2.7)



Chapter 3

Exploratory studies of DNNs

3.1 Motivation

DNNs are powerful models that can be applied to a wide range of machine learning applica-

tions. However, knowing how to properly train DNNs on very complex and high-dimensional

data requires a lot of experience. In this chapter, we show how a DNN can be trained to reach

the Bayes error rate for low- and high-dimensional toy data. We attempt to address the impli-

cations of training a DNN with certain hyperparameters over others such as types of activation

functions, small versus large learning rates, and the amount of regularization needed to reduce

overfitting. These empirical results help to stage the following experiments with data generated

from GMD and HBS which is far more complex and higher dimensional.

3.2 Case studies with normally distributed data

3.2.1 Activation functions

DNNs for phoneme recognition were traditionally implemented with sigmoidal hidden layers,

but increasing evidence has shown that these nonlinear functions may not be the best choice

for trainability of a network [GB10], [GBB11], [MHN13]. Here we conducted a series of ex-

periments on normally distributed data of 2- and 13-dimensions to show that sigmoids can be

well-behaved for data that is only bounded between 0 and 1. Otherwise a network trained on data

not bounded between this interval will not train well and should then be normalized to achieve

good results (Figure 3.1). Figure 3.1.C-D shows DNNs trained with normalized data that were

feature scaled. It is shown that training curves for all networks are able to approximate the Bayes

error rate at 22%. Figure 3.1.A-B illustrates the effect of training with un-normalized data and

shows that training curves for networks with sigmoid and tanh cannot train well compared to

rectified.

Based on these experiments, we observe that sigmoid and tanh can propagate forward in-

15
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Figure 3.1: Data used for normalization experiments was 13-dimensional drawn from normal

distributions. A) Networks were trained with un-normalized data. DNNs with sigmoid and tanh

activation functions were not able to learn, while a network with rectified units succeeded to

learn. B) Test curves for DNNs trained with un-normalized data. C) Networks trained with

normalized data show that training is successful for all three functions. D) Test curves for

DNNs trained with normalized data. The Bayes error rate is indicated by the black-dashed line

at 22%.
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formative values only if data is processed in a particular manner. For instance, input values on

the real number line that are very close to zero will be mapped to informative probabilities. If

values are extremely large in either positive or negative directions, then ouputs of the sigmoid

function are always mapped to either 1 or 0. Hence, a binary number does not give sufficient

information about the example.

On the other hand, training curves for rectified networks show that they train well with

either normalized or un-normalized data. Because these experiments show that rectified linear

functions are reliable to train with, all networks discussed in the remainder of this thesis were

defined with rectified linear units.

3.2.2 Overcoming overfit models

Introducing more parameters in a model than data points often leads to overfitting. Recent devel-

oped methods for regularization have shown improvements with training very large networks.

Dropout is a regularization technique introduced by [HSK+12] and has been used to prevent

overfitting on large feed-forward neural networks by randomly omitting a subset of units during

each epoch. In this section, we show how dropout can regularize large networks from over-

fitting and evaluate the behavior of networks that can reach the Bayes error rate without any

regularization but are given dropout.

Figure 3.2.A presents four different network architectures trained on normal data of 13-

dimensions without dropout. It is shown that each network overfits on the training data, as

indicated by the training curves dropping below the Bayes error at 22% (black-dashed line). In

constrast, the test curves increased its error relative to the Bayes error rate. To reduce the effect

of overfitting (Figure 3.2.B), dropout is introduced into the largest network of 4 hidden layers

shown in Figure 3.2.A. Figure 3.2.B shows that omitting 50% of units within each hidden layer

of the largest network does reduce overfitting. Previous experiments on dropout have presented

similar findings and noted that dropping 50% of hidden units significantly improved classifica-

tion for a variety of different network architectures [HSK+12]. In this example, we conclude

overfitting can greatly be reduced by using dropout to prevent "complex co-adaptations" be-

tween hidden units which are more likely to fit the training data too well.

A second set of experiments on dropout investigate the effect of dropping units on networks

that do not need regularization. It is usually never the case that additional parameters are later

included once a system has been found that best suits an objective. However, it is of interest

here to evaluate how dropout can increase or decrease the classification error of networks that

already have met the Bayes error. Figure 3.3 shows four experiments that were all performed on

the same type of network architecture with different amounts of dropout added. Dropout was

applied equally to all hidden layers of a network in amounts of 10, 40, and 80%. The control

network was purposely designed to already have reached the Bayes error without dropout. As

we expected, adding dropout to a network that does not require regularization increased the

classification error.
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Figure 3.2: Data used for dropout experiments was 13-dimensional drawn from normal distri-

butions. A) DNNs with four different architectures were trained without dropout. Overfitting is

present in all trainings. B) The largest network of four hidden layers shown in A (blue curves)

was trained with 50% dropout (green curves). Adding regularization to networks can prevent

aggressive overfitting on the training data and achieve the Bayes error rate at 22%
.
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Figure 3.3: Data used for dropout experiments was 2-dimensional drawn from normal distri-

butions. A total of four networks were trained with dropout at different quantities: 0, 10, 40, and

80%. The bold red curve shows that the network had achieved the Bayes error at 26% without

dropout. Networks trained with dropout (blue, cyan, and green) show that regularization does

increase the classification error on a network that has already achieved the Bayes error.
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3.2.3 Learning rates

Learning rates are difficult to handle properly, which is why many methods for training with

good settings of learning rates have been proposed. Here we investigate the behavior of training

a network under constant learning rates. Experiments with constant learning rates were chosen

to provide an example of how training behaved under relatively high or low learning rates, with-

out changing too many variables. Networks were trained with 2-dimensional data and identical

network settings.

Figure 3.4.A-B shows networks trained with different constant learning rate settings. For

example, adjusting the learning rate value at a relatively high value (0.5) can introduce large

fluctuations in both the training and test curves (blue curves). Whereas, a small learning rate

of 0.0005 can dramatically increase the training period for a network to reach the Bayes error

(magenta curves). The gray-dashed lines indicates training for the first 15 epochs. We attempted

to reduce the effect of large fluctuations after 15 epochs by decreasing the learning rate by a

factor of 10, as shown in Figure 3.4.C-D. A slight improvement is observed for the blue test

curve in Figure 3.4.D. The pair of learning rates starting at 0.005 then reduced to 0.0005 is

shown to nearly eliminate large oscillations.

In constrast, learning rates manually changed from 0.05 to 0.005 remained with large os-

cillations in the test curves. The result of this hardcoded change shows that the learning rate

does significantly contribute to oscillations found in the behavior of the test error curve. A

third experiment shows a relatively smaller learning rate at 0.0005 manually changed to a larger

learning rate at 0.005. The motivation behind this experiment was to determine if a small learn-

ing rate can converge faster to the Bayes error by increasing the value at 50 epochs. Instead we

found that the test error curve resulted in oscillating after the change.

For networks trained with data of 13-dimensions, we find that a new set of learning rates

behave differently when compared to learn rates chosen for 2-dimensional data. For example,

relatively high learning rates such as 0.05 and 0.005 result in networks that converged quickly

to the Bayes error, but can overfit on the training data sooner than smaller learning rates (Figure

3.5). Too high of a learning rate such as 0.8 shows to prevent the network from reaching the

Bayes error.

In summary, the best learning rates were found using 5-fold cross-validation. It was unex-

pected to learn that the behavior of learning rates at different settings vary across data sets and

architectures. A general method for selecting learning rates is difficult and an alternative method

for handling these hyperparameters would encourage adaptive learning rates.
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Figure 3.4: Data used for learning rate experiments was 2-dimensional drawn from normal

distributions. A) Comparison between three experiments for networks trained with constant

learning rates of: 0.05, 0.005, 0.0005. DNNs with a relatively large learning rate (0.05) shows

to reach the Bayes error rate sooner than smaller learning rates, but introduces fluctuations in

the training curves. B) Testing curves for experiments in A. C) Experiments were extended from

A and learning rates were manually changed at a specific epoch (indicated by the gray- and

red-dashed vertical lines) to reduce fluctations in testing curves. D. Testing curves for networks

in C that show learning rates can dramatically impact testing performance.
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Figure 3.5: Data used for learning rate experiments was 13-dimensional drawn from normal

distributions. A comparison is shown between DNNs trained with different constant learning

rates. It is shown that too large of a learning rate 0.8 is not effective for training and neither is

too small of a learning rate 0.00005. Too small of learning rate will take the network thousands

of epochs to converge to the Bayes error rate at 22%.



Chapter 4

Exploratory studies with artificial and

speech data

4.1 Motivation

After reviewing how DNNs train under different hyperparameter settings, we further investigate

the behavior of DNNs with data generated from GMD and HBS.

Normalizing all training, validation, and test sets in the same manner is important to reach

good classification performance. Section 4.2 presents how GMD and HBS feature vectors were

normalized in a manner that led to better classification performance on the TIMIT test. In Sec-

tion 4.3, we are interested to determine whether the Bayes error can be reached for GMD data,

and in 4.4 we investigate how many samples it took to reach the Bayes error. These exploratory

experiments provide a foundation to later train a DNN with HBS and speech data, which do

not come with knowing its Bayes error. In Section 4.5.1, we train a DNN with HBS data and

report our best findings. In the last section, we pre-train or initialize a network’s weights with

either GMD or HBS, and later fine-tune the network with feature vectors converted from natural

speech. Ultimately, we strive to decrease the classification error on the TIMIT test.

4.2 Normalizing with TIMIT

Normalization was carefully considered as a factor that could potentially prevent DNNs from

reaching the Bayes error. However, the main objective in this chapter is to decrease the clas-

sification error on the TIMIT test, and the strategy taken to accomplish this goal begins with

pre-training a DNN on either GMD or HBS feature vectors. This section motivates the question

how GMD and HBS should be normalized to obtain good classification results when the DNN

is fine-tuned with the TIMIT training set.

Table 4.1 compares two methods of standardizing GMD data. In this example, GMD fea-

ture vectors are 39-dimensional and were generated by 12 Gaussian components. A total of nine

23
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Normalization With TIMIT moments Without TIMIT moments

Model (per hidden layer) Hidden layers GMD test error TIMIT test error GMD test error TIMIT test error

500 units

1 Layer 34.3612 50.0141 32.5765 57.6891

2 Layers 30.7946 49.3624 28.8271 56.5822

3 Layers 30.1687 49.5565 27.4885 56.4970

1000 units

1 Layer 33.4994 49.6896 31.1436 57.2542

2 Layers 30.1071 49.2318 25.3422 57.0078

3 Layers 30.0348 49.5349 22.4198 56.9802

2000 units

1 Layer 33.0348 49.7474 29.7390 57.1133

2 Layers 29.9948 49.4788 27.8450 57.7188

3 Layers 31.0464 50.0242 9.4809 58.1052

Table 4.1: Data used for normalization experiments was 39-dimensional generated from 12
Gaussian components (GMD method). Data underwent two different standardization proce-

dures: data standardized with moments computed from the TIMIT training set (columns 3 and

4), and data standardized with moments computed GMD training data (columns 5 and 6). The

outcome of training a DNN with data standardized with TIMIT moments shows to decrease the

test error on TIMIT.

different network systems were trained to approximate the Bayes error rate at 28%. The clas-

sification error results are divided into two testing experiments: (1) showing that the GMD test

can reach its Bayes error, and (2) testing how well TIMIT performs on networks trained with

GMD standardized by two approaches.

The first approach, marked by the columns labeled "With TIMIT moments", was to compute

the mean and standard deviation of the TIMIT training set. With these TIMIT moments, they

are used to standardize GMD sets and the TIMIT test set. We show that under this standization

approach the GMD test closely approximates the Bayes error. Networks with one hidden layer

show that achieving the Bayes error was a bit more challenging than deeper networks (33-34%
error). The results on the TIMIT test are about 20% higher than the GMD test errors, but the

TIMIT test errors show that information in the GMD training set can be transferred to a DNN.

DNNs performed better than random on the TIMIT test.

The second approach, found under "Without TIMIT moments", does not standardize GMD

with TIMIT moments but instead was standardized with moments computed from the GMD

training set. The GMD test was standardized with GMD training moments, but the TIMIT

test remains standardized with moments computed from the TIMIT training set. As expected,

classification errors on the TIMIT test was much greater when DNNs are trained with training

data not standardized with TIMIT moments. On the other hand, larger networks such as three

hidden layers with units of 1000 and 2000 show that the GMD test errors fall below its Bayes

error rate. One probable explanation for this behavior was that by chance the GMD test set

closely resembles examples in the GMD training set.
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4.3 Bayes error rate estimation with DNNs

DNNs trained with GMD subsets met the Bayes error rates with specific hyperparameter set-

tings. Refer to Table 2.1 for details about the three subsets listed under GMD. Figure 4.1 plots

the mean classification error curves (bold lines) and standard deviations (shaded regions) for

each subset and is compared against its Bayes error rate. It is shown that on average the subsets

were able to achieve the Bayes error rate with hyperparameters and network architectures listed

on Table B.10 in Appendix B. The best settings for hyperparameters were found by performing

a 5-fold cross validation. Networks fitted on a partition of the entire training set were tested

on five test sets. Test errors for the best network were averaged and its standard deviation was

computed.

Figure 4.1: Test errors for the best networks show to achieve Bayes error rates for three types of

GMD feature vectors. Trained networks were tested on five test sets and were averaged (shown

by the bold line). Their standard deviations are denoted by the lightly-shaded regions. The best

DNNs were selected by performing 5-fold cross validation.

In addition, networks trained with at least one million samples were able to reach the Bayes

error rate (Table 4.2). Interestingly, GMD of 39-dimensions generated by 12 Gaussian compo-

nents needed about 2 million more samples to reach its Bayes error than the other two subsets.

Figure 4.1 also shows that the standard deviation for meeting the Bayes error at 28% was greater

than subsets with Bayes errors at 40% and 1%. An explanation for why DNNs trained with 39-

dimensions generated by 12 Gaussians need a larger sample size to reach its Bayes error at 28%
is not well understood.
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GMD data (dim, # Gaussians) # Samples

39d, 1 1,170,000

39d, 12 3,000,000

273d, 12 1,950,000

Table 4.2: Minimum number of samples required to reach the Bayes error rate on Figure 4.1

4.4 Relationship between sample size and Bayes error rate

As it was shown in the previous section, the number of samples needed to reach the Bayes error

rate was at least one million. Here we aim to find a general relationship that could estimate the

test error for a DNN given a certain sample size.

The approach used to determine a general relationship between test error and sample size

was to first find the best networks that could meet the Bayes error rates. This was accomplished

by performing 5-fold cross validation to determine the best network settings. If the Bayes error

rates were not met, then the sample size was increased. Once the best networks were found, we

tested the performance of these networks on different sample sizes. The best networks served as

a base to then find a DNN that can give good test results on a smaller sample set. For example,

we divided a large pool of 3900000 samples into five subgroups used for training. Each sample

was randomly selected from the pool and assigned randomly to one of five groups. The sample

sizes of each subgroup were: 195, 1950, 19500, 195000, and 1950000. The remaining samples

were assigned as a validation set to detect underfitting or overfitting. A second cross-validation

step was performed on each subgroup to find the best DNN for that particular sample size. The

best network was selected for each subgroup and was tested on four test sets. The sample size

of each test set was 487500.

Figure 4.2 shows the relationship between sample size and the average test error for the best

selected networks. A logarithmic relationship is found that relates a sample size of at least one

million to an error estimated to be below the Bayes error rate at 1% (denoted by the horizontal

red-dashed line). This curve estimates for networks trained with less than 100000 samples to

expect errors higher than the Bayes error rate. Table 4.3 summarizes the network complexities

versus sample size for GMD of 273-dimensions generated by 12 Gaussian components. The last

column in Table 4.3 lists the means and standard deviations for the test error of all subgroups.

The network complexity is reported as two different parameters: (1) number of active weights

during an epoch, and (2) total number of weights used in the network architecture. Recall that

the term active weights referred to units that were not randomly chosen by the dropout algo-

rithm to become silenced during an epoch. The number of active weights were computed with

Equation 2.4.

We conclude that the Bayes error rate is achievable when the network has been trained with

at least one million samples. This statement is only applicable to samples generated from the

GMD method.
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# samples # active weights # total weights test error (%)

195 109,200 156,000 µ =77.89, σ =0.0726

1,950 338,450 406,000 µ =38.01, σ =0.0796

19,500 302,400 604,800 µ =7.64, σ =0.0633

195,000 528,320 604,800 µ =1.82, σ =0.6277

1,950,000 528,320 604,800 µ =0.93, σ =0.6593

Table 4.3: Summary of statistics for five subgroups plotted in Figure 4.2. Data used for these

experiments was GMD data of 273-dimensions generated by 12 Gaussian components. Neural

network weights are expressed in two categories: (1) number of active weights during training

(refer to Equation 2.4), and (2) total number of weights defined in a DNN.
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Figure 4.2: Relationship between sample size and generalization error for the best DNNs cho-

sen under 5-fold cross validation. Feature vectors of 273-dimensions generated by 12 Gaussian

components were randomly assigned to one of five groups for subsets of size: 195, 1950, 19500,

195000, 1950000. A logarithmic relationship is identified when plotting the mean error for all

subsets.
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4.5 Evaluation of feature properties for pre-training

Before pre-training a DNN with task A and later fine-tuning the same network with task B, we

evaluate whether task A and task B share similar properties. In this example task A is GMD or

HBS data and task B is TIMIT data. We approach this question by performing the normalization

procedure described under Section 4.2 and determine whether TIMIT test errors are better than

random. If the TIMIT test errors are better than random, then it proves that some underlying

properities can be shared between these two sets. Tables 4.4, 4.5, 4.6 show results for nine

DNNs systems trained with hyperparameter settings that met their Bayes errors. It is shown

that TIMIT test errors are better than random for classifying 39 phonemes. This implies that

pre-training a DNN with GMD or HBS can potentially offer a better set of initial weights for

fine-tuning the network with speech data.

Dataset: 39d 1 Gaussian

Model Hidden layers GMD test error (%) TIMIT test error (%)

500 units

1 Layer 40.6174 59.3503

2 Layers 41.6356 59.5539

3 Layers 41.5338 59.7062

1000 units

1 Layer 40.7907 60.0577

2 Layers 41.9258 60.3136

3 Layers 41.8871 60.1869

2000 units

1 Layer 41.0507 60.2529

2 Layers 42.6376 60.2667

3 Layers 43.1976 60.3845

Table 4.4: Test errors for DNNs trained with GMD of 39-dimensions generated by 1 Gaussian

component. GMD test errors approximate the Bayes error rate at 40%. TIMIT test errors are

higher by 20%, but show to perform better than random.

Dataset: 39d 12 Gaussians

Model Hidden layers GMD Test error (%) TIMIT test error (%)

500 units

1 Layer 34.3612 50.0141

2 Layers 30.7946 49.3624

3 Layers 30.1687 49.5565

1000 units

1 Layer 33.4994 49.6896

2 Layers 30.1071 49.2318

3 Layers 30.0348 49.5349

2000 units

1 Layer 33.0348 49.7474

2 Layers 29.9948 49.4788

3 Layers 31.0464 50.0242

Table 4.5: Test errors for DNNs trained with GMD of 39-dimensions generated by 12 Gaussian

components. GMD test errors approximate the Bayes error rate at 28%. TIMIT test errors are

higher by 20%, but show to perform better than random.
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Dataset: 273d 12 Gaussians

Model Hidden layers GMD test error (%) TIMIT test error (%)

500 units

1 Layer 2.5733 47.8853

2 Layers 2.0641 47.3661

3 Layers 1.7471 47.0167

1000 units

1 Layer 2.4492 47.8966

2 Layers 2.0323 47.4043

3 Layers 1.7164 47.2042

2000 units

1 Layer 2.3015 47.6253

2 Layers 2.0005 47.3783

3 Layers 1.7328 46.9292

Table 4.6: Test errors for DNNs trained with GMD of 273-dimensions generated by 12 Gaussian

components. GMD test errors approximate the Bayes error rate at 1%. TIMIT test errors are

higher by at least 40%, but show to perform better than random.

4.5.1 Exploratory studies on DNNs with HMM-Based synthesis

HMM-based synthesis (HBS) is a technique used to generate an infinite amount of phoneme

waveforms from which one can create sentences. In this thesis, we used HBS to generate a large

sample size of phoneme waveforms to pre-train DNNs with. Similar to WAV files found in the

TIMIT database, HBS phoneme waveforms are converted to feature vectors of 39 dimensions

(Section 2.4). On the other hand, because the variability between phonemes is high for samples

generated from the HBS method, it is not possible to compute the Bayes error rate. Instead we

attempt to train DNNs with HBS using techniques discussed in previous chapters and sections.

Figure 4.3 shows the classification performances for the best networks found under 5-fold

cross-validation for features with 39- and 273-dimensions. The test curves are shown to reach

an error about 3% for both types of feature vectors. The best networks were regularized with

applying 20% dropout to each hidden layer and early-stopping at 150 epochs. Even though the

networks reached a low training and testing error of about 3%, the number of speakers that were

used to train the network was about one-third of the entire HBS data set. In Section 2.3, it was

described that 500 sentences were created for each speaker and processing these waveforms into

feature vectors resulted in a database of over one billion samples. Because of memory space,

DNNs were trained with one billion processed HBS feature vectors.
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Figure 4.3: DNNs trained with HBS feature vectors of 39-dimensions (blue curves) and 273-

dimensions (red curves). Training and testing curves are indicated by the solid and dotted lines,

respectively. The Bayes error rate is unknown for this data set, but the best performance found

was at 3.2% for both types of feature vectors

4.6 Analysis of MFCC vectors

4.6.1 Importance of delta coefficients

In this section, we are interested to identify important coefficients in feature vectors that were

processed from TIMIT in order to improve phoneme classification on the TIMIT test. Recall that

a MFCC feature vector included 13 static MFCC and 26 dynamical delta coefficients. These ex-

periments were performed by comparing test results for DNNs that were trained with and with-

out delta coefficients. We hypothsized that DNNs trained with deltas would result in a lower

classification error, and suggest that deltas are beneficial for improving phoneme classifica-

tion. DNNs used in the control experiment were trained with MFCC vectors that included both

MFCC and delta coefficients. We chose to train with feature vectors of 273-dimensions gener-

ated from the GMD method, because it scored the lowest error on the TIMIT test (Table 4.6).
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Removal of deltas in a 273-dimensional vector was performed by taking apart the 7 sequential

vectors that comprise the vector, each sub-vector was 39-dimensions. For each 39-dimensional

vector, the last 26 elements that make up delta coefficients were removed. The last step was to

re-append the remaining 13-dimensional MFCC vectors together and the final vector turns into

91-dimensional.

However, we find that it is not an accurate comparison between the removal of delta coeffi-

cients resulting in 91-dimensions and the control MFCC-delta 273-dimensional feature vector.

Because the inputs layers of the DNNs are different, this makes the network complexities not

comparable. Instead we included an additional experiment that allows us to make a fair compar-

ison between feature vectors. In this experiment, we investigated whether limiting the number

of feature vectors used to compute delta coefficients would affect the classification error on the

TIMIT test. The motivation behind this approach was to limit the amount of contextual infor-

mation deltas carry to very little, enough to suggest they are insignificant. Under Section 2.4,

specifically Equation 2.5, it shows that for one delta coefficient it is dependent on the total num-

ber of contributing elements provided, which depends on the number of 13-dimensional vectors

that are used in this equation. Here we decided to limit the number of adjacent MFCC vectors

to 7. In Figure 4.4, this particular experiment is referred to as "7-framed MFCC+delta features"

(blue line). The code used for calculating delta coefficients is provided under Appendix A.1.

Figure 4.4 shows that the removal of delta coefficients in MFCC vectors and limiting frame-

to-frame information provided in deltas both have a higher classification error on the TIMIT

test compared to the control case. A large difference gap of about 5% can be observed between

the control case and deltas that were either removed or limited to a small scope of frames.
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Figure 4.4: Comparison between DNNs trained with feature vectors that contain delta coeffi-

cients (red curve) and the removal of deltas (green curve). A third type of feature vector was

generated by computing deltas from a limited number of frames, in this case 7 (blue curve).

Data used for these experiments were feature vectors converted from natural speech waveforms

(TIMIT). The control experiment contains both delta and MFCC coefficients (red curve). It is

shown that delta coefficients are valuable for decreasing the classification error on the TIMIT

test set.

4.6.2 Pre-training DNNs with artificial data

The last section in this chapter aims to answer if pre-training a DNN with feature vectors gen-

erated from GMD and HBS methods would improve the classification error on the TIMIT test.

The intention behind pre-training a DNN is considered an alternative strategy to initializing

weights for speech data. Figure 4.5 shows two types of pre-trainings with GMD feature vectors:

(1) pre-training DNNs with vectors of 273-dimensions (blue curve), and (2) pre-training net-

works with vectors of 91-dimensions (green curve). The control case was a DNN trained with

MFCC feature vectors that contained MFCC and delta coefficients (red curve). We hypothsized

that a DNN pre-trained with GMD vectors with the same dimensionality as the control case

would improve the classification error on the TIMIT test. Instead we found that pre-training

overall did not improve the classification error much. A slight improvement is shown between

hidden layers 3 and 6. Networks deeper than 6 hidden layers show to have higher test errors.
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Figure 4.5: Comparison between DNNs pre-trained with GMD feature vectors (cyan, triangular

and magenta, triangular markers) and DNNs without pre-training. It is shown that pre-training

does not decrease the test error much compared to the control case (red curve).

Another pair of pre-training experiments attempted to relate the difference in error between

a DNN trained with feature vectors that do not include deltas (same experiment described under

Section 4.6.1) and pre-training a DNN with GMD feature vectors of the same dimension. As

expected, Figure 4.5 shows pre-training does not help to improve the classification error for

DNNs trained without deltas.

A third experiment compared the control case to a network pre-trained with feature vec-

tors from the HBS method. Figure 4.6 shows that DNNs pre-trained with HBS feature vectors

(green curve) do not improve the test error against the control DNN (red curve). Only a slight

improvement is observed between hidden layers 3 and 5, but quickly led to poor performance

of the deeper networks starting at 7 hidden layers.
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Control MFCC+deltas features (273d)
Pretrained with artificial GMM MFCC+deltas features (273d)
Pretrained with artificial HMM−based MFCC+deltas features (273d)

Figure 4.6: Comparison between DNNs without pre-training (red curve) and DNNs pre-trained

with GMD (blue, triangular markers) and HBS (green, triangular markers) feature vectors. It

is shown that pre-training decreased on the TIMIT test error between hidden layers of 3 and 6,

and increased the test error after 6 hidden layers.



Chapter 5

Discussion

The application of modern DNNs for phoneme classification have proven advantageous, but a

protocal for training a DNN is often left undocumented. In this thesis, exploratory studies were

performed on DNNs to disambiguate how to train a relatively deep neural network by utiliz-

ing the Bayes error rate as an indicator of achieving optimality. This task was accomplished

by training DNNs with artificial data generated from two methods for which the Bayes error

rate was known: (1) samples drawn from a normal distribution, and (2) samples drawn from a

mixture of Gaussian densities (GMD). The third chapter of this thesis discussed the behavior

of DNNs for a range of hyperparameter settings. In Section 3.2.1, rectified linear units were

shown to be a superior choice compared to sigmoid and tanh activation functions. For exam-

ple, DNNs with rectified units were able to train well with both pre-processed and raw data.

Meanwhile DNNs with sigmoid and tanh units did not decrease its error below 85% for data

that was not normalized (Figure 3.1). In addition, it was shown that performing standardization

with moments from data similar to the test set is beneficial for decreasing the classification er-

ror (Section 4.2). Therefore, normalizing data in a methodical manner is a crucial step toward

decreasing the test error.

During training, dropout was shown as an effective regularizer for reducing overfitting on

networks of large complexities (Figure 3.2). It was found that regularizing a DNN with dropout

can be approached by initially overfitting a network on the training set and then gradually apply

dropout over time to decrease the effect of overfitting, as shown in Figure 3.2. A second useful

approach that was applied for obtaining good weights is early-stopping. However, as expected,

dropout is only useful for cases when overfitting appears during training. Otherwise dropout

can potentially increase the classification error as shown in Figure 3.3.

Learning rates were a third type of hyperparameter that was investigated. As shown in Fig-

ures 3.4 and 3.5, it is challenging to assign only one learning rate for the entire training period.

Particularly, too low of a learning rate shows that the test error slowly approaches the Bayes

error rate and too high of a learning rate will prevent the network from learning on the training

data. Even though cross validation was helpful for determining learning rate values, an adaptive

learning rate would most likely be a suitable choice for training.
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In Chapter IV, we experimented with deeper networks and data of higher complexities.

We showed that DNNs can reach the Bayes error rate for GMD feature vectors with at least one

million samples (Figure 4.1). A logarithmic relationship was identified between the sample sizes

and estimated test errors, but one particular conclusion about the relationship is that the standard

deviation increased as the test error approached the Bayes error rate. One possible explanation

for this behavior could be a consequence of how samples were distributed into subgroups and

test sets. Even though samples were distributed randomly, multiple similar samples could have

been assigned to the same subgroup while few similar examples were representative in the

test sets. In addition, delta coefficients were examined to evaluate their contribution toward

decreasing the classification error on the TIMIT test set. It was found that MFCC feature vectors

that include delta coefficients decrease the classification error by about 5%.

Altogether, we considered pre-training DNNs with GMD feature vectors of 273-dimensions,

because the TIMIT test error was lowest compared to DNNs trained with feature vectors of 39-

dimensions generated by 1 and 12 Gaussian components (Tables 4.4 and 4.5). The notion to

pre-train was an alternative for initializing the weights of a DNN to a good configuration, from

where we can fine-tune with MFCC feature vectors that included MFCC and delta coefficients.

We find that an improvement was only achievable between three and six-hidden layers, even

with close monitoring of DNNs during training. One reason for this result could be due to early-

stopping during the fine-tuning stage. Early-stopping was applied between five and ten epochs

and a few epochs may cause underfitting. Another assumption is that during the pre-training

stage overfitting could have occurred with the GMD feature vectors. Tables 4.4 and 4.5 are

networks that were used for pre-training with GMD feature vectors. The test errors listed under

TIMIT test show an increase in classification error for deeper layers, which could indicate the

overfitting was not controlled properly. This is a similar observation shown in the last 3 layers

of Figures 4.4, 4.5, and 4.6.

In conclusion, we attempted to improve phoneme classification by pre-training DNNs with

artificial "speech-like" data, but were not successful to decrease the test error by more than a

percent. We hope to improve these experiments with advanced methods for monitoring DNN

training and improvements on hyperparameters.

Future directions

Future investigations would include understanding what prevented these deeper networks (of

seven to ten hidden layers) to have a higher test error than the control case for the TIMIT test

set. We would also consider convolutional neural networks (CNN) as an alternative method

of processing speech into feature vectors and recurrent neural networks to improve phoneme

classification.



Appendix A

Supplemental material

A.1 MATLAB code

Algorithm used for calculation of delta coefficients (deltaCal.m)
✞ ☎

1 f u n c t i o n n ew_ m fcd e l t a = d e l t a C a l ( m f c _ o r i g i n a l )

2 [ n_frame , n _ c o e f f ] = s i z e ( m f c _ o r i g i n a l ) ;

3

4 v e l _ f r a m e =(4:−1:−4) / 6 0 ;

5 acc_ f r am e =(1:−1:−1) / 2 ;

6 ww=ones ( 5 , 1 ) ;

7

8 % compute d e l t a s f e a t u r e s

9 cx =[ m f c _ o r i g i n a l (ww, : ) ; m f c _ o r i g i n a l ; m f c _ o r i g i n a l ( n_f rame∗ww, : ) ] ;

10 v e l F e a t =reshape ( f i l t e r ( v e l_ f r am e , 1 , cx ( : ) ) , n _ f r am ef +10 , n _ c o e f f ) ;

11 v e l F e a t ( 1 : 8 , : ) = [ ] ;

12

13 % compute d e l t a−d e l t a s f e a t u r e s

14 a c c F e a t =reshape ( f i l t e r ( acc_f rame , 1 , v e l F e a t ( : ) ) , n_f rame +2 , n _ c o e f f ) ;

15 a c c F e a t ( 1 : 2 , : ) = [ ] ;

16

17 v e l F e a t ( [ 1 n_f rame + 2 ] , : ) = [ ] ;

18

19 % append new f e a t u r e s

20 n ew_ m fcd e l t a = [ m f c _ o r i g i n a l v e l F e a t a c c F e a t ] ;
✝ ✆

This example code was used to compute deltas and only applies to the window of length 5.

37



APPENDIX A. SUPPLEMENTAL MATERIAL 38

A.2 Python code

Algorithm used for calculation of the Bayes error rateut
✞ ☎

1 i m p o r t numpy as np

2 f rom numpy . l i n a l g i m p o r t inv , det

3

4 d e f b a y e s _ e r r o r _ r a t e ( d a t a ) :

5

6 ##### Compute l i k e l i h o o d o f sam p les ######

7 # Compute p o s t e r i o r p r o p o r t i o n a l l i k e l i h o o d p r o b a b i l i t y P ( x | w)

8 # t o a s s i g n sample t o c a t e g o r y

9 l i k e l i h o o d = [ ]

10 f o r i i n r a n g e ( d a t a [ ’ c l a s s e s ’ ] ) :

11 c o e f f = (1 / np . s q r t ( det ( d a t a [ ’ cov ’ ] [ i ] ) ) )

12 x_m = d a t a [ ’ sam p les ’ ] − np . m u l t i p l y ( d a t a [ ’ mean ’ ] [ i ] , np . o n e s _ l i k e (

d a t a [ ’ sam p les ’ ] ) )

13 x_m_cov= x_m ∗ inv ( d a t a [ ’ cov ’ ] [ i ] )

14 exp_x= np . exp ( −0.5 ∗ np . m u l t i p l y ( x_m_cov , x_m ) . sum ( a x i s =1) )

15 p_w_x = c o e f f ∗ exp_x

16

17 l i k e l i h o o d . append ( p_w_x ) # s t o r i n g l i k e l i h o o d s f o r a l l c l a s s e s

18

19 ###### Compare p r o b a b i l i t i e s and a s s i g n l a b e l s #######

20 p red =np . z e r o s ( ( d a t a [ ’ sample s i z e ’ ] , 1 ) )

21 v a l = l i k e l i h o o d [ 0 ]

22 f o r i i n x ran g e ( 1 , d a t a [ ’ c l a s s e s ’ ] ) :

23 L1= v a l # i n i t i a l c o n d i t i o n

24 L2= l i k e l i h o o d [ i ]

25 b o o l l =L1<L2

26 f o r j i n r a n g e ( d a t a [ ’ sample s i z e ’ ] ) :

27 i f b o o l l [ j ]== True :

28 v a l [ j ]= L2 [ j ]

29 p red [ j ]= i

30

31 ##### Compute number o f m i s t a k e s − b ay es erro r

32 b ay es= [ p red == d a t a [ ’ l a b e l s ’ ] . T ]

33 c o r r e c t = np . sum ( b ay es )

34 m i s t a k e s = d a t a [ ’ sample s i z e ’]− c o r r e c t

35 e r r o r _ r a t e = f l o a t ( m i s t a k e s ) / ( d a t a [ ’ sample s i z e ’ ] )

36

37 re turn e r r o r _ r a t e
✝ ✆

This function was used to compute the Bayes error rate in Python 2.7.



Appendix B

DNN hyperparameter settings and

architectures

Selection of hyperparameters for experiments in Chapters III and IV.

Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

green 2 150 none 0.0005 500 Sigmoid 50 0.5

red 2 150 none 0.0005 500 Rectifier 50 0.5

blue 2 150 none 0.0005 500 Tanh 50 0.5

Table B.1: Best selection of hyperparameters for Figure 3.1.A-B

Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

green 2 150 none 0.05 500 Sigmoid 50 0.5

red 2 150 none 0.0005 500 Rectifier 50 0.5

blue 2 150 none 0.005 500 Tanh 50 0.5

Table B.2: Best selection of hyperparameters for Figure 3.1.C-D

Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

cyan 1 500 none 0.005 150 Rectifier 50 0.5

magenta 2 500 none 0.005 150 Rectifier 50 0.5

red 3 500 none 0.005 150 Rectifier 50 0.5

blue 4 500 none 0.005 150 Rectifier 50 0.5

Table B.3: Best selection of hyperparameters for Figure 3.2.A

Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

blue 4 500 none 0.005 150 Rectifier 50 0.5

green 4 500 50 per layer 0.005 150 Rectifier 50 0.5

Table B.4: Best selection of hyperparameters for Figure 3.2.B
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Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

red 4 10 none 0.005 500 Rectifier 50 0.5

blue 4 10 10 per layer 0.005 500 Rectifier 50 0.5

cyan 4 10 40 per layer 0.005 500 Rectifier 50 0.5

green 4 10 80 per layer 0.005 500 Rectifier 50 0.5

Table B.5: Best selection of hyperparameters for Figure 3.3

Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

green 2 10 none 0.05 300 Rectifier 50 0.5

blue 2 10 none 0.005 300 Rectifier 50 0.5

magenta 2 10 none 0.0005 300 Rectifier 50 0.5

Table B.6: Best selection of hyperparameters for Figure 3.4.A-B

Line color Hidden layers Hidden units Dropout (%) Learn rate Epoch switch Epochs Activation func. Batch size Momentum

green 2 10 none 0.05 to 0.005 15 300 Rectifier 50 0.5

blue 2 10 none 0.005 to 0.0005 15 300 Rectifier 50 0.5

magenta 2 10 none 0.0005 to 0.005 150 300 Rectifier 50 0.5

Table B.7: Best selection of hyperparameters for Figure 3.4.C-D

Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

blue 3 500 none 0.8 150 Rectifier 50 0.5

red 3 500 none 0.05 150 Rectifier 50 0.5

green 3 500 none 0.0005 150 Rectifier 50 0.5

purple 3 500 none 0.00005 150 Rectifier 50 0.5

Table B.8: Best selection of hyperparameters for Figure 3.5

Dropout (%) Learn rate Epoch switch Epochs Activation func. Batch size Momentum

10 per layer 0.1 to 0.001 9 150 Rectifier 50 0.5

Table B.9: Best selection of hyperparameters used for all nine experiments on Tables 4.1, 4.4-6.

Networks shown on Figures 4.4-6 also used the same system.

Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

blue 3 500 20 0.005 25 Rectifier 50 0.5

green 2 500 10 0.008 100 Rectifier 50 0.5

red 3 400 10 0.01 300 Rectifier 50 0.5

Table B.10: Best selection of hyperparameters for Figure 4.1

# samples Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

195 1 500 0.2 0.0005 150 Rectifier 50 0.3

1950 2 500 0.2 0.01 120 Rectifier 50 0.1

19500 4 400 0.1 0.01 120 Rectifier 50 0.1

195000 4 400 0.1 0.01 50 Rectifier 50 0.1

1950000 4 400 0.2 0.01 50 Rectifier 50 0.1

Table B.11: Best selection of hyperparameters for Figure 4.2
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Line color Hidden layers Hidden units Dropout (%) Learn rate Epochs Activation func. Batch size Momentum

blue 3 500 0.2 0.005 150 Rectifier 50 0.2

red 4 400 0.1 0.01 150 Rectifier 50 0.5

Table B.12: Best selection of hyperparameters for Figure 4.5
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Introduction

Speech is basically a sequence of elements, the so-called speech phones. The characteristics
of the phones depend heavily on the speaker, i.e. on his or her physiology, dialect, speaking
habits, mood, health, etc. Furthermore, phones are influenced by their neighboring phones
and they depend on the syllable stress level and on the position within a word and a
sentence. Last but not least, speech signals are affected by deficiencies of the transmission
from the speaker to listener or the microphone.

Speech recognition, no matter if done by machines or humans, basically assigns these
highly variable phones to a fixed set of classes, the phonemes. However, the variability of
the phones is much too high to allow accurate phoneme classification, also for humans.
Hence, the result of phoneme recognition is highly ambiguous, i.e., it is neither clear how
many nor which phonemes are contained in a given speech signal.

Humans resolve this ambiguity very efficiently by applying lexical and syntactic knowledge
and with contextual information they can decide what makes sense. Speech recognizers
need also additional knowledge to compensate for the deficiencies of phoneme classi-
fication. Lexical knowledge (pronunciation lexicon) and syntactic information (mostly
probabilistic grammars or so-called n-grams) are standard components of todays speech
recognizers, but deciding what makes sense is generally infeasible.



The aim of this master thesis is not to improve this disambiguation, however, but to
investigate a rather new approach to better cope with the variability of phones and thus
improve phoneme classification.

The classical approach to statistically describe temporal and spectral variability of
phonemes are hidden Markov models (HMMs). An HMM consists of a first order Markov
model and a state-specific Gaussian mixture model (GMM). The GMMs are used to ap-
proximate the statistical distribution of features that are extracted from the speech signal.
Features for speech recognition are chosen in a way that variability is reduced. The most
common features are mel frequency cepstral coefficients (MFCCs). MFCCs are largely
independent of the level, phase and periodicity of the speech signal.

GMMs provide a statistical description of speech units in a maximum likelihood sense,
which is not optimal to discriminate between similar phonemes. To improve the dis-
crimination capability artificial neural networks (ANNs) can be used. There are several
possibilities to combine ANN and HMM to a so-called hybrid architecture:

a) The ANN is trained to estimate the phoneme posteriors of feature vectors, e.g.
MFCCs. In the speech recognizer these posteriors are then used instead of the like-
lihoods from the GMMs.

b) The ANN can be trained as a feature transformer, e.g. to reduce the dimension
of the feature vector which is typically 40 or higher. The transformed features are
then used in a HMM/GMM architecture, whereby the complexity of the GMMs is
reduced with the dimension of the transformed features.
Note that the phoneme posteriors of item a) can also be seen as kind of transformed
features and thus are applicable in an HMM/GMM architecture as well.

c) The ANN can be trained to calculate features from the raw speech signal. These
features can again be used in an HMM/GMM architecture.

So far it has not been said, what kind of ANN can be used in which hybrid architecture.
Commonly, for architectures a) and b) multi-layer perceptrons (MLPs) have been used.
An MLP is a feed-forward ANN with one or two hidden layers. Recently, MLPs in theses
architectures have been replaced by deep neural networks (DNNs) that are also feed-
forward ANNs but with considerably more hidden layers.

For feature extraction as mentioned in architecture c), convolutional neural networks
(CNNs) are used.

ANNs for phoneme classification

ANNs are known to be able to learn complex transformations and classification tasks
from high-dimensional inputs. Good results are only attainable, however, if at least the
following conditions are met:

• the ANN has the appropriate architecture,

• there is suitable and enough training data available,

• we have a training method that finds a close to optimal set of ANN weights.
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One important problem in training ANNs is overfitting. This is particularly the case
in ANNs with a high number of weights, such as DNNs. Known methods to prevent
overfitting are generative pretraining or dropout (see [1] and [2], resp.).

Task description

In the framework of this master thesis it has to be investigated, how the training of
DNNs has to be organized to achieve optimal performance, i.e., approximately Bayes
classification rate. For such investigations it is recommended to work first with synthetic
data. It is suggested to start from simple cases and then to increase the complexity towards
speech-like data. Of particular interest is to see how DNNs compare with MLPs from a
standard backpropagation training.

In the second part of the thesis the gained knowledge has be used to train a DNN with
real speech data and apply it in a hybrid DNN/HMM speech recognizer (architecture a)
or b), depending on the configuration of the CNN and the type of training performed).
Furthermore, the DNN/HMM approach has to be compared with other models such as
MLP/HMM and the standard HMM/GMM.

Recommended procedure

This master project includes several works that are not independent and thus have to be
organized reasonably. It is recommended to proceed as follows:

A. Getting acquainted with fundamentals (as far as necessary)

Read some fundamentals about the extraction of MFCC features (either [3] or some
other suitable text). Study the training of ANNs in general (e.g. [4]) and of DNNs
in particular ([1], [5]).

B. Selection of a toolkit for DNN training and testing

– Collect information about available ANN toolkits that allow a layer-wise un-
superwised pretraining of DNNs (see [6] and [7]).

– Perform some experiments with standard classification tasks. Check also the
possibility of the toolkits for distributed computing.

– Collect pros and cons for all toolkits.

– Discuss this collection with your supervisors and decide which toolkit to used
for the main part of this thesis.

C. Investigation of DNNs with synthetic data

– Define a set of classification tasks (from simple to ASR-like) and discuss it with
your supervisors.

– Generate synthetic data for each one of these classification tasks.
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– Train, test and evaluate different DNN configurations and training methods.
These experiments should provide answers to the questions of overfitting and
of the required size of the training data set (mainly for complex data that are
similar to speech features).

– Compare the performance of the investigated DNNs with standard MLPs.

– Document your achievements and conclusions.

D. Application of DNNs in speech recognition (ASR)

– Study some references about speech recognition with DNNs (e.g. [1]).

– Based on the results of part C, define a phoneme recognizer architecture (cf.
introduction above).

– Setup an ASR test environment: toolkit and database (it is recommeded to use
the TIMIT speech corpus [8]).

– Perform phoneme recognition experiments with suitable DNNs and MLPs and
evaluate the results.

The work done and the attained results have to be documented in a report (see recommen-
dations [9]) that has to be handed in as PDF document. Furthermore, two presentations
have to be given: the first one will take place about two weeks after the start of the work
and is meant to give a short overview of the task and the initial planning. The second one
at the end of the project is expected to present the task, the work done and the achieved
results in a sufficiently detailed way. The dates of the presentations will be announced
later.

References

[1] G. Hinton, L. Deng, and D. Yu, et al. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal Processing

Magazine, 29(6):82–97, 2012.

[2] N. Srivastava and G. Hinton, et al. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[3] B. Pfister und T. Kaufmann. Sprachverarbeitung: Grundlagen und Methoden der

Sprachsynthese und Spracherkennung. Springer Verlag (ISBN: 978-3-540-75909-6),
2008.

[4] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

[5] G. Dahl, T. Sainath, and G. Hinton. Improving deep neural networks for LVCSR
using rectified linear units and dropout. In ICASSP, pages 8609–8613, 2013.

[6] G. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural

Computation, 18(7):1527–1554, 2006.

4



[7] G. Hinton. A Practical Guide to Training Restricted Boltzmann Machines. Technical
report, Department of Computer Science, University of Toronto, 2010.

[8] J. Garofolo, et al. TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1.
Linguistic Data Consortium, Philadelphia, 1993. (web download).

[9] B. Pfister. Richtlinien für das Verfassen des Berichtes zu einer Semester- oder

Master-Arbeit. Institut TIK, ETH Zürich, Februar 2013.
(http://www.tik.ee.ethz.ch/spr/sada/richtlinien_bericht.pdf).

[10] B. Pfister. Hinweise für die Präsentation der Semester- oder Master-Arbeit. Institut
TIK, ETH Zürich, Februar 2013.
(http://www.tik.ee.ethz.ch/spr/sada/hinweise_praesentation.pdf).

February 5, 2015

5




