
Smart Prices for the Smart Grid

Master Thesis

Ivo de Concini

September 2015

Advisor: Prof. Dr. Lothar Thiele

Department of Electrical Engineering and Information Technology, ETH Zürich

Abstract

The ongoing transition from the traditional electrical grid to the digi-
tally interconnected smart grid and the increasing deregulation of elec-
tricity markets, allow to envision new types of distributed local energy
markets. In order to develop such markets, it is important that energy
producers and consumers can access a local energy price.

In this project, we define an agent-based real-time local energy pricing-
model for the electrical grid, based on supply and demand. We de-
scribe how such a model can be computed, by solving a minimum-cost
flow problem. We derive theoretical bounds and perform simulations,
that show the low-sensitivity of our solution approach. We develop
realistic trading-strategies for the network-agents and use them, to per-
form experiments that validate its dynamic stability.

Finally, we present the implementation of a working prototype, analyze
its performance, to locate possible bottlenecks, and propose solutions,
to remove them.

i

Contents

Contents iii

1 Introduction 1
1.1 Prior Work . 2
1.2 Contributions . 3

2 Problem Formulation 5
2.1 Model of the Electrical Grid . 5

2.1.1 Sub-Grids and Transportation Costs 5
2.1.2 Energy Suppliers . 7
2.1.3 Demands . 8

2.2 Meaningful Energy Price . 8
2.2.1 Requirements . 9
2.2.2 Solution Space . 9

2.3 Experimental Exploration of the Solution Space 11
2.3.1 Direct Future Deliveries Market Based on Supplier Offers 11
2.3.2 Direct Present Deliveries Market Based on Supplier Of-

fers . 12
2.3.3 Indirect Present Deliveries Market Based on Supplier

Offers . 12
2.4 Supply and Demand Price . 13

3 Solution 15
3.1 Graph Model of the Electrical Grid 15
3.2 Input and Output . 18
3.3 Minimal Cost Flow . 19
3.4 Price Propagation and Computation at each Node 20

3.4.1 Price at Supply Nodes 20
3.4.2 Price at Sub-Grid and Demand Nodes 20

3.5 Uniqueness of the Solution . 21

iii

Contents

3.5.1 Add Quadratic Perturbation 23
3.5.2 Randomize the Edge-Costs 24

3.6 Model Adjustments . 24

4 Functional Validation 27
4.1 Experimental Setup . 27

4.1.1 Network Topology . 27
4.1.2 Costs . 29

4.2 Global Influence of a Single Supplier 29
4.2.1 Number of Grid Nodes Influenced by Price Reduction δ0 31
4.2.2 Influence of a Price Reduction δ0 on the Global Aver-

age Price . 33
4.3 Pricing Strategies . 36

4.3.1 Influence of Price Change δ0 on Power Sold by si . . . 37
4.3.2 Influence of a Price Change δ0 on the Profit of si 38

4.4 Dynamic Simulation . 40

5 Implementation 43
5.1 Architecture . 43
5.2 Price-Engine . 45

5.2.1 Price-Solver . 46
5.2.2 Run Function . 49

5.3 Database . 50
5.4 Request-Controller . 52
5.5 Database-Writer . 53

6 Performance 55
6.1 Price-Engine . 55

6.1.1 Updating the Network Topology 55
6.1.2 Computing the Minimum Cost Flow 56
6.1.3 Price Propagation . 57
6.1.4 Overall Performance and Bottleneck 57

7 Conclusion 61

A Functions 63
A.1 Price Propagation . 63

Bibliography 65

iv

Chapter 1

Introduction

An electrical grid (short: grid) is an interconnected network with the goal
to deliver electric power from generating stations, suppliers, to demand cen-
ters via transmission lines, that operate at different voltage levels via sub-
stations, that transform the power between the different voltage levels [1].

The movement towards renewable and sustainable energy production of the
last decades however, has brought significant changes to the structure of the
grid: While the energy production used to be mostly carried out by large
scale power-plants, today it is increasingly common also for smaller actors,
like house-holds with small photo-voltaic generation facilities, to provide
electricity to other members of the grid.

This shift was enabled mainly by two developments: The first one was a sig-
nificant modernization of the infrastructure of electrical grids (smart grids),
adding among others a digital-communication layer between customers and
suppliers. The second one was the liberalization of the energy market in
many countries, in the form of legislative efforts1, specifically targeted to
increase the use of renewable energy sources.

Traditionally, electrical energy is traded on two different types of markets:

• Wholesale markets, where generators and retailers trade over short-
term electricity delivery and for future delivery periods, and

• Retail markets, where end-customers can choose between different re-
tailers to buy electricity.

However, the electricity output from sustainable energy sources, like solar-
power or wind, is highly dependent on natural circumstances, and therefore
in its nature very volatile and hard to predict with high accuracy. Addition-
ally, at the current technological state, it is generally difficult and expensive

1e.g. the German Renewable Energy Act (German: Erneuerebare-Energien-Gesetz, EEG)

1

1. Introduction

to store electrical-energy. This fact makes it hard for small electricity genera-
tors to trade over future deliveries on wholesale markets, while their limited
energy output might not be worth the effort of short-term trading with large
retailers. As a consequence, as of today, small generators usually sell their
energy to a retailer at predefined rates (feed-in tariffs), which then take care
of re-distributing it to the end-customer.

The modern smart-grid infrastructure and the general liberalization of the
energy markets, allow us to envision new types of markets, where small
generators can directly trade with consumers, without the need of a retailer
between them. For the development of such markets, it is of major impor-
tance that users of energy as well as suppliers have direct access to an instant
meaningful local energy price, which is determined by the energy-demand,
the availability and price of the energy-supply, as well as the costs to use the
transmission-infrastructure.

1.1 Prior Work

Since the beginning of the deregulation of the traditionally government-
controlled electricity markets in the early 1990s, in favor of more competitive
markets, there has been an increased interest by the research community to
better study the electricity pricing-mechanisms. These efforts can be roughly
subdivided into two main areas, that have been interesting for this project:
The first one is focused on the modeling of existing markets, mainly with
the goal of accurate electricity price forecasting (EPF) [2], while the second
one is focused towards developing real-time pricing schemes, as drivers for
a more efficient resource-usage (Smart Management System) [3] and better
load-balancing (Demand Side Management (DSM)) [4]).

A comprehensive overview of the different typologies of electricity markets,
as well as the basics of price formation in post-regulation electricity mar-
kets is given in [5, p. 1-20]. A classification of the different modeling ap-
proaches for analyzing and predicting electricity prices is provided in [6],
where among stochastic, statistical, and artificial-intelligence models, the
author also introduces multi-agent models, which simulate the operation of
generation- and demand units to obtain prices based on supply and demand.
Such models are the basis for many real-time pricing based DSM-systems,
as well as for the work presented in this thesis.

A real-time pricing algorithm for the smart-grid, between several demand-
centers and one energy supplier, has been presented in [7]: Based on the con-
sumption patterns of demand-centers, the authors formulate utility-functions
for each demand and use them to formulate a real-time pricing algorithm,
that computes the prices by distributedly solving a convex optimization

2

1.2. Contributions

problem, which maximizes the utility of the demands and minimizes the
costs for the supplier.

A different dynamic pricing model, based on a game-theoretical approach,
has been proposed in [8], which this time assumes multiple suppliers and
two types of demands: Traditional electricity users, who pay a fixed price
and opportunistic users, who can change their demand, as well as the sup-
plier, based on the electricity price. In this theoretical model, which does
not take into consideration transmission costs, electricity suppliers can offer
different prices in different regions of the grid, and try to maximize their
profits.

The pricing model proposed in this thesis relies on solving a minimum cost
flow problem for the electrical grid. An agent-based approach to solve this
problem by applying a distributed cost-scaling push-relabel algorithm has
been proposed in [9]. Another distributed, market based approach, based
on mixed integer programming, has been proposed in [10]. The goal of both
of this solutions, is to minimize the production costs of electricity (fuel cost):
Therefore, they do not include the transmission costs, which one needs to
consider to compute a real-time energy price.

1.2 Contributions

In this project we will define a meaningful energy real-time price model
for the electrical grid, which we will then formalize in an algorithm, which,
based on the principles of supply and demand, determines the current mar-
ket price of energy at every location of the electrical grid.

Using a mixture of experimental investigations, based on simulations and
some theoretical insights, we will evaluate and refine our approach making
sure, that it yields consistent and stable results.

We will then use our algorithm to implement a working prototype-system
that can be applied to existing, large-scale networks and provides real-time
price information. Finally, we will analyze the performance of our prototype
and suggest further improvements.

3

Chapter 2

Problem Formulation

In this chapter, we will define the aim of this project and introduce the
assumptions and terms we will use throughout: First we will propose an
abstract model of the electrical grid. Then we will define the requirements
for a meaningful energy price and use them to evaluate the different options,
to implement such a price calculation in our model of the electrical grid. In
the end we will settle on the most promising pricing-scheme and define it
on a functional level.

2.1 Model of the Electrical Grid

Before we can address the question, how a real-time energy-price for the
electrical grid could look like, we need to clearly define the different actors
and components of the grid, that can influence the price and the way they
can interact with each other.

As already mentioned in the introduction, an electrical grid is an intercon-
nected network with the goal to deliver electric power from electricity gener-
ators to demand-centers via transmission lines and sub-stations. In this sec-
tion we will introduce abstractions for the generators, the demand-centers
and the grid infrastructure, which will provide us with the basis for our
further considerations.

2.1.1 Sub-Grids and Transportation Costs

The transmission infrastructure of the electrical grid is composed of trans-
mission lines, that transport electrical power at different voltage-levels, and
sub-stations, that transform the power between those levels. This infrastruc-
ture is operated by an entity, which we call the grid-operator. There can be
several grid-operators in an electrical grid.

5

2. Problem Formulation

Generators and demand-centers are connected to a sub-station and are both
considered as customers from the perspective of a grid-operator: Generators,
pay a grid-usage cost cu to feed power to the grid, while consumers pay a grid-
usage cost to draw power from the grid. The grid-usage cost is proportional
to the amount of power which flows from or towards a customer and can
vary from customer to customer.

The sub-stations are interconnected via transmission lines that can operate
at a different voltage: In order to be exchanged at a different voltage level,
the power needs to be transformed by the substation, which causes a certain
transformation-cost (ct), which is proportional to the amount of power that
is transformed.

In our model, we will substitute these sub-stations with more abstract sub-
grids, which are not necessarily physical sub-stations, but could for example
also represent an electricity retailer. At each time t a sub-grid is character-
ized by:

1. A unique id i, which is used to identify the sub-grid.

2. A well defined set of neighbors j ∈ N(i), that can feed into or draw
power from sub-grid i. Possible neighbors are other sub-grids, suppli-
ers and exchanges (Section 2.1.2), as well as demands (Section 2.1.3).

3. A well defined transportation cost ci,j for each neighbor j ∈ N. that
represent the grid-usage costs as well as the transformation costs for
transporting electrical energy from i to a neighbor j.

4. A price pi(t), i.e. the price we will compute for sub-grid i.

In order to better illustrate how the transportation costs come about in an
electrical grid, we will now provide two examples. Figure 2.1 shows a
schematic depiction of an electrical grid, containing two sub-grids, oper-
ating at a lower voltage (g6,g7), that are connected through a third sub-grid
(g8), which operates at a higher voltage. The grid contains two supplying
customers (s1, s2) and three demanding customers (d3,d4,d5), that are respec-
tively connected to one of the two lower-voltage grids.

Example 1. We now want to compute the transportation costs of 1kWh
from s1 to d3, which are both members of the same sub-grid: The usage cost
for feeding 1kWh into the sub-grid g6 amounts to 1 ∗ cu1,6, while the usage-
cost for consuming 1kWh from g6 amounts to 1 ∗ cu3,6. The total resulting
transportation cost per kWh from s1 to d3 is therefore:

cs1 d3 = cu1,6 + cu3,6.

More interestingly, if we want to compute the transportation costs between
two grid-customers that are members of two different sub-grids, we also

6

2.1. Model of the Electrical Grid

g8 e9

g6 g7

s1 s2 d3 d4 d5

cu9,8

ct6,8 + cu6,8 cu8,6 + ct8,6 ct7,8 + cu7,8

cu8,7 + ct8,7

cu1,6 cu2,6 cu3,6 cu4,6 cu5,6

Figure 2.1: Schematic depiction of a grid composed of three sub-grids (with
ids: gx) operating at different voltage-levels, two suppliers (sx), three de-
mands (dx) and one exchange node (e9). The transportation costs are com-
posed by transformation costs (cti,j) and grid-usage costs (cui,j).

need to take into consideration the transformation costs between those grids,
as well as the usage costs for additional grids, that are involved in the trans-
portation process.

Example 2. I if we want to transport 1kWh from s1 to d4, we need to ship
it through g6, we then to transform the power to a higher voltage, ship it
through g8, re-transform it to a lower voltage and finally ship it through g7.
The total transportation cost therefore amounts to:

cs1 d4 = cu1,6 + ct6,8 + cu6,8 + ct8,7 + cu7,4.

2.1.2 Energy Suppliers

An energy supplier (short: supplier) is a member of the electrical grid, which
at a certain time, can feed a well-defined amount of power to into the elec-
trical grid and for which at the same time, it makes a price-offer.

The term supplier is a deliberately general term, which can include gener-
ating stations of different sizes, from nuclear-plants to small private genera-
tion facilities, as well as abstract entities like e.g. energy brokers, who sell
power generated by others.

At each time, a supplier has the following properties:

7

2. Problem Formulation

1. A unique id i, which is used to identify the supplier.

2. The amount of power si(t), it is currently feeding into the grid.

3. A price pi(t), which a supplier expects for each unit of power.

4. Exactly one sub-grid j, associated with a transportation cost ci,j from
supplier i to sub-grid j.

5. Access to the price pj(t) of sub-grid j.

Energy Exchange

The energy exchange is a special supplier, which can supply an unlimited
amount of power at each time. We will later use it to balance our model and
it can be seen as the equivalent of a retail market, which guarantees to meet
all energy requests.

2.1.3 Demands

A demand center (short: demand) is a member of the electrical grid which
draws power from a sub-grid for a price consisting of the sum of the elec-
tricity price at that particular sub-grid and the grid-usage cost that applies
when transporting .

In our model, a demand is an abstract term for all energy consumers, which
can be anything, from small private households to large factories.

At each time t consumer i is characterized by the following properties:

1. A unique id i, which is used to identify the demand.

2. The amount of power di(t) it is currently drawing from the grid.

3. A price pi(t), which it pays for each unit of received power.

4. Exactly one sub-grid j, associated with a transportation cost cj,i from
sub-grid j to demand i.

2.2 Meaningful Energy Price

As we have already seen in the introduction, there are countless ways in
which electrical energy may be traded: Over short-term or long-term deliv-
eries, between suppliers and retailers, between retailers and demands, be-
tween suppliers and demands, etc.

Each of this options significantly influences the way the energy price comes
about. Therefore, we will first define some requirements, which we pose to
a meaningful energy price, which we will then use to weigh out the different
models we considered, when defining a pricing-scheme.

8

2.2. Meaningful Energy Price

2.2.1 Requirements

In this section, we will describe and motivate the main requirements we
pose to a meaningful energy price.

Immediacy. The nature of the electricity market is special, since electric en-
ergy is difficult to store but still needs to be available on demand. This is
especially challenging for suppliers that rely on renewable energy sources,
like the sun or wind, which are often very volatile and hard to predict. How-
ever, in order to be meaningful, the energy price should not rely onto unsure
assumptions. Therefore we require, that it is immediate or in other words,
that at each time t, it shall represent the state of the system as closely as
possible.

Fairness. In order to be meaningful, the energy price should be based on
a fair principle, which takes into account the interests of suppliers and de-
mands. In other words, while each supplier must be free to propose its
own offer to the market, each demand must also be free to choose the best
possible offer.

The requirement of fairness also implies, that suppliers and demands should
have access to the same price conditions.

Feasibility. A meaningful price must always be computed on the grounds
of a feasible state of the system. This means that the power demands of all
consumers must be fulfilled, while the available power supply of suppliers
must not be exceeded. Furthermore, we also require that the system is:

• energy neutral, meaning that it does contain any other power sources,
than suppliers and any other power sinks, than demands, and

• price neutral, meaning that the price must only be dependent of sup-
plier prices and transmission costs.

Transparency. The price computation should always be transparent for
suppliers and demands: This means on one hand, that the price should
be deterministic, i.e. strictly dependent of suppliers and demands, and on
the other hand, that it should show a low sensitivity towards single compo-
nents of the system. In other words, small changes in the input state of the
system, should only yield small changes in the outcome.

2.2.2 Solution Space

There are many possibilities, on which grounds an energy price can be com-
puted: We could for example envision auction based models, where suppli-
ers compete in order to supply the lowest selling price, or where demands

9

2. Problem Formulation

compete to offer the highest buying price, models, where suppliers and de-
mands interact and close contracts individually, or even models, where the
price is computed using inputs which are external from the grid.

In order to be able to come up with a pricing-scheme that fulfills the require-
ments posed in the previous section, we will first define a useful solution
space, which will allow later allow us to formulate different solutions to our
problem. Our solution space has the following dimensions:

Interaction. This dimension comprises the different possibilities of how
components of the system interact with each other. We distinguish two
different possibilities:

1. Direct. Suppliers and demands directly interact with each other. If e.g.
a demand wants to buy energy from a determined supplier, it needs
to contact that supplier and they can agree on a price.

2. Indirect. Suppliers and demands only interact with some abstract sys-
tem, which can be central or distributed, which, based on the informa-
tion gathered from them, takes care of computing the energy price at
each location of the grid.

Offers. This dimension contains the possible solutions to the question, who
can make a price-offer, which can directly influence the price. We consider
the following possibilities:

1. Only Suppliers. Suppliers can make a price offer, demands can accept
it or refuse it.

2. Only Demands. Demands make price offer, suppliers can decide whether
to supply for that price or not.

3. Both. Suppliers and demands make a price offer, the price is computed
considering both.

Trade Object. The price of electrical energy is influenced by the form in
which it is traded:

1. Past Deliveries. The price is influenced by how much energy has been
delivered in the past.

2. Present Deliveries. The price at time t is only influenced by currently
ongoing power deliveries.

3. Future Deliveries. Suppliers and demands can trade over long-term
energy deliveries, which are taken into account when computing the
price.

10

2.3. Experimental Exploration of the Solution Space

Immediacy

Low Sensitivity

Feasibility

Determinism

Fairness

Direct - Only Suppliers- Future

Direct - Only Suppliers- Present

Indirect - Only Suppliers- Present

Figure 2.2: Evaluation of the proposed solution based on the defined require-
ments.

2.3 Experimental Exploration of the Solution Space

Before defining a detailed solution model, we will now briefly consider a few
possible solution-approaches and evaluate them using our requirements.

2.3.1 Direct Future Deliveries Market Based on Supplier Offers

For this solution approach, we propose the following system: Suppliers can
make a price offer for a certain amount of energy, which they guarantee
they can supply over a certain amount of time. Consumers can see each
price offer, along with the transmission costs that they would have to pay, to
transport the energy from the supplier making that offer to their location.

If a consumer decides to accept an offer from a certain supplier, they close
a contract, in which the they agree on the amount of energy the supplier
commits to provide in a certain time-period. The price at the location of the
demand can be computed as the sum of the price offered by the supplier
and the transportation costs from the supplier to the demand.

Analysis. This solution approach is loosely modeled after the future-delivery
markets, that we can typically find in wholesale-markets. It guarantees fair
conditions to consumers and suppliers, who both have to voluntarily close
a contract.

11

2. Problem Formulation

However, since the trade object of such a contract is based on future en-
ergy deliveries, which, especially for suppliers that rely on renewable en-
ergy sources, are often very hard to predict, it shows a very low immediacy.
This implies, that under certain conditions suppliers might not be able to
maintain their part of the contract, which means that the feasibility of the
system is not guaranteed.

2.3.2 Direct Present Deliveries Market Based on Supplier Offers

We can try to improve the immediacy of the previous solution approach by
making the price dependent on present, instead of future energy deliveries.
In other words, suppliers can now only make price offers that are valid for
infinitely small time intervals ∆t → 0. Consumers are free to individually
accept each offer, to cover their demand.

Analysis. This approach yields a higher immediacy than the previous one,
since the probability that a supplier can not deliver the energy promised in
the contract due to external reasons decreases with ∆t → 0.

However, since suppliers and customers now need to close an increased
number of contracts in short time-intervals. Even if no supplier and no
customer in the system changes its input state, there is no guarantee that the
same contracts will be closed in subsequent intervals. As a consequence, the
price for a certain customer is prone to frequent and unpredictable changes.
This violates our requirement of transparency, were we postulated that the
price must be deterministic and have a low sensitivity.

2.3.3 Indirect Present Deliveries Market Based on Supplier Offers

We try to increase the determinism and lower sensitivity of the previous ap-
proach by substituting direct interaction between suppliers and customers
in the previous approach, with an indirect interaction through a central sys-
tem: Suppliers and demands continuously update the system with their
own state, which in return computes the energy prices at each location of
the grid.

Analysis. As opposed to the previous solution approach, where the prices
at single locations of the grid where prone to unpredictable fluctuations for
constant input states, computing all prices centrally allows us to ensure the
determinism of the price. Since the system collects the whole state of the
network, it is also easier to make sure that it produces feasible solutions and
guarantees a fair price.

12

2.4. Supply and Demand Price

2.4 Supply and Demand Price

In the previous section, we evaluated different possibilities of defining a
meaningful energy price for the electrical grid.

In this section we will use the insights we gained, to define a real-time sup-
ply and demand price, assuming a competitive market. First we will give
an informal description of how such a price can be defined in an ideal elec-
tricity market, where a demand can choose exactly from which supplier to
buy energy. After having described the behavior of our price under this as-
sumption, we will show how such a price can be computed for an electrical
grid, where electrical energy can not be labeled and demands can not choose
whose energy to consume.

Price in an Ideal Market. A free market is a market in which the prices are
based on the competition between private vendors and controlled supply
and demand. If we model our pricing scheme according to this principle,
we can assume that, given the choice between different suppliers, a demand
will always choose to buy power from the most competitive supplier, which
is the supplier who, including transportation costs, can cover the power-
demand at the lowest price. As a consequence, the price for that demand is
given by the sum of the price offered by the most competitive supplier and
the transportation costs from said supplier to the demand.

If the most competitive supplier can supply more power than its needed by
the demand, it can always sell the remaining power to other demands, given
that its offer is more competitive for them than others.

If however the most competitive supplier does not have enough resources to
cover the whole power-need of a demand, the latter will buy as much power
as possible from that supplier, and cover the rest of its power-demand using
power from the second most competitive supplier, and so forth, until its
whole power-demand is covered. In this case, the unit-price payed by that
demand is composed by the average price of all those suppliers, weighted
by the amount of power each supplier is selling to the demand.

One can see how a demand will has to resort to less and less competitive
suppliers, to cover an increasing power-demand, which results in a higher
price. On the other side, with decreasing power demand, suppliers have
to make more and more competitive offers to sell their energy, resulting
in a lower price. This is essentially the behavior which in microeconomics
is described by the principle of supply and demand and which we will now
apply to our model of the electrical grid, to obtain our energy-price.

Definition (Price at Demand). Given that a demand i buys a total power
amount of di from a set of suppliers j ∈ Si, the price at demand i can be

13

2. Problem Formulation

computed as:

pi =
∑∀j∈Si

sj,i ∗ (pj + cj,i)

di
, (2.1)

where sj,i is the amount of power that supplier j is selling to demand i, pj
is the price offered by supplier j and cj,i is the sum of all transmission costs
between supplier j and demand i.

Application to the Real Grid. As we have already mentioned in the be-
ginning of this section, in a real electrical grid demands can typically not
decide from which suppliers they physically buy power. This is due to the
fact, that various suppliers and demands share the same transmission lines,
and once fed into a transmission line, power is distributed according to the
laws of physics and can not be tracked.

Therefore, we need to compute a virtual distribution of the power flows in
our grid, which reflects the behavior assumed for an ideal market and is in-
dependent from the physical power flows in the grid. This can be achieved
using the data-layer of the smart-grid infrastructure, which provides us with
information about the topology of the grid and the current state of its mem-
bers.

Power Distribution. Since in our solution space exploration in Section 2.3
we concluded, that rather than using direct system, where suppliers and
demands directly interact with each other, we want to compute our prices
using an indirect system, we need to define an objective for which to com-
pute our distribution of power flows.

Based on the assumptions that we made about an ideal free market, where
we claimed that each demand will always choose the most competitive offers,
we compute our power-flow distribution using a global objective, which
minimizes the sum of the prices of every demand in the system. In other
words, using the definition for the price at a demand with id i, which we
introduced in Equation 2.1, we need to find a power flow that satisfies:

min ∑
∀i∈D

pi, (2.2)

where D is a set containing all demands in the electrical grid.

How we can find such a distribution, is not clear yet. In the next chapter
however, we will formalize our model of the electrical grid in a way, that
will allows us to find such a power flow. We will then use it, to compute our
energy prices, at each grid location.

14

Chapter 3

Solution

In this chapter, we will propose a scheme to compute the momentary supply
and demand price, we introduced in Section 2.4. We will do this by first
introducing an mathematical graph-model of the electrical grid and then by
defining an algorithm which works in three stages:

1. Solving a minimal cost flow problem,

2. Performing a topological sort,

3. Computing the price at each node.

3.1 Graph Model of the Electrical Grid

After having introduced an informal model of the electrical grid in Section
2.1, consisting of suppliers, demands, sub-grids and transmission lines asso-
ciated with a transmission cost, we will now formalize this model in a way,
that is suitable for computing the momentary supply and demand price.

In systematic studies of the electrical grid, it is common to represent the
grid as mathematical graph [11] [12] [13]. In particular, we will represent
the electrical grid as a weighted directed graph, which we characterize using
the following general definitions:

Definition (Weighted Directed Graph) A weighted directed graph G is a
triplet of sets G(N, E, C), where V is the set of nodes, E is the set of edges
and C is the set of costs.

An edge ei,j is an ordered pair of nodes (i, j), where i, j ∈ N. If (i, j) ∈ E,
then i and j are said to be neighboring or adjacent and i is called the source-
endpoint of the edge, while j is called the target-endpoint.

15

3. Solution

g7 e8

g5 g6

s1 d2 s3 d4

c8,7 = cu8,7 + p8

c5,7 = ct5,7 + cu5,7

c7,5 = ct7,5 + cu7,5

c6,7 = ct6,7 + cu6,7

c7,6 = ct7,6 + cu7,6

c1,5 = cu1,5 + p1 c2,5 = cu2,5 c6,3 = cu6,3 + p3 c4,6 = cu4,6

Figure 3.1: Schematic depiction of a grid composed of three sub-grids (gx)
operating at different voltage-levels. The costs are composed by transforma-
tion costs (cti,j), grid-usage costs (cui,j) and supply prices pi.

For a node i ∈ N the number of source-endpoints attached to i is called the
in-degree of i and is denoted by degin(i). The number of target-endpoints
attached to i is called the out-degree and is denoted by degout(i).

The cost ci,j is a positive integer associated with the edge ei,j ∈ E.

Definition (Path) A path of G is a subgraph P of the form :

V(P) = {0, 1, . . . , l},

E(P) = {e0,1, e1,2, . . . , el−1,l},

C(P) = {c0,1, c1,2, . . . , cl−1,l},

such that V(P) ⊆ V, E(P) ⊆ E and C(P) ⊆ C.

The cost of path P is defined as the sum of all costs found in the path:

c(P) = ∑
∀ci,j∈C(P)

ci,j. (3.1)

Mapping of our Model to the Graph Model. In order to fully represent
our model of the electrical grid, composed of sub-grids, suppliers, demands
and transmission-costs, using the definitions above, we need to define which
components of the model are contained in which set of the graph, along with
the special properties they may have.

16

3.1. Graph Model of the Electrical Grid

Nodes. The components of our electrical grid model are represented by
nodes in the graph-model. More specifically, we distinguish three sub-sets
of nodes:

1. Supplier Nodes. The set of supplier nodes S ⊂ N contains all suppliers
of the electrical grid. At each time t, each supplier node i is associated
with two integers: The current power supply si(t) [W] and its current
price offer pi(t) [$].

2. Demand Nodes. The set of demand nodes D ⊂ N contains all demands
of the electrical grid. At each time t, each demand i ∈ D is associated
with one integer di(t) [W], representing its current power demand.

3. Sub-Grid Nodes. The set of sub-grid nodes G ⊂ N, contains all sub-grid
nodes.

Edges. The transmission line that interconnect the sub-grids and that con-
nect suppliers and demands to a specific sub-grid are represented by di-
rected edges. The direction of an edge represents the direction in which
electrical power can be transmitted: Since in our model we assume, that
suppliers can only supply energy, but not receive energy and are connected
to exactly one sub-grid, they have exactly one out-going edge. Analogously,
demands have exactly one incoming edge.

Costs. The costs associated with the edges, contain the transportation (grid-
usage cu and transformation ct) costs introduced in Section 2.1, as well as
the prices (p) offered by the suppliers. As displayed in Figure 3.1, the cost
[$

W] between a supplier and a sub-grid node, is therefore defined as the sum
of the grid-usage cost and the supply-price.

Graph Model. Finally, we can use this mapping from our model-components
to mathematical graph components to introduce the following graph repre-
sentation of the electrical grid:

Definition (Electrical Grid Graph) The electrical grid graph is a weighted
directed graph G(N, E, C) such that each element i ∈ N is either a supplier
(i ∈ S ⊂ N), a demand (i ∈ D ⊂ N) or a sub-grid (i ∈ G ⊂ N). There is an
edge ei,j = (i, j) ∈ E, if there is a physical transmission line that connects the
components represented by i and j and a cost ci,j ∈ C for each edge ei,j.

The direction of an edge represents the direction in which electrical power
can be transmitted. Therefore, supplier nodes i ∈ S can only have exactly
one outgoing edge ei,j, while demand nodes i ∈ D can only have exactly one
incoming edge ej,i

17

3. Solution

i ∈ S k ∈ D

G

1. Min-Cost Flow

2. Topological Sort

3. Compute Prices

si, pi

pj, xi,j

dk

pk

j ∈ G, ei,j ∈ E, ci,j ∈ C

Figure 3.2: Inputs and outputs of the pricing algorithm.

The cost ci,j associated with edge ei,j is composed of the sum of the grid-
usage cost cui,j the transformation cost cti,j and, if i ∈ S of the price offer pi
of supplier i.

3.2 Input and Output

As can be seen in Figure 3.2, algorithm has the following input- and output
parameters:

Input. The input for the algorithm is composed of:

• The electrical grid graph G(N, E, C) containing all nodes, all edges and
all transmission costs.

• The state of each supplier-node i ∈ S consisting of the current available
power supply si and the current price offer pi.

• The state of each demand-node, i.e. its current power demand dk.

Output. The system has two different outputs for suppliers and demands:

• The output for a supplier i ∈ S is composed by the price pj at the grid-
node j ∈ G, it is connected to, as well as the amount of power xi,j it is
currently selling.

• The output for a demand k ∈ D is the energy price pk it is currently
paying.

18

3.3. Minimal Cost Flow

3.3 Minimal Cost Flow

In Section 2.4 we defined our momentary supply and demand price based
on the assumption of an ideal and free market, where customers always
choose to buy energy at the lowest possible price available at their location.
Furthermore, we added a constraint to our model saying, that customers
that are “closer” to a specific supplier than others, meaning that there is less
transportation costs between them, get priority over customers that are farer.

This distribution of power flows along the edges corresponds to the minimal
cost flow along the edges of our electrical grid graph. We can obtain this
minimal cost flow, by solving a linear program (LP), with the following
decision variables, objective function and set of constraints:

Decision Variables. The decision variable of this problem are the power
flows xi,j [W] on all edges (i, j) ∈ E.

Objective Function. The objective is to minimize the total transportation
cost of delivering power through the network. The cost of transporting a
power flow of xi,j [W] along the edge (i, j) is given by the cost ci,j(xi,j), which
is assumed to be linear, which means that ci,j(xi,j) = ci,jx.

Therefore, the total cost in the network is given by Σ(i,j)∈Eci,jxi,j, which leads
to the objective function:

z = min
xi,j

∑
(i,j)∈E

ci,jxi,j (3.2)

Constraints. The system has the following constraints:

1. The flow out of a supply node must be equal or less than the supply.
Naturally, in the physical network the flow out of a supply node is
always equal to the supply, which we defined as the power, which
is currently being fed into the system. However, we do not consider
surplus power in our price model and therefore we can write the fol-
lowing constraint:

∑
(i,j)∈E

xi,j ≤ si, i ∈ S (3.3)

2. Like in the physical network the power-flow must be conserved in each
sub-grid, meaning, that the flow entering a sub-grid, must also exit it:

∑
(i,j)∈E

xi,j = ∑
(j,k)∈E

xj,k, j ∈ G (3.4)

19

3. Solution

3. The power flow into a demand node is equal to the power requested:

∑
(i,j)∈E

xi,j = dj, j ∈ D (3.5)

4. The power flows can not be negative:

xi,j ≥ 0, ∀(i, j) ∈ E (3.6)

Solving this linear program will yield a minimum cost flow fmin, which can
now be used to compute the momentary demand and supply price for each
demand node.

3.4 Price Propagation and Computation at each Node

Solving the LP introduced in the previous section for our model of the elec-
trical grid, we obtain the power flows on each edge that we assume for an
ideal and free market. This flows can now be used to compute the effective
energy price at each node, starting from the supplier nodes and following
the power flows in topological order until reaching the demand nodes.

3.4.1 Price at Supply Nodes

The price at a supply si is equal to the price pi offered by the node and
therefore does not need to be computed.

3.4.2 Price at Sub-Grid and Demand Nodes

Since all edges in our graph have positive costs and there are no negative
flows, we can prove that an optimal minimum cost flow does not contain
cycles and can therefore, by removing all edges with 0-flow, be transformed
into a directed acyclic graph (DAG), where each edge has two weights,
namely the cost and the power flow.

This DAG can now be sorted into a topological order, following the flows
from the supply nodes to the demand nodes. Given the set of incoming
edges at node i, Ein,i, we now define the price at node i as:

pi =

∑
∀(j,i) ∈ Ein,i

xj,i ∗ (cj,i + pj)

∑
∀(j,i) ∈ Ein,i

xj,i
, (3.7)

which at each node i corresponds to the weighted average of the energy
quantity supplied to i from different sources.

20

3.5. Uniqueness of the Solution

3.5 Uniqueness of the Solution

In order to meet the determinism-requirement posed in Section 2.2.1, the
solution of our price-algorithm must be unique for a given set of inputs.
The LP introduced in Section 3.3, which computes the global minimum of
the transportation costs in our graph model of the electrical grid, does not
guarantee a unique distribution of power flows to achieve said minimum.
Since our price computation depends on the power flows computed by the
LP, we need to analyze, how they impact the uniqueness of our solution.

Example 1. In order to perform this analysis, we will first consider the
example network depicted in Figure 3.3.

s1 = s g3 d4 = d

s2 = s

c1,3 = c + p

c2,3 = c + p

c3,4 = c

Figure 3.3: Example illustrating a scenario with no unique solution.

In this example, we have two suppliers, s1 and s2, which make an identical
price offer p, and one demand node d4. The power supply of each supplier
(s) is larger than the demand d4 = d. Each edge has is associated with the
same cost c. This leads to the following LP:

min (c+p) x1,3 + (c+p) x2,3 + c x3,4

s.t. x1,3 ≤ s

x2,3 ≤ s

-x1,3 + -x2,3 + x3,4 = 0

x3,4 = d,

which has the solution z = d(c + p + c), which can be obtained by all flow-
distributions of form:

x =

(
a

d− a

)
, for a ∈ [0, d],

21

3. Solution

which however using Equation 3.7 all lead to the same price at sub-grid
node g3:

p3 =
a ∗ (c + p) + (d− a)(c + p)

a + d− a
=

(c + p)(a + d− a)
a + d− a

= c + p. (3.8)

Therefore, in this case, the computed price is unique regardless of the unique-
ness of the flow distribution obtained by solving the minimal cost-flow prob-
lem.

Example 2. We will now consider the slightly more complex network rep-
resented in Figure 3.4:

s

3

d 1 2 d

4

s c1 6= c2, s = d

p

p

c3,1 = c1 c3,2 = c1

c4,2 = c2c4,1 = c2

Figure 3.4: Example illustrating a scenario with two suppliers, two demands
with demand, and four grid-nodes. The transportation costs between grid-
nodes and supplier- or demand-nodes are 0, the supply s of the supplier
nodes is equal to the demand d of the demand nodes and c1 6= c2.

Since the total power-supply 2s in the system is equal to the total power-
demand 2d, we can easily determine that the LP has exactly one solution:

z = min cᵀx = s(2p + c1 + c2), (3.9)

where c is the cost-vector c =
(
c3,1 c3,2 c4,1 c4,2

)ᵀ and x is the flow-vector
x =

(
x3,1 x3,2 x4,1 x4,2

)ᵀ.
22

3.5. Uniqueness of the Solution

For the sake of simplicity, we will now assume w.l.o.g. that p = 0 and that
therefore z = s(c1 + c2). Similarly to the previous example, there are many
minimum-cost flows, that achieve this minimum and which have the form:

xa,b =

a

s− a
b

s− b

 , for a, b ∈ [0, s],

which this time however do yield different prices at the nodes 1 and 2. Lets
for example consider the two corner cases x0,0 =

(
0 s 0 s

)
and xs,s =(

s 0 s 0
)

which, as one can easily verify, are both minimum cost flows
and lead to the following prices in nodes 1 and 2:

p1 p2

x0,0 c2 c1
xs,s c1 c2

These results are clearly infringe our determinism requirement and could
lead to undesired run-time behavior. Therefore we propose two solutions
to this problem: The first one, is to change the objective function in a way,
that always yields unique solutions, the second one is to change the graph
topology, in order to avoid ambiguous situations:

3.5.1 Add Quadratic Perturbation

As it has been shown in [14] it is possible to solve a linear program, by
adding quadratic perturbation and solving the resulting quadratic problem
in its dual variable space. Furthermore it has been shown in [15] that if the
original linear program has an optimal solution, the solution of the corre-
sponding quadratic problem, will be unique.

Concretely, given a linear optimization problem of form:

min cᵀx, s.t. Ax ≥ b, (3.10)

adding a quadratic perturbation of form εxᵀx, will lead to the quadratic
problem:

min cᵀx + εxᵀx, s.t. Ax ≥ b, (3.11)

which for small enough ε solves the original problem, by picking the optimal
solution with the smallest l2-norm. Although this approach would solve the
problem of uniqueness, it requires solving a quadratical program, which is
significantly less efficient than a linear program. Therefore, we will now
look at another solution, that does not require us to change the original
LP-formulation.

23

3. Solution

3.5.2 Randomize the Edge-Costs

Another approach to make the solution of the minimal-cost flow problem
unique, is to avoid ambiguous situations by ensuring, that no two edges in
the graph are associated with the same cost.

This can be achieved by once substituting each cost ci,j ∈ C with the random-
ized cost:

c̃i,j = ci,j + εri,j, for ε� ci,j, r ∼ U([0, 1]), (3.12)

where ε is very small and r is selected uniformly at random, when solv-
ing the minimal-cost flow problem. After that, the prices can still be com-
puted using the original, not randomized, costs, which means that for small
enough ε, the prices will still be exact.

This randomization of the linear coefficients of the objective function, mini-
mizes the probability of it being parallel to one of the edges of the polytope,
which constitutes the feasible region given by the constraints. Therefore, the
solution to the problem must lie in a vertex of the solution, i.e. at a corner
of the feasible region.

Although this solution slightly impacts the fairness of our algorithm, since
some nodes might consistently get worse price offer than others, who would
have access to the same price, we reckon that the impact will be relatively
limited in real-life networks. On the other hand, it allows us to keep the
results consistent and deterministic, without resolving to the use of time-
intensive quadratic programs.

3.6 Model Adjustments

The mathematical model does not yet cover the solution of two corner cases:
The first one is the case, where there is not enough available power-supply
to cover the total demand, the second one is the case, when there is no
power-demand at a certain grid-node.

Infinite Supplier. The first problem was already addressed in Section 2.1.2,
where we introduced a special supplier, with an infinite power-supply and
a determined price-offer, that we called the energy exchange. In our graph
model, the energy exchange is simply a supplier i ∈ S, associated with a
very high power supply si.

24

3.6. Model Adjustments

Infinitesimal Demand. If we recall Equation 3.7, given the minimum cost
flow, we defined the price at each node i as follows:

p(i) =

∑
∀(j,i) ∈ Ein,i

xj,i ∗ (cj,i + p(j))

∑
∀(j,i) ∈ Ein,i

xj,i
. (3.7)

This definition however, is not applicable to nodes that have no incoming
power-flow. This is a problem, since we want to compute the energy price at
each location of the grid, regardless of the current energy demand. We solve
this problem, by assuming a node with an infinitely small demand δ0 → 0
at each sub-grid node if our graph. The idea is that while δ0 guarantees an
incoming flow at each sub-grid node, it is small enough not to influence the
price. Following the same idea, also demand nodes that only want to query
the price at a certain location of the network, without actually consuming
power, will be represented with a demand di = δ0.

25

Chapter 4

Functional Validation

In this chapter we will perform a series of experiments and derive theoreti-
cal bounds to validate the behavior of our algorithm: First we will analyze
the sensitivity it has towards single suppliers and then we will look at dif-
ferent strategies suppliers can employ in order to maximize their profits.
Finally, we will perform an experiment that shows how the price evolves
in a dynamic system, where suppliers and demands follow a determined
strategy.

4.1 Experimental Setup

4.1.1 Network Topology

Since the network topology has a significant impact on the price computa-
tion performed by our model, it is important to perform experiments on a
realistic network structure.

Although some test systems, like the historical IEEE model systems, are
available1 and widely used in the literature, we prefer to use statistically
similar random networks, since the model systems are limited in size and,
being from the 1960s, relatively dated.

In 1998, Watts and Strogatz [13] first proposed an algorithm to statistically
model the power grid as a small network graph, in which most nodes are not
neighbors of one another, but can still be reached by every other node via
a small number of hops. More specifically, the average path length 〈l〉 is
proportional to the logarithm of the number N of nodes in the network:

〈l〉 ∝ ln N. (4.1)

1Washington University’s Power Systems Test Archive Site: http://www.ee.washington.

edu/research/pstca/

27

http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/

4. Functional Validation

(a) p = 0 (b) p = 0.5 (c) p = 1

Figure 4.1: Small-World networks generated with the Watts-Strogatz method
for N = 20, k = 4 and for different rewiring probabilities p. While p = 0
corresponds to a regular ring lattice, p = 1 yields a completely random
network.

Given the desired number of nodes N and an average nodal degree of 〈k〉,
satisfying

〈k〉 � N � e〈k〉, (4.2)

the first step for the algorithm is to construct a regular ring lattice, in which
every node is connected with 〈k〉2 nodes on each side. Then it iterates through
each node and, with probability p, re-connects edges on the right side of a
node to another node selected uniformly at random. The parameter p al-
lows to tune the graph between regularity (p = 0) and disorder (p = 1). In
a further effort to generate random power-grid topologies, with statistical
properties similar to real networks, Wang et al. [12] analyzed the statistical
properties of 6 real-world networks (Table 4.1). They came to the conclusion
that, while real topologies do manifest small-world properties, they are con-
nected with a low average nodal degree 〈k〉 = 2 ∼ 5, which does not scale
with the network size. This means, that the Watts Strogatz model, which
requires condition (4.2), can only be applied to networks of limited size.
They validated this claim by performing experiments that showed that for
〈k〉 = 2 ∼ 3 the network size should be limited to 30 and for 〈k〉 = 4 ∼ 5 to
300 nodes.

As a consequence, they proposed an alternative scheme to generate more re-
alistic network topologies: First a number of distinct small-world subnetworks,
whose size is limited by (4.2), is created, using a method similar to the one
proposed by Watts and Strogatz. In a second step, each subnetwork is con-
nected to other subnetworks, by randomly rewiring a number around 〈k〉
edges.

For our simulations, we will use the method proposed by Wattson and Stro-
gatz, whenever the condition (4.2) holds and the updated scheme from [12],
for larger networks.

28

4.2. Global Influence of a Single Supplier

(N, m) 〈l〉 〈k〉
IEEE-30 (30,41) 3.31 2.73
IEEE-57 (57, 78) 4.95 2.74
IEEE-118 (118, 179) 6.31 3.03
IEEE-300 (300, 409) 9.94 2.73
NYSIO (2935, 6567) 16.43 4.47
WSCC (4941, 6594) (18.70) 2.67

Table 4.1: Average path length and nodal degree for 6 real world networks.

4.1.2 Costs

Since in our model the final price is composed by the energy production
cost as well as grid-costs, the ratio between those two components plays an
important role for the overall network behavior.

We use data from a report of the Swiss Association of Electricity Companies
(VSE)2 to determine that in the years from 2010-2014 the electricity price
paid by an average household was composed of 44.3% grid costs, 41.14%
production costs and 14.56% taxation. Excluding taxation from our model
we can conclude, that the cost-ratio ρc between production-costs cp and grid-
costs cg is given by

ρc =
cp

cg
=

41.14
44.3

= 1.077 ≈ 1. (4.3)

As the total grid-costs for shipping electricity on a path from a supplier to
a consumer are given by the sum of all grid usage and transformation costs
along that path, given a network with an average path length of 〈l〉, the
average cost 〈ci,j〉 added by transporting 1kWh through edge (i, j) is given
by:

〈ci,j〉 =
〈cp〉 ∗ ρc

〈l〉 , (4.4)

where 〈cp〉 is the average energy production cost.

4.2 Global Influence of a Single Supplier

In order to assess the quality of our solution approach, it is important to an-
alyze the sensitivity our pricing algorithm has towards one single supplier:
We want to understand the impact small changes in the price offer or the

2Verband Schweizerischer Elektrizitätsunternehmen, full report: http://www.strom.

ch/fileadmin/user_upload/Dokumente_Bilder_neu/010_Downloads/Stromgrafiken/

Strompreise/06_Komponenten_Strompreis_2015_d.pdf

29

http://www.strom.ch/fileadmin/user_upload/Dokumente_Bilder_neu/010_Downloads/Stromgrafiken/Strompreise/06_Komponenten_Strompreis_2015_d.pdf
http://www.strom.ch/fileadmin/user_upload/Dokumente_Bilder_neu/010_Downloads/Stromgrafiken/Strompreise/06_Komponenten_Strompreis_2015_d.pdf
http://www.strom.ch/fileadmin/user_upload/Dokumente_Bilder_neu/010_Downloads/Stromgrafiken/Strompreise/06_Komponenten_Strompreis_2015_d.pdf

4. Functional Validation

(a) Simplified Network (p = 0) (b) Randomized Network (p = 0.5)

Figure 4.2: Networks used for deriving bounds with N = 10 and k = 4 and
rewiring-probability p. A simplified network depicted in 4.2a will be used
to derive the theoretical bounds, which will then be validated by simulations
performed on randomized networks like in the one depicted in 4.2b.

amount of available power of a supplier have on the price in other nodes of
the network. We will use this information to verify, that the system behaves
in a stable and deterministic manner and yields a meaningful price at all
times: First by verifying, that the size of the neighborhood influenced by a
change in one single supplier si is bounded by the transportation costs in
the network, which means that even a very large supplier is only able to
influence a local portion of the network, and then by showing, that the aver-
age price in the network is directly dependent on the number of influenced
nodes.

We will do this, by first deriving those bounds theoretically, making some
simplifying assumptions about the electrical network and then by compar-
ing those bounds with the results of simulations performed on randomized
networks.

The simplified network, for which we compute the theoretical bounds, is
composed of N grid nodes gi ∈ G, each of which is connected to exactly one
supplier si ∈ S and one demand node di ∈ D. Each supplier can provide an
infinite amount of power and initially has the same same price pinit, while
each demand node has the same demand. The grid has a constant nodal
degree of k, which means that each grid node gi ∈ G is connected to exactly
k other grid nodes. Each edge in the network has the same grid cost cg. An
example of such a network with N = 10 and k = 4 is displayed in Figure
4.2a.

The networks on which we run the simulations is randomized using the

30

4.2. Global Influence of a Single Supplier

method proposed by Watts and Strogatz in [13]. Again, each grid node is
connected to exactly one supplier, whose infinite supply will be replaced by
a very high number, and one demand node, with a very low demand. Figure
4.2b shows the randomized network derived from the theoretical network in
4.2a, by rewiring its edges with probability p = 0.5.

4.2.1 Number of Grid Nodes Influenced by Price Reduction δ0

In this section we assume the previously introduced simplified network,
with a very large number of grid nodes N. Initially, each supplier si ∈ S
offers the same price pi = pinit: Since each grid node is connected to exactly
one supplier and one demand and the transportation costs are equal on ev-
ery edge, the energy price is the same on every grid node. We will now
derive a theoretical bound for how many nodes change, if one supplier si
reduces the price by an amount δ0.

Theoretical Bound

Since N is very large, we assume that each node in the influence range of
si has its own distinct neighborhood (i.e. if two grid nodes g2 and g3 are
neighbors of g1, they are not neighbors of each other). This means, that the
neighborhood of si can be treated as a tree.

Since in the initial stable state, each grid node is connected to exactly one
supplier which offers the price pinit, the price in each grid node initially is
pinit + cg. If however si was the only supplier in the network (Figure 4.3),
the price in each grid node would increase proportionally to its distance to
si. In other words, if the distance between a gj and the si is given by di,j, the
price in the node gj is exactly:

pj = pinit + di,j ∗ cg. (4.5)

This trivially implies, that if si reduces its price by δ0, the price in grid node
j is given by:

pj = (pinit − δ0) + (di,j ∗ cg). (4.6)

Now we again assume that each grid node is connected to exactly one sup-
plier: Since the algorithm minimizes the total costs in the network, given a
price reduction of δ0 in node si, the price in grid node gj will only change
if pj < pinit + cg, which is equivalent to δ0 > −cg ∗ (1− di,j) and means that
the price reduction of a single supplier si must at least be:

δ0 > di,j ∗ cg + ε, ε > 0, (4.7)

to influence a grid node at distance di,j.

31

4. Functional Validation

(p− δ0) (p− δ0) + cg

(p− δ0) + 2 ∗ cg

(p− δ0) + 3 ∗ cg

+cg

+cg

+cg

dp = 1

dp = 2

dp = 3

Supplier
Grid

Figure 4.3: Example illustrating how prices propagate in the relatively close
neighborhood of one supplier for very large N and k = 4.

We use this to define the maximum propagation distance dmax, that a price
reduction of δ0 has, as:

dmax(δ0, cg) =

{⌈
δ0
cg

⌉
, if

⌈
δ0
cg

⌉
≤ 〈l〉,

〈l〉, else.
(4.8)

using the average shortest path length 〈l〉 as a bound, since at some point
the change will be propagated to the entire network. As one can see in
Figure 4.4a, this is equivalent to a step function, for the depth increases each
time a price reduction is larger than a multiple of the transportation cost cg.

Each time a price reduction is large enough, to reach a new propagation
distance, all neighbors of the nodes on the previous depth will be influenced
by this reduction. Therefore, we can define the number of nodes nd, which
are influenced by a price reduction with propagation distance d = dmax
recursively as:

nd(d, k) =

1, if d = 1,
k + nd(d− 1, k), if d = 2,
(k− 1) ∗ nd(d− 1, k), if d > 2,

(4.9)

which can be roughly approximated as (k− 1)d for d >> 2 and therefore, as

32

4.2. Global Influence of a Single Supplier

(a) Propagation depths for cg = 2

1 2 3 4 5 6 7 8 9 10

δp

1
2
3
4
5

d d
m

ax
(δ

0,
c g
)

(b) Number of influenced nodes

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

dmax

0
20
40
60
80

100
120
140

n d

Figure 4.4: Propagation depths for growing δ0 and cg = 2 and the corre-
sponding number of influenced nodes per depth. One can see, that the
propagation distance increases each time δ0 is larger than a multiple of cg.

one can see in Figure 4.4b, increases exponentially with at each new propa-
gation distance.

Experimental Validation

We validated this theoretical bound for nd on a random network generated
with the method proposed by Watts and Strogatz [13] with N = 40 and
k = 4 for different generation-cost / transportation-cost r ratios ρc =

cp
cg

(see
Section 4.1.2). The resulting network has an average nodal degree 〈k〉 ≈ 3.33
and an average shortest path length 〈l〉 ≈ 3.81.

As one can see from Figure 4.5, where we display the number of influenced
nodes normalized with the nodal degree k for different price reductions δ0,
the influence of a single supplier in the network is high for large values of ρc,
i.e. when the transportation costs have a small impact on the total cost, but
decreases rapidly for smaller values of ρc. For the value ρc = 1, which we
assumed to be realistic in Section 4.1.2, a supplier can influence grid nodes
up to a propagation distance of 3, after which the transportation costs will
make its offer unfeasible for other nodes.

This proofs our initial claim, that the influence radius of a price in change in
a single supplier is bounded by the transportation costs in the network and
that even very large suppliers, like in our example with an infinite amount
of power, can only influence a local portion of the network.

4.2.2 Influence of a Price Reduction δ0 on the Global Average Price

In the previous section we discussed, how many grid nodes are influenced
by a price reduction δ0 in supplier si. Now we will use this notions to ana-
lyze, how such a price reduction impacts the average price in the network,
since it influences nodes differently, depending on their distance to si.

33

4. Functional Validation

90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

δ0 as [%] of pinit

0.0

1.25

2.5

3.75

5.0

6.25

7.5

8.75

10.0
n d k

ρc = 2
ρc = 1
ρc = 0.5

Figure 4.5: Comparison of the computed nd and values measured from a
randomized network with N = 40 and k = 4 for different generation-cost /
transportation-cost ratios ρc.

Theoretical Bound

Assuming the same network we introduced at the beginning of Section 4.2,
with N grid nodes, which all have the same demand and are connected to
one supplier and where each supplier can provide an infinite amount of
power, the initial global average price pavg in each grid node is given by:

pavg =
1
N

N

∑
i=1

si(pinit + cg)

si
= pinit + cg. (4.10)

Given a price reduction δ0 in one supplier si, the price will be reduced in
nd(d, k) nodes by an amount which decreases with growing distance to si,
since each additional step adds new transportation costs. More formally,
assuming that all transportation costs are given by cg, the price reduction δi
at propagation distance 0 ≤ i ≤ dmax amounts to:

δi = δ0 − i ∗ cg. (4.11)

Assuming that at each new propagation step 0 < i ≤ dmax, the amount of
newly influenced nodes ninc(i, k) is given by:

ninc(i, k) = nd(i, k)− nd(i− 1, k), (4.12)

34

4.2. Global Influence of a Single Supplier

90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

δ0 as [%] of pinit

0.0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

p a
vg

p i
ni

t

ρc = 2
ρc = 1
ρc = 0.5

Figure 4.6: Comparison of the computed pavg and values measured from a
randomized network with N = 40 and k = 4 for different generation-cost /
transportation-cost ratios ρc.

he total price reduction in our network δtotal can be determined as follows:

δtotal(δ0) =
dmax(δ0,cg)

∑
i=1

ninc(i, k) ∗ δi. (4.13)

which leads us to the new average price:

pavg(δ0) = pinit + cg −
1
N
∗ δtotal , (4.14)

which as one can see from the dashed lines in Figure 4.6, is again bounded
by the transportation costs in the network.

Experimental Validation

We validated our theoretical bound for the average price performing mea-
surements on the same network used for the previous experiment. The
results displayed in Figure 4.6 show, that the assumptions we made in this
section give an acceptable upper bound for pavg(δ0). Again one can see, that
the influence of a single supplier is bounded by the ratio between produc-
tion costs and transportation costs ρc: In a network, where transportation
costs make up a large portion of the total costs (high ρc) the influence of a

35

4. Functional Validation

single price reduction has far less impact than in a network, where produc-
tion costs are more significant.

4.3 Pricing Strategies

After having determined the influence a change in a single supplier can have
on the average price of the whole network, we will now direct our attention
on the influence it has on the supplier itself. This will help us to get a feel-
ing, about which strategies a supplier might apply in real life scenarios and
will serve as basis for determining the global effects that profit maximizing
strategies of the suppliers can have on the stability of the system.

To achieve this we will first analyze how a price change of δ0 in one single
supplier si influences the amount of the power sold by that determined
supplier. We will then look at the profit it makes at different prices and try
to determine a profit-maximizing strategy, which we will finally use to see
what happens, when every supplier applies such a strategy.

We will do this by performing simulations on a network similar to the net-
work used for our discussion in Section 4.2, but where the available power
supply is limited: The network has N grid nodes gi ∈ G, which are each
connected to one supplier si ∈ S, one demand di ∈ D and k other grid
nodes. While the total available supplied power is set to 150% of the total
demand, the supplier under test can supply an amount from 0% < ιi < 50%
of the total demand, while the remaining supply is equally divided among
the other suppliers. More formally, we define the influence ιi of a supplier, as
percentage of the total demand it can potentially cover and state that, given
the total power demand dtot and the influence of the supplier si under test
0% < ιi < 50% the influence of a supplier sx in our network is given by:

ιx =

{
0% < ιi < 50% if x = i,
(150%−ιi)

N else.
(4.15)

Using this influence distribution we make sure, that although one supplier
may be able to cover a large portion of the total demand, no supplier is
essential for covering the demand. In other words, even if a supplier has a
very large influence, there is no guarantee it will sell power if it makes an
uncompetitive price offer.

Like in the examples in Section 4.2, the network topology is randomized
using the method proposed by Watts and Strogatz, with a probability of
p = 0.5 [13]. Each transportation has the same constant grid-cost cg, which
is chosen so that the ratio of generation and transportation costs ρc ≈ 1. In
the initial stable state, each supplier offers its energy for the same price pinit.

36

4.3. Pricing Strategies

−3 −2 −1 0 1 2 3

δ0

cg

0.0

0.2

0.4

0.6

0.8

1.0

%
of

av
ai

la
bl

e
su

pp
ly

so
ld

ιi = ε→ 0%
ιi = 10%
ιi = 30%

Figure 4.7: Shows how much of their available power suppliers with dif-
ferent influences sell for increasing price offers pinit + δ0. The dashed lines
display the range between the price, where a supplier sells all of his available
supply and the price, where it doesn’t sell any power.

4.3.1 Influence of Price Change δ0 on Power Sold by si

In order to determine how a price change of δ0 in a single supplier si with
influence ιi affects the amount of power it sells, we performed three simula-
tion runs on a randomized network with N = 40 and 〈k〉 ≈ 3.05 for three
different influences: A very small ιi = ε → 0%, an intermediate ιi = 10%
and a high influence ιi = 30%.

The results of our experiment are displayed in Figure 4.7. We recall, that
in our test network each grid-node is connected to exactly one supplier and
one demand, all transportation costs in the network are given by cg and
that the pricing algorithm minimizes all costs in the network. Therefore, we
can assume that if each supplier offers the same price pinit, each supplier
will provide at least some amount of power to the grid node its is directly
connected to: We assume, that a supplier si with a very low influence ιi,
is not able to cover the whole demand of that grid node gi. Therefore, if
it offers the same price pinit, offered by all other suppliers, it will sell all
of its available supply to gi. Since the power needs to traverse one edge
to get from si to gi, the price offered by si will be perceived as pinit + cg
at gi. The remaining demand at gi, will be covered by other suppliers and
will therefore have to traverse at least one more transportation edge, which

37

4. Functional Validation

amounts to a perceived price of at least pinit + 2 ∗ cg. For the supplier with
very low influence si this means, that it can increase its price as long as it
stays under the price perceived by gi for other suppliers, and it will still sell
all of its available supply. As soon as however the price offered by si is above
this threshold (δ0 > cg), the other suppliers, who a are already supplying
power to gi and have a significantly higher influence, will be able to cover
the part of the demand previously covered by si for a lower price, which
will make si’s demand unfeasible, which means that it wont sell any more
power. This behavior is also confirmed by our simulation results in Figure
4.7, where one can see the very steep fall of the amount of sold power, as
soon as the supplier with low influence increases the price over the δ0 > cg
threshold.

This behavior however changes as soon as the influence ιi of one supplier si
is large enough to cover the demand of more than the one grid node gi it is
directly connected to: In this case, in order to sell all of its available supply,
the supplier needs to decrease its price to reach as many grid nodes as are
needed to consume all of its supply. In contrast to suppliers with small
influence, suppliers with a rather high influence ι might even be able to sell
some power even when their price is higher than the threshold δ0 > cg. This
is due to the fact, that neighboring grid nodes might not be able to rely on
their directly connected suppliers exclusively to cover their demand: In this
case, a relatively high price offer by a supplier with high influence, which
is in the close neighborhood might still be more competitive than others.
This observations can also be verified by looking at the simulation results in
Figure 4.7, where the supplier with the highest influence on one hand needs
to decrease its price the most in order to sell all of its available supply, but
on the other hand still manages to sell power with higher prices than other
suppliers.

In this section we drew some conclusions, about how prices impact the
amount of power a supplier can sell depending on its influence. However,
this is still not sufficient to formulate a profit-maximizing strategy, since it
is not clear if selling more power for a low unit price is more profitable than
selling less power for a higher price. This question will be the focus of the
next section.

4.3.2 Influence of a Price Change δ0 on the Profit of si

In the last section we performed some experiments to show, how a price
change of δ0 in one single supplier impacts the amount of power it can sell,
depending on its influence. We will now use those results to determine how
such a price variation influences the profit of a supplier.

Figure 4.8 shows the profits, normalized by the maximum profit, each sup-
plier from the experiment made in Section 4.3.1 achieved for different price

38

4.3. Pricing Strategies

−3 −2 −1 0 1 2 3

δ0

cg

0%

100%

83%

66%

100%

Profit
Power Sold

ιi = ε→ 0%
ιi = 10%
ιi = 30%

10 40 70 100 130 160 190
% of pinit

Figure 4.8: Shows the profit normalized by the maximum achieved profit
for suppliers with increasing influence along with the amount of available
supply they are selling for different price variations δ0 from the initial price
pinit.

variations δ0: We notice, that the amount of its available power a supplier
si needs to sell, in order to achieve the maximum profit, decreases with in-
creasing influence ιi. The reason for this is very simple for a supplier si with
very low influence ιi = ε→ 0: Since, as we discussed in the previous Section
4.3.1, it has only enough available power to supply its directly neighboring
grid node gi and will always sell all of that supply as long as its price stays
under the threshold pinit + cg, it will achieve its maximum profit by offering
a price lays exactly at that threshold.

The results however are more interesting for suppliers with a higher influ-
ence: Since they have the potential to reach an increasing number of nodes,
and therefore to sell more power, by lowering their price, they need to find
a trade-off between the amount of power they sell and the price they offer.
More formally, if we express the price pi offered by a supplier si as a factor
xi of pinit, so that:

pi = xi ∗ pinit (4.16)

and we the amount of power si with influence ιi can sell at price xi is given
by some function y(xi, ιi), the supplier maximizes its profit by finding:

max
xi

(xi ∗ y(xi, ιi)), (4.17)

39

4. Functional Validation

0 20 40 60 80 100

t

0

1

2

3

4

5
A

ve
ra

ge
Pr

ic
e

[
1 c g

]
Avg. price
Weighted demand threshold

Figure 4.9: Shows the average price-threshold of the demand-nodes,
weighted by their power-demand, as well as the average price in the net-
work for increasing simulation steps

which as one can also see in Figure 4.8, is dependent on the influence of
the supplier, as well as from the network topology: However, a supplier in
our system only has knowledge about the current price in its neighboring
grid node, as well as about the amount of power it is currently selling at a
determined price. This means, that it does not have enough information to
generally compute an optimal strategy and needs to rely on try-and-error as
well as on experience.

4.4 Dynamic Simulation

While in the last sections we focused on analyzing how our system reacts
to changes in one single supplier, now we would like to consider a case,
where all suppliers and demands follow a certain dynamic strategy, which
is dependent on the current state of the system. The goal of this analysis, is
to determine, whether the average price in the network converges towards
a reasonable interval, or whether it fluctuates.

In particular, we will simulate a scenario, where the total available supply in
the network is slightly higher than the total available demand and where the
power supply of each supplier is randomized. In contrast to a real scenario
however, the single supplier know their influence ι and use it to formulate
a strategy, loosely based on the empirical values derived from Figure 4.8.

40

4.4. Dynamic Simulation

More specifically, each supplier iteratively adjusts its price with the goal to
sell around (100 − ι)% ± ι

2 % of its power: If it sells below this threshold,
it reduces its price by cg, the grid cost of the network, if it sells above, it
increases its price by this amount.

At the same time, each demand node has a random power-demand and a
random price threshold: When the price at their location of the grid exceeds
this threshold, they set their power-demand to zero and wait until it returns
under the threshold, until they start buying again.

The result of this simulation, is displayed in Figure 4.9, which shows the aver-
age price-threshold of the demand-nodes, weighted by their power-demand,
as well as the average price in the network for increasing simulation steps.
As one can see, in the beginning the suppliers start with a price well-above
the threshold. The price in the network immediately plummets, since no de-
mand is willing to buy power for that price. As a consequence, the suppliers
reduce their price-offer, which causes some of the demands to buy power.
After only a few iterations, the price reaches a value around the average
price threshold, where it stays with some fluctuations, due to suppliers try-
ing to maximize their profit. This can be considered as a meaningful result,
since the price stays around the maximum value that customers are willing
to pay, which reflects the free-market behavior, which is governed by the
principle of supply and demand.

41

Chapter 5

Implementation

After having assessed the theoretical and behavioral properties of our algo-
rithm, we proceed with the implementation of a working prototype for a
server based system, which can be used for reference for later implementa-
tions and which we will use later to gain some insights about the perfor-
mance and possible bottle-necks. In this section we will describe the general
architecture and the main components the prototype, that we implemented
as a Java EE application on top of the Spring Framework1.

5.1 Architecture

The prototype described in this section and depicted in Figure 5.1, was im-
plemented mainly using two architectural styles:

REST. In our system we have a number of suppliers and consumers that
communicate with a server to send updates about their own state (e.g. a
supplier submits a new price offer) and to query the state of the system
(e.g. the current energy price at their respective grid node). We decided to
implement this client-server communication using the HTTP-protocol, since
it is based on the IP protocol, which is widely available and it some countries
even a requirement [16] for the communication infrastructure of smart grids.

In order to achieve a high scalability for our system the communication
uses Representational State Transfer (REST) style. REST starts from an ab-
straction of the system-components into processing elements (client/server),
data elements (state updates/prices) and connecting elements (HTTP) and
enforces specific constraints to their interaction [17]. Among others, one of
the main constraints is that the interaction between components must always
be state-less, meaning that each request sent by a client needs to contain all

1https://spring.io/

43

https://spring.io/

5. Implementation

si
Request
Queue

Price
Engine

Price
Queue

dj
Request

Controller
Price

Buffer
Database

Writer

sk
Topology

Tables
Prices
Table

Thread 1

Thread 2

Database Thread

Thread 3

Server Process

Client

Client

Client

REST

checked request

checked

requests

newest

prices

newest prices

newest

prices

newest prices

averaged prices
network information

Figure 5.1: Architecture of the implemented prototype: Suppliers and de-
mands communicate with a server using a client-server architecture, the
server processes their requests using a filter-and-pipe data-flow.

the information needed by the server to fulfill that request: This greatly sim-
plifies parallel processing of requests, since there is no need to share state
information between server processes.

Data-Flow. Once requests are received on server-side, they are processed
following the filter-and-pipe architectural style, which is a sub-style of the
data-flow style [18]. In a data-flow architecture, the system is viewed as a
series of transformations on successive pieces of input data. The filter-and-
pipe style, incrementally reads in streams of input data and incrementally
produces streams of output data. Each transformation step in between is
computed by an independent component, the filter, and forwarded to the
next filter using a FIFO-Queue, the pipe. The fact, that the processes do not
share a state and only communicate through concurrent pipes, leaves room
for scalable and parallel implementations: In the case of our prototype, all
filters are implemented as separate threads, which are launched from a main
server process.

44

5.2. Price-Engine

PriceEngine

- timeout
- windowSize
+ run()

<<interface>>
PriceSolver

addNode(id, nodeType, gridId, gridCost)
removeNode(id)
updateSupplier(id, power, price)
updateDemand(id, power)
computePrices() : Results

solver
1

Figure 5.2: UML-Diagram illustrating the runnable Price-Engine and some
selected API methods of the Price-Solver.

We will now give a coarse overview about the filters and how they process
incoming requests using Figure 5.1 as a reference: The details of the work-
ings of the most important filters and queues will be given in subsequent
sections:

Incoming requests are first handled by the request controller, which vali-
dates their syntax as well as some semantic properties, using topological
network information from a database: Invalid requests are rejected, while
requests that can be answered immediately, like requests for the price at a
certain node, are answered. Requests that need further processing, like a
supplier updating its price offer, are put into a thread-safe FIFO-Queue, the
Request-Queue.

The price engine polls the requests from the queue and uses them to update
its own internal state, which consists of the network topology: After a cer-
tain amount of updates or after a certain time-out, it re-computes the prices
for all nodes in the network, marks them with the current time-stamp and
forwards them to both: The Price-Buffer, which always contains the newest
prices and is used by the Request-Controller to reply to price-requests and
the Price-Queue.

The Database Writer collects the timestamped prices from the Price Queue
and periodically dumps the averaged prices, weighted by time-interval, to
the database.

5.2 Price-Engine

The Price-Engine is a thread instantiated once by the main process and exe-
cuted at start-up: It is responsible for periodically computing the prices of
all enabled nodes in the network, using the algorithm introduced in Chap-
ter 3. The most important parts of the Price-Engine are the PriceSolver,
an object owned exclusively by this thread, which holds a graph represen-
tation of the network and performs all the necessary computations, and the

45

5. Implementation

Graph

Demand
id : long
power : int

Grid
id : long

Supplier

id : long
power : int
price : int

Adjacency

target : node
cost : int

grids

0...*

demands
0...*

suppliers

0...*

in
0...*
out
0...*

in
0...*

out
0...*

Figure 5.3: Diagram illustrating the graph representation of the Price-Solver.
The nodes are stored for fast access in three different hash-tables, each node
contains a list for its incoming or outgoing adjacencies.

run-Function, which keeps the state of the solver up to date and triggers the
price computations.

5.2.1 Price-Solver

The Price-Solver essentially consists of two parts: The first part is composed
by the graph representation of the network, for which it shall compute the
prices and of public methods, to keep that representation up to date (see
Figure 5.2). The second part is a set of methods that use the graph repre-
sentation to formulate a linear program for an external LP-solver and finally
compute the price at all nodes.

Graph Representation

The algorithm we introduced in Chapter 3 basically consists in three parts:
Solving a minimum cost flow problem, performing a topological sort and
finally computing the prices for the ordered set of nodes. Therefore we
want to chose a graph representation, that allows to efficiently perform each
of this steps and can quickly be updated to reflect the current status of the
network.

In general there are two ways to store a directed weighted graph G(V, E, W)
with n nodes: As adjacency matrix, an n × n matrix where each entry ai,j
represents the weight of the edge between vi and vj, or as an adjacency list,
a collection of lists containing the neighboring nodes and the weight of the

46

5.2. Price-Engine

edge connecting them for each node vi [19]. Since the electrical grid we want
to represent has small-world properties (see Section 4.1.1), which implies
that the graph is relatively sparsely connected, we chose to implement our
graph using the more memory-efficient adjacency lists.

As one can see in the diagram in Figure 5.2, the Price-Engine offers several
methods to keep the status of the network up to date: It is possible to add
single nodes, to remove single nodes as well as updating the state of sup-
pliers and demands. In order to perform this tasks efficiently, we must be
able to quickly add, remove and access single nodes to the internal represen-
tation, regardless of the scale of the network. To achieve this, we designed
the data-structure illustrated in Figure 5.3: Each node is represented as sep-
arate object, which contains the state of the node, as well as the adjacency
lists for incoming and or outgoing edges. The nodes are stored into three
different hash-tables, according to their type, which allows to add, remove
and retrieve them in constant time, regardless of network size [19].

This data structure also allows to efficiently extract the objective function
and the constraints of the linear program for finding the minimum cost
flow: We recall our objective function as:

min ∑
(i,j)∈E

ci,jxi,j, (3.2)

where E is the set of all edges, ci,j the cost and xi,j the power flow from node
i to node j. We can formulate this by iterating each node and extracting
the cost from all outgoing adjacencies. In the same iteration, we can also
formulate our constraints in a similar manner: Therefore we conclude, that
the formulation of the mathematical program is performed in linear time
O(m), where m is the number of edges in the network.

Once the minimum cost flow has been computed, this data-structure allows
to efficiently perform the topological sort and the price propagation in one
step: Since each flow in our network originates from a supplier, and the
suppliers are stored in a separate hash-table, we can start by propagating
the prices from them to all their outgoing adjacencies. As soon as a node
has received the prices from all its incoming adjacencies, it can compute
its own price propagate it to its own outgoing adjacencies until all demand
nodes have been reached. Also this process has a linear maximum execution
time of O(m).

Solving the Minimum Cost Flow Problem

After having devised a data-structure, which is suitable for efficiently for-
mulating the minimal cost flow problem as a linear program, we need to ac-
tually solve it. This step is performed using an external linear programming

47

5. Implementation

Node
- price
- totalInPower : int

- inEdges : HashTable[Adjacency]

- outEdges : HashTable[Adjacency]

+ receivePrice(source : Node, price : Double)
+ propagatePrice()

FlowMap

Adjacency

target : node
cost : int

flows
1

Figure 5.4: UML-Diagram illustrating the functions and objects employed
by the nodes to propagate the prices in the network. See Appendix A.1 to
see how the functions are implemented.

solver (LP-Solver). There is a wide variety LP-solvers, that differ in many
ways like licensing, price, offered features, performance and not least the
JAVA interfaces they offer (a detailed comparison can be found in [20]). This
last point makes it very cumbersome to keep our implementation modular
and open enough, to experiment with different solvers, since that would im-
ply rewriting large parts of the code for each solver. Nevertheless, we were
able to evade this problem by using the Google Optimization Tools (or-tools)2, a
set of open source optimization libraries, which among other offer a unified
JAVA interface to several LP-solvers: These solvers include GLOP, an open
source solver, which in Section 6.1.2 we will benchmark against Gurobi, the
solver that outperformed all other solvers in [20].

Regardless of which solver is used, once the computePrices()-function (see
Figure 5.2) is triggered, the objective function and the constraints are ex-
tracted from the graph-representation of the electrical grid, brought into the
standard form required by or-tools and the minimum cost flow problem is
solved. The output of the solve is a hash-table mapping each edge of the
graph to the optimal power-flow running through that edge.

Price Propagation

Once we have the power-flow along each edge of the electrical grid, we can
compute the energy price p(i) at each node i using Equation 3.7, which in
Chapter 3 we defined as:

p(i) =

∑
∀(j,i) ∈ Ein,i

xj,i ∗ (cj,i + p(j))

∑
∀(j,i) ∈ Ein,i

xj,i
, (5.1)

2https://developers.google.com/optimization

48

https://developers.google.com/optimization

5.2. Price-Engine

where (j, i) ∈ Ein,i is the set of incoming edges at node i, xj,i is the optimal
power-flow and cj,i is the cost along edge (j, i).

Since the price at node i also depends on the price p(j) of each neighbor with
an incoming edge (j, i) ∈ Ein,i, we need to compute the prices in topological
order, starting from the suppliers, which don’t have any incoming power-
flows.

This is achieved by two functions in the node-objects: receivePrice(...)

and propagatePrice() (see Figure 5.4). The function receivePrice(...)

allows a node to receive the current price from a previous node. It takes
two arguments, namely the id of the previous node and its price, and
stores them in its inner state along with the optimal power flow of the
corresponding edge. Once it has received the prices from all the previous
nodes, it computes its own price using Equation 3.7 and calls the function
propagatePrice(). This function goes through all outgoing neighbors of
the node, and sends them its own price by calling receivePrice(...) on
them. This process will continue until every node has its own price. For a
more detailed pseudo-code description of this process, please refer to Ap-
pendix A.1.

Output of the Price-Solver

The output of the price solver is a hash-table mapping the ids of all nodes,
for which a price has been computed, to that price, the power flowing into
that node, the power flowing out from that node as well as the time at which
those values have been computed.

5.2.2 Run Function

The run function takes care of polling state updates from the Request-Queue,
using them to update the internal state of the Price-Solver and to periodi-
cally trigger new price computations.

A pseudo-code implementation of the function is provided in Algorithm 1:
Here we can see, that the run()-functions first polls the Request-Queue for
new update requests. If there are no new requests in the queue, it waits
for a certain time-out interval. If a new request was retrieved, the function
takes care of accordingly updating the internal state of the price-solver. If a
certain number of request has already been processed (window-size), it will
trigger a new price computation. If no new request was retrieved, but there
have been other requests which have been already processed, since the last
price computation, it will also trigger a price computation.

The two parameters, timeout and windowSize (see Figure 5.2), can be used
to influence the throughput of the Price-Engine: On slower systems, where

49

5. Implementation

Algorithm 1 Function that runs the Price Engine.

function run()
pending← 0 . Number of state updates since last price computation
while true do

request← QUEUE.poll(timeout) . Get next request
if request 6= null then . If poll did not time out

processRequest(request) . Update state of Price-Solver
pending++ . Increase number of pending updates

end if
if (request = null && pending > 0)

|| (pending > windowSize) then
computePrices() . Compute new price for every node
pending← 0 . Reset counter

end if
end while

end function

computing the prices for the whole network takes a longer time, it might be
a good strategy to keep relatively high values for window-size and time-out.
On faster systems, one might choose to reduce them, to achieve a higher
time resolution for the prices.

Copies of computed prices at each node, as well as the amount of power
each supplier can sell, are stored into two separate, thread-safe, locations:
The Price-Buffer, a static field which always contains the newest computed
results and whose access is regulated by semaphores and the Price-Queue,
a thread-safe queue implementation, where the results are stored until the
Database-Writer collects them.

5.3 Database

The Database is an independent component of our system, that is needed to
provide network information to the request controller as well as storage for
the prices computed by the price engine. The MySQL-Database use in this
implementation, consists of 4 tables: three to capture the network topology
and one containing the computed prices.

Topology Tables. In Section 3.1 we introduced a mathematical model of
the electrical grid as weighted directed graph G(V, E, C) where suppliers,
demands and sub-grids are vertices vi ∈ V and the transmission lines be-
tween them are represented as directed edges ei,j ∈ E with cost ci,j ∈ C.
This model of the grid was represented in a relational-database using three
tables:

50

5.3. Database

id (PK)

type

TYPES
id (PK)

type (FK)

secret

NODES

source (FK)

target (FK)

cost

EDGES

node (FK)

t_start

t_end

price

in_flow

out_flow

PRICES

Figure 5.5: Entity-Relationship model of the database: All connection lines
indicate one-to-many relationships, while the type of key (primary or for-
eign) is indicated in brackets.

Types The types-table contains the different types a node can have. In our
case, a node can be of type supplier, demand, grid or exchange. Each
type has a unique id, which is intended to be used as foreign key by
other tables and a textual description.

Nodes The nodes-table contains an entry for each supplier, demand, grid or
exchange known to the system. Each node has a unique id, a type and
a secret, which can be used to authenticate the requests sent by nodes.

Edges The edges-table contains an entry for each directed edge in the net-
work. An entry consists in the id of the source node, the id of the
target node, as well as the costs associated with traversing that edge.

All entries in this table are only used by the Request-Controller to validate
incoming requests and to augment them with information needed by the
Price-Engine to compute the prices: It is not needed by the Price-Engine
itself and therefore not performance critical to the computations.

Prices Table. The periodically computed prices for each node are stored
into the prices-table along with the time-range they are valid for and the
incoming and outgoing power-flow. The entries in this table are intended to
be used to charge customers and compensate suppliers but are not relevant
to the runtime-system.

51

5. Implementation

Command Parameters Description

enable Enable node with the given id
nodeId Id of node to enable

disable Disable node with the given id
nodeId Id of node to disable

updateSupplier
Set offered price and available supply for

supplier with the given id
nodeId Id of supplier to update
price New price offered by supplier
power New power supply available at supplier

updateDemand
Set power demand for demand node with

the given id
nodeId Id of demand to update
power New power demand at node

getStatus
Return price for demand and price at grid

node and outgoing flow for supplier
nodeId Id of supplier or demand

Table 5.1: Shows the commands made available by the REST-API of the
Request-Controller. Each call can be authenticated by a secret, which was
omitted from the parameters in this table.

5.4 Request-Controller

The Request-Controller is the interface between the server application and
the clients: It receives the REST-requests from suppliers and demands, per-
forms some validations, transforms them into requests understandable by
the Price-Engine and replies to the clients.

The requests are sent by suppliers or demands as HTTP GET requests, where
the Request-URI follows the following pattern:

http :// HOST/COMMAND?PARAM1=val&PARAM2=val 2[...] ,

where HOST must be replaced with the address under which the Request-
Controller can be reached and where the command and the parameters are
part of the REST-API displayed in Table 5.1.

Before a supplier or a demand is able to sell or buy power, it needs to
announce it self to the system. They do this by calling the enable command
along with their own unique id and their private secret. Upon receiving such
a call, the Request-Controller uses information from the topology tables in
the database to check if the caller is known the system and whether it can

52

5.5. Database-Writer

be authenticated using the shared secret. If those validations succeed, the
controller retrieves the id of the grid node associated with the caller and
the grid costs from caller to grid node and uses them, along with the caller
id, to formulate a new enable request, which is put into the Request-Queue.
After this, the status of the caller is set to enabled, which means that Request-
Controller will from now on accept further requests from that node. A node
can again disable itself, by calling the disable command, upon which it will
be first removed from the Price-Engine and then set to disabled.

After being enabled, suppliers can update their price offer and their available
power supply calling the updateSupplier command, while demands can
update their power demand calling updateDemand. Upon receiving such a
request, the Request-Controller if the caller is already enabled and the call
parameters are in a valid value range, the request is put into the Request-
Queue.

Lastly, suppliers and demands can query their own status using the getStatus
call. Upon receiving such a call, if the caller is in enabled state, the system
will immediately reply with the last available status: For suppliers, the sta-
tus consists of price of the grid node they are associated with, the amount of
power, that the system is drawing from them and the time-stamp, at which
does values have been computed. For demands it consists of the price they
are paying and the time-stamp.

As proposed by RFC-7231 [21], the Request-Controller uses the following
status codes to indicate the success of a request:

Code Text Description

200 OK Request successful
400 Bad Request Syntax of request is invalid
401 Unauthorized Authentication credentials missing or incorrect
403 Forbidden Not enabled node tries to update
404 Not Found Requested node or command not found

The body of the responses to the follows the JSON format as proposed by
RFC-7159 [22].

5.5 Database-Writer

The Database-Writer is an autonomous component which runs in a separate
thread and takes care of buffering the results computed by the Price-Engine
over a determined time-interval, averaging them and asynchronously stor-
ing them to the PRICES table of the database.

We recall Section 5.2.1, where we stated that the output of the Price-Engine
consists in a hash-table with an entry for each node i containing the time

53

5. Implementation

at which the price has been computed t, the price pi(t), the sum of the
incoming power flows xi,in(t), as well as the outgoing power flow xi,out(t).

We define the average price over a time-interval [t1, tn] as:

pavg(t1, tn) =

∫ tn
t1

p(t)dt

tn − t1
, (5.2)

which given a series of times T = [t1, t2, . . . , tn] and corresponding prices
P = [p1, p2, . . . , pn] can be approximated using right-Riemann sums as:

p̃avg(t1, tn) =

n
∑

i=2
(ti − ti−1)pi

tn − t1
. (5.3)

The average incoming and outgoing flows for a node can be computed anal-
ogously.

The Database-Writer computes those averages at predefined time-intervals,
after which it dumps them into the PRICES-table of the database.

54

Chapter 6

Performance

In this section we will stress-test the prototype and analyze the bottlenecks
given by the single components and, whenever possible, suggest improve-
ments.

The performance tests in this section will be performed on a PC equipped
with a dual-core Intel R© CoreTM i7-4600U CPU (2.1 GHz) and 12GB of RAM.

6.1 Price-Engine

As we described in the previous section, the Price Engine has to perform
operations to keep its internal state up to date, has to solve a minimum cost
flow problem and finally has to use those minimum flows to compute a
price at each node.

In this section we will test the performance for each of those operations,
identify the bottleneck of the solver and suggest how to solve it.

6.1.1 Updating the Network Topology

As we have seen in the previous section in Figure 5.2, the Price-Solve offers
several API-methods to update the graph representation of the electrical
network. They can be subdivided into two different kinds: Methods that
update the topology of the electrical grid, by adding and removing nodes,
and methods that update the state of single members of the network, e.g.
the price offered by a supplier.

In order to measure the performance of these two types of operations, we
took a random network of 20000 nodes, filled the Request-Queue with an
increasing number of requests for each type and measured the time needed
to perform all requests. As one can see from the results in Figure 6.1, in both
cases the times grow linearly, with some noise caused by other threads being

55

6. Performance

(a) Topology Updates

0 1 2 3 4 5 6 7 8 9 10

Number of Updates [
1

105]

0.0
0.3
0.6
0.9
1.2
1.5
1.8

Ti
m

e
[s

]

(b) Node-State Updates

0 1 2 3 4 5 6 7 8 9 10

Number of Updates[
1

105]

0
10
20
30
40
50

Ti
m

e
[m

s]

Figure 6.1: Shows the times needed to perform up to one million topology
and state updates.

executed on the same CPU, for an increasing number of update operations.
This is due to the fact, that each operation is performed in constant time.

One can also see, that topology updates take a significantly longer time com-
pared to simple node-state updates. This is due to the fact, that while state-
updates simply change the values of some object fields, adding or removing
new nodes requires the instantiation of new objects.

The increased time needed to add and remove nodes to the internal graph
representation however is less performance-critical than the performance of
state-updates, since the expected behavior of an external agent (supply or
demand), is to log on to the system once, perform a series of update actions
and finally to log off: This means that in the normal use-case, state updates
are expected to be significantly more frequent than topology updates.

6.1.2 Computing the Minimum Cost Flow

As already described in the previous section, the minimum cost flow needed
to compute the energy prices for each node in the network is computed
using an external LP-solver.

We tested the performance of two different solvers, the open source solver
GLOP1 and the commercial solver Gurobi2, which according to [20] outper-
forms a number of commercial and open source solvers, excluding GLOP.

The tests were performed by solving the minimum cost flow problem for
random networks of increasing size and by measuring the time needed to
solve it. As one can see from the results in Figure 6.2, while the compu-
tation times for both solvers increase linearly for larger networks, Gurobi
is consistently faster than GLOP. If for example using the latter, the mini-
mum cost flow problem for a network with 100000 nodes can be solved in

1http://developers.google.com/optimization/lp/glop
2http://www.gurobi.com/

56

http://developers.google.com/optimization/lp/glop
http://www.gurobi.com/

6.1. Price-Engine

0 50000 100000 150000 200000

Number of Nodes

0

500

1000

1500

2000

2500

C
om

pu
ta

ti
on

Ti
m

e
[m

s]

GLOP
Gurobi
GLOP - Gurobi

Figure 6.2: Shows the times needed to solve the minimum cost flow problem
for networks of increasing sizes using the open source LP-Solver GLOP and
the commercial solver Gurobi, as well as the time difference.

≈ 1.2 seconds, it can be solved in ≈ 0.75 seconds using Gurobi. The average
performance difference between the two solver lies at ≈ 37.5%.

6.1.3 Price Propagation

As described in the previous sections, after we have solved the minimum
cost flow problem, the energy prices are computed in each node by propa-
gating the prices from the suppliers to all other nodes, in topological order.

We tested the performance of the price propagation on networks with in-
creasing size. As one can see from the results in Figure 6.3, the times in-
crease linearly with increasing size of the network, with some noise caused
by other threads running on the same CPU. Using GLOP, the price propa-
gation on average amounts to ≈ 8.5% of the total price computation time,
using Gurobi, which is consistently faster than GLOP, it amounts to ≈ 10.3%.

6.1.4 Overall Performance and Bottleneck

In this section we have analyzed the performance of the update operations
of the Price-Engine, of the LP-solver and of the price propagation. While the
update operations and the price propagation run fairly efficiently and scale
very well, we can identify the solving of the minimum cost-flow as the main

57

6. Performance

0 50 100 150 200

Number of Nodes [
1

103]

0

20

40

60

80

100

120
Ti

m
e

[m
s]

Figure 6.3: Shows the time needed to compute the prices, once the minimum
cost flow has been computed, for increasing network sizes.

performance bottleneck. We can suggest different approaches to improve its
performance:

Reduce Number of Variables. A first step in reducing the time complexity
of our algorithm could be to reduce the number of decision variables and
constraints in the model:

In Section 3.3, we added the following constraint to our model:

∑
(i,j)∈E

xi,j = dj, j ∈ D, (3.5)

which states that the incoming power flow in a demand-node must always
be equal to the power demand of that node. In other words, the power flow
xi,j along an edge going from grid-node i to demand node j, will always be
equal to the power-demand, no matter how big the cost ci,j on that edge is.

This fact can be used to reduce the number of decision variables and con-
straints by merging all demand nodes at a grid node into one demand node,
whose demand is equal to the sum of the demands, and which is connected
to the grid node with an edge with cost 0.

As one can see in Figure 6.4, where we compare the performance of Gurobi
solving the standard model and the simplified model, on a network with ng

58

6.1. Price-Engine

0 50000 100000 150000 200000

Number of Nodes

0

200

400

600

800

1000

1200

1400

1600

C
om

pu
ta

ti
on

Ti
m

e
[m

s]

Standard Model
Simplified Model
Standard - Simplified

Figure 6.4: Shows the performance gained by simplifying the LP-model
merging all demand-nodes at each grid-node.

grid nodes, 10 ∗ ng supplier nodes and 10 ∗ ng demand nodes, this leads to
a significant performance improvement. In this example, solving the simpli-
fied model was ≈ 55% faster on average.

Distributed Solver. Although we can increase the performance of our Price-
Engine by simplifying the model, optimizing algorithms or by scaling up the
hardware upon which our system runs, the centralized nature of our system
will always set constraints to its scalability.

A better scalability could be achieved by using a distributed approach to
solve the minimum cost flow problem, where the agents (suppliers and de-
mands) solve local portions of the problem, and coordinate each other by
passing messages. Such an approach, which however still relies on a global,
centralized schedule, can be found in [9]. Another distributed approach,
which uses market-based principles, to solve the minimum cost flow in an
electrical grid can be found in [10]. Both of these approaches are however
still preliminary studies, and have yet to be applied on larger scale systems.

Another approach to solve the optimal network flow problem distributedly
is using proximal message passing, which has been applied in [23] and shown
to be able to find optimal flows for networks with over 30 million agents in
less than one second. It follows an iterative approach, based on the alter-
nating direction multiplier method, where at each step, each device sends

59

6. Performance

simple messages to its neighbors and minimizes its own objective function
augmented by a term determined by the messages it has received. In con-
trast to other distributed implementations, this method does not rely on a
centralized schedule and needs no global coordination, other than synchro-
nizing the iterations.

60

Chapter 7

Conclusion

In this project, we proposed an algorithm to compute the local energy price
for each location of an electrical grid based on supply and demand, which
computes a minimal cost-flow of the network, based on which it determines
the prices.

We asserted its low sensitivity, deriving theoretical bounds for the influence
single components can have on the price and verifying them performing
simulations on realistic randomized networks. We discussed possible profit-
maximizing strategies for suppliers and established the stability of the algo-
rithm simulating a network with agents that follow such a strategy.

We implemented this algorithm into a working server-application, which
can be used to further evaluate our solution approach on real electrical grids
and which can compute the prices for 200000 network nodes in around 1.5
seconds. During performance measurements, we came to the conclusion,
that the main performance bottle-neck of this application is the solving of
the minimum cost flow.

Further research to improve early-stage solution should be directed towards
removing this bottle-neck: This could be done by implementing a distributed
minimum-cost flow algorithm in the electrical grid using the alternating di-
rection multiplier method.

61

Appendix A

Functions

A.1 Price Propagation

Algorithm 2 Price Propagation at node i.

function receivePrice(j, pj) . Receive price pj from node j
nin ← nin + 1 . Increase number of received prices
xj,i ← FlowMap.get(j,i) . Get optimal power flow from j to i
xin,tot ← xin,tot + xj,i . Increase total incoming power
cj,i ← inEdges.get(j,i).cost . Get cost from j to i
ptot ← ptot + xj,i ∗ (cj,i + pj) . Increase total price
if nin = size(inEdges) then . All previous prices received

pi ← ptot/xtot . Compute actual node price pi
propagatePrices()

end if
end function

function propagatePrices()
for Node target in outEdges do

target.receivePrice(this, pi)

end for
end function

63

Bibliography

[1] S. Kaplan, “Electric power transmission: background and policy issues,”
US Congressional Research Service, April, 2009.

[2] R. Weron, “Electricity price forecasting: A review of the state-of-the-art
with a look into the future,” International Journal of Forecasting, vol. 30,
pp. 1030–1081, Oct. 2014.

[3] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart Grid — The New and
Improved Power Grid: A Survey,” IEEE Communications Surveys & Tuto-
rials, vol. 14, no. 4, pp. 944–980, 2012.

[4] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. Jennings, “Agent-
based control for decentralised demand side management in the smart
grid,” pp. 5–12, May 2011.

[5] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric
Power Systems : Forecasting, Scheduling, and Risk Management, vol. 9.
2002.

[6] R. Weron, Modeling and forecasting electricity loads and prices: a statistical
approach. Wiley, 2007.

[7] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. W. S. Wong, and
J. Jatskevich, “Optimal Real-Time Pricing Algorithm Based on Utility
Maximization for Smart Grid,” in 2010 First IEEE International Confer-
ence on Smart Grid Communications, pp. 415–420, IEEE, Oct. 2010.

[8] S. Bu, F. R. Yu, and P. X. Liu, “Dynamic pricing for demand-side man-
agement in the smart grid,” in 2011 IEEE Online Conference on Green
Communications, pp. 47–51, IEEE, Sept. 2011.

65

Bibliography

[9] P. H. Nguyen, W. L. Kling, G. Georgiadis, M. Papatriantafilou, L. A.
Tuan, and L. Bertling, “Distributed routing algorithms to manage
power flow in agent-based active distribution network,” in 2010 IEEE
PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe),
pp. 1–7, IEEE, Oct. 2010.

[10] B. HomChaudhuri, M. Kumar, and V. Devabhaktuni, “Market based
approach for solving optimal power flow problem in smart grid,” in
2012 American Control Conference (ACC), pp. 3095–3100, IEEE, June.

[11] G. A. Pagani and M. Aiello, “The Power Grid as a complex network:
A survey,” Physica A: Statistical Mechanics and its Applications, vol. 392,
no. 11, pp. 2688–2700, 2013.

[12] Z. Wang, A. Scaglione, and R. J. Thomas, “Generating Statistically Cor-
rect Random Topologies for Testing Smart Grid Communication and
Control Networks,” IEEE Transactions on Smart Grid, vol. 1, pp. 28–39,
June 2010.

[13] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks.,” Nature, vol. 393, pp. 440–2, June 1998.

[14] O. Mangasarian, “Iterative solution of linear programs,” SIAM Journal
on Numerical Analysis, 1981.

[15] O. Mangasarian and R. Meyer, “Nonlinear perturbation of linear pro-
grams,” SIAM Journal on Control and Optimization, 1979.

[16] Office of the National Coordinatorfor Smart Grid Interoperability,
“NIST Framework and Roadmap for Smart Grid Interoperability Stan-
dards, Release 1.0,” 2010.

[17] R. T. Fielding and R. N. Taylor, “Principled design of the modern Web
architecture,” in Proceedings of the 22nd international conference on Soft-
ware engineering - ICSE ’00, (New York, New York, USA), pp. 407–416,
ACM Press, June 2000.

[18] H. Zhu, Software Design Methodology: From Principles to Architectural
Styles. Butterworth-Heinemann, 2005.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms , Third Edition, vol. 7. 2001.

[20] B. Meindl and M. Templ, “Analysis of commercial and free and open
source solvers for linear optimization problems,” Eurostat and Statis-
tics Netherlands within the project ESSnet on common tools and harmonised
methodology for SDC in the ESS, 2012.

66

Bibliography

[21] R. Fielding and J. Reschke, “RFC7231 Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content.”

[22] T. Bray, “RFC7159: The JavaScript Object Notation (JSON) Data Inter-
change Format,” 2014.

[23] M. Kraning, E. Chu, L. Javad, and S. Boyd, “Dynamic network energy
management via proximal message passing,” Foundations and Trends in
Optimization, pp. 73–126, 2014.

67

	Contents
	Introduction
	Prior Work
	Contributions

	Problem Formulation
	Model of the Electrical Grid
	Sub-Grids and Transportation Costs
	Energy Suppliers
	Demands

	Meaningful Energy Price
	Requirements
	Solution Space

	Experimental Exploration of the Solution Space
	Direct Future Deliveries Market Based on Supplier Offers
	Direct Present Deliveries Market Based on Supplier Offers
	Indirect Present Deliveries Market Based on Supplier Offers

	Supply and Demand Price

	Solution
	Graph Model of the Electrical Grid
	Input and Output
	Minimal Cost Flow
	Price Propagation and Computation at each Node
	Price at Supply Nodes
	Price at Sub-Grid and Demand Nodes

	Uniqueness of the Solution
	Add Quadratic Perturbation
	Randomize the Edge-Costs

	Model Adjustments

	Functional Validation
	Experimental Setup
	Network Topology
	Costs

	Global Influence of a Single Supplier
	Number of Grid Nodes Influenced by Price Reduction 0
	Influence of a Price Reduction 0 on the Global Average Price

	Pricing Strategies
	Influence of Price Change 0 on Power Sold by si
	Influence of a Price Change 0 on the Profit of si

	Dynamic Simulation

	Implementation
	Architecture
	Price-Engine
	Price-Solver
	Run Function

	Database
	Request-Controller
	Database-Writer

	Performance
	Price-Engine
	Updating the Network Topology
	Computing the Minimum Cost Flow
	Price Propagation
	Overall Performance and Bottleneck

	Conclusion
	Functions
	Price Propagation

	Bibliography

