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Abstract

In the past years, the quality and volume of built-in loudspeakers of smartphones
increased considerably. However, there is a limit of performance due to the size
of the devices. In this thesis, we show that it is possible to use multiple modern
smartphones to play audio synchronously to boost the sound or increase its range.
We thereby create a pseudo hi-fi system. Finally, we develop an application that
automatically compensates the differences in audio output latency and achieves
synchronous playback of a song using multiple devices.
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Chapter 1

Introduction

1.1 Motivation

Smartphones have replaced regular cell phones and as they offer multimedia
features in addition to the ability to communicate. The peripherals, like built-in
cameras, GPS, sensors and loudspeakers, improved over the years. However, the
built-in loudspeakers have room for improvement and using external loudspeaker
boxes has drawbacks like additional cost and weight to carry around. Therefore,
we propose to synchronously play music on multiple smartphones in order to
improve the quality and range of the sound.

In this thesis, we show the feasibility of connecting multiple phones and
tablets and playing audio synchronously on them. Instead of using external
loudspeakers for a phone, one can connect to other devices and use the built-in
speakers for playback. This allows for instance to cover a room with music by
distributing the devices in the room.

To play audio synchronously, one has to find a method to compensate the
difference in output latency, which can be in the range of several hundred mil-
liseconds (see Section 2.2). On top of that, the problem is complicated by the
non real-time nature of the operating system.

1.2 Related Work

There are apps on Android that implement audio streaming such as SoundSeeder
[1]. However, synchronization is not automatic, the user has to adjust the offset
between devices manually. In contrast, the app developed in our thesis deter-
mines the latency difference on its own and the music is not streamed, but rather
the song is transferred beforehand and the start of playback is then coordinated
automatically.

On iOS, there are several applications that allow synchronous playback, for
instance Seedio [2], TuneMob [3] and Whaale [4].
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1. Introduction 2

Figure 1.1: Connecting multiple smartphones to play music synchronously.

Google has measured the audio latency on several devices [5]. The sum of
output- and input delay (round-trip latency) was determined in a similar way as
in our application (see Section 3.3). They used the Larsen test, which works the
following way: The phone records audio and plays it immediately, which results
in a feedback. By creating a tone externally, it is possible to measure the time
between the feedback pulses, which is equal to the round-trip latency.

1.3 Outline

The goal was to develop an Android app (called SynBa), that allows us to connect
the devices and calibrate the delays automatically to ensure synchronous music
playback. A design choice was to make the application independent from the
internet. After establishing inter-device communication (see Section 3.1), a way
to create a common sense of time was developed (see Section 3.2). Furthermore,
a method had to be found to eliminate the differences in audio output latency
between devices (see Section 3.3).



Chapter 2

Background

2.1 Operating System

The task of synchronizing actions between devices is complicated by the fact that
mobile operating systems like Android are not designed to be real-time. On top
of the Linux kernel, the applications run on a virtual machine for java byte code
(Dalvik VM or ART). Delays from garbage collection are unpredictable and not
in the control of the developer.

Android runs on a heterogeneous set of devices from different manufactures.
Hence, the application’s desired behavior is not guaranteed, especially when
using peripheral functions like communication, audio output and input. While
Android provides an interface for the developer to use hardware components
without worrying about lower-level implementation, it also creates a black box
that makes it hard to predict the behavior of the device. Using hardware like
audio output via the API results in a chain of function calls, because the software
stack has to be traversed down [6].

2.2 Audio Output on Smartphones

When playing audio files on smartphones, one has to deal with latency. Ac-
cording to the Android documentation [7], the main contributors to audio delay
are:

• Application (delay before writing the samples to the buffer)

• Total number of buffers in pipeline and buffer size in frames

• Additional latency after the app processor, such as from a DSP

It is assumed that latency added by the analog circuitry can be neglected. Note
that the buffers need to be large enough to provide sufficient time to process the
frames, otherwise the audio starts to “stutter” (buffer underrun or overrun).

3
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Figure 2.1: Round-trip audio latency, as published by Google [5]: Sum of output
and input latency. Different devices have latencies in the range of several hundred
milliseconds. Note that newer API versions implement low latency audio.



Chapter 3

Implementation

3.1 Communication

3.1.1 Wi-Fi Direct

We select Wi-Fi Direct as the communication standard, as it allows multiple
devices to exchange data without a central access point (router). The group
owner device acts as a virtual wireless access point. Furthermore, Wi-Fi Direct
provides typical Wi-Fi speed and range, which allows us to quickly transfer the
audio files between devices.

In Figure 3.1 one can see the connection setup process. After the application
has initialized a broadcast receiver, which allows receiving intents from the oper-
ating system, we enter the idle state. When the user presses “Search Peers” on
the user interface, the program begins discovering other devices. As soon as the
list of peers has changed, the app is notified by the Wi-Fi Direct framework. We
can now request the list of devices, which activates a callback when the request
was processed. This gives us a list of available devices in the network to which
we can connect (including the group owner).

5
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Figure 3.1: Wi-Fi Direct Setup: When the “Search Peers” button is pressed, the
function discoverPeer() is called. When the list of peers has changed, the intent
PEERS CHANGED is received. Calling requestPeers() allows us to ask for the
list of devices, which activates the callback onPeersAvailable() when the request
was processed. Depending whether the device is the group owner or not, the role
of master or slave is assigned.
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3.1.2 Communication scheme

The event driven communication scheme of the application is depicted in Figure
3.2. The group owner of the network acts as a master. He runs a server thread,
accepting connection requests from slaves via a server socket. Each connection
is processed by its own communication thread.

Only a slave can start the communication. For each command that needs
to be sent, a client thread is created. After the connection to the server socket
has been established, the command and additional arguments are written to the
output stream of the socket. The argument of the command is used for sending
additional information. On the server side, the responsible thread reads the com-
mand from the input stream and replies depending on the type of the command.
For example, a slave could be asking for the master’s time and the master would
reply with a message containing the time as the argument. Before closing the
socket, the thread posts a message to the handler of the main thread, informing
the application that a command has been received. The same procedure executes
on the client side.
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3. Implementation 9

3.2 Clock Synchronization

In order to synchronize audio playback, the different devices need to have a
common notion of time. One approach is to use the network time protocol
(NTP) for clock synchronization. However, because NTP uses time servers, the
system wouldn’t work without an available internet connection. Therefore, we
decided to implement an algorithm that only uses the wall clocks of the different
devices. The Android operating system allows us to retrieve the nanoseconds
since last boot, including time spent in deep sleep.

When a slave is connected, it sends a message to the master and stores the
time in the variable tout. The master announces his current time tm. When
the slave receives the message at time ts, it computes the the round trip time
RTT = ts − tout. When we make the assumption that the delay of sending a
message is symmetrical,

t̃m = tm +
RTT

2
(3.1)

is a good approximation of the master’s time that corresponds to ts (see Figure
3.3). The procedure is repeated several times to accumulate a set of measure-
ments. This way we can determine a tuple

(ts, t̃m) (3.2)

which allows the slave to have common notion of time with the master.
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Figure 3.3: Clock Synchronization: The slave requests the time by sending the
command “Time”. The master responds with “TimeResponse, tm”, where tm is
the master’s current time.
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3.3 Audio Latency Correction

Determining the absolute audio output latency programmatically is not feasible
as it is highly device dependent. We thus develop a method to compensate the
difference in output latency between the devices.

On the slave device, the app starts to record audio and then plays a sine sound
at a certain point in time ts,start. It then detects the sound at time ts,detected in
the recordings (see Section 3.3.1) and calculates the so called audio round-trip
latency

T1 := ts,detected − ts,start. (3.3)

In a second phase, which is depicted in Figure 3.5, the slave asks the master
to play a sine wave. He will respond, announcing the point in time tstart when
he will play a sine wave. The slave then records audio and detects the sine at
time tdetected, which allows to compute

T2 := tdetected − tstart. (3.4)

This way, we determined two time periods T1 and T2. They consist of the
following delays (see Figure 3.4):

T1 = Tout,1 + Tin,1 (+Tsound,1)

T2 = Tout,2 + Tin,1 (+Tsound,2)

Where Tout,1 and Tin,1 are the audio output- and input latencies of the slave,
Tout,2 is the output latency of the master. We can neglect the propagation delay
of the sine waves Tsound,1 and Tsound,2. It can easily be shown that:

TD := T1 − T2 = Tout,1 − Tout,2 (3.5)

Therefore, TD is the difference in audio output latency between the slave and
the master. This procedure is run once, when two devices connect for the first
time.
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Figure 3.4: Audio Latency Correction

Figure 3.5: Audio Latency Correction: The command “playSine” is sent to the
master. He will respond with “playSineResponse, tstart”, announcing the point
in time tstart when he will play a sine wave. This allows the slave to compute
T2.
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Figure 3.6: FFT of a recorded sine wave

3.3.1 Sine wave detection

As described in Section 3.3, we use sine tones to measure audio latency and thus
a method for detecting them is required. Whenever the audio recording buffer
is filled, we transform it to the frequency domain using a fast Fourier transform
library [8]. Let us denote the transformed buffer as b̂k with k = 0 . . . N/2 − 1.
We then find the maximum absolute amplitude b̂kmax at position kmax. If b̂kmax

exceeds a certain threshold relative to the mean of b̂, we have found a tone. The
frequency of the sound is given by

fmax =
kmax

N
fs (3.6)

with N being the length of the FFT and fs being the sampling frequency of
the recording. In Figure 3.6, one can see the FFT of a buffer of size 1024
with sampling frequency 44100 Hertz. The FFT library only returns half of
the transformation, as it is satisfies the symmetry condition for real input data
(b̂N−k = b̂∗k). With the maximum at kmax = 43, we can compute fmax =

43

2048
44100 ≈ 926Hz. The actual played sound was of frequency 900 Hertz.

When fmax is in an interval around the frequency we searched for, we have
detected it. In a next step the original buffer is divided into chunks of equal size
and the sine detection algorithm is applied on each of them in order to determine
the start of the sine within the buffer.
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3.3.2 Playback Timing

Using the output latency difference TD obtained as described in Section 3.3, we
can synchronize audio playback on multiple devices. The procedure can be seen
in Figure 3.7.

Each connected slave device i has determined its latency correction TDi rel-
ative to the master. The slave sends a command to the master, announcing
that he is ready for playback. All communication threads on the master device
wait until the corresponding slaves are ready. To start playback, all threads are
notified and they transmit te to the corresponding slave, where te is a point in
time in the future.

The slave receives this message at time ts. He plans to start playback in

te − ts + TD (3.7)

nanoseconds, so that at time te + TD the first music samples are written into
the output buffer. Because TD approximates the difference in output latency
between the master and the slave (positive or negative), the playback starts
simultaneously for human ears on all devices at time te.

The waiting time is not implemented by delaying the audio player’s thread
execution. Instead, the thread is started immediately and the number of silent
samples needed for the given waiting time is computed. After the required
amount of silent samples have been played, the thread starts writing the actual
song samples into the buffer. This method is more accurate than posting the
runnable delayed into the threads message queue, because accurate timing of the
thread scheduler isn’t guaranteed.
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Chapter 4

Evaluation

4.1 Clock Synchronization

Like described in Section 3.2, our clock synchronization method yields tuples
(ts, tm). The slave’s time ts corresponds to the master’s time tm. When we repeat
this procedure n times, we get a set of tuples (ts,k, tm,k) with k = 1 . . . n. These
allow us to analyze the variance of the method by transforming all measurements
to the same time reference by doing the following:

Given a reference tuple (ts,1, tm,1), we compute for each tuple a new t′m,k:

t′m,k = tm,k − (ts,k − ts,1) (4.1)

In other words, we subtract the time that has passed since the reference mea-
surement from the current master time.

In Figure 4.1, we can see that this method produces master times with a
standard deviation of about 5 milliseconds. Every second a new master time
was determined. In the top left plot, we can observe a clock drift between the
two devices of about 8 milliseconds per 1000 seconds. To compensate this effect,
the app regularly re-synchronizes using the same technique.

In the plots at the bottom of Figure 4.1 we can see the distribution of the
round trip times of the master time requests (like described in Section 3.2). The
round trip times are likely to be network- and device-dependent. It is interesting
to see that for the tested devices, the variance in clock synchronization is orders
of magnitude smaller than the difference in audio output delays.
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Figure 4.1: Master time deviation and RTT: The distribution of the master times
in the top right are not Gaussian, due to the clock drift between the devices (see
top left plot). In the bottom, one can see the distribution of the round-trip
times, i.e. the duration when the slave requests the time until the response from
the master was received.
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Figure 4.2: Recording of two phones playing a 900 Hertz sine tone. The selection
at the start shows the offset of 5 milliseconds.

4.2 Latency Correction

4.2.1 Test setup

To test the quality of synchronization between devices, the following approach
was taken: A combination of 3.5 mm to cinch cables allowed to connect one
phone to the left channel of the line-in input of a computer and the other phone
to the right channel of the same audio input. This way, we could record the audio
of both smartphones simultaneously. In Figure 4.2, one can see the recording of
two devices playing a 900 Hertz sine tone of 100 milliseconds duration. After a
automatic latency correction of 92 milliseconds, the offset is 5 milliseconds (blue
selection).

Additionally, we wrote a MATLAB script, that automatically detects the
offset between the two channels. The results are documented in the next section.

4.2.2 Results

Tests showed that the approach to coordinate the start of playback, as described
in Section 3.3.2, resulted in offsets of very low variance. In Figure 4.3, we can see
an example of a series of measurements. A series of sine sounds were played syn-
chronously on two devices and the MATLAB script detected the offset between
the two devices.

With a standard deviation of just under one millisecond, the offset can be
regarded as almost constant. However, the application determined a latency
correction of 98 milliseconds, which didn’t completely eliminate the difference in
output latency in this case. As one can see in the figure, the offset has a mean
of about 24 milliseconds, which was not audible. Measurements between other
pairs of devices showed offsets below 10 ms.
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Chapter 5

Conclusion and Future Work

Our implementation approach produced a good synchronization of audio play-
back on four devices at once. It has yet to be evaluated what the maximum
number of connected devices is and if the app works for the most part in the
heterogeneous field of smartphones and tablets. The results of the latency cor-
rection procedure (Section 3.3) are saved in the cloud, which eventually can give
further insights when enough data was gathered. The values could be used to
construct a graph of latency differences between device models (see Figure 5.1).
When the sample size is large enough, the application could fetch the latency
correction from the cloud. It would also be possible to apply a least squares
algorithm on such a graph. For example, in the graph in Figure 5.1, the sum of
edge weights on two paths are not equal.

We noticed that using Wi-Fi direct caused problems on some devices. The
connection was unstable or the device was not able to connect at all. We suc-
cessfully connected four devices which played music synchronously. However, we
do not know how the app scales with the number of devices. According to the
Wi-Fi Alliance [9], the number of devices in a Wi-Fi Direct group is expected to
be smaller than with a traditional access point and it is not guaranteed that a
device supports multiple connections.

An approach would be to use another way of distributing information about
playback timing. Possible options would be using the cell phone towers, GPS or
a web server as a central coordinator.

Our approach to determine audio output latency worked well, but it can still
be improved. It is also possible to think of other algorithms to determine or
compensate the output delay.

Our app allows the master to choose a song and all the devices start playing
simultaneously. If the song is not already on all devices, it is automatically dis-
tributed to all the slaves. The quality is synchronization is good, offsets between
devices were not audible. Nevertheless, there is still room for improvement,
including usability and additional features like displaying meta information of
songs or selecting entire albums for playback.

20
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Figure 5.1: Graph containing latency differences: Arrow denotes a slave-master
relation with the determined latency correction marked on the edge. Note that
98− 200 = −102 6= −94. One could apply the least squares algorithm on paths
with the same start- and end node.
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Appendix A

The User Interface

A-1
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Figure A.1: The app, SynBa
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