m Institut fiir
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Elio Gubser

Measuring
Explicit Congestion Negotiation (ECN)
support based on P2P networks

Semester Thesis SA-2015-FS
February 2015 to May 2015

Tutors: Brian Trammell & Mirja Kiihlewind
Supervisor: Prof. Dr. Bernhard Plattner



Abstract

Explicit Congestion Negotiation (ECN) is a TCP /TP protocol extension, which allows routers to
signal congestion. The goal of ECN is to reduce packet loss, latency and jitter. Unfortunately,
this extension is disabled by default in operating systems because old and faulty hardware breaks
connectivity.

We want to find an answer to how good ECN support is in the Internet. A previous study assessed
ECN support of webservers. A software has been written for measuring a million websites from
multiple vantage points simultaneously.

This semester thesis investigated ECN support by using a similar approach in the BitTorrent
network, in which most participants are end users at home. In contrast to websites, however, there
is no easily obtainable list of hosts in the BitTorrent network. Therefore the existing software
has been modified and extended with an efficient algorithm for collecting IP and port number
of participants in the BitTorrent network. In addition, the whole measurement process has been
automated and is communicating over the mPlane protocol.

Using this new software, a measurement has been performed on one million hosts from five
vantage points. The majority of hosts in the BitTorrent network were ECN safe. About two
hosts per thousand were unreachable when ECN negotiation was enabled. The fact that this
figure is within the same order of magnitude as in the webserver measurements shows that ECN
related connectivity problems not only occur at webservers but also close to the end user.



Contents

Abstract 2

1 Introduction 4
1.1 Motivation . . . . . . . . e 4
1.2 Goals . . . . . e 4
1.3 Code Archive . . . . . . . . 4

2 Background 5
2.1 ECN Safety and Negotiation . . . ... ... ... .. ... ... ... .. 5
2.2 ECN Measurement Method . . . . . .. ... ... .. ... ... ... ... . 5
2.3 Structure of ecnspider2 . . . . . . ... 7

3 Methodology 8
3.1 Acquisition of IP Address/Port Pairs . . . . . . . ... ... .. .. 8
3.1.1 Method 1: Passive Monitoring . . . . . . ... .. .. ... ... ... ... 8

3.1.2 Method 2: Custom Software . . . . . ... .. .. ... .. ......... 9

3.1.3 Method 3: Exploiting BitTorrent Protocols . . . . . ... ... ... ... 9

3.2 Implementation . . . . . . . . ... 12
3.2.1 Amendments to ecnspider2 . . . . ... ... 12

3.2.2 Address Collector . . . . . . . . . .. 12

3.2.3 Imtegration into mPlane . . . . . . ... ..o oo 13

3.3 Measurement Setup . . . . . . ... 16
34 Analysis . . . . 16

4 Results 17
5 Conclusion 19
6 Outlook 20
List of Figures 21
List of Tables 22
Bibliography 23
Problem Statement & Declaration of Originality 24



Chapter 1

Introduction

Conventionally, a TCP/IP connection endpoint interprets packet drops as congestion. Explicit
Congestion Negotiation (ECN) is a TCP/IP protocol extension allowing routers to notify the
sender of the fact that there is a congestion, before having the router forced to drop packets[2].
If the sender receives such a notification, it should reduce its congestion window preventively to
avoid a loss of packets resulting in better latency and less jitter. Unfortunately, this extension is
disabled by default in most operating systems today, because there are still some old or faulty
devices which break connectivity.

1.1 Motivation

We would like to know: How good is ECN support in the Internet?

To answer this question, we need to quantify the deployment of ECN in the Internet by performing
large scale measurements. In fall 2014, a measurement study conducted from commercial grade
servers assessed ECN support of a million popular websites using the HTTP protocol[1].

Based on this approach, this thesis focuses on the BitTorrent network, where most participants
are end users at home. BitTorrent has been chosen because it is the largest peer to peer network
today. In contrast to websites, there is no list of hosts which is easily obtainable in the BitTorrent
network. Thus an algorithm has to be developed to extract such a list.

1.2 Goals

This leads to the following tasks:

Get familiar with existing tools and results (ecnspider, qof, measurement study).

Find and assess feasible solutions on how to get ip addresses from the BitTorrent network
(Section 3.1).

Integrate chosen variant into ecnspider2 (Section 3.2.2).

Implement mPlane support into ecnspider2 (Section 3.2.3).

e Write a tool to conduct measurements from multiple vantage points at the same time
(Section 3.3).

Perform measurement and evaluate results (Chapter 4).

1.3 Code Archive

Accompanying this thesis document is a zip file containing the complete ecnspider2, a patch for
mPlane (Section 3.2.3) and the code for testing method 2 Custom Software (Section 3.1.2).



Chapter 2

Background

The ECN measurement method presented in section 2.2 has been used in a previous study about
ECN support of websites using HTTP[1]. At that time, a program called ecnspider has been
developed. Its reimplementation, ecnspider2, is described in section 2.3.

2.1 ECN Safety and Negotiation

Before ECN is actually used in a connection, both hosts have to negotiate ECN in the TCP
handshake. An ECN safe connection is where the connection succeeds whether or not ECN is
negotiated. An ECN broken connection is where the connection fails only because the initiating
host shows willingness to negotiate ECN.

2.2 ECN Measurement Method

To check ECN support for a given IP address/port pair (called endpoint address from now on),
two consecutive connection attempts are made (Figure 2.1). In order to determine whether the
endpoint is reachable at all, ECN negotiation is disabled for the first connection attempt. After
that, ECN negotiation is enabled and the second connection attempt is performed. Based on
failure or success of the two connection attempts, the endpoint is categorized into ECN supported,
ECN broken, nobody home or transient/other according to table 2.1.

So far, it is impossible to find out if the failure happened at the endpoint or on the path. To
gain more insight into this matter, the same measurement is simultaneously conducted from
geographically distant vantage points in order to have the connections routed via different paths
(Figure 2.2). If ECN-negotiating connection attempts fail only on some paths, the connectivity is

‘ Endpoint address ‘

Y
wl/o ECN

- 1 |

ecnspider Middleboxes Endpoint
w/ ECN

1 l
Figure 2.1: Procedure for testing a single endpoint. Two connection at-

tempts are made using a machine, running the measurement software ecn-
spider2, to the endpoint through the Internet (middleboxes).

|/




CHAPTER 2. BACKGROUND

Connection | w/o ECN | w/ ECN
ECN safe success success
ECN broken success failure
nobody home failure failure
transient/other failure success

Table 2.1: Characterization of ECN safety based on the results of two con-
nection attempts.

considered path-dependent and the problem most probably lies within a middlebox on the path.
On the other hand, if all paths fail, it is called site-dependent and the problem most probably

lies near the endpoint.

middleboxes

Figure 2.2: When some vantage points fail to establish an ECN-negotiating
connection, the connectivity is considered path-dependent.



2.3 Structure of ecnspider2 7

2.3 Structure of ecnspider2

To automate the measurement presented in the last section, ecnspider has been developed by
Damiano Boppart in 2014[1]. It has been recently reimplemented by Brian Trammell and is
organized as shown in figure 2.3.

A measurement is initiated by calling add_job() with an endpoint address. Any number of jobs
can be added and will eventually be executed. Several hundred jobs are executed in parallel by
worker threads. At the beginning, ECN negotiation is turned off in the operating system by the
configurator. Each worker tries to establish a connection to the endpoint specified in the job.
After all workers have finished connecting, ECN negotiation is turned on by the configurator.
Now each worker tries to establish a second connection to the endpoint. Once all workers have
finished connecting, the results of both connection attempts are stored in the Result Queue and
all open connections are closed.

At the same time, a program called Quality of Flow[4] (QoF) observes the network traffic and
stores detailed information, such as TCP/IP flags and TTL values into the Flow Queue.

In the end, items from the Flow Queue and Result Queue are combined by comparing endpoint
IP and local port!. Then the user-specified callback function result_sink() is called with the
complete result.

add_job()

v

Job Queue ‘ ‘

w/o ECN )
O\ N P '
CEn S SR
w/ ECN
\ﬁ(—/
‘ ‘ ‘ Result Queue ‘ ‘\ @
° ‘ Flow Queue ‘ }_’

result_sink()

Figure 2.3: Simplified structure of ecnspider2. Each one of several hundred
worker threads performs a measurement on a different endpoint, while the
configurator changes the operating system’s ECN negotiation setting. De-
tailed TCP flow information is acquired using QoF. The merger combines
the connection results and flow observation into a measurement result.

11t is not sufficient to compare only by endpoint IP, because there are two connections which are being initiated.
Furthermore, to ensure that the local port is not the same for both connection attempts, the first connection is
kept open while connecting for the second time.



Chapter 3

Methodology

The practical part of this thesis consists of enhancing ecnspider2 to perform measurements
using endpoints connected to the BitTorrent network. For extracting endpoints from the network,
three methods are discussed in section 3.1. The expansion of ecnspider? is explained in section
3.2. The setup used to perform the measurement is presented in 3.3. Finally, incorporation of
ecnspider2 into mPlane[3] is described in section 3.2.3.

BitTorrent clients transfer data using either TCP or uTP[6]. uTP is a BitTorrent transport
protocol working over UDP. It has been developed to improve latency and congestion issues
compared to traditional BitTorrent transport over TCP. However, this measurement study only
investigates the TCP protocol, because uTP doesn’t have ECN functionality.

Note: Differences in Measuring ECN in the BitTorrent protocol compared to HTTP

In contrast to an HTTP server, a BitTorrent client immediately drops the connection if it realizes
that it can’t serve the request. Only a TCP handshake can be observed. ECN signalling is disabled
for TCP control packets. This prevents measurement of ECN support in the IP layer and limits
the observation to ECN negotiation in the TCP layer. Fixing this deficiency is a task that still
has to be conducted (Chapter 6).

3.1 Acquisition of IP Address/Port Pairs

As there is no list of running BitTorrent clients readily available, a method for collecting endpoint
addresses is needed. Three concepts to achieve this are presented in the following subsections,
concluding with the one which has actually been implemented.

3.1.1 Method 1: Passive Monitoring

An unmodified BitTorrent client is started and several popular torrents are added. The client
will connect to other clients and download the data as usual. During this operation, the network
traffic is passively observed and every client’s IP and port is recorded.

Comment

This method is considered easy to implement. But unfortunately, it isn’t suitable for collecting
thousands of endpoint addresses because the client only needs to connect to a couple of clients
to be able to download at full speed.



3.1 Acquisition of IP Address/Port Pairs 9

3.1.2 Method 2: Custom Software

To speed up the address collection process, the software is customized so that it will connect to
many more endpoint addresses. At the same time, instead of monitoring the network traffic, the
addresses should be extracted directly from the BitTorrent client through API calls.

One way to achieve this is by adding firewall rules (e.g. iptables) in order to block traffic to
all learned endpoint addresses. The client is then forced to ask for more clients to download.
Another way is to use blacklisting if it is supported by the software.

For a quick test of the feasibility of the method, a small python script has been written®. It uses
libtorrent[9] to do the heavy lifting and maintains an IP-filter (blacklist) obeyed by libtorrent to
disallow connections to already known clients. This forces libtorrent to repeatedly ask for more
clients. After a certain number of endpoint addresses have been collected, the script writes them
into a file and shuts down the client.

Comment

Using a custom software is a lot faster than the previous method. With libtorrent it is particularly
easy to automate and extract endpoint addresses without needing to observe network traffic.
Drawback is that the code is hacky and inelegant. To enforce the blocklist, one has to pause the
client, update blocklist and resume client. This generates a lot of overhead and may result in
unstable performance.

3.1.3 Method 3: Exploiting BitTorrent Protocols

Another approach is to look directly at the underlying BitTorrent protocols. More specifically, the
protocols used by the client to learn new endpoint addresses. There are two major protocols in
use today: the tracker protocol[5] and the distributed hash table (DHT) protocol[7]. The former
needs a central address server, called tracker, to which every client has to connect and request
information about other clients. The latter protocol doesn’t need a server, because each client
is assigned to maintain a part of the address list, forming a decentralized database. The DHT
protocol also supports IPv6 by an extension[8].

One may assume that tracker servers impose limitations on the number of requests made by the
client, effectively limiting the speed of address collection. Therefore, this thesis concentrates on
the decentralized DHT protocol.

The DHT protocol runs over UDP using the same port number as the BitTorrent protocol,
which uses TCP. In this protocol, a client is referred to as a node. Each node has a unique 160
bit identifier called node ID. It is randomly generated from the same number space as BitTorrent
infohashes used for identifying torrents.

To start downloading or uploading a torrent, a node needs to find out which nodes are actually
serving the torrent. The DHT requires every node to store torrent infohashes which are close to
its own node ID.

Each node maintains a routing table of node ID and endpoint addresses with a preference for
nodes having a small distance. Where the distance is defined as d = A zor B.

To find the endpoint address of a particular node in the network, the node closest to it in the
local routing table is contacted. The contacted node then returns a list of endpoint addresses of
nodes yet closer to the particular node. Repeating this process, one comes closer and closer to the
node in question and finally acquires its endpoint address. This functionality is called find_node
in the protocol specification. Figure 3.1 illustrates it with an example.

By using the find_node functionality of the DHT protocol, acquiring endpoint addresses is
straightforward. As shown in Figure 3.2, an algorithm sends random requests to nodes, which in
turn responds with a list of nodes. These nodes are then also contacted using random requests.
The process is repeated until the desired number of endpoint addresses is reached.

1Located in the code archive inside method2/



10 CHAPTER 3. METHODOLOGY

B Tell me
address of Y.

Y
node A ﬁ -

Figure 3.1: A network of nodes, where A, C, P... indicate node IDs. In this
example, node A wants to know the endpoint address of node Y. @ First
it requests this information from the known node C closest to Y. (2) But C
doesn’t know Y, it only knows some nodes closer to Y. (3) Node A asks node
P and @ still gets no satisfying answer. This process is repeated until it
arrives at node X @, which returns the endpoint address of Y @ Finally,
node A is able to connect to node Y (7).

Comment

Repeating this process quickly yields a massive amount of possible targets with a minimal effort.
It is superior to the previous methods and therefore chosen for implementation.



3.1 Acquisition of IP Address/Port Pairs

11

node A

node B

node C

1. Tell me address
of [random]

4

2. Don't know,
ask 123.1.1.33:9881

or 83.54.31.66:2134
or61.72.1.3:2716
or...

Figure 3.2: Concept for collecting addresses from the BitTorrent DHT net-

work.

\

Address Collector




12 CHAPTER 3. METHODOLOGY

3.2 Implementation

This section explains the building blocks of the measurement setup as illustrated in figure 3.4.

Among other changes, ecnspider2 has been modified to be easily extendable for supporting more
protocols and operating systems (Section 3.2.1).

The address collector described in section 3.1.3 has been worked out as illustrated in figure
3.3 and described in section 3.2.2. The Implementation centers around a Python class, called
BtDhtSpider, following the generator pattern. This means, getting endpoint addresses from the
DHT network is as easy as iterating over a list (Listing 3.1).

In section 3.2.3, the mPlane components for the address collector and ecnspider2 are presented.
Utilising these components, an mPlane client application has been written to perform automated
measurements (Section 3.3).

The final analysis has been done separately (Section 3.4).

The complete ecnspider2 - including address collector algorithm and mPlane code - is located in
the code archive inside pathtools/.

3.2.1 Amendments to ecnspider2

The following is a summary of the changes that have been made to ecnspider2.

Initially, ecnspider2 only supported HTTP connections. For each HTTP connection a GET /
request is performed. To add support for other protocols, such as BitTorrent, the HTTP code
is stripped away from class EcnSpider2, now measuring TCP handshake only. HTTP related
code is moved into a new subclass EcnSpider2Http. Other protocols can be easily added to the
ecnspider2 suite by overriding connect (), post_connect (), ignore_flow() of class EcnSpider2.

As explained in the introduction of this chapter 3, only observing the TCP handshake is possible
when contacting a BitTorrent client. For that reason, the EcnSpider?2 class is used for measuring
BitTorrent clients.

Other additions:

e Automatically select ECN configuration code, depending on the operating system. Cur-
rently Darwin/OS X and Linux are supported, but this can be extended easily.

e After investigating spurious missing measurement data, it was found out that to actually
close a TCP connection immediately socket.shutdown(socket.SHUT_RDWR) has to be
called before socket.close().

e For supporting the mPlane reference protocol implementation’s interrupt pattern, a thread
called interrupter has been added to qofspider, which repeatedly calls a user-supplied func-
tion and performs a clean teardown when it returns True.

3.2.2 Address Collector

Following the general idea of section 3.1.3, the detailed workflow is presented here. Before the
start, the Nodes to Ask queue is filled with known endpoint addresses called bootstrap nodes
(D (See figure 3.3). Afterwards, the sender thread draws endpoint addresses from this queue and
sends requests to nodes at these addresses.

Unfortunately, if the request rate is too high, the kernel will silently drop packets before even
sending them out to the network interface. Therefore, rate limiting is implemented into the
algorithm as described in the next paragraph.

To limit the amount of running requests and bandwidth, the sender will issue a request only if
the following conditions are met (2):

e Output Queue size falls under a pre-defined threshold.



IS NG VR U

3.2 Implementation 13

e Count of Running Requests is below a maximum number of running requests.

e The average number of bytes sent in a time interval is below a maximum bandwidth limit.
The average is calculated with the help of the Bytes Sent queue. For each sent packet, a
pair (count of bytes sent, current time) is added to the queue. Entries older than
a specific time, called slot time, are deleted from the queue. The average bandwidth is
then calculated as the sum of bytes divided by slot time.

If these conditions are met, the request is sent and a request state, including the current time, is
added to the list of Running Requests (3).

The sender thread scans this list and deletes entries older than a specific time (timeout) (4).

Assuming the node answers to our request in time, the receiver removes the corresponding request
entry in Running Requests(5) and analyzes the response data. It adds the newly learned endpoint
addresses to the Nodes to Ask queue(6). If the queue is full, it removes older items and replaces
them with new ones.

Then the receiver puts all learned endpoint addresses in the Output Queue (7). Optionally, the
receiver maintains a set of already encountered endpoint addresses in Unique Set to ensure that
each endpoint address is put only once into the Output Queue.

Finally, endpoint addresses can be obtained from BtDhtSpider by simply iterating over the
object as shown in listing 3.1.

. bootstrap

[TBytes Sent] |
O @

<node> ‘RunnlngRequests‘ ‘ ‘ ‘ Nodes to Ask ‘ ‘

il

‘ Output Queue ‘ ‘

o

‘ ‘ next(...)

‘ ‘ Unique Set

(optional)

Figure 3.3: Overview of the address collector. A sender and a receiver thread
collect endpoint addresses with the help of various lists and queues. A de-
tailed description is found in section 3.2.2.

dht = BtDhtSpider ()
dht.start ()
for idx, addr in enumerate (dht):
print (dht)
if idx >= 100:
break
dht.stop ()

Listing 3.1: Usage example of BtDhtSpider. Prints every learned address
to standard output.

3.2.3 Integration into mPlane

For supporting mPlane, two components and a client application have been written. The client
application, called master, controls the measurement process. It retrieves endpoint addresses
from the address collector component, called btdhtspider. Then it sends them to the ecnspider
component. The detailed setup is explained in section 3.3. The terminology used in this section
is declared in [3].




© W N e ;oA W N =

[
I N e O )
H H H H

o
0

14 CHAPTER 3. METHODOLOGY

Name Type Description

btdhtspider.nodeid string | BitTorrent Distributed Hash Table node iden-
tifier (in hex)

btdhtspider.unique boolean | Assertion (or negation) that only unique ad-
dresses should be returned

btdhtspider.count natural | Count of addresses to collect

ecnspider.ecnstate boolean | Assertion (or negation) that ECN negotiation
is enabled in the OS.

ecnspider.initflags.fwd natural | TCP initialization flags in forward direction.

ecnspider.synflags.fwd natural | TCP SYN flags in forward direction.
ecnspider.unionflags.fwd | natural | TCP flags in forward direction.

ecnspider.initflags.rev natural | TCP initialization flags in reverse direction.
ecnspider.synflags.rev natural | TCP SYN flags in reverse direction.
ecnspider.unionflags.rev | natural | TCP flags in reverse direction.
ecnspider.ttl.rev.min natural | Minimum TTL seen in reverse direction.

Table 3.1: New registry entries used by ecnspider in addition to the default
registry.

[module_ecnspider]

module = ecnspider2.mp_component

# custom registry url

reguri = https://n.ethz.ch/ egubser/ecnregistry. json
# count of worker threads

worker_count = 200

# timeout for measurement connections
connection_timeout = 4

# libtrace URI which QoF should monitor.
interface_uri = ring:wlanO

# port number for communication with QoF
qof_port = 54739

other optiomnal arguments:

ip4addr = 0.0.0.0 # bind ecnspider to this IPv4 address

ip6addr = :: # bind ecnspider to this IPv6 address
btdhtport4 9881 # bind address collector to this IPv4 address
btdhtport6 9882 # bind address collector to this IPv6 address

Listing 3.2: ecnspider2 relevant section in the component configuration file.

Listed in table 3.1 are additional ecnspider-specific elements in the mPlane registry. The con-
straint [*] declares a multivalue element. Multivalue parameters are an experimental feature
of the mPlane protocol. At the time of writing, this feature was broken but a patch has been
written as part of this thesis?.

Table 3.2 shows the capabilities of the ecnspider component and table 3.3 shows the capabilities
of the address collector component.

Accompanying the component is a configuration file mp_component.conf. The relevant section
is shown in listing 3.2. The client also has a configuration file mp_client.conf, shown in listing
3.3.

2Located in the code archive inside mplane/




N

[ B N1}

12

13

14

15

3.2 Implementation

15

Parameter Constraint
destination.ip4 / .ip6 [*]
destination.port [*]
Result

source.port
destination.ip4 / .ip6
destination.port
connectivity.ip
ecnspider.ecnstate
ecnspider.initflags.fwd
ecnspider.synflags.fwd
ecnspider.unionflags.fwd
ecnspider.initflags.rev
ecnspider.synflags.rev
ecnspider.unionflags.rev
ecnspider.ttl.rev.min

Table 3.2: ecnspider-ip4 / ecnspider-ip6: Capability for TCP handshake-
only measurement.

Metadata Value
source.ip4 / .ip6 (defined in config)
source.port (defined in config)
Parameter Constraint
btdhtspider.count *
btdhtspider.unique *

Result

destination.ip4 / .ip6

destination.port

btdhtspider.nodeid

Table 3.3: btdhtspider-ip4 / btdhtspider-ip6: Capability for BitTorrent ad-

dress collection.

[ecnspider]

# list of vantage points, keyword = host:port

# the keyword is used in the results file as vantage point identifier.

ams = path-ams.corvid.ch:18888
lon = path-lon.corvid.ch:18888
nyc = path-nyc.corvid.ch:18888
sfo = path-sfo.corvid.ch:18888
sin = path-sin.corvid.ch:18888

[client]

# url for address collector.
# either btdhtspider-ip4 or btdhtspider-ip6 is allowed.

btdhtspider-ip4 =

path-ams.corvid.ch:18888

# how many measurements should be done in a job.

chunk_size = 10000

Listing 3.3: ecnspider2 relevant sections in the client configuration file.




16 CHAPTER 3. METHODOLOGY

3.3 Measurement Setup

The measurement is conducted from five vantage points as shown in figure 3.4. Endpoint addresses
are collected from the BitTorrent network and sent to the master. The master formulates jobs
and sends them to each vantage point, which in turn perform the measurement. After that, the
results are reported back to the master, which saves all results into a csv file for later analysis
(Section 3.4).

Vantage Points

(ecnspider2) Test Subjects

‘ New York City
Master o \
c e
y @
o Amsterdam \\
- T~
ingapore w—__ | .
,,,,,,,,,,,, BER P aneg - > Endpoints
London | o
Address Collector //V

San Francisco

- N

BitTorrent /|
- Network  ~

A

Figure 3.4: Measurement setup consisting of master, address collector, van-
tage points and test subjects. The address collector retrieves endpoint ad-
dresses from the BitTorrent network and gives them to the master, who
orders the vantage points to perform measurement on the endpoints. The
results from all vantage points are finally collected and analyzed at the
master.

3.4 Analysis

The analysis is inspired by the former measurement study[l], but it has been written from
scratch?.

3Located in the code archive under pathtools/ecnspider2/evaluation.ipynb



Chapter 4

Results

The measurement was performed on 11 Mai 2015 targetting 1 million endpoints from five com-
mercial grade servers rented from DigitalOcean: New York City, Amsterdam, Singapore, London
and San Francisco. Of all contacted endpoints, 687089 (68.71%) were online, i.e. reachable by at
least one vantage point.

Table 4.1 shows the key figures obtained by combining the results (Table 2.1) from all vantage
points. The vast majority (92.34%) of all online endpoints were reported ECN safe from all
vantage points, which is slightly lower compared to the HTTP study[1] (95.86%). On the other
hand, 0.21% were reported as ECN broken, implying site-dependent connectivity. This value is
better than in the HTTP study (0.38%). In the third case (1.45%), some paths have failed, but
it wasn’t because of ECN. The last case with a percentage of 6.01% is for measurements which
didn’t fit into the other three cases. It contains transients and endpoints with potentially path
dependent connectivity.

Hosts pct | Description
634426 92.34% | ECN safe on all paths
1441 0.21% | ECN broken on all paths
9936 1.45% | Connection failure on some paths, not ECN related
41286 6.01% | Transient / Potentially path dependent
687089 100.00% | Total online endpoints

Table 4.1: Connectivity statistics, of 687089 IPv4 hosts, all vantage points,
11 Mai 2015

Looking at the results from the London vantage point yields more information about the par-
ticipants of the BitTorrent network. According to the TTL spectrum (Figure 4.1), there are no
endpoints with TTL over 128 (Solaris or Google). Endpoints with TTL > 64 are considered
Windows machines and TTL < 64 are considered Unix derivatives, such as Linux and Mac OS
X. Not surprisingly, the majority of BitTorrent users have Windows machines (70.44%).

Heterogenous Linux machines

Regarding ECN safety, there is an unexpected high percentage of Transient / Potentially path
dependent connectivity (14.40%) for Linux / OS X machines (Table 4.2).

This may be due to the strong heterogenous nature of Linux operating systems. Three of many
possible causes could be: 1) Embedded Systems like NAS, routers and media centers can have
integrated BitTorrent clients. These systems normally run a highly customized Linux operating
system. 2) Seedbozes are rented servers which run BitTorrent clients within a specialized data-
center network. There may be some accellerator device or load balancing in place. 3) There are
BitTorrent apps for Android (and also i0S) smartphones. If such a mobile device is on a train
or in a car, it often has to switch its base station, resulting in unstable connectivity.

17



18 CHAPTER 4. RESULTS

Linux / OS X pct | Windows pct | Description
167595 82.64% 466831 96.61% | ECN safe on all paths
557 0.27% 884 0.18% | ECN broken on all paths
5453 2.69% 4483 0.93% | ECN unrelated connection failure on
some paths
29202 14.40% 11024 2.28% | Transient / Potentially path dependent
202807 100.00% | 483222 100.00% | Total records

Table 4.2: Connectivity statistics, of 686029 IPv4 hosts,
London, 11 Mai 2015

0.2
%‘ Linux — ECN safe all paths
@ 0-1r /\ Windows ECN broken all paths|]|
00— ‘
64 128 255

Figure 4.1: TTL spectrum of connectivity, of 686029 IPv4 hosts,
London, 11 Mai 2015

ECN Negotiation

Almost all Windows machines do not negotiate ECN (Table 4.3, Figure 4.2). This corresponds
with the fact, that ECN negotiation is disabled by default in all Windows versions except Win-
dows Server 2008 and newer. It seems that some people (5781 hosts, 1.24%) are running a
BitTorrent client in a Windows Server corporate infrastructure.

The ECN negotiation rate of Linux machines (68.28%) is almost the same as experienced in the
HTTP study (69.73%).

Overall negotiation rate (19%) is much lower compared to the HTTP study (56%). This is simply
because most of the clients are Windows machines.

ECN safe on all paths | Linux  pct Windows  pct Both  pct || HTTP
negotiated 114432 18% 5781 1% | 120213 19% 56%
not negotiated 53163 8% 461050 73% | 514213 81% 44%

Table 4.3: ECN negotiation, of 634426 IPv4 hosts, London, 11 Mai 2015

0.2

— ECN
0.1}k Linux ¢ i
Windows no ECN
0.0 - .

64 128 255
TTL

density

Figure 4.2: TTL spectrum of ECN negotiation, of 634426 IPv4 hosts, Lon-
don, 11 Mai 2015



Chapter 5

Conclusion

The existing measurement software ecnspider2 has been modified to be easily extendable for
supporting more protocols and operating systems (Section 3.2.1). An efficient algorithm for col-
lecting IPv4 and IPv6 addresess from the BitTorrent network has been written (Section 3.2.2).
A set of tools have been developed to facilitate automated measurement and analysis (Section
3.3 and 3.4). All communication is done over the mPlane protocol (Section 3.2.3).

By measuring BitTorrent clients from commercial grade servers, valuable information has been
collected about ECN support in the downstream. A large measurement of 1 million endpoints
was performed on 11 Mai 2015 from five vantage points. The fact that most BitTorrent clients
ran on Windows desktop machines hardens the assumption that we are dealing with end users
at home.

The majority of hosts in the BitTorrent network were ECN safe (92.34%), which is slightly worse
compared to webservers (95.86%, HTTP study[l]). Unfortunately, when ECN negotiation was
enabled, a small fraction of hosts (0.21%) was not reachable at all. Altough this value is better
than in the HTTP study (0.38%), it is still within the same order of magnitude.

Apparently, ECN related connectivity problems not only occur at webservers but also near the
end user. In my personal experience, my internet access at home breaks connectivity when ECN
negotiation is enabled.

19



Chapter 6

Outlook

e A notable proportion (6.01%) of measured endpoints showed Transient / Potentially path
dependent characteristics (Table 4.1). Further investigation could lead to interesting in-
sights. For example, one could find out the proportion of stable path dependency. To de-
termine that a particular endpoint exhibits path-dependent connectivity, the measurement
needs to be repeated over time and the result should always be the same.

e A similar task would be to find out which categories of Linux devices contribute to the
14.40% in table 4.2.

e As explained in the introduction of chapter 3, only observing the TCP handshake is possible
when contacting a BitTorrent client. To perform actual data transfer, the request from
ecnspider2 needs to contain a valid torrent infohash, which has to be obtained from outside
the DHT network. For example, by acquiring torrent infohashes by digesting RSS feeds
from BitTorrent trackers and then looking for nodes seeding those torrents using the DHT
protocol. When performing the measurement, the corresponding torrent infohash is sent as
part of the BitTorrent handshake. The disadvantage here is that it adds a lot of complexity
to the address collector algorithm and ecnspider2.

20



List of Figures

2.1

2.2

2.3

3.1

3.2
3.3

3.4

4.1
4.2

Procedure for testing a single endpoint. Two connection attempts are made using
a machine, running the measurement software ecnspider2, to the endpoint through
the Internet (middleboxes). . . . . . .. ... ...

When some vantage points fail to establish an ECN-negotiating connection, the
connectivity is considered path-dependent. . . . . . . . . ... ... ...

Simplified structure of ecnspider2. Each one of several hundred worker threads
performs a measurement on a different endpoint, while the configurator changes
the operating system’s ECN negotiation setting. Detailed TCP flow information
is acquired using QoF. The merger combines the connection results and flow ob-
servation into a measurement result. . . . . .. ... ..o

A network of nodes, where A, C, P... indicate node IDs. In this example, node A
wants to know the endpoint address of node Y. @ First it requests this information
from the known node C closest to Y. (2) But C doesn’t know Y, it only knows
some nodes closer to Y. (3) Node A asks node P and (4) still gets no satisfying
answer. This process is repeated until it arrives at node X (5), which returns the
endpoint address of Y (6). Finally, node A is able to connect to node Y (7). . . .

Concept for collecting addresses from the BitTorrent DHT network. . . . . . ..

Overview of the address collector. A sender and a receiver thread collect endpoint
addresses with the help of various lists and queues. A detailed description is found
in section 3.2.2. . . . . .. e

Measurement setup consisting of master, address collector, vantage points and test
subjects. The address collector retrieves endpoint addresses from the BitTorrent
network and gives them to the master, who orders the vantage points to perform
measurement on the endpoints. The results from all vantage points are finally
collected and analyzed at the master. . . . . . . . . ... ... ... ...

TTL spectrum of connectivity, of 686029 IPv4 hosts, London, 11 Mai 2015 . . . .
TTL spectrum of ECN negotiation, of 634426 IPv4 hosts, London, 11 Mai 2015 .

21

10
11

13

16

18



List of Tables

2.1

3.1
3.2
3.3

4.1
4.2
4.3

Characterization of ECN safety based on the results of two connection attempts.

New registry entries used by ecnspider in addition to the default registry.
ecnspider-ip4 / ecnspider-ip6: Capability for TCP handshake-only measurement.
btdhtspider-ip4 / btdhtspider-ip6: Capability for BitTorrent address collection.

Connectivity statistics, of 687089 TPv4 hosts, all vantage points, 11 Mai 2015
Connectivity statistics, of 686029 IPv4 hosts, London, 11 Mai 2015 . . . . . . . .
ECN negotiation, of 634426 IPv4 hosts, London, 11 Mai 2015 . . . . . . ... ..

22

14
15
15



Bibliography

[1] B. Trammell, M. Kiihlewind, D. Boppart, I. Learmonth, G. Fairhurst, and R. Scheffenegger:
Enabling Internet-Wide Deployment of Explicit Congestion Notification, Proceedings of the
2015 Passive and Active Measurement Conference, New York (March 2015)

. Ramakrishnan, S. Floyd, D. Black: e ition of Explicit Congestion Notification
2] K. R krish S. Floyd, D. Black: The Additi f Explicit C ion Notificati
(ECN) to IP, RFC 3168, IETF (September 2001)

[3] B. Trammell (ed), mPlane Architecture Specification, mPlane Public Deliverable 1.4, Octo-
ber 2014.

[4] B. Trammell: Quality of Flow: IPFIX flow meter based on YAF, focused on passive TCP
performance measurement, September 2014
https://github.com/britram/qof/tree/develop
(Retrieved: 04.05.2015, commit 32699377¢5)

[5] B. Cohen: The BitTorrent Protocol Specification, BEP 3 (January 2008)
http://www.bittorrent.org/beps/bep_0003.html
(Retrieved: 27.04.2015)

[6] A. Norberg: uTorrent Transport Protocol, BEP 29 (June 2009)
http://www.bittorrent.org/beps/bep_0029.html
(Retrieved: 27.04.2015)

[7] A. Loewenstern, A. Norberg: DHT Protocol, BEP 5 (January 2008)
http://www.bittorrent.org/beps/bep_0005.html
(Retrieved: 27.04.2015)

[8] J. Chroboczek: BitTorrent DHT Extensions for IPv6, BEP 32 (October 2009)
http://www.bittorrent.org/beps/bep_0032.html
(Retrieved: 11.05.2015)

[9] A. Norberg: libtorrent python binding
http://www.libtorrent.org/python_binding.html
(Retrieved: 07.05.2015)

23


https://github.com/britram/qof/tree/develop
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0029.html
http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0032.html
http://www.libtorrent.org/python_binding.html

Problem Statement &
Declaration of Originality

24



BIBLIOGRAPHY 25

Measuring Explicit Congestion Negotiation (ECN) support
based on P2P networks

Master / semester thesis

Background

Explicit Congestion Notification (ECN) [1] is a TCP/IP extension that allows congestion signaling with-
out packet loss and therefore can greatly increase the performance on the Internet. Even though ECN
was standardized in 2001, and it is widely implemented in end systems, it is barely deployed. This is due
to a history of problems with severely broken middleboxes shortly after standardization, which led to
connectivity failure and guidance to leave ECN disabled. Recent measuremnet studies [2, 3] have show
an increasing support of ECN on websevers of up to 50% which is the first step for ECN deployment
on the Internet. Further on-going activities in research and standardization aim to make the usage of
ECN more beneficial. Therefore it is import to assess the marginal risk of enabling ECN negotiation by
default on client end-systems.

0.65 7
g

0.60}| ®oge i
w A L
" LR S T TS Y N, T .0 . ¢« o
] ° oo o (S g °° 0....00. 00 . . [N
® 0.55 —0’.00 | v N we® ;\.'o....°:.o~\:’.':.~.."o......:.o.f .O.:o L8 ..:o .:.. *
° ° ° o e o o°
()] .
© 050} % R
£ °
a

045 L L L L L L

200000 400000 600000 800000 1000000

cite rank (hins nf 5000)

Figure 1: Proportion of websites negotiating ECN by Alexa top 1 mio rank

Thesis Goals

This measurement study aims to further assess the deployment status of ECN support utilizing Peer-to-
Peer (P2P) networks. Based on popular content a set of IP addresses should be identified and probed for
ECN support. The measurement methodoloy will be based on the same approach as used in [3]. There-
fore a measurement tool called ECN-Spider is available that must be adapted to the P2P enviroment.

This leads to the following tasks:
1. Creation of a target IP address list based on popular P2P content
2. Adaptation of ECN-Spider to utilize an exsiting P2P client or perfrom TCP connection tests
3. Evaluation of measurement results to assess ECN support and detect connectivity problems

4. Interactive reprensentaion of the results on http://ecn.ethz.ch

Contact: Brian Trammell, trammell@tik.ee.ethz.ch, ETZ G93
Mirja Kiihlewind, mirja.kuehlewind@tik.ee.ethz.ch , ETZ G93

Professor: Prof. Dr. Bernhard Plattner
References:

1. Ramakrishnan, K., Floyd, S., Black, D.: The Addition of Explicit Congestion Notification
(ECN) to IP. RFC 3168, IETF (September 2001)

2. Kiihlewind, M., Neuner, S., Trammell, B.: On the State of ECN and TCP Options in the
Internet. In: Proc. Passive and Active Measurement 2013, Hong Kong (March 2013)

3. http://ecn.ethz.ch, November 2014



	Abstract
	Introduction
	Motivation
	Goals
	Code Archive

	Background
	ECN Safety and Negotiation
	ECN Measurement Method
	Structure of ecnspider2

	Methodology
	Acquisition of IP Address/Port Pairs
	Method 1: Passive Monitoring
	Method 2: Custom Software
	Method 3: Exploiting BitTorrent Protocols

	Implementation
	Amendments to ecnspider2
	Address Collector
	Integration into mPlane

	Measurement Setup
	Analysis

	Results
	Conclusion
	Outlook
	List of Figures
	List of Tables
	Bibliography
	Problem Statement & Declaration of Originality



