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Abstract

This work presents an approach for detecting strong prosodic events (i.e. emphasized words) in

speech signals. The detection of emphasis is useful in speech-to-speech translation. It helps to

ensure that post-translation prosody reflects speakers’ original intentions, i.e. translated words

corresponding to emphasized words in the input signal are also emphasized in the translated

signal.

The steps taken in this work were split into three parts. Firstly, intensity, phone duration

and fundamental frequency were extracted from input audio signals. Secondly, more compact

features were derived from these three quantities. Finally, the derived features were utilized to

train different classifiers, which were then evaluated. The necessary speech samples were taken

form the multilingual SIWIS corpus.

This work’s evaluation shows the best performing classifiers in combination with the chosen

feature extraction are random forests for the languages German and English and support vector

machines for French. Random forests achieved F1 scores of 0.607 for German and 0.613 for

English in out-of-bag classification. For French, an F1 score of 0.606 was achieved by support

vector machines in cross-validation tests.

Oui-Oui
打字机文本
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1 Introduction

1.1 Motivation

Speech recognition transforms spoken language to written text. This process is bound to lose all

of a speech signal’s information that does not have a counterpart in the written language. One

phenomenon exclusive to spoken language is prosody. This includes intonation, tone, stress and

rhythm. Omitting prosodic information may lead to misunderstandings. Assuming that bold

letters indicate a strong prosodic event, namely emphasis, the three sentences listed below have

different meaning. Without emphasis the reason why Jill does not want to go to the movies with

Jack tonight is unclear.

Jill doesn’t want to go to the movies with Jack tonight.

(Jill wants to do something else with Jack tonight.)

Jill doesn’t want to go to the movies with Jack tonight.

(Jill would rather go with someone else or generally does not like Jack.)

Jill doesn’t want to go to the movies with Jack tonight.

(Jill wants to go to the movies with Jack another day.)

The above example shows prosody’s dependence on pragmatic information. Other than that

prosody is also influenced by semantics and syntax. In text-to-speech generation prosodic pa-

rameters are estimated using syntax analysis. For computers it is usually not possible to assess

a text in its semantic and pragmatic aspects. This is why computer generated prosody does

not measure up with human speech. In some cases, the ignorance of semantic or pragmatic in-

formation leads to wrongly generated prosody. For example, syntax-based prosody would not

produce the emphases in the example sentences above. This problem is currently impossible to

solve directly.

In speech-to-speech translation, however, there is a way to avoid logically incorrect prosody.

The speech recognition part can be extended to additionally detect aspects of prosody in the

original speech signal. Thus, the loss of prosodic information in speech recognition is reduced.

After machine translation of the recognized text, the captured prosodic information can be com-

bined with the syntax analysis-based prosody for speech generation.

The above described approach for better prosody in speech-to-speech translation relies on a

suitable detector of prosodic information in the original signal. This work presents an approach

for the detection of strong prosodic events (i.e. emphasized words). This task is non-trivial.

While emphasis is easily audible to humans, it is hard to detect by speech signal analysis.

In the future it will be possible to incorporate this work’s findings in speech-to-speech trans-

lation. The translated signal will thereafter be a better representation of speakers’ original inten-

tions. In the case of the example above, speech-to-speech translation will no longer introduce

ambiguity. If the speaker originally emphasized tonight, this information will be carried on into

the translated message.
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1.2 Approach

To humans the difference between emphasized and neutrally spoken words is easily audible.

However, the difference is less clearly visible in a recorded speech signal as shown in Figure 1.1.

In this example the word no is emphasized in the second utterance. The first utterance does not

contain any special emphases.

There is no direct way to detect the emphasized no directly from the audio recording as

shown in Figure 1.1. Hence, any detection method must be of a more complicated nature. The

approach taken in this work was split into three steps. Each of them is described briefly below.

Raw feature extraction According to [12] measurable prosodic quantities in a speech signal

are fundamental frequency and intensity profile as well as phone and pause duration. The

first two quantities can be calculated directly from a digital representation of a recorded

speech signal. The last two require additional segmentation information. For this work,

recorded audio signals and segmentation were provided. Section 2.2 describes the calcu-

lation of the four quantities in detail.

Derived feature calculation For classification purposes it is generally not feasible to directly

use raw input features. It is common practice to extract more compact features first. Such

derived features should contain as much of the input data’s relevant information as possi-

ble while discarding redundancies. The process of derived feature calculation is described

under Section 2.3. There is one derived feature for each of the four measurable prosodic

quantities.

Time [s]
0.5 1 1.5 2

-0.2

0

0.2

Renewable energy is no exception.

Neutral utterance

Time [s]
1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

Renewable energy is NO exception.

Utterance with emphasized word

Figure 1.1: Comparison of neutral and partially emphasized utterances

4



Classification The goal of this work is the prediction of emphasized words. For this purpose,

the four derived features need to be combined in a meaningful way.

One approach is to find a function that combines the derived features. Such an approach

is taken by [10], where an addition of suitable features is performed. However, addition

is not feasible for the features derived in this work, as they vary in range and influence.

Another approach is to find a meaningful combination by machine learning. In [11], for

example, multilayer perceptrons are used for the classification of prosodic events. In this

work also classifiers were used. In order to find the most suitable classifier architecture,

several different types of classifier were trained and evaluated. This process is described

in Section 2.4.
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2 Implementation

In this work the process of emphasis detection is divided into three steps, that is, raw feature

extraction, derived feature calculation and classification. Each of these steps is described in

detail in this chapter. All implementation was done in MATLAB.

The development of a method for emphasis detection requires a speech signal data set. More

information on the data set used in this work is provided in Section 2.1.

2.1 Data Set

This project requires a set of audio samples containing emphasized words. Gathering and anno-

tating speech signals is cumbersome. Hence, it was advisable to work with a preexisting corpus.

A suitable set for this project was the multilingual SIWIS corpus, which was created as a part

of the SIWIS project [6].

When this corpus was recorded, 22 speakers were asked to record 50 sentences each. 25

sentences contain normal prosody and the other 25 are the same sentences with intentional

emphasis on a couple of words. Out of the 22 speakers 10 were male and 12 were female. All

of the speakers recorded utterances in at least two languages. The corpus contains recordings in

German (DE), English (EN), French (FR) and Italian (IT).

The audio signals and their textual representation provided by the multilingual SIWIS cor-

pus do not contain all necessary information for this work. This work’s feature extraction also

required a phonetic transcription and a segmentation of the example signals. Both were pro-

duced with lab internal software of the ETH speech processing group [1] and provided for this

work.

The provided phonetic transcription files indicate phrase, word and syllable borders, syllable

stress and phonemes. The segmentation files include start and end times of each phoneme.

The segmentation software split most of the plosives into a closure and a release part. This

allowed for a separation of the two parts when calculating phoneme statistics, which lead to

more accurate results.

The phonetic transcription uses symbols of the ETH computer phonetic alphabet (ETHPA).

An overview of these symbols is given in C.

While the SIWIS corpus contains samples in four languages, segmentation was only possi-

ble for German, English and French. This is why in this work the Italian samples were omitted.

Table 2.1 lists the number of available audio samples and Table 2.2 shows a statistical evaluation

of the length of these samples.
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DE EN FR All languages

Female speakers 8 9 11 12

Male speakers 3 7 8 10

Files with no emphasis 292 402 506 1200

Files with emphasis 207 334 358 899

Total files 499 736 864 2099

Neutral words 3606 5842 6985 16433

Emphasized words 262 415 458 1135

Total words 3868 6257 7443 17568

Table 2.1: Data set size

DE EN FR All languages

Average sentence length
3.24 s 2.98 s 2.89 s 3.01 s

7.8 words 8.5 words 8.6 words 8.4 words

Average emphasis length
0.81 s 0.77 s 0.75 s 0.77 s

1.3 words 1.3 words 1.4 words 1.3 words

Minimum sentence length
0.82 s 0.94 s 1.03 s 0.82 s

3 words 4 words 4 words 3 words

Minimum emphasis length
0.22 s 0.12 s 0.09 s 0.09 s

1 word 1 word 1 word 1 word

Maximum sentence length
7.16 s 5.62 s 7.24 s 7.24 s

17 words 15 words 20 words 20 words

Maximum emphasis length
2.54 s 2.97 s 2.84 s 2.97 s

3 words 4 words 5 words 5 words

Table 2.2: Mean duration of sample speech signals and their emphasized parts
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2.2 Primary Features

The four measurable prosodic quantities in a speech signal are fundamental frequency profile,

intensity profile and phoneme and pause duration [12]. All of them are influenced by emphasis.

Generally speaking, emphasis increases duration, magnifies intensity and results in a higher

pitch. Thus, in a first step of this work, these primary features were extracted for each recording

in the data set.

In Section 2.2.1 the combined extraction of pause and phoneme duration is presented. Sec-

tion 2.2.2 contains details on intensity feature extraction. Fundamental frequency extraction is

described under Section 2.2.3.

Fundamental frequency was calculated as a function of time. Duration and intensity features

were both calculated on a phoneme level. Deriving higher order features from duration and

intensity required a statistical analysis of these raw features. Since the data set is rather small,

a word based statistic was not possible. Therefore, the statistics were accumulated once for

each phoneme separately and thereafter for different phoneme classes. The phoneme classes

are shown in Table 2.3.

2.2.1 Duration

The segmentation files provided the start and end times of each phoneme of an utterance. The

duration of a phoneme was determined by taking the difference between its start and end time

as shown in (1).

durphoneme = tendphoneme − tstartphoneme (1)

This calculation was done for all phonemes and a statistic for each phoneme as well as for

all phoneme classes was compiled. For the raw feature extraction pauses within a sentence were

interpreted as separate phonemes and also included in the statistics. Some of the recordings

have a rather long pause at the beginning and end due to the recording circumstances. These

start and end pauses were not included in any statistics since they do not belong to the actual

utterance.

DE EN FR

Short vowel X X X

Long vowel X X

Diphtong X X

Nasal vowel X

Plosive closure X X X

Plosive release X X X

Nasal X X X

Fricative X X X

No class X X X

Table 2.3: Phoneme classes for German, English and French
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2.2.2 Intensity

For each utterance an intensity contour was calculated using the root mean square (rms) value

over a window of 30ms with a 5ms shift. The intensity of each phoneme was then determined

by taking the maximum of the intensity contour over the duration of the phoneme. Figure 2.1

shows an example of how the intensity values of a phoneme were determined. The red circles

indicate the extracted intensity values for each phoneme.

In order to account for intensity differences resulting from varying recording conditions

(such as the speaker being closer to or further away from the microphone), the resulting in-

tensity values were normalized by dividing them by the mean rms value of the whole audio

signal. The drawback of the normalization is, that it might level out the intensity contributions

of emphasized parts.

Based on the extracted phoneme intensity values, a statistic was constructed listing the in-

tensity’s mean and variance as well as the number of each phoneme’s occurrences. The values

in this statistic were used in the calculation of the derived intensity feature.

Time [s]
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.4

-0.2

0

0.2

0.4 Z @ p_c p O R t_c t ~9 Z y Z m

Input speech signal

Time [s]
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

Z @ p_c p O R t_c t ~9 Z y Z m

RMS-intensity contour

Phoneme intensity value

RMS-intensty

Figure 2.1: Example of an intensity contour with indicated intensity value for each phoneme
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2.2.3 Fundamental Frequency

Within the speech processing group of ETH there are several lab internal MATLAB meth-

ods suited to extract fundamental frequency from an audio signal. The two considered for this

work were detect_f0_contour.m and getfundamentalfreq.m. The former esti-

mates fundamental frequency by finding the most probable contour in a high-resolution cep-

strogram as described in [9]. The latter approximates fundamental frequency using the input

signal’s cepstrum. Where this fails, the latter method uses autocorrelation, frequency contour

prolongation in the spectogram and interpolation. Unvoiced frames are marked as such.

Figure 2.2 shows a comparison of the two fundamental frequency extraction methods. Both

extraction methods were applied to the same signal for different window sizes. The comparison

shows that getfundamentalfreq.m delivers inconsistent results when comparing window

sizes of 0.1 and 0.05 seconds. Hence, detect_f0_contour.m was chosen to extract fun-

damental frequency contours in this work.
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Figure 2.2: Comparison of fundamental frequency extraction methods
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Related to fundamental frequency extraction is voicing information. While some parts of

a speech signal are voiced, others may be silence, unvoiced or something in between. Funda-

mental frequency information is most relevant for frames which belong to voiced parts of a

signal. The lab internally provided function detect_voicing_information.m classi-

fies frames into the five categories unvoiced, silence, voiced, mixed excitation and irregularly

voiced. For further calculations the unvoiced and silence frames were discarded.

2.3 Derived Features

Directly applying machine learning methods to the extracted raw features described above

would have required very powerful classifiers and an immensely large training data set. Since

the size of the given training set was limited, it was necessary to condense the information con-

tained in the raw features. This was done by calculating derived features from the input raw

features. Ideally, such derived features contain as much of the raw feature information relevant

to emphasis as possible while discarding overhead.

Some of the derived features in this work were inspired by feature extraction methods for

prosodic analysis in existing work such as [8] and [10]. For the others, the general approach to

finding suitable derived features was to compare plots of raw features of neutral signals with

their emphasized counterparts. Possible good features were then implemented and evaluated

using Fisher distances. As this method worked best for each raw feature separately, one derived

feature was calculated for each of the four measurable prosodic speech signal quantities. Each of

these derived features is described in detail in the following sections. There was no combination

of different raw features in the calculation of one derived feature. The combination of frequency,

intensity, phoneme and pause duration was done by the classifiers in the next step.

Other than containing as much information on emphasis as possible there were several

other requirements for the derived features. One requirement stemmed from classifiers needing

fixed length input vectors per classification unit. Possible classification units were time frames,

phonemes, syllables or words.

Classifying each time frame separately was impractical, because some of the raw features

were given on phoneme level (e.g. phoneme duration). Classification per phoneme or syllable

was possible. However, if phonemes or syllables had been chosen as classification unit, this

would have resulted in the need for another combination or classification step. Given that not

all phonemes or syllables of one word may have been classified as emphasized, an additional

step would have been needed to decide whether or not the whole word was emphasized. Such an

additional step would have made the evaluation more complicated. Hence, in this work words

were chosen as classification unit.

With words set as classification unit, each derived feature needed to produce a constant

number of values per word. This number did not have to be the same for different features,

as long as it was constant within one feature. While any constant number was admissible, one

value has proven to be sufficient. Hence, every derived feature resulted in one value per word.

Another requirement for derived feature calculation was the reduction of influences other

than emphasis. Prosodic quantities are influenced by many factors. Fundamental frequency, for

example, tends to be higher at the beginning of a prosodic phrase and lower towards the end.

Such influences, that do not stem from emphasis, had to be excluded from the derived features.
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2.3.1 Duration

The duration of an emphasized word is inclined to be longer than that of the same neutral word.

Thus, as a meaningful indicator of emphasis, the duration of a word needs to be compared to its

statistical neutral length. Due to a limited data set, in this work it was not possible to establish

word level statistics. Hence, the comparison had to be done on a phoneme level. In search of a

word based duration feature, an approach from [10] was explored and applied to the provided

data set. The relative word prolongation (rwp) of a word w is defined in (2). dur(w) is the sum of

the duration of each phoneme in the word w, and
∑

p∈w stat_dur(p) is the sum of the statistical

duration of each phoneme. The statistical duration of a phoneme is the mean of the durations of

all neutral occurrences of that phoneme in the given data set.

rwp(w) =
dur(w)−

∑

p∈w stat_dur(p)

#phonemes
(2)

The rwp takes into account the statistical duration of a word by summing up the statistical

durations of each of its phonemes. Using rwp circumvented the need for word level statistics.

A second approach for deriving a duration feature was inspired by [8]. The idea was to

compare the word and its surrounding words to how an “average speaker” would utter the

context. This approach resulted in two features per word τdur and ζdur. An extensive explanation

and the formulas for calculating these values are given in [8]. However, the obtained Fisher

distances for these features were not as high as the ones of the rwp. The comparison of the

Fisher distances between the two approaches can be found in Section 3.1.2. The decision on a

derived duration feature was made in favor of the rwp.

2.3.2 Intensity

An emphasized word typically shows an increased intensity compared to its neutral counterpart.

However, not all phonemes’ intensity is increased the same. In order to differentiate between

emphasized and neutral, the intensity of each phoneme needs to be compared to its statistical

neutral value. [10] used such a comparative feature for detecting emphasized words, which was

adapted to this work’s purpose. (3) shows the definition of the relative intensity increase (rii) of a

word w with its most prominent syllable being σ̂. rms(σ̂nuc) signifies the intensity of the nucleus

of a word’s most prominent syllable, and stat_rms(σ̂nuc) is the corresponding statistical value.

The statistical intensity of a phoneme was the mean of the intensity off all neutral occurences

of that phoneme in the given data set.

rii(w) = rms(σ̂nuc)− stat_rms(σ̂nuc) (3)

Only the intensity of the most prominent syllable is used as a discriminative feature. This is

based on the assumption that emphasis influences this most prominent syllable’s intensity the

strongest.

The rii in this work was slightly altered from what [10] proposed. Instead of using the rms

values of all phonemes in a syllable, only the syllable nucleus rms values were considered. In

experiments, this type of calculation showed better distinction between neutral and emphasized

words.
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Another idea was again inspired by [8]. The same approach as mentioned in Section 2.3.1

was applied to intensity. Each word resulted in two corresponding features τint and ζint. An ex-

tensive explanation and the formulas for calculating these values are given in [8]. The context of

a word was compared to how intense an “average speaker” would speak it. However, the Fisher

distances for this approach were lower than for the rii. Thus, the rii was chosen as the intensity

feature. In Section 3.1.2 a comparison of the Fisher distances between the two approaches is

listed.

2.3.3 Fundamental Frequency

Emphasized words tend to display increased fundamental frequency. Thus, fundamental fre-

quency is a suitable feature to describe emphasis. However, fundamental frequency is also in-

fluenced by other factors. Looking at the fundamental frequency value of one frame, the value

will strongly depend on the frame’s location in a prosodic phrase and the syllable stress level.

In order to alleviate the influence of prosodic phrase position, it was necessary to look at fun-

damental frequency deviation rather than absolute fundamental frequency values. Rather than

the absolute fundamental frequency contour, one should measure the difference between the

fundamental frequency contour and a smoothed version thereof. This required the calculation

of a smoothed fundamental frequency contour.

Figure 2.3 shows the two approaches for smoothing the fundamental frequency contour

taken into consideration in this work. Generally, fundamental frequency tends to decay over the

progress of one prosodic phrase. Hence, one approach was to take a linear regression of the

fundamental frequency in each prosodic phrase. This was used in [8]. However, most speakers

show some deviations from the general pattern of linear fundamental frequency decay over

one prosodic phrase. Using a short-term average as approximation instead helped taking such

deviations in fundamental frequency pattern into account. This is why in this work the final

fundamental frequency features were calculated with the help of short-term averages, not linear

fundamental frequency regression.

The short-term average was calculated by averaging the fundamental frequency values of

all frames within a certain window. For the average’s calculation silence and unvoiced frames

were discarded. It was necessary to find a good value for the size of the window in consid-

eration. For this purpose, the Fisher distance between the fundamental frequency features of

emphasized words and neutral words was compared for different window sizes. As can be seen

in Figure 2.4, a window size of 3 seconds lead to good results for all three languages. Hence, the

final fundamental frequency features were calculated using a short-term average over a window

of 3 seconds.

Another influence to be alleviated was syllable stress level. The selected approach for this

consists of two steps. Initially, the fundamental frequency feature was calculated for each syl-

lable. Subsequently, the highest syllable fundamental frequency increase was assigned to the

entire word. This is also in accordance with the tendency of emphasis to increase fundamental

frequency most strongly in dominant syllables.
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Originally, the fundamental frequency increase was calculated per syllable and then av-

eraged over a word to result in one value per word. Because this approach did not take into

consideration dominant syllables, it was performing worse than the approach described right

above. A comparison of the two approaches’ performances is presented under Section 3.1.2.

The alleviation of syllable stress level demanded the calculation of one derived fundamen-

tal frequency feature value per syllable. It had to be decided, which part of each syllable’s

fundamental frequency contour was to be compared to the fundamental frequency short-term

average. Generally, the syllable nucleus carries more valuable information on fundamental fre-

quency than the syllable transitions. Hence, for each syllable the average fundamental frequency

of its nucleus was calculated. Figure 2.5 shows the calculated nucleus fundamental frequency

averages in the partial sentence “I look forward to hearing”. The light blue shaded nuclei were

detected automatically using the assumption that all vowels belong to a syllable nucleus.

Once the short-term fundamental frequency average at each syllable center and each syl-

lable’s nucleus fundamental frequency average were determined, the syllable’s fundamental

frequency feature was calculated as the difference of those two values.

Fundamental frequency of a speech signal depends on the speaker’s gender. This is also

true for the variance of a signal’s fundamental frequency. Depending on the type of derived

fundamental frequency this features may be gender-dependent. In that case a normalization

would be necessary to abolish the gender differences. However, for the fundamental frequency

features derived as described above, the gender difference was negligible. Figure 2.6 shows

the fundamental frequency feature distribution’s cumulative density of neutral and emphasized

words for both genders. As seen, the features depend a lot more on emphasis than they do on

gender.
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Figure 2.5: Fundamental frequency averages of detected nuclei in the partial sentence “I look

forward to hearing”
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Figure 2.6: Gender dependency of fundamental frequency feature visualized as CDF

2.3.4 Pause Duration

Table 2.4 gives an overview of the average duration of pauses and plosive closures depending on

their location in a sentence. Table 2.5 lists the probability with which a segment is a pause. This

statistical analysis of the audio samples in the multilingual SIWIS corpus reveals that emphasis

leads to both longer and more frequent pauses. The findings correspond to what one would

intuitively assume about the influence of emphasis on pauses.

The difficulty in deriving a fixed length pause feature for each word, lies in the fact that not

every word is surrounded by pauses or contains any of them. As seen in Table 2.5, pauses within

words are a very rare occurrence. This is why they were not included in the calculation of pause

features.

After discarding pauses within words, pause information was transformed into fixed length

features by taking the duration of pauses in front and behind the word as feature values. If there

was no pause, the value was set to zero. This resulted in a feature of length two for every word.

This was one of numerous possible pause features considered in this work.

Mean pause duration Mean closure duration

DE EN FR DE EN FR

Within emphasized words 185.5 ms 135.9 ms 186.6 ms 54.2 ms 59.0 ms 74.1 ms

Between emph. words 94.3 ms 73.7 ms 129.8 ms 52.9 ms 71.1 ms 74.3 ms

Right before emph. words 138.1 ms 156.5 ms 177.4 ms 64.3 ms 73.8 ms 83.8 ms

Right behind emph. words 169.5 ms 185.1 ms 183.6 ms 63.1 ms 55.2 ms 70.8 ms

Within neutral words 129.2 ms 117.4 ms 123.7 ms 48.9 ms 50.3 ms 56.5 ms

Between neutral words 138.7 ms 131.3 ms 138.9 ms 52.8 ms 50.6 ms 56.1 ms

Table 2.4: Average pause and plosive closure duration for different sentence locations
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Probabilty of character being a pause

DE EN FR

Within emphasized words 0.63% 1.03% 1.40%

Between emphasized words 8.00% 12.33% 16.28%

Right before emphasized words 23.70% 23.39% 24.19%

Right behind emphasized words 33.02% 43.71% 41.13%

Within neutral words 0.26% 0.42% 0.53%

Between neutral words 7.28% 7.64% 7.04%

Table 2.5: Probability of pause occurrence for different sentence locations

Other versions of the feature took into account that pauses are not detected in front of plo-

sives. Pauses before plosives are always listed as part of the plosive closure. Hence, for the

second version of the feature, both plosive closures and pauses were set as feature values. Ab-

sence of plosive or pause still resulted in a zero feature entry.

Counting plosive closure and pauses equally may put too much weight on plosive closures.

Another version of the feature did not use the entire plosive closure, but only added plosive

closure elongation as a feature. The elongation was calculated in two different ways. For one

version the elongation was equal to the measured plosive closure minus the general mean plosive

closure for that language. For another version the elongation was calculated as the difference

between measured closure and the mean duration of the closure for the given phoneme for that

language.

In two other versions of the feature, duration information was discarded. For one of them,

both pauses and plosive closures were translated into a feature value of one. Their absence was

translated into zero. For another, only pauses were counted as ones, everything else as zero.

All the pause feature versions above delivered two values per word. One way of reducing

these two values into one was to add them up. This was done for all 6 previously described

feature versions.

Another way of reducing the two values to one, was by discarding one of them. Tests have

shown that the values based on pauses after a word contain more information on whether the

word is emphasized than the ones before.

To find out which feature version performs best, Fisher distances were calculated. An

overview of the Fisher distances of the best performing features is given in the results sec-

tion of this work (Chapter 3). For all three languages, the best performing feature was the added

up combination of pause and full closure duration.
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2.4 Classification

Nowadays an abundance of ready-to-use implementations of classifiers exist. This work’s fea-

ture extraction was implemented in MATLAB. Thus, it suggested itself to use the MATLAB

Statistics and Machine Learning Toolbox [4] for classification. All classifier implementations

used in this work, with the exception of hidden Markov models, stem from this toolbox.

A total of four different classifier architectures were evaluated in this work. Each of them is

described briefly below. Furthermore, Section 2.4.1 gives an overview of the samples used for

classifier training and Section 2.4.6 shows the approach for parameter optimization, which all

four classifier architectures have in common.

2.4.1 Classification Data Samples

The calculation of derived features described above resulted in four values per word, one for

each feature. This allowed to build a data set which was suitable to train classifiers for empha-

sized word detection. Each word equated to one sample, consisting of a feature vector and a

label. A sample’s feature vector contained the four derived features. The label of the sample

indicated whether it was emphasized or neutral.

For each language one data set as described above was built. These data sets were of the

right format to train and evaluate classifiers.

The multilingual SIWIS corpus contains a lot more neutral words than emphasized ones

(cf. Table 2.1). The resulting imbalance amongst the two classes of samples may reduce per-

formance in certain classifiers. For that purpose, balanced data sets were generated in addition

to the full data set described above. The balanced sets contained all emphasized samples of a

given language and an equal number of randomly chosen neutral samples.

For the evaluation of hidden Markov models, support vector machines and neural networks,

10-fold cross-validation was performed. This was to avoid any loss of generality, which testing

a classifier with its own training data would entail. When performing 10-fold cross-validation

on the balanced set, it was ensured, that the 1:1 ratio between neutral and emphasized samples

was kept for all the folds. Random forests were evaluated using the out-of-bag classification

error.

For 10-fold cross-validation with balanced training sets, the number of available training

samples was given as 2·9

10
times the number of one language’s emphasized samples. For 10-fold

cross-validation with unbalanced training sets, the number of available training samples was

given as 9
10

times the total number of a language’s samples. Table 2.6 contains an overview

of the number of available training and testing samples for the training and testing of each

classifier in 10-fold cross-validation. Values are stated for both, training with a balanced data

set and training with the full set.

2.4.2 Support Vector Machines

Training a binary support vector machine equates to finding the ideal separating hyperplane

between training samples of two classes in a feature vector space. A more detailed description

of support vector machines can be found under [5].
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Training samples Testing samples

DE EN FR DE EN FR

Balanced 471 747 824 3397 5510 6619

Unbalanced 3481 5631 6698 387 626 745

Table 2.6: Number of available training and testing samples for balanced and unbalanced

training sets

The support vector machine implementation provided as part of the MATLAB Statistics and

Machine Learning Toolbox [4] allows for the adjustment of multiple parameters. Below, a short

overview of the most important ones with regard to this work is given.

Standardization It is commonly acknowledged as good practice to standardize features for

machine learning. To ensure that standardization is not contra productive, some tests are

run without it.

Cost Training a support vector machine with an unbalanced data set may produce a classifier

that is biased towards the more frequent class. There are two solutions of this problem.

One is to artificially balance the data set by leaving out part of the more frequent class’s

samples (here: neutral samples). The other is to assign a higher cost of misclassification

to samples of the less frequent class. In this work, both methods have been assessed.

Kernel The default kernel of support vector machines is linear. This results in the construction

of a hyperplane between the two classes which are to be separated. However, some classes

need a non-linear separation. This is achieved by using different kernels. The derived

features in this work were not linearly separable. Hence non linear kernels had to be

used.

2.4.3 Random Forests

A random forest is an ensemble learning method which constructs a predefined number of de-

cision trees during training and classifies a new sample according to a majority vote of the

individual trees. More information on random forests and how they can be implemented in

MATLAB can be found under [3]. For the training of a random forest, bagging (bootstrap ag-

gregating) was applied. During bagging, for each decision tree that is being built, a new training

set of the same size D as the original training set is constructed by sampling the original training

set D times with replacement. The training samples that have not been selected for the current

tree are used for testing. This method makes cross-validation for random forests redundant.

The MATLAB Statistics and Machine Learning Toolbox [4] provides a framework for ran-

dom forests with several possible parameters to modify. The most interesting adjustable param-

eters for this work are shortly explained below.

Number of trees According to [7] random forests do not overfit the data. Hence, an arbitrary

high number of trees can be grown. For this work the number of trees was set to 2000.
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Cost In order to get a less biased classifier in case of an unbalanced training set, a cost matrix

can be defined. With this matrix the training samples of the less represented class can be

assigned a higher cost of misclassification.

Minimum leaf size The minimum leaf size can prevent overfitting for individual decision trees.

It determines the minimum number of observations of for each tree leaf. A larger mini-

mum leaf size reduces the depth of a tree. For random forests it is used as a mean to speed

up training.

Decision split variables At each decision split of a tree a certain number of feature variables

are chosen at random to optimize the split. Increasing the number of variables to choose

from increases both the correlation between two trees in the forest and the strength of each

individual tree. Decreasing it reduces both the correlation and the strength. Thus, there is

a tradeoff between correlated but stronger trees and uncorrelated but weaker trees.

Because random forest training was calculation intensive, optimization was done in two

parts. First, the minimum leaf size and number of decision split variables were optimized. The

criterion for this was the F1 score. In a second step, the random forest with the best minimum

leaf size and number of decision split variables was optimized over different cost matrices. The

validity of this two step optimization is based on the assumption that the cost matrix’s influence

and the influence of the minimum leaf size and the number of decision split variables are inde-

pendent regarding performance. While such an assumption was necessary, its validity may be

limited. For future work, a more comprehensive optimization should be taken into considera-

tion.

2.4.4 Hidden Markov Models

A two-state hidden Markov model (HMM) can be used for binary classification. For that pur-

pose, each state is set to represent one of the two classes. The input features are taken as HMM

observations. As the features found in Section 2.3 are continuous, the observations of the HMM

used for emphasis detection need to be of continuous densities. The HMM used for this task is

therefore a two state continuous density hidden Markov model (CDHMM). Figure 2.7 depicts

a graphical representation of the utilized CDHMM.

The observations duration (dur), intensity (int), pause duration (pdur) and fundamental fre-

quency (freq) are continuous and are characterized by a Gaussian mixture distribution bj for

each state Sj ∈ {neutral, emphasized}:

bj(x) =
M
∑

k=1

cjkbjk(x) =
M
∑

k=1

cjkN (x,µjk,Σjk) (4)

x is the input feature vector, M is the number of mixture components, cjk is the weighting

factor, µjk the mean vector and Σjk the covariance matrix of the jkth mixture component. For

calculation purposes the covariance matrix Σ was assumed to be diagonal. Such an assump-

tion neglects the correlation between the elements of the feature vector. The feasibility of this

simplification should be evaluated in future work.

20



neutral

ann

emph

ane

aen

aee

dur int pdur freq

Figure 2.7: Representation of a suitable CDHMM for the purpose of distinguishing between

neutral and emphasized words

The CDHMM was trained by estimating the state transition probabilities and the observation

probabilities. The parameters that needed to be trained are the components of the transition

matrix A, the weighting factors cjk, the mean vectors µjk and the covariance matrices Σjk. The

training was conducted in two steps for each cross-validation fold. First, all the transitions from

a neutral/emphasized word to a neutral/emphasized word in all the sentences in the current fold

were counted and divided by the total number of transitions. From these pseudo probabilities the

transmission matrix A was constructed. Then, the Gaussian mixture distribution was estimated

for each of the two states and the ck, µk and Σk were extracted.

Since an HMM is a temporal model, the input data’s sequence is essential. Therefore, in

both the training and test data the sentence structure was maintained. This means, that words

within a sentence were kept in their order rather than randomly mixed with other words. Only

whole sentences were rearranged during cross-validation.

For classification the Viterbi algorithm was applied. This produced an optimal state se-

quence for the test data of the current cross-validation fold. This state sequence could then be

interpreted as the prediction labels. With a small adaptation the Viterbi algorithm provided by

the ETH speech processing group [1] also returns a posterior probability for each output. These

posterior probabilities can be used as confidence scores needed in ROC plots.

In order to optimize the CDHMM, the performance with different numbers of mixture com-

ponents M for the observation probabilities was evaluated.

2.4.5 Neural Networks

Neural networks are a machine learning tool inspired by biological nervous systems. The type of

neural network used in this work is called multilayer perceptron (MLP). A detailed description

of such multilayer perceptrons can be found in [12].

21



The neural network implementation used in this work is called feedforwardnet [2]. It is

part of the MATLAB Statistics and Machine Learning Toolbox [4]. Another potentially suitable

implementation would have been patternnet from the same toolbox. However, pattern nets

only return labels and no confidence scores. This renders the meaningful generation of ROC-

plots impossible.

After choosing a suitable neural network implementation there were several aspects that

needed to be taken into consideration. Each of them is described below.

Training algorithm

The MATLAB feed forward net’s default training algorithm is called Levenberg-Marquardt.

For this work it was not necessary to change this training algorithm. Both speed and training

performance were sufficient. No problems with memory requirements occurred.

Normalization

The MATLAB feed forward net implementation does not offer a built in standardization option.

However, normalization of input features may be beneficial. All neural networks in this work

have been trained twice, once with the original input features and once with normalized features.

If F is a n × 4 Matrix containing the input features of n samples, then the normalization of

the mth column was calculated as shown in (5). An ideal neural network input feature has

zero mean. Hence, the normalization includes mean subtraction. Taking arctan ensures that the

normalized features lie within a finite range
(

−π
2
, π
2

)

. However, using this normalization did

not result in the expected improvements. In most cases, using no normalization yielded better

performance. For future optimization, different normalization methods should be taken into

consideration.

F(:, m) = arctan

(

F(:, m)−mean(F(:, m))

var(F(:, m))

)

(5)

Hidden layer size

Figure 2.8 shows the graphical representation of a standard configuration MATLAB feed for-

ward net. It contains one hidden layer with ten neurons. During this work also the classification

performance of other configurations was evaluated. Training neural networks with a large num-

ber of neurons requires a large number of training samples. According to [12] the number of

training samples should be at least ten times the number of weights in the network. The number

of weights in a network with K hidden layers can be calculated using (6), where ni is the num-

ber of hidden neurons in the ith hidden layer, n0 the number of neurons in the input layer (this

is also the dimension of the feature vectors, which is four in this work) and nK+1 is the number

of neurons in the output layer (which is always one in this work).

#weights =

K+1
∑

i=1

ni−1 · ni (6)
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Figure 2.8: Standard configuration of a MATLAB feed forward net

Starting from the numbers in Table 2.6, the maximal sensible dimensions for hidden layers

were calculated. To limit the number of possible network configurations, for every fixed num-

ber of hidden layers K, the number of neurons in each layer was assumed to be the same (ν).

It is possible, that the best performing networks for emphasis classification may not be of this

configuration. However, in training, weights of non-essential nodes may tend to become very

small and can be pruned out. Hence, the assumption was made, that for any potentially opti-

mal network with variable hidden layer size, there exists a network of comparable size with a

predefined number of neurons in each hidden layer, which performs similarly well.

Constraining the configuration possibility as described above facilitates the calculation of

the maximal number of neurons in each layer as a function of available training samples

(#samples). This is done by combining (6) with the guideline that #weights < #samples

10
and

setting ni = ν for all i /∈ {0, K + 1}. For a configuration with one hidden layer, a guideline for

the maximal number of neurons in this layer was calculated using (7). For configurations with

more than one hidden layer, (8) was used to calculate the number of neurons in each hidden

layer.

n1 =
#samples

10(n0 + n2)
(7)

ν =
−(n0 + nK+1)±

√

(n0 + nK+1)2 + 4(K − 1)#samples

10

2(K − 1)
(8)

Table 2.7 contains estimates of the highest number of neurons in each hidden layer, which

results in a network that can be sensibly trained with the given number of training samples. Such

an upper bound was useful, as it limited the range of possible values in parameter optimization.
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Balanced Full set

# hidden layers DE EN FR DE EN FR

1 9 14 16 69 112 133

2 4 6 6 16 21 23

3 3 4 5 12 15 17

4 3 4 4 9 12 14

Table 2.7: Maximum number of neurons per hidden layer for given number of training samples

2.4.6 Parameter Optimization

For each of the classifier architectures described in this section, there was a set of parameters that

needed to be optimized. For this purpose, multiple instances of the same classifier were trained

using different parameter combinations. To identify the most suitable parameter combinations,

the performance of the resulting classifiers had to be compared. As the number of parameter

combinations is numerous, comparing the resulting classifiers needed to be done automatically.

This required a simple performance score for each classifier, the chosen score is called F1 score.

This performance measure is described more closely under Section 3.2.1.

For some architectures, classifier performance varied noticeably, even for constant parame-

ters. This can be explained by the changeability of initial weights and the random assignment

of data samples into ten folds. To alleviate these fluctuations each classifier was trained with the

same parameters multiple times and the resulting performance scores were averaged.

After the best performing configurations were found, it needed to be ensured, that the re-

sulting classifiers had learned to recognize the characteristics of emphasis and not the training

samples. This is especially critical for large configurations. Such undesirable classifiers can be

detected by comparing their performance on the data they were trained with to their testing data

classification performance.
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3 Evaluation and Results

This chapter describes the experiments used to evaluate feature extraction and classification. It

also gives an overview of the results of these experiments. As feature extraction and classifi-

cation are clearly separated steps in this work’s approach, they were also evaluated separately.

Nevertheless, it is evident that the quality of the feature extraction strongly influences classifi-

cation performance.

The evaluation of the feature extraction is described more closely in Section 3.1. Classifier

training and evaluation is described in Section 3.2.

3.1 Feature Extraction

3.1.1 Evaluation Methods

In this work the feature selection and classification were decoupled. Hence, a classifier-

independent metric to rate the obtained features was needed. Below, two evaluation criteria

are introduced.

Fisher distance Fisher distances provide a measure of dissimilarity between two distributions.

This measure can be used to rate features without depending on any form of classifier. (9)

shows the calculation of the Fisher distance for a feature γ.

Fdist(~γ) =
(mean(~γneutral)−mean(~γemph))

2

var(~γneutral) + var(~γemph)
(9)

Fisher distances were used throughout this work. At first they were used to get a sense of

the validity of the raw features and thereafter to optimize and rate the derived features.

Histograms In this work, histograms were used as a tool to illustrate the distributions of the

raw and derived features. When plotted in the same figure, the dissimilarity of the features

for neutral and emphasized signal parts could often be seen from eye. Comparison of his-

tograms also allowed for the detection of non-expressive features, which were thereafter

discarded.

Cumulative density function Histograms are not ideal for the comparison of feature distribu-

tions containing a strongly dominating value. In such cases cumulative density functions

(CDF) were used for illustration purposes instead.

3.1.2 Results

This section summarizes the feature evaluation results of this work. The results of raw feature

extraction are presented first. The evaluation of the derived features can be found in the second

paragraph.

The presented Fisher distances are always calculated between a feature’s neutral occurences

and its emphasized occurences.
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Raw Features

Table 3.1 shows the Fisher distances of the three raw features in each language. Figure 3.1

illustrates the histograms of the extracted raw features for German. The histograms for the

other languages look comparable and are placed in Appendix A. Figure 3.2 shows the raw

feature histograms for all three languages combined.

For the raw duration and intensity features phoneme level statistics were compiled. This

allowed to calculate a Fisher distance for each phoneme.

The maximum and minimum Fisher distances based on all the individual phonemes for the

raw duration and intensity features are listed in Table 3.2. Due to the limited size of the data set,

some phonemes did not occur often enough for their statistical analysis to be significant. Such

rare phonemes tend to produce high Fisher distances. However, these high Fisher distances do

not actually stem from significant differences between emphasized and neutral speech. They

are a result of a too small set of samples. Hence, a Fisher distance’s validity should always be

confirmed by consulting the corresponding histogram. The cases where phonemes were under-

represented were not included in the calculations for Table 3.2.

Comparing Tables 3.1 and 3.2 reveals, that in some cases Fisher distances for individ-

ual phonemes significantly outperform the raw features’ Fisher distances. However, for other

phonemes the opposite is true. Since not every word consists of well performing phonemes, it

is not advisable to use duration and intensity as a phoneme based feature.

Based on the separate phoneme level statistics, phoneme class statistics for the classes in

Table 2.3 were compiled. The corresponding Fisher distances are summarized in Table 3.3.

The values in brackets are distorted Fisher distances due to a too small number of emphasized

samples in the respective class. These values should be ignored.

Only in two cases (intensity of a plosive release in EN and FR) is the Fisher distance for a

phoneme class remarkably higher than that of the corresponding raw feature. In all other cases,

the Fisher distance is only slightly higher or even lower than that of the raw features. It is thus

not advisable to use phoneme class based duration or intensity features for the classification of

emphasized words.

Fisher distance

DE EN FR

Duration 0.117 0.113 0.162

Intensity 0.128 0.124 0.136

Fundamental frequency 0.095 0.058 0.122

Table 3.1: Fisher distances of the three raw features
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Figure 3.1: Histograms showing the estimated probability distributions of the three raw features

of neutral and emphasized words for German
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Figure 3.2: Histograms showing the estimated probability distributions of the three raw features

of neutral and emphasized words for all languages
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Fisher distance

DE Phoneme EN Phoneme FR Phoneme

Duration maximum 0.313 r 0.324 v 0.404 d_c

Duration minimum 0.006 n 1.7 · 10-4 Q 5.0 · 10-6 a

Intensity maximum 0.637 t 0.921 t 1.531 t

Intensity minimum 3.3 · 10-6 l 0.014 n 1.8 · 10-4 l

Table 3.2: Minimum and maximum Fisher distances of raw duration and intensity features

based on individual phonemes

Fisher distance

Duration Intensity

DE EN FR DE EN FR

Short vowel 0.005 0.055 0.009 0.068 0.003 0.085

Long vowel 0.125 0.010 - 0.172 0.056 -

Diphtong (1.829) 0.129 - (0.159) (0.038) -

Nasal vowel - - 0.007 - - 0.024

Plosive closure 0.140 0.164 0.160 0.147 0.241 0.046

Plosive release 0.254 0.144 0.177 0.394 0.874 0.647

Nasal 0.004 0.166 0.098 0.031 0.001 0.159

Fricative 0.051 0.139 0.049 0.043 0.096 0.0172

Table 3.3: Fisher distances of raw intensity and duration features based on phoneme classes
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Derived Features

In this work’s progress a multitude of possible derived features was evaluated. Table 3.4 shows

the Fisher distances of the derived features which were eventually used in the classification step

of this work. Values were calculated for each language separately as well as for all languages

combined.

In addition to the Fisher distances, histograms of the derived features were assembled. Fig-

ure 3.3 shows the German derived features’ histograms. The histograms for the other languages

are presented in Appendix A. They show great similarity to the German histograms. The his-

tograms of the four derived features over all languages can be found in Figure 3.4.

For all languages the pause duration feature distribution is less clearly separable than those

of the other features. This is why Figure 3.5 contains an alternative illustration of this feature,

namely cumulative density plots.

The Figures 3.4 and 3.5 only show the distributions of the best features. These are the final

features that were also used for classification. Below, the Fisher distances of these final derived

features are compared to the Fisher distances of other features derived from the same raw feature

input.

The second approach for deriving both the duration and intensity feature resulted in two

features τ and ζ per word. In Table 3.5 the τdur and ζdur features are compared to the chosen

duration feature. Table 3.6 presents a comparison of the τint and ζint to the chosen intensity

feature.

In Table 3.7 the final fundamental frequency feature is compared to another version, where

the word unit feature was calculated as the mean, rather than the maximum, of this word’s

syllable features.

Table 3.8 contains a comparison of the six best performing derived pause duration features.

All of the best pause duration features use a combination of both closure and pauses. They all

use continuous values rather than booleans. They differ in the type of closure duration adjust-

ment (none, phoneme based or plosive class based) and in how the two values, one from pauses

and closures before the word and the other from pauses and closure after it, were combined into

one. For some of them the two values were added and for others the values before the word

were disregarded.

Fisher distance

DE EN FR All languages

Duration feature 0.651 0.552 0.618 0.561

Intensity feature 0.935 1.107 0.523 0.790

Fundamental frequency feature 0.896 0.799 0.779 0.811

Pause duration feature 0.168 0.230 0.360 0.258

Table 3.4: Fisher distances of the four derived features
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Figure 3.3: Histograms showing the estimated probability distributions of the four derived

features of neutral and emphasized words for German
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Figure 3.4: Histograms showing the estimated probability distributions of the four derived

features of neutral and emphasized words for all languages
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Fisher distance

DE EN FR

Duration feature 0.651 0.552 0.618

τdur 0.049 0.057 0.037

ζdur 0.012 0.124 0.129

Table 3.5: Fisher distances of the derived duration features

Fisher distance

DE EN FR

Intensity feature 0.935 1.107 0.523

τdur 0.089 0.030 0.058

ζdur 0.076 0.178 0.111

Table 3.6: Fisher distances of the derived intensity features

Fisher distance

DE EN FR

Fundamental frequency feature

(syllable max)
0.896 0.799 0.779

Fundamental frequency feature

(syllable average)
0.538 0.419 0.645

Table 3.7: Fisher distances of the derived fundamental frequency features
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Properties Fisher distance

Closure adjustment Positions DE EN FR

none before & after 0.168 0.230 0.360

none after 0.166 0.215 0.255

phoneme before & after 0.148 0.243 0.340

phoneme after 0.135 0.214 0.242

plosive class before & after 0.145 0.246 0.341

plosive class after 0.132 0.216 0.241

Table 3.8: Fisher distances of the derived pause duration features

3.1.3 Discussion

The histograms and Fisher distances of raw features in Section 3.1.2 show that the extracted

raw features do contain information regarding emphasis. Tables 3.1, 3.2 and 3.3 indicate that a

phoneme based feature for duration and intensity is not advisable.

The calculation of derived features has further improved the Fisher distances, while drasti-

cally reducing data size. The number of features is now four per word as opposed to multiple

values per phoneme (one duration value, one intensity value and an array of fundamental fre-

quency values). The derived feature histograms in Figure 3.4 show a clear distinction between

the features of emphasized and neutral words. This distinction is even better visible in Fig-

ure 3.3, where only one language was considered.

The worst performing derived feature, according to the evaluation methods used in this

work, is the pause duration feature. One possible reason for this may be the infrequent occur-

rence of pauses. Nevertheless, the derived pause feature was still included in the classification

step, under the assumption that a classifier would learn to ignore it if the contained information

was contradictory. If, in the future, this work’s findings are to be implemented as efficiently as

possible, the usefulness of including pause duration as a feature should be reassessed.

The Fisher distances presented in Table 3.1 also show, that emphasis does not have the same

effect in all three languages. In English for example, raw duration and intensity are much better

indicators of emphasis than raw fundamental frequency. For the other languages they are only

slightly better. Such differences are to be explained on one hand by the different nature of these

languages and on the other hand by the fact that many of the speakers contributing to the English

samples of the multilingual SIWIS corpus speak English as a second language.

The language dependency of emphasis manifestation is the reason why in this work classifi-

cation was only done for each language separately. While a classifier trained with and used for

all languages may work, its performance would most likely be considerably lower than that of

a language specific classifier.
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3.2 Classification

3.2.1 Evaluation Methods

There exist many types of scores and visualizations used to assess and compare classifier per-

formance. Below, an overview of the ones most relevant to this work is given. It is indicated

which ones were used for this work.

Confusion Matrix A confusion matrix, as seen in Figure 3.6, shows the relation of true posi-

tives (TP), true negatives (TN), false positives (FP) and false negatives (FN) in a simple,

yet structured form. In this work, true positives correspond to emphasized words that have

correctly been labeled as such. False positives are neutral words predicted to be empha-

sized. False negatives are words where the classifier failed to detect emphasis and true

negatives are neutral words that were detected as such. In addition to the TP, TN, FP and

FN counts, confusion matrices list the following calculations:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Specificity =
TN

FP + TN
(12)

Precision =
TP

TP + FP
(13)

Negative Predictive Value =
TN

TN + FN
(14)

Fallout =
FP

FP + TN
(15)

False Discovery Rate =
FP

FP + TP
(16)

Miss Rate =
FN

FN+ TP
(17)

False Omission Rate =
FN

TN + FN
(18)

Confusion matrices summarize classification performance in a comprehensive structure.

They are used in this work to visualize and compare the results of the best performing

classifiers of each architecture. However, they are not suited for parameter optimization,

as parameter optimization calls for single-valued performance measures. It is unclear

which of the matrices’ values should be compared at what weight to obtain such a mea-

sure.

Accuracy Accuracy is a frequently used measure of classification performance. However, for

the purpose of this thesis it is not suitable. The data set used in this work contains much

more neutral words than emphasized words (cf. Table 2.1). As a result, the accuracy scores

can become quite high even though only few (or even none) emphasized words have been

recognized as such.

36



Actual (Target) Class
0 1

P
re

d
ic

te
d

 (
O

u
tp

u
t)

 C
la

ss

0

1

True
Negatives

False
Positives

Specificity
Fallout

False
Negatives

True
Positives

Recall
Miss Rate

Negative
Predictive

Value
False Omission

Rate

Precision
False Discovery

Rate

Accuracy
1-Accuracy

 Confusion Matrix

Figure 3.6: Confusion matrix example

F1 score One of the properties, which is most desired in a detection method for emphasized

words, is that the classifier detects as many of the emphasized words as possible. This

means that a classifier should have high recall. Furthermore, out of the words that are

detected as emphasized, as many as possible should truly be emphasized ones. This means

that the classifier ought to have high precision.

While both, high precision and recall are desired, there is always a tradeoff between them.

As experiments have shown, maximizing one will result in a decrease of the other. Hence,

neither of them presented a suitable performance measure for parameter optimization.

Instead a combination of the two was used.

A commonly used combination of recall and precision is the F1 score. It is the harmonic

mean of precision and recall and calculated as seen in (19). This is the score that was used

for parameter optimization.

F1 = 2 ·
precision · recall

precision + recall
(19)

ROC curve and AUC In a receiver operating characeristic (ROC) curve, a classifier’s true pos-

itive rate for different thresholds is plotted against the corresponding false positive rates.

This results in an illustration of how well a binary classifier distinguishes between two

classes for different discrimination thresholds.

The area under an ROC curve is called AUC. AUC takes values between zero and one. A

low AUC implies bad classification performance, a high one the opposite.

In this work ROC and AUC are used to compare the best classifiers of each of the four

architectures.
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F1 score Accuracy

DE EN FR DE EN FR

Support vector machines 0.593 0.609 0.606 0.947 0.940 0.949

Random forests 0.607 0.613 0.577 0.946 0.942 0.946

Hidden Markov models 0.456 0.444 0.416 0.935 0.933 0.942

Neural networks 0.533 0.544 0.520 0.950 0.925 0.934

Table 3.9: Comparison of F1 score and accuracy of the four optimal classifiers

3.2.2 Results

This section summarizes the results of the four different classifiers that were trained for this

work.

A comparison of the four optimized classifiers can be found in Table 3.9. In Appendix B

some more detailed listings of the five best parameter settings of each individual classifier can

be found. The F1 scores, precisions, recalls and accuracies listed below are all mean results from

multiple experiments with the same parameter settings. This was done, because some classifiers

showed performance deviations between specific instances trained with the same parameter

settings. Such deviations are due to differences in initial weights and random division of the

samples into folds.

An often observed problem in the training and evaluation of classifiers is overfitting. This is

why the classifiers obtained in this work were evaluated both on their training samples and the

respective testing samples. Had any of the classifiers been overfitted, this would have shown in

the classifier performing much better on the training data than on the testing data. This was not

the case for any of the classifiers.

In the individual paragraphs below, one instance of each classifier with the best parameter

settings is described more closely. Furthermore an overview of the assessed parameter combi-

nations is given.

Support Vector Machines

For support vector machines parameter optimization is very important. Directly applying a

MATLAB standard configuraion SVM to the unbalanced data set will result in a support vector

machine that classifies all samples to be neutral. This is not desired. To avoid such a one-sided

classification, the cost of misclassification was varied. This was achieved by using cost matrices

of the form (20), where α ∈ [1, 7] is the misclassification cost of emphasized samples.

cost =
(

0 1
α 0

)

(20)

As an alternative, balanced data sets were used. In the case of balanced data sets a cost matrix

of the form (21) with α ∈ [1, 7] has shown to be beneficial.

cost =
(

0 α
1 0

)

(21)
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Balanced Standardization Kernel function Poly. order Cost

DE no yes polynomial 3 [0, 1; 3, 0]

EN no yes polynomial 2 [0, 1; 4, 0]

FR no yes polynomial 3 [0, 1; 4, 0]

Table 3.10: Best performing parameter settings for a support vector machine classifier to detect

emphasis

Other parameters that were varied include standardization, kernel function and polynomial or-

der where applicable. Standardization has proven to always be beneficial. The three evaluated

kernel functions are linear kernels, radial basis functions and polynomial kernels. As the de-

rived feature vectors are not linearly separable and as the given problem is not a one class

problem either, polynomial kernels are expected to perform best. Experiments have confirmed

this. Regarding polynomial order, second order polynomials and third order polynomials per-

form similarly well. However, second order polynomial kernels train significantly faster. Higher

order polynomials were not considered due to long calculation times.

An overview of the best support vector machine configurations as found in this work is

given in Table 3.10. Figure 3.7 shows the confusion matrices and ROC plots of one instance

of a support vector machine with optimal parameters for German, English and French. A more

extensive list of the best performing configurations and their average performance scores may

be found in Appendix B.

Random Forests

The optimization of the random forests was done by training many different random forests

using varying values for the minimum leaf size, the number of decision split variables and the

cost matrix. The minimum leaf size was chosen in the interval [1, 100] with a step size of 10.

The number of decision split variables was chosen from the values 1, 2, 3, 4. The cost matrices

were of the form (20) where α varied from 1 to 5.

The results of this optimization can be found in Table 3.11. A list of further well performing

parameter settings for random forests in this work can be found in Appendix B. All of the

optimal configurations were trained with the original unbalanced training set. The ones trained

on a balanced training set, as described in Section 2.4.1, performed considerably worse.

Figure 3.8 shows the confusion matrices and ROC plots of one instance of a random forest

which was trained with the optimal parameters listed in Table 3.11.
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Minimim

leaf size

Decision split

variables
Cost

DE 21 4 [0, 1; 3, 0]

EN 11 3 [0, 1; 4, 0]

FR 11 3 [0, 1; 3, 0]

Table 3.11: Best performing parameter settings for a random forest classifier to detect emphasis

Number of

mixture components

Balanced

training set

DE 1 true

EN 1 false

FR 1 true

Table 3.12: Best performing parameter settings for a hidden Markov model classifier to detect

emphasis

Hidden Markov Model

The only parameter to be optimized in the hidden Markov model was the number of mixture

components M for the Gaussian mixture model. The optimization was done by running the

algorithm with M in the range from one to 24. Appendix B shows the results of the optimization

with the five best parameter settings for the CDHMM.

Table 3.12 summarizes the optimal settings and indicates whether a balanced training set

was used. For all languages the CDHMM with only one mixture component performed better

than the ones with more mixture components. For German and French the training on a balanced

training set achieved optimal results, whereas for English training on an unbalanced training set

performed best.

Figure 3.9 shows the confusion matrices and ROC plots for one instance of the CDHMM

with the parameters set according to Table 3.12 for German, English and French.

Neural Networks

For neural networks the most prominent parameters to optimize are the hidden layer dimensions.

In Section 2.4.5 the maximum dimensions of a network for the given data set size are calculated.

Within the boundaries presented by this calculation the number of neurons was varied at step

sizes of one to two for small dimensions and five to ten neurons for higher ones.

An overview of the best network configurations as found in this work is given in Table 3.13.

Figure 3.10 shows the confusion matrices and ROC plots of one instance of neural networks
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Balanced Hidden layer dimensions

DE no 30

EN yes 5-5

FR yes 4-4

Table 3.13: Best performing parameter settings for a neural network classifier to detect em-

phasis

with the optimal parameters for German, English and French. For French, for example, two

hidden layers with four neurons each have produced the best average F1 score. A more extensive

list of the best performing configurations and their average performance scores may be found

in Appendix B.

3.2.3 Discussion

The results in Section 3.2.2 show that the classification of emphasis is possible with the chosen

classifiers.

Table 3.9 shows that the best classifier for detecting emphasized words depends on the lan-

guage. For German and English, random forests achieved the highest F1 score. Support vector

machines yielded the best F1 score for French.

The worst performing classifier for all languages is the hidden Markov model. A possible

explanation for the mediocre performance of HMMs may be found in the nature of the classifier.

An HMM’s classification depends on the observation sequence. Its temporal nature tries to learn

emphasis sequence patterns. However, the derived features have been designed to eradicate

temporal dependencies.

Table 3.9 illustrates, that accuracy is indeed not a favorable performance measure for the

classification of emphasized words. With regard to accuracy all classifiers perform well. How-

ever, this is also true for a degenerate classifier which classifies all samples to be neutral.

41



Target Class
0 1

O
u

tp
u

t 
C

la
ss

0

1

3551
91.8%

55
1.4%

98.5%
1.5%

134
3.5%

128
3.3%

48.9%
51.1%

96.4%
3.6%

69.9%
30.1%

95.1%
4.9%

 Confusion Matrix

False positive rate (1 - specificity)
0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
si

tiv
e

 r
a

te
 (

re
ca

ll)

0

0.2

0.4

0.6

0.8

1

(a) German (AUC = 0.863)
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(b) English (AUC = 0.938)
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(c) French (AUC = 0.895)

Figure 3.7: Confusion matrices and ROC plots for the optimal support vector machines for

German, English and French
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(a) German (AUC = 0.9115)

Target Class
0 1

O
u

tp
u

t 
C

la
ss

0

1

5601
89.5%

241
3.9%

95.9%
4.1%

120
1.9%

295
4.7%

71.1%
28.9%

97.9%
2.1%

55.0%
45.0%

94.2%
5.8%

 Confusion Matrix

False positive rate (1 - specificity)
0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
re

c
a
ll)

0

0.2

0.4

0.6

0.8

1

(b) English (AUC = 0.932)
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(c) French (AUC = 0.924)

Figure 3.8: Confusion matrices and ROC plots for the optimal random forests for German,

English and French
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(a) German (AUC = 0.738)
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(b) English (AUC = 0.753)
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(c) French (AUC = 0.740)

Figure 3.9: Confusion matrices and ROC plots for the optimal HMMs for German, English and

French
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(a) German (AUC = 0.893)
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(b) English (AUC = 0.962)
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(c) French (AUC = 0.947)

Figure 3.10: Confusion matrices and ROC plots for the optimal neural networks for German,

English and French
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4 Conclusion

This work shows that automatic detection of emphasis is possible.

Raw feature evaluation has shown that the four measurable prosodic quantities (intensity,

fundamental frequency, phoneme and pause duration) do contain information on emphasis. For

German and English intensity is most strongly influenced by emphasis. Duration is the most

prominent carrier of emphasis in French. This shows that emphasis manifestation is language

dependent.

Compared to the extracted raw features the derived features found in this work show much

higher Fisher distances and more clearly separable probability distributions. For German and

English the derived intensity feature results in the best Fisher distances. For French the derived

fundamental frequency feature performs best. The worst performing derived feature is pause

duration. The inferiority of this feature with comparison to the others may be explained with

the infrequent occurrence of pauses.

Emphasis detection classifiers can be trained either for each language individually or for all

languages together. Both, for raw features as well as for derived features, the feature with most

significant manifestation of emphasis is language dependent. This is why it is to be expected

that classifiers will work a lot more efficiently if implemented for each language separately.

The most likely application of emphasis detection is to improve prosody in speech-to-speech

translation. For translation, the input language needs to be known or detected. Hence, consider-

ing that language specific classification ought to outperform a multilingual classifier and that the

language to be classified is known, the classification step of this work has been done exclusively

for each language separately.

In this work four different types of classifier architecture were assessed. For each of the

architectures the respective relevant parameters were optimized. F1 scores were chosen as opti-

mization variables. This score takes into account both recall and precision at equal rates.

With regard to F1 scores, random forests have proven to be the best classification method

for German and English. Support vector machines are the best classification method for French.

As the scores for both classification methods are very similar for all languages, they may be

used interchangeably. A decision between one and the other may be based on memory and time

requirements. Out of hidden Markov models and neural networks, neural networks perform

better.

If the findings in this work are to be used in the future, the chosen classification method and

parameters should be matched to the task at hand. In this work, parameters have been optimized

using F1 scores. This results in equal weight of precision and recall. For some tasks, such as

speech-to-speech translation, high precision may be of greater importance than recall, since a

wrongly emphasized word may lead to more misunderstandings than omitting an emphasis.

However, in a case where emphasis is the key feature, recall may be more important.
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5 Future Work

There are several possibilities to extend or improve the findings in this work. Below, a few of

them are summarized shortly.

• The emphasis of this work is on classification performance, not efficiency. If the emphasis

detection of this work is to be utilized in a system where time and memory considerations

are of importance, the feature extraction and classification methods should be evaluated

and adapted accordingly.

• Classifier parameter optimization is calculation intensive. Hence, only a finite set of pa-

rameter combinations were evaluated in this work. It is possible that trying further com-

binations may lead to better results.

• Feature extraction and classification were done separately in this work. Feature extraction

was optimized using Fisher distances and then suitable classifiers were found. This was to

avoid an optimization with too many parameters (both from the classifiers and the feature

extraction). Now that a set of well functioning classifiers is given, it would be possible

to reexamine the choice of features. Modified features could now be directly assessed by

their classification results, using the gained knowledge on suitable classifier parameters.
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A Feature Histograms

This chapter presents the histograms of the raw and derived features of the languages which

were not shown in Section 3.1.

A.1 Raw Features
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Figure A.1: Histograms showing the estimated probability distributions of the three raw fea-

tures of neutral and emphasized words for English
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Figure A.2: Histograms showing the estimated probability distributions of the three raw fea-

tures of neutral and emphasized words for French
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A.2 Derived Features
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Figure A.3: Histograms showing the estimated probability distributions of the four derived

features of neutral and emphasized words for English
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Figure A.4: Histograms showing the estimated probability distributions of the four derived

features of neutral and emphasized words for French
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B Classifier Optimization

This chapter shows the results of the optimization of the four different classifiers. The numbers

presented in the following tables are mean values over several experiments with the same con-

figuration. Thus, calculating the F1 score from the listed precision and recall might not always

give the same number as the listed F1 score.

B.1 Support Vector Machines

Note that a support vector machine classifer using the MATLAB standard configuration will

predict all samples to be neutral. Hence, precision and F1 score are not defined.

F1 Precision Recall Bal.
Standard-

ization

Kernel

function
Cost

Poly.

order

Configuration 1 0.593 0.613 0.574 no yes poly. [0, 1;3, 0] 3

Configuration 2 0.593 0.682 0.524 no yes poly. [0, 1;2, 0] 2

Configuration 3 0.592 0.562 0.626 no yes poly. [0, 1;4, 0] 3

Configuration 4 0.591 0.561 0.625 no yes poly. [0, 1;4, 0] 2

Configuration 5 0.587 0.563 0.613 yes yes poly. [0, 6;1, 0] 2

Standard config. n.a. n.a. 0 no no linear [0, 1; 1, 0] n.a.

Table B.1: 5 best parameter settings for support vector machines for German compared to the

standard MATLAB configuration

F1 Precision Recall Bal.
Standard-

ization

Kernel

function
Cost

Poly.

order

Configuration 1 0.609 0.539 0.700 no yes poly. [0, 1;4, 0] 2

Configuration 2 0.605 0.574 0.640 no yes poly. [0, 1;3, 0] 2

Configuration 3 0.601 0.590 0.615 yes yes poly. [0, 6;1, 0] 3

Configuration 4 0.601 0.529 0.695 no yes poly. [0, 1;4, 0] 3

Configuration 5 0.599 0.502 0.742 no yes poly. [0, 1;5, 0] 2

Standard config. n.a. n.a. 0 no no linear [0, 1; 1, 0] n.a.

Table B.2: 5 best parameter settings for support vector machines for English compared to the

standard MATLAB configuration
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F1 Precision Recall Bal.
Standard-

ization

Kernel

function
Cost

Poly.

order

Configuration 1 0.606 0.539 0.638 no yes poly. [0, 1;4, 0] 3

Configuration 2 0.603 0.590 0.592 no yes poly. [0, 1;3, 0] 2

Configuration 3 0.599 0.555 0.649 no yes poly. [0, 1;4, 0] 2

Configuration 4 0.597 0.624 0.572 no yes poly. [0, 1;3, 0] 3

Configuration 5 0.593 0.526 0.679 no yes poly. [0, 1;5, 0] 3

Standard config. n.a. n.a. 0 no no linear [0, 1; 1, 0] n.a.

Table B.3: 5 best parameter settings for support vector machines for French compared to the

standard MATLAB configuration

B.2 Random Forests

F1 Precision Recall
Minimim

leaf size

Decision split

variables
Cost

Configuration 1 0.607 0.595 0.619 21 4 [0, 1; 3, 0]

Configuration 2 0.599 0.645 0.559 21 4 [0, 1; 2, 0]

Configuration 3 0.596 0.590 0.603 11 3 [0, 1; 3, 0]

Configuration 4 0.596 0.564 0.632 11 3 [0, 1; 4, 0]

Configuration 5 0.595 0.550 0.649 21 4 [0, 1; 4, 0]

Standard config. 0.551 0.706 0.452 1 2 [0, 1; 1, 0]

Table B.4: 5 best parameter settings for random forests for German compared to the standard

MATLAB configuration
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F1 Precision Recall
Minimim

leaf size

Decision split

variables
Cost

Configuration 1 0.613 0.547 0.699 11 3 [0, 1; 4, 0]

Configuration 2 0.610 0.530 0.718 21 4 [0, 1; 4, 0]

Configuration 3 0.610 0.554 0.677 21 4 [0, 1; 3, 0]

Configuration 4 0.609 0.530 0.715 11 3 [0, 1; 5, 0]

Configuration 5 0.607 0.560 0.662 11 3 [0, 1; 3, 0]

Standard config. 0.560 0.667 0.483 1 2 [0, 1; 1, 0]

Table B.5: 5 best parameter settings for random forests for English compared to the standard

MATLAB configuration

F1 Precision Recall
Minimim

leaf size

Decision split

variables
Cost

Configuration 1 0.577 0.558 0.597 11 3 [0, 1; 3, 0]

Configuration 2 0.571 0.603 0.543 11 3 [0, 1; 2, 0]

Configuration 3 0.568 0.523 0.623 11 3 [0, 1; 4, 0]

Configuration 4 0.560 0.499 0.637 11 3 [0, 1; 5, 0]

Configuration 5 0.547 0.565 0.531 1 2 [0, 1; 4, 0]

Standard config. 0.536 0.668 0.448 1 2 [0, 1; 1, 0]

Table B.6: 5 best parameter settings for random forests for French compared to the standard

MATLAB configuration

B.3 Hidden Markov Models

Note that the presented hidden Markov model was self-implemented and therefore does not

have a standard MATLAB configuration.

54



F1 Precision Recall
Number of

mixture components

Balanced

training set

Configuration 1 0.456 0.525 0.403 1 yes

Configuration 2 0.423 0.501 0.366 1 no

Configuration 3 0.351 0.760 0.229 3 yes

Configuration 4 0.334 0.775 0.213 4 yes

Configuration 5 0.331 0.739 0.213 9 yes

Table B.7: 5 best parameter settings for HMM for German

F1 Precision Recall
Number of

mixture components

Balanced

training set

Configuration 1 0.444 0.492 0.405 1 no

Configuration 2 0.306 0.522 0.217 2 yes

Configuration 3 0.302 0.639 0.198 3 no

Configuration 4 0.292 0.628 0.190 5 yes

Configuration 5 0.284 0.622 0.184 13 no

Table B.8: 5 best parameter settings for HMM for English

F1 Precision Recall
Number of

mixture components

Balanced

training set

Configuration 1 0.416 0.541 0.338 1 yes

Configuration 2 0.349 0.448 0.285 1 no

Configuration 3 0.346 0.624 0.239 3 yes

Configuration 4 0.343 0.667 0.231 4 yes

Configuration 5 0.341 0.684 0.227 6 yes

Table B.9: 5 best parameter settings for HMM for French
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B.4 Neural Networks

F1 Precision Recall Normalized
Balanced

training set

Hidden layer

dimensions

Configuration 1 0.533 0.728 0.421 no no 30

Configuration 2 0.519 0.713 0.410 no no 65

Configuration 3 0.516 0.722 0.402 no no 60

Configuration 4 0.513 0.713 0.402 no no 40

Configuration 5 0.512 0.735 0.394 no no 50

Standard config. 0.423 0.610 0.354 no no 10

Table B.10: 5 best parameter settings for neural networks for German compared to the standard

MATLAB configuration

F1 Precision Recall Normalized
Balanced

training set

Hidden layer

dimensions

Configuration 1 0.544 0.460 0.773 no yes 5-5

Configuration 2 0.505 0.684 0.401 no no 50

Configuration 3 0.495 0.697 0.385 no no 65

Configuration 4 0.489 0.671 0.386 no no 60

Configuration 5 0.489 0.373 0.807 yes yes 2

Standard config. 0.423 0.632 0.324 no no 10

Table B.11: 5 best parameter settings for neural networks for English compared to the standard

MATLAB configuration
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F1 Precision Recall Normalized
Balanced

training set

Hidden layer

dimensions

Configuration 1 0.520 0.477 0.710 no yes 4-4

Configuration 2 0.510 0.721 0.396 no no 60

Configuration 3 0.507 0.716 0.716 no no 55

Configuration 4 0.505 0.720 0.390 no no 50

Configuration 5 0.503 0.700 0.393 no no 20-20

Standard config. 0.465 0.719 0.345 no no 10

Table B.12: 5 best parameter settings for neural networks for FR compared to the standard

MATLAB configuration
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C Phone Inventories

Definition of the Phone Inventories

to be Used for Mixed- L ingual TTS Synthesis

Beat Pfister

June 1, 2010

The following pages define the phone inventories for German, French, Italian, English, and

Spanish as used e.g. in the mixed-lingual SVOX TTS system. Th e phones are represented by

means of IPA symbols and by symbols of the ETH computer phonetic alphabet (ETHPA). Each

phone or diphtong is illustrated with some examples in graphemic and phonetic form.

For readability reasons, the ETHPA symbols are defined to be as similar as possible to the

IPA symbols. IPA symbols as well as ETHPA symbols representing the phonetic transcription

of a word can be put in a strings. Such word strings can unambiguously be split into phonemes

(not true for most other phonetic alpabet such as SAMPA).

The phonetic forms of words in IPA symbols may be produced in LATEX documents by means

of the command \ I P A { <string>} , where <string> is a sequence of ETHPA symbols

from the lists below. Note that the string must have no blanks; they will not appear in the

phonetic form on the output document.

Hints for lexicon writers

• The following phonetic dictionaries are considered as standard for lexical entries: for Ger-

man [Dud74]; for French [War87]; for Italian [Pon95]; for American and British English

[Jon03]; and for Spanish [Lan02].

• Apart from French, every stem and fullform entry must get a main word accent, denoted

as single quote (i.e. ’ )

• Dashes or hyphens of graphemic representations are to be replaced by the symbol & in

the phonetic representations (e.g. the pronunciation of “Punt-Chamues-ch” to appear in

the lexicon is: ’pUnt&,t_Samu’Es&t_S )

• Proper names consisting of several words (e.g. “Segl Baselgia”) go in one sin-

gle lexicon entry. The pronunciations of the words are also separated blanks, i.e.

,seL ba’sE:ld_Za .

• Aspiration of German and English plosives (i.e. [kh], [ph] and [th]) is not indicated in the

lexicon; it can be determined by means of appropriate rules.
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• The German syllabic consonants (i.e. [l
"
], [m

"
] and [n

"
]) must not be used in the lexicon;

use the pronunciation with the Schwa instead.

References

[Dud74] Duden “Aussprachewö rterbuch”, 2. Auflage. Bibliographisches Institut. Mannheim,

Wien, Zü rich, 1974.

[Jon03] D. Jones. Cambridge English Pronouncing Dictionary. Cambridge University Press

(ISBN 0-521-01712-2), 16th edition, 2003.

[Lan02] Langenscheidt “Maxi-Wö rterbuch Spanisch” . Langenscheidt Verlag Berlin und

Mü nchen (ISBN 3-468-11441-9), 2002.

[Pon95] Pons-K ompaktwö rterbuch Italienisch-Deutsch, 2. Auflage. Ernst Klett Verlag, 1995.

[War87] L. Warnant. Dictionnaire de la prononciation franç aise . Duculot (ISBN 2-8011-

0581-3), 1987.
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G erman phone inventory (incl. Swiss German diphthongs)

IPA ETHPA Example

a: a: Bahn ["ba:n]

a a hat ["hat]

5 6 Ober ["Po:b5]

5
“

ˆ 6 Uhr ["Pu:5
“
]

a<i a_i weit ["va<it]

a<u a_u Haut ["ha<ut]

b b Ball ["bal]

ç C ich ["PI ç ]

d d dann ["dan]

d
<
Z d_Z Gin ["d

<
ZIn]

e: e: Beet ["be:t]

e e Methan [me"ta:n]

E: E: wä hle [ "vE:l@]

E E hä tte [ "hEt@]

e<I e_I Frey ["fre<I] 2

@ @ halte ["halt@]

f f Fass ["fas]

g g Gast ["gast]

g
<
g g_g Rü egger [ "ry<@g

<
g@r] 3

h h hat ["hat]

i: i: viel ["fi:l]

i i vital [vi"ta:l]

I I bist ["bIst]

i
“

ˆi Studie ["Stu:di
“
e]

i<@ i_@ Dietikon ["di<@ti­ko:n] 2

j j ja ["ja:]

k k Skandal [skan"da:l]

kh k_h kalt ["khalt] 1

l l Last ["last]

l
"

=l Nabel ["na:bl
"
]

m m Mast ["mast]

m
"

=m grossem ["gro:sm
"
]

n n Naht ["na:t]

n
"

=n baden ["ba:dn
"
]

N N lang ["laN]

o: o: Boot ["bo:t]

o o Moral [mo"ra:l]

O O Post ["pOst]

o
“

ˆo loyal [lo
“
a"ja:l]

O
<
y O_y Heu ["hO

<
y]

IPA ETHPA Example

ø : 2: Ö l [ "P ø :l]

ø 2 Ö konom [ ­P ø ko "no:m]

œ 9 göttlich ["gœ tl I ç ]

p p Spatz ["Spat<s]

p<f p_f Pfahl ["p<fa:l]

ph p_h Pakt ["phakt] 1

r r Rast ["rast]

r<r r_r Karren ["kar<r@n]

s s Hast ["hast]

S S Schal ["Sa:l]

t t Stier ["Sti:r]

th t_h Tal ["tha:l] 1

t<s t_s Zahl ["t<sa:l]

t
<
S t_S Matsch ["mat

<
S]

u: u: Hut ["hu:t]

u u kulant [ku"lant]

U U Pult ["phUlt]

u
“

ˆu aktuell [ak"tu
“

El]

U<@ U_@ Ruedi ["rU<@di] 2

v v was ["vas]

x x Bach ["bax]

y: y: Rü be [ "ry:b@]

y y Mykene [my"ke:n@]

Y Y fü llt [ "fYlt]

y̆ ˆy Etui [Pe"ty̆i:]

y<@ y_@ Blü emlisalp [ ­bly<@mlis"alp] 2

z z Hase ["ha:z@]

Z Z Genie [Ze"ni:]

P ? beamtet [b@"Pamt@t]

1 aspirated plosive (not in lexicon)
2 Swiss German diphthong
3 strong Swiss German [g]
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French phone inventory

IPA ETHPA Example

a a tabac [taba]

A A bâ t, pâ te [b A], [pAt]

ã ˜a ange [ã Z]

b b bon, robe [bÕ], [öOb]

d d dans, aide [dã ], [ Ed]

e e é té [ete]

E E treize [töEz]

Ẽ ˜ E cinq, linge [zẼk], [lẼZ]

@ @ premier [pö@mje]

(@) ( @ ) matelot [mat(@)lo] 1

f f feu, neuf [fø ], [nœ f]

g g gare, bague [gaö], [bag]

h h hop [hOp]

i i lit, é mis [li], [emi]

j j yeux, paille [jø ], [paj]

ñ J agneau, vigne [año], [viñ]

k k actif, barque [aktif], [baök]

l l lent, sol [lã ], [s Ol]

m m main, femme [mẼ], [fAm]

N N camping [kã pi N]

n n nous, tonne [nu], [tOn]

o o galop [galo]

O O é loge [el OZ]

Õ ˜ O on, savon [Õn], [savÕ]

ø 2 bleu [blø ]

œ 9 neuf, oeuf [nœ f], [œ f]

˜œ ˜ 9 un, parfum [ ˜œ ], [pa öf ˜œ ]

p p pè re, soupe [p Eö], [sup]

ö R rue, venir [öy], [v@niö]

s s sale, dessous [sal], [d@su]

S S chat, tâ che [ Sa], [taS]

t t terre, vite [tEö], [vit]

u u roue [öu]

v v vous, rê ve [vu], [ öEv]

w w oui, nouer [wi], [nwe]

y y lu [ly]

4 H huit, lui [4it], [l4i]

z z zé ro, maison [ze öo], [mEzÕ]

Z Z gilet, mijoter [ZilE],[miZOte]

P ? les haricots [le Paöiko]

1 optional schwa
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English phone inventory

IPA ETHPA Example

@ @ another [@"n2 ð @]

@<U @_U nose ["n@<Uz] 1

æ q hat ["hæ t]

A A got, frog ["gAt], ["frAg] 2

A: A: stars ["stA:z] 1, ["stA:rz] 2

2 V cut, much ["k2t], ["m2t
<
S]

a<I a_I rise ["ra<Iz]

a<U a_U about [@"ba<Ut]

b b bin ["bIn]

ð D this, other ["ð Is], ["2 ð @r]

d d din ["dIn]

d
<
Z d_Z Gin ["d

<
ZIn]

3: 3: bird, furs ["b3:d], ["f3:z] 1

3 3 bird, furs ["b3rd], ["f3rz] 2

e e get ["get]

e<I e_I raise ["re<Iz]

E<@ E_@ stairs ["stE<@z] 1, ["stE<@rz] 2

f f fit ["fIt]

g g give, bag ["gIv], ["bæ g]

h h hit ["hIt]

I I witch ["wIt
<
S]

i: i: ease ["i:z]

I<@ I_@ fears ["fI<@z] 1, ["fI<@rz] 2

j j youth, yes ["ju:T], ["jes]

k k skat ["skA:t]

kh k_h kin ["khIn]

l l life, field ["la<if], ["fi:ld]

m m mean ["mi:n]

N N thing ["TIN]

n n fine, net ["fa<In], ["net]

O: O: abroad [@"brO:d]

O<I O_I noise ["nO<Iz]

6 Q got, frog ["g6t], ["fr6g] 1

o<U o_U nose ["no<Uz] 2

p p speed ["spi:d]

ph p_h pin ["phIn]

r r ring, stress ["rIN], ["stres]

S S shine, brush ["Sa<In], ["br2S]

s s sin, mouse ["sIn], ["ma<Us]

T T thin, method ["TIn], ["meT@d]

IPA ETHPA Example

t t street ["stri:t]

th t_h time ["tha<Im]

t
<
S t_S chin ["t

<
SIn]

U U book ["bUk]

u: u: lose ["lu:z]

U<@ U_@ durable ["djU<@r@bl]

v v very, heavy ["verI], ["hevI]

w w well ["wel]

x x loch ["l6x] 1

Z Z vision ["vIZ@n]

z z zoo, fees ["zu:], ["fi:z]

1 British English
2 American English
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Italian phone inventory

IPA ETHPA Example

a a parete [pa"re:te]

a: a: pane ["pa:ne]

b b bambina [bam"bi:na]

b<b b_b repubblica [re"pub<blika]

d d ladina [la"di:na]

d<d d_d freddezza [fre"d<det<t<sa]

d<d<
Z d_d_Z oggi ["Od<d<

Zi]

d<d<z d_d_z mezzi ["mEd<d<zi]

d
<
Z d_Z Genova ["d

<
ZE:nova]

d<z d_z zona ["d<zO:na]

E E mezzo ["mEd<d<zo]

e e terreno [te"r<re:no]

E: E: bene ["bE:ne]

e: e: nero ["ne:ro]

f f fumo ["fu:mo]

f<f f_f caffè [ka "f<fE]

g g gondola ["gondola]

g
<
g g_g aggressivo [ag

<
gre"s<si:vo]

i i bilancio [bi"lant
<
So]

i: i: lira ["li:ra]

ñ J gnocco ["ñOk<ko]

ñ
<
ñ J_J prognosi ["prOñ

<
ñozi]

k k vacanza [va"kant<sa]

k<k k_k bocconi [bo"k<ko:ni]

l l lama ["la:ma]

L L figlio ["fi:Lo]

L<L L_L bottiglia [bo"t<tiL<La]

l<l l_l midollo [mi"dol<lo]

m m menù [me "nu]

m<m m_m mamma ["mam<ma]

N N banca ["baNka]

n n Napoli ["na:poli]

n<n n_n nonno ["nOn<no]

o o posata [po"za:ta]

O O ricordo [ri"kOrdo]

O: O: cosa ["kO:za]

o: o: volo ["vo:lo]

p p presto ["prEsto]

p
<
p p_p scialuppa [Sa"lup

<
pa]

r r Rimini ["ri:mini]

IPA ETHPA Example

r<r r_r carro ["kar<ro]

s s salsa ["salsa]

S S scena ["SE:na]

S
<
S S_S riuscita [riu"S

<
Si:ta]

s<s s_s deflusso [de"flus<so]

t t cantata [kan"ta:ta]

t
<
S t_S cena ["t

<
Se:na]

t<s t_s zitto ["t<sit<to]

t<t t_t viadotto [via"dot<to]

t<t<
S t_t_S nocciola [no"t<t<

SO:la]

t<t<s t_t_s merluzzo [mer"lut<t<so]

u u lumaca [lu"ma:ka]

u: u: luna ["lu:na]

v v vivace [vi"va:t
<
Se]

v<v v_v provvidenza [prov<vi"dEnt<sa]

z z sbarra ["zbar<ra]

i
“

ˆi inizio [i"nit<t<si
“
o]

u
“

ˆu acqua ["ak<ku
“
a]
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Spanish phone inventory

The second column lists the notations as used in [Lan02].

IPA LSch ETHPA Example

a a valle ["baLe]

b b á mbar, vino [ "ambar], ["bino]

B ă B cabra, Habana ["kaBra], [a"Bana]

d d donde ["dOnde]

ð ą D prado ["prað o]

ðff ð D_+ juzgado [xuðff"Ga(ð )o]

(ð ) ą | ( ą) ( D ) ciudad [Ti
“
u"ð a(ð )]

e e pero ["pero]

E E directo [di"rEkto]

f f fá cil [ "faTil]

g g gata, tango ["gata], ["taNgo]

G g G viga, burgo ["biGa], ["burGo]

i i pico ["piko]

i
“

˘ ı ˆi diá logo, rey [ "di
“
aloGo], ["r<rei

“
]

j j ayer, yuste [a"jEr], ["juste]

ñ J añ o, niñ o [ "año], ["niño]

k k casa ["kasa]

l l lejos ["lExos]

L L caballo, llave [ka"baLo], ["LaBe]

m m mismo ["mizmo]

n n nunca ["nuNka]

N N ancla ["aNkla]

o o toro ["toro]

O O ojo ["Oxo]

p p padre ["pað re]

r r puro ["puro]

r<r rr r_r torre ["tOr<rE]

s s sala ["sala]

t t tomo ["tomo]

t
<
S tS t_S chacho, mucho ["t

<
Sat

<
So], ["mut

<
So]

T T cinco ["Tinko]

u u duro ["duro]

u
“

ŭ ˆu cueva, cigü eñ a [ "ku
“
eBa], [Ti"gu

“
eña]

x x José , mujer [xo "se], [mu"xEr]

z z isla ["izla]

P ? hoy ["POi
“
]
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Detecting Strong Prosodic Events

Introduction

One of the most difficult task of text-to-speech synthesis is prosody generation. Basically,
the prosody is largely determined by semantic and pragmatic properties. Such properties
can hardly be recognized from the input text, however. A system that has to synthesize
speech from arbitrary text can do at the utmost a syntactic analysis of individual sen-
tences. The resulting syntax trees can be used to derive syllable stress levels and prosodic
phrases. The syntax-based prosody of the synthesized speech sounds generally quite ac-
ceptable.

In some cases, neglecting semantic and pragmatic information may result in wrong
prosody, however. Then prosody is not in line with the meaning. For instance, a specific
meaning of the following sentence requires to emphasize a certain word. Or the other way
round, the meaning of the sentence depends on whether and which word is emphasized.

My wife flew to Paris. (means, e.g. not his wife)

My wife flew to Paris. (means, e.g. not my daughter)

My wife flew to Paris. (means, she did not travel, e.g. by train)

Logically, syntax-based prosody is wrong in these cases. And there is no simple solution
to change this for text-to-speech synthesis in general.

In the context of a speech-to-speech translation, however, there is an elegant possibility
to solve this problem. We can check whether there is emphasis in the input signal and
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which words are actually emphasized. This information can then be used to emphasize
the corresponding word of the translated and synthesized output speech.

Task of this thesis

The task to be solved in the framework of this thesis is to detect salient prosodic events
such as emphasis or contrast from the speech signal. Quite often these events are very
similar to syllables with a high stress level (sometimes also referred as prominence level),
but generally they are stronger. In terms of the physical prosodic parameters this stress
means: change of fundamental frequency (F0), lengthened phone duration and increased
signal intensity. Sometimes a pause may appear before the emphasized segment of the
speech signal. Furthermore, emphasis is known to has an impact on the spectrum of
phonemes and thus spectral properties may be useful for the detection of emphasis as
well.

Most logically, the detection of strong prosodic events has to rely on prosodic properties,
mainly on the F0 contour, the phone durations, the intensity contour and pauses. The task
is to extract suitable features from these properties and to construct a suitable classifier
(see e.g. [1] or [2]).

Naturally, the semester thesis will start with investigating how prosodic features of em-
phasis differ from those of its neutral version (and probably of its neighboring words).
The relationship between emphases and the prosodic parameters duration, intensity and
F0 at different levels as well as and their statistics have to be examined.

It is recommended to work on the multilingual SIWIS speech corpus in which emphases
were recorded on purpose. The speakers in this corpus were requested to emphasize a
couple of words in a sentence intentionally, and each speaker read 25 sentences with
emphasis. The corpus contains German, English, French and Italian recordings. Hence,
it will be interesting to see whether/what contributory factors in emphasis are language-
independent.

Features for training a classifier to detect strong prosodic events will be selected accord-
ing to the outcome of the aforementioned first stage. Common classifiers (hidden Markov
model, neural network, support vector machine, decision tree, or combinations thereof)
should be applied to detecting strong prosodic events. A detailed analysis of the classifi-
cation results should reveal which classifier architecture performs best. It is recommended
to use Matlab.

The work done and the attained results have to be documented in a report (see recommen-
dations [3]) that has to be handed in as PDF document. Furthermore, two presentations
have to be given: the first one will take place about two weeks after the start of the work
and is meant to give a short overview of the task and the initial planning. The second one
at the end of the project is expected to present the task, the work done and the achieved
results in a sufficiently detailed way. The dates of the presentations will be announced
later.

2
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